
Dear editor, 
 
Thanks for the feedback on this work. We have responded to each comment below. Our replies 
are in blue, and the revised manuscript text is written in bold.  
 
 
Comments to the Author: 
The revised manuscript has improved. The authors provided more insight into the causes for the 
differences between the NOx emission inversions, and how these differences lead to differences 
in simulations of tropospheric ozone. 
 
The technical clarifications are much appreciated: in particular the case for using all available 
OMI measurements in a data assimilation scheme, rather than sampling rows that were outside 
the row anomaly throughout the entire OMI mission, has been well-argued (Figure R1). 
 
The discussion of GEOS-Chem SCDs is also useful. The finding that GEOS-Chem NO2 SCD 
generated with the NASA scattering weights exceed the GEOS-Chem SCDs generated with their 
DOMINO counterpart, is important. It indicates structural differences in the presumptions about 
the satellite sensitivity to NO2 in the lower troposphere: this is presumed to be stronger in the 
NASA retrieval than in the DOMINO retrieval. This finding could and should be highlighted 
more in the final paper. 
 
Thanks for the comments. We added the following sentence to the abstract: 
 
“The different vertical sensitivities in the two NO2 retrievals affect both magnitude and 
seasonal variations of top-down NOx emissions.”  
 
We also added the following sentence to the discussion and conclusion: 
 
“Different vertical sensitivities from the two retrievals are a major cause of the 
discrepancies in the posterior emissions.” 
 
 
Remaining issues 
1. The concepts of scattering weights, averaging kernels, and vertical sensitivity are used too 
loosely in the manuscript. In the DOAS-formalisms discussed in Palmer et al. [2001] and Eskes 
and Boersma [2003], and recently summarized in Chance and Martin [2017], a clear distinction 
is made between scattering weights and averaging kernels. 
 
Scattering weights (w) are related to SCDs (SCD = | w(z) n(z) dz), with | the integral sign, n(z) 
the a priori NO2 profile. But averaging kernels (a) are related to VCDs (VCD = | a(z) n(z) dz). 
Their relationship is via the AMF: a(z) = w(z)/M, with M the AMF. I recommend to first clearly 
define, and then carefully check every use of the term ‘scattering weights’, ‘averaging kernels’, 
and ‘vertical sensitivity’, in the manuscript. This is important in order to prevent the wrong use 
of these concepts. 
 



We changed the first sentence in the second paragraph of Section 2.2 to: 
 
“We converted GEOS-Chem NO2 VCD to SCD using scattering weight from the OMI retrievals 
and then compare GEOS-Chem SCD with SCD retrieved from OMI. The scattering weights 
are the product of the averaging kernels and the air mass factor (AMF) [Palmer et al., 
2001; Chance and Martin 2017].” 
 
We also changed “averaging kernel” to “scattering weight” on line 281. 
 
2. It remains unclear how the uncertainty in the AMF (the observation operator in generating the 
GEOS-Chem SCDs) is accounted for in the assimilations. This is important because, together 
with the estimated uncertainty on the model state, it determines how strongly OMI is driving the 
data assimilation. In other words, I suggest the authors provide the relative weight of the OMI 
SCD vs. the GEOS-Chem SCD in the assimilation scheme. 
 
We did not explicitly include uncertainties in the AMF. While these are not provided in all of the 
retrievals we used, and it is beyond the scope of this paper to calculate them,  based on those that 
were provided for the NASA standard product in January 2010 the relative contribution of AMF 
uncertainty to the uncertainty of the tropospheric NO2 SCD is ~2%.  
 
 
3. I strongly disagree with the phrase that “daily NO2 column densities from OMI are 
underestimated to the diurnally varying ground-based retrievals [Herman et al., 2019].” As stated 
in my previous review, OMI is simply measuring at 13:30 hrs, close to the diurnal minimum in 
NO2 columns. To then call this an “underestimate” is misleading. 
 
We changed the cited sentence to “The daily NO2 column densities from OMI are smaller 
compared to the diurnally varying ground-based retrievals” 
 
4. L26: please clarify what is meant with “current hard-constraints on NOx diurnal variation”. 
There is no constraint from the satellite data, so in essence the prior diurnal variation is used. 
Please rephrase to make this clear. 
 
“Hard-constraint” or “strong-constraint” as opposed to “weak-constraint” within the 4D-Var 
framework, i.e., an aspect of the model that is not adjusted. But this is jargon from the 
assimilation community, so to clarify we changed the cited sentence to: 
 
“The limited availability of remote sensing data and the use of prior NOx diurnal variations 
hinder improvement of ozone diurnal variations from the assimilation” 
 
Reference 
Chance, K., and Martin, R. V.: Spectroscopy and Radiative Transfer of Planetary Atmospheres, 
Oxford University Press, 2017. 
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Abstract. Tropospheric NO2 and ozone simulations have large uncertainties, but their biases, seasonality and trends can be 10 

improved with NO2 assimilations. We perform global top-down estimates of monthly NOx emissions using two OMI NO2 

retrievals (NASAv3 and DOMINOv2) from 2005 to 2016 through a hybrid 4D-Var / mass balance inversion. Discrepancy in 

NO2 retrieval products is a major source of uncertainties in the top-down NOx emission estimates. The different vertical 

sensitivities in the two NO2 retrievals affect both magnitude and seasonal variations of top-down NOx emissions. The 12-year 

averages of regional NOx budgets from the NASA posterior emissions are 37% to 53% smaller than the DOMINO posterior. 15 

Consequently, the DOMINO posterior surface NO2 simulations greatly reduced the negative biases in China (by 15%) and the 

US (by 22%) compared to surface NO2 measurements. Posterior NOx emissions show consistent trend over China, US, India, 

and Mexico constrained by the two retrievals. Emission trends are less robust over South America, Australia, Western Europe 

and Africa, where the two retrievals show less consistency. NO2 trends have more consistent decreases (by 26%) with the 

measurements (by 32%) in the US from 2006 to 2016 when using the NASA posterior. The performance of posterior ozone 20 

simulations has spatial heterogeneities from region to region. On a global scale, ozone simulations using NASA-based 

emissions alleviates the double peak in the prior simulation of global ozone seasonality. The higher abundances of NO2 from 

the DOMINO posterior increase the global background ozone concentrations and therefore reduce the negative biases more 

than the NASA posterior in the GEOS-Chem v12 simulations at remote sites. Compared to surface ozone measurements, 

posterior simulations have more consistent magnitude and interannual variations than the prior estimates, but the performance 25 

from the NASA-based and DOMINO-based emissions varies across ozone metrics. The limited availability of remote sensing 

data and the use of prior NOx diurnal variations hinder improvement of ozone diurnal variations from the assimilation, and 

therefore have mixed performance on improving different ozone metrics. Additional improvements in posterior NO2 and ozone 

simulations require more precise and consistent NO2 retrieval products, more accurate diurnal variations of NOx and VOC 

emissions, and improved simulations of ozone chemistry and depositions.  30 

 

Deleted: current hard-constraints on 
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1 Introduction 

Tropospheric ozone is a harmful secondary air pollutant affecting human health, sensitive vegetation, and ecosystems [NRC, 35 

1991; Monks et al., 2015]. Long-term ozone (O3) exposure is estimated to cause 1.04 – 1.23 million respiratory deaths in adults 

[Malley et al., 2017]. Short-term exposure to high ambient ozone is associated with respiratory and cardiovascular mortality 

[Turner et al., 2016; Fleming et al., 2018]. Accurate simulations of ozone in highly polluted regions are important for better 

pollution forecasts and more effective emission regulations. Tropospheric ozone is formed through photochemical reactions 

between nitrogen oxide (NOx = NO + NO2), carbon monoxide (CO), methane (CH4), and volatile organic compounds (VOCs) 40 

in the presence of sunlight [Crutzen, 1973; Derwent et al., 1996]. These precursor gases are mainly emitted from fossil fuel 

combustion, biomass burning, oil and gas production, industry, agriculture, and biogenic activities. Tropospheric ozone can 

also be transported from the stratosphere through stratosphere-troposphere exchange [Stohl et al., 2003; Hsu and Prather, 2009; 

Stevenson et al., 2006], but this magnitude is smaller than the amount from chemical production by a factor of 5 – 7 [Young 

et al., 2013]. Ozone is removed from the troposphere through deposition [Fowler et al., 2009], photo-dissociation, and reactions 45 

with HO2, NO2, unsaturated VOCs, halogens, and aerosols [Crutzen, 1973]. 

 

From 1850 to 2000, global mean tropospheric ozone burden has increased by 29% [Young et al., 2013]. Human activities are 

major sources of ozone precursor gases, contributing to 9% (24.98 Tg) increase of the global tropospheric ozone burden from 

1980 to 2010 [Zhang et al., 2016]. Ozone formation and trends depend nonlinearly on the local relative abundances of NOx 50 

and VOCs and the radiative regime in which these occur. Previous studies have shown that changes in surface ozone are 

dominated by regional emission trends of precursor gases [Zhang et al., 2016]. At the global scale, 77% of NOx emissions are 

from anthropogenic sources, according to the HTAP 2010 inventory [Janssens-Maenhout, 2015]. Anthropogenic NOx 

emissions have been decreasing in North America and Europe due to transportation and energy transformations [Simon et al., 

2015], but have been increasing in China up until 2011 according to bottom-up emission inventories [Liu et al., 2016; Hoesly 55 

et al., 2018]. Top-down NOx emission estimates using satellite observations from the Ozone Monitoring Instrument (OMI) 

showed a similar turning point in China [Miyazaki et al., 2017; Qu et al., 2017], but a slowdown in reductions in the US 

compared to bottom-up estimates [Miyazaki et al., 2017; Jiang et al., 2018]. However, in India and the Middle East, where 

ozone production is more efficient than higher latitude regions [Zhang et al., 2016], NO2 column densities from OMI are 

continuing to increase [Krotkov et al., 2016]. 60 

 

Top-down methods have the advantage of being able to update emissions in a more timely fashion than the bottom-up 

approaches; still, top-down approaches can contain large differences and uncertainties. For instance, the magnitude of 

tropospheric NO2 column densities from two global retrievals from the National Aeronautics and Space Administration (NASA) 

and the Royal Netherlands Meteorological Institute (KNMI) differ by 50%, and have different trends at the regional scale 65 

[Zheng et al., 2014; Canty et al., 2015; Qu et al., 2017]. These differences in column densities can propagate to differences in 
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top-down NOx emission estimates [e.g., Miyazaki et al., 2017; Qu et al., 2017]. In this study, we assess the importance of these 

discrepancies in NOx emissions for the simulation of ozone. We derive global top-down NOx emissions from 2005 to 2016 

using two widely used products (OMNO2 v3 and Dutch OMI NO2 (DOMINO) v2) based on the same inversion process for 

consistent evaluations (Sect. 3). We also evaluate a new OMI NO2 retrieval product, the Quality Assurance for the Essential 70 

Climate Variables (QA4ECV) [Boersma et al., 2018], and apply it to derive monthly NOx emissions in 2010. We do not repeat 

our entire set of ozone evaluations with this product given that its magnitude and seasonality does not significantly differ from 

the other two products. We further explore the impact of adjusting NOx emissions on ozone simulations, by evaluating the 

ozone simulations produced from bottom-up and top-down NOx emissions against global surface measurements from the 

Tropospheric Ozone Assessment Report (TOAR) database and the China National Environmental Monitoring Center 75 

(CNEMC) network.  

 

In addition to local sources, the lifetime of ozone (~22 days on global average) is sufficiently long enough for intercontinental 

transport [UNECE, 2010]. Consequently, every country is an exporter as well as an importer of ozone pollution. Transport 

from East Asia can be an important contributor to ozone exceedances in the western US [Goldstein et al., 2004; Zhang et al., 80 

2009; Zhang et al., 2014; Fiore et al., 2014; Verstraeten et al., 2015; Lin et al., 2017; Jaffe et al., 2018]. The influence of 

intercontinental ozone transport is strongest in spring and summer, when background ozone concentrations reach 50 ppbv at 

the west coast of the US [Jaffe et al., 2018]. The impact of background ozone is increasingly important and challenging due to 

the decreased local sources of precursor gases in the US [Hoesly et al., 2018] and the recent stricter ozone standard in the US 

lowering the annual 4th highest maximum daily 8-hour average ozone concentration from 75 ppbv to 70 ppbv in 2015 [Cooper 85 

et al., 2015]. Optimization of NOx emissions in the upwind regions can improve remote ozone simulations in downwind regions 

after transport of intercontinental pollution plumes from the free troposphere to the surface [Zhang et al., 2008; Verstraeten et 

al., 2015]. Therefore, we also evaluate the model simulations of remote ozone at the west coast of the United States using 

bottom-up and top-down NOx emissions in Sect. 4. 

2 Methods 90 

2.1 GEOS-Chem and its adjoint model 

The GEOS-Chem adjoint model [Henze et al., 2007] v35k is used to derive global NOx emission estimates at 2° × 2.5° 

resolution. It was developed for inverse modelling of aerosol and gas emissions using the 4D-Var method by Henze et al. 

[2007, 2009] based on version 8 of GEOS-Chem, with bug fixes and updates up to version 10. Simulations in this study are 

driven by Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) meteorological fields 95 

from NASA Global Modeling and Assimilation Office (GMAO). Anthropogenic emissions of NOx, SO2, NH3, CO, 

NMVOCs and primary aerosol from the HTAP 2010 inventory version 2 [Janssens-Maenhout et al., 2015] are used to drive 

all prior simulations from 2005 to 2017. The diurnal variation of NOx emissions is derived from EDGAR hourly variations ( 
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http://wiki.seas.harvard.edu/geos-chem/index.php/Scale_factors_for_anthropogenic_emissions#Diurnal_Variation) and is 

not optimized in the inversion. The use of non-anthropogenic emissions and other setups follow Qu et al. [2017, 2019]. In 100 

the following analyses, we refer to this model as “GC-adj.” 

 

GC-adj does not include several halogen chemistry mechanisms that affect ozone depletions primarily over the oceans 

[Sherwen et al., 2016a; Wang et al., 2019] and at high altitude regions [Sherwen et al., 2016a]. Given their impact on the global 

background ozone concentrations, we also use GEOS-Chem v12.1.1 to evaluate ozone simulations at 2° × 2.5° resolution 105 

driven by the MERRA-2 meteorological fields. The chemistry updates include the stratospheric chemistry from the Universal 

tropospheric-stratospheric Chemistry eXtension (UCX) [Eastham et al., 2014], halogen chemistry [Bell et al., 2002; Parrella 

et al., 2012; Sherwen et al., 2016a, 2016b; Schmidt et al., 2016; Sherwen et al., 2017], and updated isoprene and monoterpene 

chemistry [Chan Miller et al., 2017; Fisher et al., 2016; Marais et al., 2016; Travis et al., 2016]. The Harvard-NASA Emission 

Component (HEMCO) is employed to process emissions in this version of GEOS-Chem [Keller et al., 2014]. We use 72 levels 110 

of vertical grid and global anthropogenic emissions from the Community Emissions Data System (CEDS) [Hoesly et al., 2018]. 

Top-down NOx emissions derived using GC-adj are also input to this model to evaluate the impact of NO2 data assimilation 

on ozone simulations under different chemical mechanisms. We refer to this model as “GCv12” in this manuscript. 

 

For each NOx emission dataset, the model is spun-up for 6 months, starting from July 2005. Therefore, we derive NOx 115 

emissions from 2005, but only evaluate simulations with measurements from 2006. To avoid high biases when comparing 

simulated ozone averaged over the first vertical model layer (~100 m in box height) with surface measurements, 2-meter ozone 

mixing ratios are calculated by scaling simulated ozone mixing ratios in the first layer using adjusted dry deposition velocities 

at 2 meters following Zhang et al. [2012] and Lapina et al. [2015]. 

2.2 Satellite observations and global top-down NOx emissions 120 

We estimate global top-down NOx emissions at the surface from 2005 to 2016 at 2° × 2.5° resolution using tropospheric NO2 

column densities from OMI. OMI is an Ultraviolet/Visible nadir solar backscatter spectrometer aboard the NASA Aura satellite. 

It has a local overpass time of about 13:45 and a nadir resolution of 13 km × 24 km. OMI was launched in July 2004 and has 

provided operational data products since October 2004. Two Level 2 NO2 retrieval products are used to derive long-term top-

down NOx emissions in this study: the NASA standard product OMNO2 version 3 [Krotkov et al., 2017] and the DOMINO 125 

version 2 from KNMI [Boersma et al., 2011]. A new OMI NO2 retrieval, the Quality Assurance for the Essential Climate 

Variables (QA4ECV) [Boersma et al., 2018], has recently become available. This product is jointly developed by KNMI, the 

Belgian Institute for Space Aeronomy (BIRA-IASB), University of Bremen, Max-Plank Institute for Chemistry, and 

Wageningen University. We evaluate the magnitude of NO2 column densities and the seasonality of posterior NOx emissions 

in 2010 from this product. We screen all OMI NO2 retrievals using data quality flags and by the criteria of positive tropospheric 130 
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column, cloud fraction < 0.2, solar zenith angle < 75°, and viewing zenith angle < 65°. We excluded all retrievals that are 

affected by row anomaly.  

 

We converted GEOS-Chem NO2 VCD to SCD using scattering weight from the OMI retrievals and then compare GEOS-

Chem SCD with SCD retrieved from OMI. The scattering weights are the product of the averaging kernels and the air mass 135 

factor (AMF) [Palmer et al., 2001; Chance and Martin 2017]. A cost function is defined as the observation error weighted 

differences between simulated and retrieved NO2 SCD, plus the prior error weighted departure of the emission scaling factors 

from the prior estimates. We minimize the cost function using the quasi-Newton L-BFGS-B gradient-based optimization 

technique [Byrd et al., 1995; Zhu et al., 1994], in which the gradient of the cost function with respect to the control parameter 

is calculated using the adjoint method. Details of the assimilation of NO2 slant column densities (SCDs), how vertical 140 

sensitivities of satellite retrievals are accounted for, and the hybrid 4D-Var / mass balance inversion of NOx emissions are 

described in Qu et al. [2017]. We use top-down NOx emissions estimated from the NASA standard product and the DOMINO 

product in the evaluations of ozone simulations.  

2.3 Surface measurements 

We evaluate surface NO2 simulations with measurements from the Environmental Protection Agency (EPA) Air Quality 145 

System (AQS) in the US and the China National Environmental Monitoring Center (CNEMC) network in China. The city 

monitoring sites included in the analysis represent either urban background or the averaged pollutant concentrations over the 

city. Simulated ozone mixing ratios from 2006 to 2016 are compared to surface observations from the TOAR Surface Ozone 

Database [Schultz et al., 2017] at the global scale and the CNEMC network in China. TOAR has produced a relational database 

of global surface ozone observations at all available sites; see Gaudel et al. [2018] for illustrations of the global coverage of 150 

the TOAR data. Precompiled TOAR data (https://doi.pangaea.de/10.1594/PANGAEA.876108, available from 1995 to 2014) 

at each individual site are used in this study. Given the sparse TOAR data coverage of only 32 sites over China, hourly surface 

ozone measurements from the CNEMC (http://106.37.208.233:20035/) are used to evaluate simulations in China from 2014 

to 2016. The CNEMC national network was designed for urban and suburban air pollution monitoring. The archive contains 

hourly observations of ozone, carbon monoxide, nitrogen dioxide, sulfur dioxide and fine particulate matter across mainland 155 

China since 2013.  

2.4 Ozonesonde measurements 

Ozone profile measurements from the Intercontinental Chemical Transport Experiment Ozonesonde Network Study (IONS-

2010) [Cooper et al., 2011] are used to evaluate the continental inflow of ozone along the west coast of the United States, 

where air masses are not influenced by recent US emissions. IONS-2010 was a component of the California Research at the 160 

Nexus of Air Quality and Climate Change (CalNex) 2010 experiment [Ryerson et al., 2013] and was a continuation of previous 

IONS experiments to measure tropospheric ozone variability across North America [Thompson et al., 2007, 2008; Cooper et 

Deleted:  (NASA product) and averaging kernel (DOMINO and 
QA4ECV product)
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al., 2007]. Balloon-borne electrochemical cell sensors were used to measure ozone profiles with an accuracy of +/- 10% in the 165 

troposphere [Johnson et al., 2002; Smit et al., 2007]. All six sites in California from IONS-2010 (Trinidad Head, Point Reyes, 

Point Sur, San Nicolas, Joshua Tree, and Shasta) are included in this study. These measurements are made in the mid-afternoon 

(95% occurring between 14:00 and 16:59 local time) over a six-week period from May 10 to June 19, 2010. There are 34-37 

profiles for all sites except for San Nicolas Island, where only 26 profiles are available due to multiple instrument failures. 

Measurements made between 700 – 800 hPa are used to evaluate remote ozone simulations.  170 

3 Magnitude, seasonality and trend of NOx emissions, surface NO2 and surface ozone 

Differences between the prior and posterior NOx emission estimates are mainly driven by the differences between simulated 

and retrieved tropospheric NO2 vertical column densities (VCDs), which are compared in Sect. S1 in the supporting 

information. The GEOS-Chem NO2 SCDs converted using scattering weight from the NASA product are larger than the SCDs 

calculated using the DOMINO scattering weight and the same GEOS-Chem VCDs (See Fig. S2). These can be explained by 175 

the use of different surface albedo and cloud product in the two retrievals. The retrieved NO2 SCDs from the NASA product 

are mostly smaller than the DOMINO retrieval except for some regions between 40°N – 60°N in January 2010. The smaller 

magnitude in OMI SCD and the larger magnitude in GEOS-Chem SCD using the NASA scattering weight lead to smaller 

magnitude of posterior NOx emissions than inversions from the DOMINO product. The cost function has reduced by 6% - 29% 

in the monthly inversion. 180 

3.1 Annual average 

As shown in Table 1, the global budgets of NOx emissions from the NASA posterior in 2010 is 0.7% smaller than the prior; 

DOMINO posterior is 18% larger than the prior; QA4ECV posterior is 11% larger than the prior. The positive increment in 

the DOMINO posterior emissions is consistent with the +26% increments of 10-year mean posterior NOx emissions in 

Miyazaki et al. [2017]. The annual global NOx emissions from Miyazaki et al. [2017] are between 46.7 Tg N yr-1 and 50.9 Tg 185 

N yr-1 from 2005 to 2014, which are within 31% from the DOMINO posterior emissions in 2010 in this study. 

 

As shown in Fig. 1, the NASA posterior NOx emissions are less than the prior NOx emissions in the northeast US, northeast 

China, and southeast China. The DOMINO posterior NOx emissions are larger than the prior in most regions except for North 

Mexico and most parts of the tropics. The QA4ECV posterior NOx emissions have more consistent negative increments in 190 

Eastern China with the NASA posterior emissions and more consistent positive increments in the United States, India, Europe, 

and Australia with the DOMINO posterior emissions. At the regional scale, NASA posterior increments are -3% in China, -

1% in the US, +0.3% in India, and -1% in Western Europe. The increments from the DOMINO posterior emissions are +21% 

in China, +31% in the US, +28% in India, and +38% in Western Europe. The different changing directions in the above two 

posterior NOx emissions are consistent with the reportedly higher magnitude of NO2 column densities in the DOMINO product 195 
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than the NASA product in densely populated and industrial regions [Zheng et al., 2014; Canty et al., 2015; Qu et al., 2017]. 

The increments from the QA4ECV posterior emissions are +5% in China, +19% in the US, +18% in India, and +14% in 

Western Europe.  

 

To evaluate the magnitude of the posterior NOx emissions, we compare simulations of surface NO2 concentrations using the 200 

NASA and DOMINO based NOx emissions with surface measurements in the US and China. Surface NO2 simulations at 

coarse resolution are usually biased low compared to measurements at urban sites, due to the short lifetime of NOx. We 

therefore start with analysing this resolution error by generating high-resolution pseudo surface measurements at 0.1° × 0.1° 

and compare them with low-resolution model simulations at 2° × 2.5°. We generate high-resolution surface NO2 concentrations 

by scaling simulated surface NO2 concentrations at 2° × 2.5° grid cells by the ratio of OMI NO2 column density gridded at 205 

0.1° × 0.1° to the OMI NO2 column density gridded at 2° × 2.5° grid cell. We identify 0.1° × 0.1° grid cells that include surface 

monitoring sites and treat downscaled surface NO2 concentrations at these grid cells as the pseudo surface measurements. 

Comparisons of pseudo surface measurements and NO2 simulations at 2° × 2.5° purely reflect differences caused by comparing 

NO2 concentrations at 2° × 2.5° with higher resolution surface measurements at urban regions. The mean of the pseudo NO2 

measurements is 32% higher than the low-resolution simulations in the US, and it is 18% higher than the low-resolution 210 

simulations in China. The real surface measurements, which represent a single point within the 0.1° × 0.1° grid cell, are 

expected to have even larger biases than the values calculated here, where we assume the measurements are at 0.1° × 0.1° grid 

cells. The smaller bias in China in comparison to the US is related to the higher background NO2 concentrations in China.  

 

Figure 2 shows the comparisons of annual mean surface NO2 concentrations in 2015 from measurements and simulations using 215 

different NOx emission inputs. The selection of this year is due to the limited availability of nation-wide surface NO2 

measurements in China. Surface NO2 concentrations in both China and the US are measured by chemiluminescence analyzers, 

each equipped with a molybdenum converter, which converts additional NOy compounds to NO and leads to a positive bias in 

NO2 measurements [Dunlea et al., 2007; Steinbacher et al., 2007]. We therefore calculate a correction factor following Lamsal 

et al. [2008] for each GEOS-Chem simulation and divide the simulated NO2 concentrations by this correction factor to convert 220 

simulated NO2 to the measured species. The correction factors are generally higher in the US than in China, but have similar 

seasonality (see Fig. S3). Subtracting the resolution bias from the statistics shown on Fig. 2, the equivalent normalized mean 

bias (NMB) of surface NO2 concentrations using the NASA posterior is -54% in China and -41% in the US. The equivalent 

NMB using the DOMINO posterior is -38% in China and -19% in the US. These remaining negative biases reflect the 

unrepresentativeness of 0.1° pseudo measurements for real point measurements for resolution bias correction, comparison of 225 

NO2 concentrations averaged over 2°×2.5° simulation to limited measurements, the underestimates of NO2 retrievals using 

coarse resolution a priori, and the inability of data assimilation to increase emissions at grid cell where NO2 retrievals are 

below the detection limit of OMI. Although we have not performed a NOx emission inversion using the QA4ECV product for 
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2015, we expect its bias to lie between the results from the NASA and DOMINO products, based on the magnitude of NOx 

emissions in 2010.  230 

 

We evaluate the simulated ozone concentrations with global surface measurements from the TOAR database using three ozone 

metrics: maximum daily 8-hour average (MDA8) ozone, daytime average ozone (8:00 – 20:00 local time), and 24-hour average 

ozone. In addition to the GC-adj simulation, with which we derived top-down NOx emissions, we also input the same top-

down emissions to GCv12 and evaluate ozone simulations from this more recent version of the GEOS-Chem that includes 235 

updated halogen and isoprene chemistry. 

 

All GC-adj simulations of 2-meter ozone concentrations have a high bias compared to the TOAR measurements in 2010. NMB 

and Normalized Mean Square Error (NMSE) are largest for 24-hour ozone concentrations. Simulations using posterior NOx 

emissions have slightly better agreement with the measurements from TOAR in 2010 (Fig. 3). In particular, simulations using 240 

the DOMINO posterior NOx emissions have the smallest NMB in all ozone metrics and the smallest NMSE in all metrics 

except for the North Hemisphere (NH) summertime MDA8 ozone. Simulations using the NASA posterior NOx emissions have 

the best spatial correlation when compared with measurements for all metrics except for the NH summer daytime ozone and 

annual MDA8 ozone, for which DOMINO posterior simulations have the largest correlation coefficient (Fig. S4).  

 245 

In comparison, GCv12 simulations have a low bias in daytime ozone, but high bias in 24-hour average ozone, reflecting the 

potential underestimate of ozone loss at night. The impact of NO2 assimilation on improving estimates of surface ozone 

simulations in GCv12 depends upon the ozone metric, as shown in the bottom left panel of Fig. 3. Simulations using the 

DOMINO posterior emissions have the smallest NMB for annual mean daytime ozone; simulations using bottom-up NOx 

emissions have the smallest NMB for annual mean MDA8 ozone; simulations using the NASA posterior emissions have the 250 

smallest NMB for annual mean 24-hour averaged ozone. These results suggest that the simulated diurnal variations of surface 

ozone concentrations may not be correct. The current constraints on NOx emissions use observations from OMI, which 

overpasses the same location approximately once per day. The diurnal variations of NOx emission are constrained to be those 

of the prior emissions. The daily NO2 column densities from OMI are smaller compared to the diurnally varying ground-based 

retrievals [Herman et al., 2019]. Assimilating NO2 observations from instruments overpassing at different time of the day [e.g., 255 

Boersma et al., 2008; Lin et al., 2010; Miyazaki et al., 2017] and using hourly constraints from the geostationary satellite data 

(e.g., Geo-stationary Environmental Monitoring Spectrometer (GEMS), Tropospheric Emissions: Monitoring of Pollution 

(TEMPO) [Zoogman et al., 2017] and Sentinel-4) have the potential to improve simulations of ozone diurnal variations and 

different ozone metrics, although the ratio of NO2 column densities from satellites that overpass in the morning and afternoon 

are generally lower than the same ratio from surface measurements [Penn and Holloway, 2020]. Simulated MDA8 ozone 260 

values are mostly biased low in NH summer but biased high in annual mean concentrations, reflecting different seasonal 

Deleted: also underestimated 



9 
 

variations in simulated and measured ozone concentrations, which will be further discussed in Sect. 3.2. Evaluations with the 

CNEMC ozone measurements in China are in Sect. S2.  

3.2 Seasonal variation 265 

The seasonal variations of monthly NOx emissions are consistent between the prior and the NASA posterior emissions (Fig. 

4). The DOMINO posterior emissions show different seasonal variations in several regions. In China, the prior and the NASA 

posterior NOx emissions show summer peaks, which are mainly caused by the increase of natural sources when temperatures 

are high and lightning occurs more often [Qu et al., 2017]. The DOMINO posterior emissions have the largest values in January 

and June in China, consistent with the posterior seasonality from Miyazaki et al. [2017] constrained by the same OMI NO2 270 

product. The June peak in China has been explained by the crop residual burning [Stavrakou et al., 2016]. The peak of the 

DOMINO posterior NOx emissions in the United States and Mexico shifted earlier in the year to June and July compared to 

the prior and NASA posterior emissions, similar to the results from Miyazaki et al. [2017]. The peak in DOMINO posterior 

emissions corresponds to the time of high soil NOx emissions, which are reported to be underestimated in high-temperature 

agricultural systems in the bottom-up inventory [Oikawa et al., 2015; Miyazaki et al., 2017]. The differences between the 275 

DOMINO posterior and the other two sets of emissions are especially large during the springtime in India, when biomass 

burning activity increases [Miyazaki et al., 2017; Venkataraman et al., 2006]. These retrieval products have similar number of 

observations and spatial distributions of observation densities after the filtering. The different seasonal variations in the 

posterior NOx emissions may reflect the AMF structural uncertainties when the retrieved NO2 column densities use different 

ancillary data [Lorente et al., 2017]. For instance, the GEOS-Chem NO2 SCDs converted using the scattering weight from the 280 

NASA product have larger seasonal variations than the SCDs converted using the DOMINO scattering weight in the US, 

reflecting the different seasonal variations of vertical sensitivities from the two retrievals. The seasonal variations of simulated 

surface NO2 concentrations are similar with measurements in China and the US (see Fig. S6).  

 

Seasonal variations of 2-meter ozone concentrations simulated by the GC-adj are also similar despite different NOx emission 285 

inputs: the differences in correlation coefficients of the simulated and the measured monthly ozone concentrations are less than 

9%. The simulations of 2-meter ozone concentrations from GCv12 show better seasonality when using the posterior NOx 

emissions than using the prior, as shown in Fig. 5. Simulations using the CEDS inventory show double maxima in April and 

August, whereas surface measurements only show a single maximum in April. Assimilation of NASA NO2 concentrations 

alleviates this difference and leads to the largest correlation with measured MDA8 and 24-hour average ozone; simulations 290 

using the DOMINO posterior emissions have the largest correlation coefficient for daytime ozone. That being said, the 

correlation coefficients are not notably different. The August ozone peak in the prior simulation is mainly due to the high 

ozone concentrations in North China, Southwest China, and North India. The NASA and DOMINO posterior simulations have 

both reduced surface ozone concentrations in North China Plain and Northeast China in August due to the larger posterior NOx 

emissions than the prior in these high-NOx regions. Both posterior ozone simulations are also smaller than the prior in Tibet 295 
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and North India due to the reductions of posterior NOx emissions in low-NOx region. The August ozone peak in the DOMINO 

posterior comes from the higher ozone concentrations in Angola and Democratic Republic of the Congo compared to the 

NASA posterior and prior simulations in the same month and DOMINO posterior simulations in the previous months. This 

can be explained by the larger upward adjustment of DOMINO posterior NOx emissions in South Africa in August. These 300 

results show the large spatial heterogeneities on the responses of ozone seasonality to the changes in NO2 abundances on a 

global scale. Compared with CNEMC measurements in China, simulations using the prior emissions have the most consistent 

seasonal variations and smallest NMSE. All simulations have smaller seasonal variations than the measurements in daytime 

ozone. 

3.3 Inter-annual variations 305 

The three different versions of NOx emissions have different regional trends from 2005 to 2016 as shown in Fig. 6. In China, 

the NASA posterior NOx emissions increased by 32% and the DOMINO posterior NOx emissions increased by 32% from 2005 

to 2011. From 2011 to 2016, they decreased by 20% (NASA) and 11% (DOMINO). This turning point reflects the regulation 

of NOx emissions in China since the “11th 5-year plan” in 2011. In India, both posterior NOx emissions showed continuous 

increases (by 24% from the NASA posterior and 34% from the DOMINO posterior) from 2005 to 2016. The sources of NOx 310 

emissions in India are mainly from thermal power and transportation and are expected to continue increasing in the near future 

under current regulations [Venkataraman et al., 2018]. In the US, NOx emissions decreased by 24% (NASA) and 19% 

(DOMINO) from 2005 to 2010 and then flattened from 2010 to 2016. This slowdown in the total top-down NOx emissions 

was attributed to the growing contribution from industrial, areal, and off-road mobile sources as well as the slower than 

expected decreases in on-road diesel NOx emissions by Jiang et al. [2018]. Silvern et al. [2019], however, argued that the 315 

slowdown was driven by the weaker decreases in background sources of NOx, which has increasing contribution with the 

decrease of anthropogenic NOx sources. In Mexico, the two posterior NOx emissions consistently increased by 6% (NASA) 

and 13% (DOMINO) from 2005 to 2016. The DOMINO posterior shows more obvious increase in Mexico from 2010 to 2016. 

This increase in Mexico is not reflected in the bottom-up estimates from the EPA National Emissions Inventory. In Australia, 

the NASA posterior increases by 10% from 2005 to 2016. In comparison, the DOMINO posterior decreases from 2005 to 2010 320 

and increases afterwards, consistent with the posterior trend from Miyazaki et al. [2017]. The different trends in posterior NOx 

emissions are propagated from the trends in the two OMI NO2 retrieval products. The discrepancies are likely due to the 

different surface albedo and cloud products used in the two retrievals, which affect averaging kernel sensitivities. The trends 

of NOx emissions in South America are different in the two posterior estimates after 2012, when the NASA posterior emissions 

started to decrease by 27% and the DOMINO posterior emissions started to increase by 11% up until 2016. In Western Europe 325 

and Africa, posterior NOx emissions fluctuate and do not have a significant consistent trend from the two inversions. 
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The magnitudes of DOMINO posterior NOx emissions are consistently larger than the NASA ones throughout the period. The 

12-year averages of annual NOx budgets from NASA posteriors are 37% (China), 53% (India), 43% (US), 50% (Mexico), 45% 

(Australia), 58% (South America), 47% (Western Europe), and 46% (Africa) smaller than the DOMINO posterior.  330 

 

We evaluate the trend of simulated surface NO2 concentrations in the US with AQS measurements due to its availability 

throughout the study period (Fig. 7). From 2006 to 2016, the surface NO2 concentrations show consistent decreases in the AQS 

measurements (by 32%) and GC-adj simulations (by 26% using the NASA posterior, by 10% using the DOMINO posterior, 

and by 7% using the prior emissions). Since we use the same anthropogenic emissions throughout 2006-2016 in the prior 335 

simulations, the variations in the black line reflect changes from natural sources and the impact of meteorological factors (e.g., 

temperature, humidity, wind, etc.). Surface NO2 simulations using the NASA posterior NOx emissions also have the largest 

correlation coefficient when compared to the measurements (R2 = 0.93 for the NASA posterior, R2 = 0.81 for the DOMINO 

posterior, and R2 = 0.74 for the prior). The more consistent trends and correlations in surface NO2 simulations using the NASA 

posterior emissions are consistent with the larger decrease of NASA posterior NOx emissions in the US (by 20%, or for 340 

comparison a decrease of 1% in the DOMINO posterior) from 2006 to 2016, as shown in Fig. 6. 

 

The interannual variability of global simulations of 2-meter ozone sampled at the TOAR locations is similar between GC-adj 

and GCv12. During the NH summer, simulations using the DOMINO posterior NOx emissions have the most consistent trend 

in daytime and 24-hour average ozone in both models (see Table S1); GC-adj simulations using the NASA posterior emissions 345 

have the best consistency with the measured trend of MDA8 ozone. The different performance of NOx emission datasets for 

different ozone metrics is a consequence of the hard constraint on NO2 diurnal variations within the assimilation (and the lack 

of sufficient observations to constrain this). This can lead to better agreement of mean ozone concentration with measurements 

over particular hours but worse mean concentrations averaged over other hours. Detailed analyses of global ozone trends are 

in Sect. S3. At the regional scale, shown in Fig. 8, surface ozone measurements from TOAR mostly fall within the ranges of 350 

assimilation results. The interannual variations of simulated ozone over the whole region (black dotted lines) are generally 

smaller than the ones at grid cells that include surface measurements (black solid lines). The number of years that ozone 

measurements are available in each grid cell is shown in Fig. S8. The overlap of solid black and green lines in Fig. 8 suggests 

that interannual variations of anthropogenic NOx emissions from CEDS do not have a large impact on surface ozone 

simulations. The trends of simulated annual MDA8 ozone concentrations are correlated with impacts from meteorology and 355 

non-NOx sources based on simulations (shown as green lines) that use the same anthropogenic NOx emissions for all years and 

simulations that use interannually varied anthropogenic NOx emissions, leading to ozone changes of up to 4 ppbv (China), 5 

ppbv (South Korea), 1ppbv (US), 2 ppbv (Mexico), 1 ppbv (South America), 1 ppbv (Australia), 1 ppbv (Western Europe), 

and 6 ppbv (Africa) from one year to the next. The trends of simulated MDA8 ozone are similar when using the NASA and 

the DOMINO posterior NOx emissions as inputs. The DOMINO-derived MDA8 ozone concentrations are higher than the 360 

NASA-derived ones in all studied regions, represented by the upper and lower limit of the error bars respectively. GCv12 
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simulated ozone concentrations are smaller than simulations from GC-adj, especially over relatively less polluted regions, 

consistent with the inclusion of halogen chemistry in GCv12, which depleted ozone. The simulated MDA8 ozone trends in 

grid cells that include measurements in the US and Australia are more consistent with the TOAR measurements than the other 

regions, with coefficients of determination (R2) larger than 0.45. The larger differences in ozone between the prior and posterior 365 

emissions as well as variability between the two top-down NOx emissions in GCv12 suggest a larger responsiveness of the 

ozone chemistry to changes in NOx. We do not expect simulated ozone trends to be completely consistent with the 

measurements in the TOAR database due to errors in the model’s transport, chemical mechanism, and VOC emissions.   

 

We further separate the ozone trends in grid cells that include measurements into changes caused by NOx emissions as well as 370 

meteorology and non-NOx sources. The second trend is calculated through simulations that use constant NOx emissions 

throughout the studied years. It has similar trend from GCv12 and GC-adj as shown in the green lines in Fig. 9. The trend 

caused by NOx emissions is obtained by subtracting the second trend from the ozone trend simulated using NOx emissions at 

each corresponding year. The ozone trends due to changes in meteorology and non-NOx sources (green lines) are moderately 

correlated (R > 0.5) with measurements from TOAR in Australia, the US, South America, and India. The ozone trends due to 375 

changes in posterior NOx emissions (red and blue lines) only have positive correlations with TOAR measurements in both GC-

adj and GCv12 simulations in Africa and Australia. Ozone measurements in 2014 decreased compared to the 2006 level in the 

US and Mexico. GC-adj simulations do not have big trends in these regions, whereas GC-v12 simulations show increases in 

China, the US, and Mexico. Meteorological and non-NOx sources lead to larger inter-annual variations in ozone simulations 

than those driven by NOx emissions in South America, Australia, and Africa, where anthropogenic activities are much less 380 

than the other regions. These underscore the challenges of attributing observed variations in ozone to changes in NOx emissions 

at regional scales. 

 4 Western US remote ozone 

Assimilations of ozone precursor gases have the potential to improve remote ozone simulations, which can be used to provide 

boundary conditions for regional air quality models and to quantify and attribute sources of background ozone. We therefore 385 

focus specifically on remote regions in the US in this section to evaluate the vertical profile and surface concentrations of 

ozone simulations.   

4.1 Evaluations with ozonesonde profiles 

Field campaigns and routine observations of ozone concentrations along the west coast of the US have provided opportunities 

to understand regional and intercontinental influences on surface air quality [Cooper et al., 2015]. Evaluations with the IONS-390 

2010 measurements in Fig. 10 show that the GCv12 simulations of ozone vertical profiles have negative biases (NMB between 

-8% and -32%) above all six sites. The standard deviations of ozonesonde and simulated profiles overlap with each other (see 
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Fig. S9). The GC-adj simulations have positive biases at San Nicolas and Trinidad Head and have smaller negative biases 

(NMB between -3% and -11%) at the remaining sites than the GCv12 simulations. The magnitudes of the NMSE and NMB 

of the GCv12 simulations at 700 – 900 hPa are also larger than those of the GC-adj simulations (see Fig. S10). The prior 395 

simulations in GCv12 applies NOx emissions at different altitude, whereas the posterior GCv12 and all GC-adj simulations 

apply all NOx emissions to the surface. This leads to different transport and formation of ozone at different model layers and 

therefore causes larger differences in ozone simulations in the upper troposphere. The air masses at this altitude in the eastern 

Pacific are demonstrated to impact inland near surface ozone concentrations [Cooper et al., 2011; Lin et al., 2012; Yates et al., 

2015]. The different biases in ozone simulations close to surface can be explained by the usage of different emission inventories 400 

(e.g., different biogenic emissions) and different boundary layer mixing scheme (non-local mixing [Lin and McElroy, 2010] 

in GCv12 and full mixing in GCadj). The different chemical mechanisms in the two model versions affect the different model 

biases especially in the upper troposphere. For instance, inclusion of halogen chemistry and additional chlorine chemistry in 

GCv12 leads to 19% and 7% decreases of global tropospheric ozone burden [Sherwen et al., 2016a; Wang et al., 2019]. GCv12 

simulations using the CEDS emissions have smaller NMSE and NMB than the simulations using the posterior NOx emissions 405 

in all 6 sites in 2010. In comparison, the GC-adj simulations using the DOMINO posterior NOx emissions have the smallest 

NMSE and NMB at all sites except for San Nicolas and Trinidad Head, where the prior simulations have the smallest error 

and bias. Further evaluations with ozonesondes at Trinidad Head in 2016 are shown in Sect. S4. 

4.2 Evaluations with TOAR surface ozone measurements at remote sites 

To further evaluate the model performance under different geographical scenarios, we compare surface ozone simulations 410 

from GC-adj and GCv12 with observations from simple to complex environments. These include 1) Mauna Loa Observatory 

and Mt Bachelor Observatory at night, which represent the lower free troposphere; 2) Mt. Bachelor Observatory, Lassen 

Volcanic National Park, Great Basin National Park, and Sequoia / Kings Canyon National Park at daytime, representing high 

elevation rural sites during well-mixed daytime conditions. The coefficients of determination (see Table S2) between the 

simulations and the measurements are larger than 0.6 for all daytime ozone comparisons except for Mt. Bachelor Observatory. 415 

The correlation coefficients are smaller than 0.5 for all nighttime comparisons, reflecting the need to further improve 

simulations of nighttime chemistry and atmospheric processes.  

 

In Fig. 11, the surface ozone concentrations from both GC-adj and GCv12 simulations have low biases compared to the surface 

measurements at remote sites. These low biases in the GCv12 simulations are consistent with its performances when evaluated 420 

with ozonesondes from IONS-2010 and with daytime surface ozone at the global scale. However, the low biases in the GC-

adj simulations are different from its high biases when compared with the global surface ozone concentrations and the ozone 

profiles at San Nicolas and Trinidad Head. This demonstrates the different biases in ozone simulations at rural and urban sites. 

Simulations using the DOMINO posterior emissions have the smallest NMSE and NMB at all remote sites except for the 

GCv12 simulations at Mauna Loa at night and Great Basin during the daytime. 425 
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5 Discussion and conclusions 

We performed global inversions of NOx emissions from 2005 to 2016 using two widely used OMI NO2 retrievals from NASA 

(OMNO2 v3) and KNMI (DOMINO v2). Different vertical sensitivities from the two retrievals are a major cause of the 

discrepancies in the posterior emissions. The DOMINO posterior NOx emissions have larger magnitude than the prior and the 

NASA posterior. Consequently, GC-adj simulations using the DOMINO posterior NOx emissions have the smallest negative 430 

bias in surface NO2 and the smallest positive bias in 2-meter ozone. The impact of NO2 assimilations on improving estimates 

of the GCv12 surface ozone simulations depends upon the ozone metrics, suggesting inaccurate diurnal variations in the surface 

ozone simulations. GEOS-Chem simulations using the DOMINO posterior emissions have the largest coefficients of 

determination for summertime daytime (R2=0.81) and summertime 24-hour (R2=0.96) ozone. Simulations using the NASA 

posterior emissions have the smallest bias and error for all ozone metrics and the largest correlation for summertime MDA8 435 

ozone (R2 = 0.88). Ozone simulations with GEOS-Chem v12.1.1 using the DOMINO posterior NOx emissions lead to the most 

consistent seasonality in 24-hour average ozone (R2 = 0.99) with TOAR measurements, while the NASA posterior emissions 

lead to the best agreement in seasonal variations of MDA8 (R = 0.96) and daytime ozone (R = 0.98). The interannual variations 

of posterior NOx emissions from the two products are similar in China, India, the US, Mexico and Australia, but different in 

South America, West Europe and Africa. Surface NO2 simulations using the NASA posterior have the best agreement with 440 

measurements in the US. Daytime and 24-hour average ozone simulations using the DOMINO posterior also have the best 

trend (R = 0.72 and 0.88) in the Northern Hemisphere summer. The GC-adj simulations using the NASA posterior NOx 

emissions have the best trend in MDA8 ozone in NH summer.  

 

Posterior NOx emissions lead to improved simulations of ozone at several remote sites in the western US. The GC-adj 445 

simulations using the DOMINO posterior emissions have the smallest NMSE and NMB compared to ozonesonde 

measurements during IONS-2010, except for the San Nicolas and Trinidad Head sites. At the remote surface sites evaluated 

in this study, surface ozone simulations using the DOMINO posterior emissions have the best performance except for GCv12 

simulations at Mauna Loa at night and Great Basin during the daytime. The reduced negative biases in daytime surface ozone 

simulations using the DOMINO posterior emissions at these remote sites and at most IONS-2010 sites are consistent with the 450 

increases of daytime remote ozone in the western US through NO2 and ozone data assimilation in Huang et al. [2015]. 

Simulations using the DOMINO posterior emissions are demonstrated to provide more precise magnitudes at these remote 

sites and can potentially be used as boundary conditions for regional air quality models for further air pollution and health 

studies. 

 455 

The remaining differences between simulated and measured ozone can be explained by the roles of VOCs, errors in satellite 

retrievals, and uncertainties in the chemical and physical processes in the model simulations. In addition to NOx, emissions of 

other ozone precursors also impact the accuracy of ozone simulations. For instance, inversion of isoprene emissions over the 
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southeast US decreases surface ozone simulations by 1-3 ppbv [Kaiser et al., 2018]. Inversion of non-methane VOC emissions 

changes surface afternoon ozone simulations by up to 10 ppbv in China [Cao et al., 2018]. Assimilation of multiple species 460 

(e.g, ozone, CO, HNO3 and SO2) together with NO2 may improve posterior ozone simulations, but the performance of posterior 

simulations may depend on the chemical transport model, as shown in Miyazaki et al. [2020], where the GEOS-Chem adjoint 

model v35 shows mixed performance in correcting the bias between ozonesonde and posterior simulations between 850-500 

hPa at different latitude band. Both OMI NO2 retrievals employed in this study use NO2 vertical shape factors from coarse 

resolution simulations, and therefore are biased low compared to in-situ measurements [Goldberg et al., 2017]. These retrievals 465 

also have not explicitly accounted for the aerosol optical effects, which are demonstrated to degrade the accuracy of NO2 

column concentrations when AOD is very high [Chimot et al., 2016; Liu et al., 2019; Cooper et al., 2019]. The differences in 

the magnitude of ozone concentrations from GC-adj and GCv12 reflect the impact of other species emissions and chemical 

mechanisms on the bias of ozone simulations. Previous studies also show that global simulations at coarse resolution are not 

able to capture the observed persistence of chemical plumes in the free troposphere on intercontinental scales, therefore leading 470 

to underestimates of remote ozone concentrations [Hudman et al., 2004; Zhuang et al., 2018].   

 

Although biases, errors, seasonalities and inter-annual variations of ozone simulations have been improved in several cases 

through constraints on NOx emissions, there are still large discrepancies in the vertical profile and diurnal variations between 

ozone simulations and measurements. For instance, the different performances of each set of NOx emissions on the simulations 475 

of different ozone metrics reflect errors in the ozone diurnal simulations. The differences in ozone vertical profiles suggest 

errors in vertical transport in the model. These discrepancies could not be improved by adjusting only surface NOx emissions 

using observations at one time of the day, as performed in this study. Future geostationary satellite observations will provide 

opportunities to update NOx emissions at every hour. Separately constraining NOx emissions from surface (e.g., anthropogenic 

sources) and upper atmosphere (e.g., lightning sources [Pickering et al., 2016]) and implementing these posterior NOx 480 

emissions at their corresponding vertical levels can potentially improve the vertical profile of ozone simulations. 
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Data Availability  

 485 

The OMI NO2 NASA standard product is downloaded from GES DISC 

(https://atrain.gesdisc.eosdis.nasa.gov/data/OMI/OMNO2_CPR.003/). The DOMINO and QA4ECV NO2 retrievals are from 

KNMI (http://www.temis.nl/airpollution/no2col/no2regioomi_v2.php, 

http://www.temis.nl/airpollution/no2col/no2regioomi_qa.php). Ozonesonde profiles from Shasta, Big Sur, Point Reyes, 

Joshua Tree and San Nicolas Island are available from the NOAA Global Monitoring Laboratory 490 

(ftp://aftp.cmdl.noaa.gov/data/ozwv/Ozonesonde/2_Field%20Projects/CALNEX/ 

Ozonesondes from Trinidad Head are also available from the NOAA Global) Monitoring Laboratory( 

ftp://aftp.cmdl.noaa.gov/data/ozwv/Ozonesonde/Trinidad%20Head,%20California/100%20Meter%20Average%20Files/). 

Precompiled TOAR ozone data were downloaded from: https://doi.pangaea.de/10.1594/PANGAEA.876108. 
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Table 1. Total NOx emission (anthropogenic + natural) budgets in 2010 [Tg N yr-1] 735 

 Bottom-up NASA posterior DOMINO 

posterior 

QA4ECV 

posterior 

Global  52.20 51.86 61.36 57.97 

China 9.85 9.57 11.94 10.30 

US 5.69 5.63 7.45 6.78 

India 4.03 4.04 5.16 4.74 

Western Europe 3.13 3.09 4.33 3.57 
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Figure 1. (a) Global total NOx emissions from the bottom-up inventory and the differences between 4D-Var posterior and bottom-
up estimates constrained by (b) NASA standard product v3, (c) DOMINO product v2, and (d) QA4ECV product in 2010. 740 
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Figure 2. Evaluation of annual mean surface NO2 mixing ratios with measurements in China (top) and the US (bottom) in 2015. 
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Figure 3. NMB and NMSE of annual mean and NH summertime surface ozone concentrations when comparing all measurements 
from TOAR in 2010 with GC-adj (top) and GCv12 (bottom) simulations. The simulations are input with three sets of NOx emissions: 
CEDS bottom-up inventory (HTAP for GC-adj and CEDS for GCv12), posterior emissions constrained by the NASA product, and 750 
posterior emissions constrained by the DOMINO product. 
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 755 
Figure 4. Seasonal variations of total 4D-Var posterior NOx emissions in 2010. The black lines are prior emissions from bottom-up 
inventories (solid lines are from GC-adj, dashed lines are from GCv12). The blue lines are the emissions constrained by OMI NO2 
NASA product. The red lines are emissions constrained by OMI NO2 DOMINO product. The green lines are emissions constrained 
by OMI NO2 QA4ECV product.  
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Figure 5. Seasonality of surface ozone concentration at 2 meters in 2010 compared with TOAR (top) and in 2015 compared with 
CNEMC (bottom). Surface measurements are shown in magenta lines. Simulations are performed using GCv12 with NOx emissions 
from CEDS (black line), NASA posterior (blue line) and DOMINO posterior (red line).  
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Figure 6. Annual total posterior NOx emissions from 2005 to 2016. The black lines show prior total NOx emissions from bottom-up 
inventories, which use HTAP anthropogenic emissions in 2010 for all years. The blue lines represent the emissions constrained by 
the OMI NO2 NASA product. The red lines represent emissions constrained by the OMI NO2 DOMINO product. 
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Figure 7. The trend of annual mean surface NO2 concentrations over the US from 2006 to 2016, expressed as a percent of the 2006 
values. Surface measurements are from EPA AQS sites (magenta line). GEOS-Chem simulations are performed using prior 
emissions (black line) with constant anthropogenic emissions throughout the years, posterior NOx emissions constrained by NASA 
product (blue line), and posterior NOx emissions constrained by DOMINO product (red line).  775 
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Figure 8. The trends of regional mean annual MDA8 ozone concentrations from 2006 to 2014. Surface measurements are from the 
TOAR database (magenta line). Only sites that have continuous measurements throughout the 9 years are included. The numbers 
in the parenthesis are the number of 2° × 2.5° grid cells that include monitoring sites in each region. The black dotted lines show 780 
national mean of surface ozone from GCv12 simulations using the CEDS inventory. The other lines are simulations from GC-adj 
and GCv12 averaged over the 2° × 2.5° grid cells that include monitoring sites. Black lines show ozone simulations using the bottom-
up NOx emissions from CEDS in each corresponding year. Green lines show ozone simulations using 2010 bottom-up NOx emissions 
for all years (HTAP 2010 for GC-adj shown in solid lines, CEDS 2010 for GCv12 shown in dashed lines). The vertical bars represent 
the spread of simulated surface ozone concentrations using the NASA and the DOMINO posterior NOx emissions.  785 
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Figure 9. Changes of regional mean annual MDA8 ozone concentrations compared to 2006 from TOAR measurements (magenta 
line), due to changes in bottom-up NOx emissions (black), due to changes in top-down NOx emissions (blue lines for simulations from 
GC-adj and red lines for simulations from GCv12), and due to changes in meteorology and non-NOx emissions (green lines). Only 790 
sites that have continuous measurements throughout the 9 years are included. The vertical bars represent the spread of changes 
from simulations using the NASA and the DOMINO posterior NOx emissions. The impact of meteorology and natural sources are 
removed from black, blue and red lines by subtracting simulations using 2010 bottom-up anthropogenic emissions for all years from 
simulations that use bottom-up NOx emissions corresponding to each year.  
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Figure 10. Ozone vertical profiles averaged over May and June of 2010 from 6 ozonesonde measurement sites from the IONS-2010 
field experiment in California. The six sites are over remote regions and are used to evaluate the intercontinental transport of ozone. 
Solid black (prior), blue (NASA posterior) and red (DOMINO posterior) lines are from the GCv12 simulations (prior anthropogenic 800 
emission from CEDS), whereas dashed lines are from the GC-adj simulations (prior anthropogenic emission from HTAP). The 
horizontal bars show the standard deviations of the measurements at each vertical layer.  
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Figure 11. NMSE and NMB of GC-adj (top) and GCv12 (bottom) ozone simulations in 2010 -2014 evaluated with surface 805 
measurements at remote sites. Three sets of NOx emissions, i.e., bottom-up inventory (HTAP for GC-adj, CEDS for GCv12), 
DOMINO posterior, and NASA posterior, are input in each model. 
 


