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We have responded to each comment below. Our replies are in blue, and the revised manuscript 
text is written in bold.  
 
Response to review 1 
 
Qu et al. have studied the impact of top-down NOx emission estimates derived from two OMI 
NO2 satellite data sets (NASA SP v3 and DOMINO v2) on NO2 and O3 simulations with the 
GEOS-Chem model. Previous work already showed (e.g. Verstraeten et al. [2015], studies by 
Miyazaki et al.) that O3 in the troposphere is generally better understood when NOx emissions 
are derived from satellite NO2 data than when taken from emission inventories.  
 
Here, Qu et al. find substantial differences in the agreement of NO2 and O3 simulations against 
independent measurements depending on whether data set NASA or data set DOMINO is used. 
This was to be expected given that it is well-known that the NASA and DOMINO datasets have 
considerable differences. A useful aspect of the study is that the authors now quantify the 
consequences of these differences, which is relevant because satellite data is increasingly used to 
improve model understanding of atmospheric composition.  
 
What is disappointing however is that we do not learn much new. Simulations with the NASA 
emissions compare better to some metrics, and worse to others, but the authors do not explain 
why. This makes the manuscript a technical document, where it is left to the reader to figure out 
what emissions could work best for his/her particular purpose, without actual guidance on why 
that would be. The authors should do more to investigate why using one dataset leads to better 
agreement e.g. for surface O3 at remote sites, and the other for polluted sites. Aspects of spatial 
resolution, temporal representativeness, and vertical sensitivity should be taken into account 
when providing this guidance to potential users.  
 
We appreciate the comments from the reviewer. We have modified the title, abstract, and the 
details in the manuscript accordingly to address these concerns. The title is now changed to 
“Impacts of global NOx inversions on NO2 and ozone simulations.” 
 
“Abstract. Tropospheric NO2 and ozone simulations have large uncertainties, but their biases, 
seasonality and trends can be improved with NO2 assimilations. We perform global top-down 
estimates of monthly NOx emissions using two OMI NO2 retrievals (NASAv3 and DOMINOv2) 
from 2005 to 2016 through a hybrid 4D-Var / mass balance inversion. Discrepancy in NO2 
retrieval products is a major source of uncertainties in the top-down NOx emission 
estimates. The 12-year averages of regional NOx budgets from the NASA posterior emissions 
are 37% to 53% smaller than the DOMINO posterior. Consequently, the DOMINO posterior 
surface NO2 simulations greatly reduced the negative biases in China (by 15%) and the US 
(by 22%) compared to surface NO2 measurements. Posterior NOx emissions show consistent 
trend over China, US, India, and Mexico constrained by the two retrievals. Emission trends 
are less robust over South America, Australia, Western Europe and Africa, where the two 
retrievals show less consistency. NO2 trends have more consistent decreases (by 26%) with the 
measurements (by 32%) in the US from 2006 to 2016 when using the NASA posterior. The 
performance of posterior ozone simulations has spatial heterogeneities from region to 
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region. On a global scale, ozone simulations using NASA-based emissions alleviates the 
double peak in the prior simulation of global ozone seasonality. The higher abundances of 
NO2 from the DOMINO posterior increase the global background ozone concentrations 
and therefore reduce the negative biases more than the NASA posterior in the GEOS-
Chem v12 simulations at remote sites. Compared to surface ozone measurements, posterior 
simulations have more consistent magnitude and interannual variations than the prior 
estimates, but the performance from the NASA-based and DOMINO-based emissions 
varies across ozone metrics. The current hard-constraints on NOx diurnal variations and 
limited availability of remote sensing data hinder improvement of ozone diurnal variations 
from the assimilation, and therefore have mixed performance on improving different ozone 
metrics. Additional improvements in posterior NO2 and ozone simulations require more 
precise and consistent NO2 retrieval products, more accurate diurnal variations of NOx and 
VOC emissions, and improved simulations of ozone chemistry and depositions.” 
 
 
From a data user perspective, this work quantifies how differences in NO2 retrieval products 
propagate to the downstream estimates in top-down NOx emissions and ozone simulations. The 
discrepancy found in this study is larger than uncertainties caused by data assimilation methods 
(4D-Var versus Kalman Filter) and chemical transport models [Koukouli et al., 2020], and is 
therefore a unique contribution of this work. Detailed investigation of the origin of differences in 
the NASA and KNMI NO2 retrieval products goes beyond scope of this study. We do note 
however “The GEOS-Chem NO2 SCDs converted using scattering weight from the NASA 
product are larger than the SCDs calculated using the DOMINO scattering weight and the 
same GEOS-Chem VCDs (See Fig. S2). These can be explained by the use of different 
surface albedo and cloud product in the two retrievals.” (Added in Section 3) 
 
Another criticism is that the chain of technicalities is very long and that the experiments are set-
up in a sub-optimal manner (for example comparing 2.5 degree simulations of surface NO2 to 
surface stations that are representative for much smaller domains).  
 
Comparing NO2 simulations at 2.5° with in-situ measurements is sub-optimal, but this is the 
highest resolution we can perform global 4D-Var assimilation using this model.  
 
A major concern I have is with the lack of detail and clarity on how the adjoint incorporates the 
information from the satellite retrievals. From the manuscript I first suspected that monthly mean 
column NO2 data was simply used to estimate the emissions, suggesting that the highly variable 
and non-linear vertical sensitivities of the retrievals have not been used to interface the model 
with the satellite data. There are various studies pointing out how crucial it is to account for the 
vertical sensitivity of the NO2 retrievals, e.g. Miyazaki et al. [2017], Boersma et al. [2016] to 
name a few. Then I read the supplementary material and there the impression was given that at 
least the a priori profile shapes are made consistent between the NASA and DOMINO retrievals, 
but it remains unclear to what extent this has harmonized the data, and to what extent vertical 
sensitivities between the two datasets are still fundamentally different.  
 
To clarify, we added the following sentences to Section 2.2: 
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“We converted GEOS-Chem NO2 VCD to SCD using scattering weight (NASA product) 
and averaging kernel (DOMINO and QA4ECV product) from the OMI retrievals and then 
compare GEOS-Chem SCD with SCD retrieved from OMI. A cost function is defined as 
the observation error weighted differences between simulated and retrieved NO2 SCD, plus 
the prior error weighted departure of the emission scaling factors from the prior estimates. 
We minimize the cost function using the quasi-Newton L-BFGS-B gradient-based 
optimization technique [Byrd et al., 1995; Zhu et al., 1994], in which the gradient of the 
cost function with respect to the control parameter is calculated using the adjoint method. 
Details of the assimilation of NO2 slant column densities (SCDs), how vertical sensitivities of 
satellite retrievals are accounted for, and the hybrid 4D-Var / mass balance inversion of NOx 
emissions are described in Qu et al. [2017].” 
 
More detailed technicalities have been described in our previous publications cited in the 
manuscript and are therefore not the focus of this manuscript. The focus here is to apply this 
method for global NOx inversion, evaluate the impact of different retrieval products on top-down 
emission estimates, and how the changes in NOx emissions affect ozone simulations. Therefore, 
we did not repeat all the technical details that can be found in the cited publications. Please see 
our detailed responses below for all the concerns raised by the reviewer.  
 
 
Specific comments  
 
P2, L42-43: the formation depends not only on the local NOx and VOC concentrations, but also 
on the radiative regime in which these occur.  
 
Changed to “Ozone formation and trends depend nonlinearly on the local relative abundances of 
NOx and VOCs and the radiative regime in which these occur.” 
 
 
P2, L65: different → differ  
 
Modified as suggested. 
 
P3, L72: import →importer  
 
Modified as suggested. 
 
P3, L78-81: Zhang et al. [2008] and Verstraeten et al. [2015] already showed that through 
optimizing NOx emissions in China, the simulated O3 over the Pacific and over the western US 
indeed improved.  
 
We changed this sentence to: 
 
“Optimization of NOx emissions in the upwind regions can improve remote ozone simulations in 
downwind regions after transport of intercontinental pollution plumes from the free troposphere 
to the surface [Zhang et al., 2008; Verstraeten et al., 2015].” 
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Section 2.1 It is unclear in this manuscript how the adjoint accounts for (a) vertical sensitivity of 
the satellite retrievals, and (b) the diurnal cycle of NOx emissions. These aspects are important 
enough to describe in the manuscript, for (a) useful information is provided in the supplement 
but it is not clear whether the replacing of the a priori profiles by GEOS-Chem prior profiles was 
also applied in the research to estimate the emissions. The authors should clarify this in section 2, 
and also briefly quantify to what extent the differences in prior simulations have been minimized 
by this approach.  
 
Many of these aspects have been described in details in a previous publication cited in Section 
2.2 (Qu et al. 2017), so we do not repeat the same information in this manuscript. To clarify, we 
added a brief summary of our inversion in Section 2.2, see our response above. 
 
For the reviewer’s information, The comparison of SCDs (𝑉𝐶𝐷$%𝐴𝑀𝐹$% − 𝑆𝐶𝐷+,-) is 
theoretically equivalent to comparisons of VCDs (𝑉𝐶𝐷$% −

.%/012
3,456

). These have been described 
in Qu et al. [2017], pasted below: 
 
“In all of our simulations, we calculate the air mass factor (AMF) for GEOS-Chem simulated 
NO2 columns (𝐴𝑀𝐹$%) following Equations 1 to Equation 4 in Bucsela et al. [2013]. Here, 
𝐴𝑀𝐹$%  is expressed as the ratio of the sum of slant sub-columns in the troposphere (S) to the 
sum of vertical sub-columns in the troposphere (V): 

𝐴𝑀𝐹$%(𝑖, 𝑗) =
𝑆
𝑉 

where  

𝑆 = = 𝑀𝑅(𝑖, 𝑗, 𝑙)(𝑃(𝑖, 𝑗, 𝑙) − 𝑃(𝑖, 𝑗, 𝑙 + 1))𝑆𝐶𝑊+,-(𝑖, 𝑗, 𝑙)
	

E	FG	HIJ	HKLMLNMIJKJ

 

𝑉 = = 𝑀𝑅(𝑖, 𝑗, 𝑙)(𝑃(𝑖, 𝑗, 𝑙) − 𝑃(𝑖, 𝑗, 𝑙 + 1))
	

E	FG	HIJ	HKLMLNMIJKJ

 

 
 
Here, MR is the mixing ratio of NO2, P is the pressure at the center of the GEOS-Chem grid, 
𝑆𝐶𝑊+,-  is the scattering weight linearly interpolated from the OMI product to GEOS-Chem grid 
using the scattering weight pressure from the Level 2 product and pressure at the center of each 
model grid cell, with application of temperature correction following Equation 4 of Buscela et al. 
[2013]. 𝐴𝑀𝐹$% is then used for conversion of GEOS-Chem NO2 vertical column densities to 
SCDs, which are directly comparable to SCDs retrieved from OMI,  
 

𝑆𝐶𝐷$%(𝑖, 𝑗) = 𝐴𝑀𝐹$%(𝑖, 𝑗)	 = (𝑐(𝑖, 𝑗, 𝑙)
	

E	FG	HIJ	HKLMLNMIJKJ

	× 	ℎ(𝑖, 𝑗, 𝑙)) 

where 𝑐 is simulated NO2 concentration [molecules cm-3] and ℎ is the height of the box.” 
 
We added the following sentence to the first paragraph of Section 3: 
 
“The cost function has reduced by 6% - 29% in the monthly inversion.” 
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For (b), some info is given but only late in the game (P7: The diurnal variations of NOx emission 
are constrained to be those of the prior emissions), and we do not learn what the diurnal cycle is 
in the first place. Please revise section 2 thoroughly with this in mind. 
 
We added the following sentence to Section 2.1: 
 
“The diurnal variation of NOx emissions is derived from EDGAR hourly variations 
( http://wiki.seas.harvard.edu/geos-
chem/index.php/Scale_factors_for_anthropogenic_emissions#Diurnal_Variation) and is not 
optimized in the inversion.” 
 
 
Then I have other questions: 
 
 - how does the adjoint approach account for other relevant aspects of data assimilation?  
 
Details of our 4D-Var inversion are in Qu et al. [2017]. In brief, we define a cost function as 
described in Section 3 of Qu et al. [2017]. Then, “We minimize the cost function using the quasi-
Newton L-BFGS-B gradient-based optimization technique [Byrd et al., 1995; Zhuetal., 1994], in 
which the gradient of the cost function J(𝝈) with respect to the control parameter 𝝈 is calculated 
using the adjoint method. The adjoint model is driven by a forcing term, which is the error 
weighted difference between predicted and simulated NO2 slant columns. Inversions are 
considered to have converged when the cost function decreases by less than 1% in three 
consecutive iterations.”  
 
- how is the OMI data averaged spatially to the grid of GEOS-Chem, and how are 
superobservation errors incorporated? 
 
We did not average OMI data or use super-observations. Instead, we assimilate each OMI 
retrieval separately and compare it with GEOS-Chem simulations at the corresponding hour, 
with corresponding averaging kernel applied. Please see Section 3 in Qu et al. [2017] for more 
details, which state: 
 
“Slant column densities from OMI at each observation time and site are used to constrain 
monthly anthropogenic NOx emissions. The observation error covariance matrix, Sobs, is 
assumed to be diagonal. Absolute uncertainties of these diagonal values are read from NASA 
OMNO2 L2 products for each individual OMI observation. On average, the tropospheric slant 
column uncertainty of OMI is estimated to be ∼0.7 × 1015 molecules cm−2 [Boersma et al., 2008; 
Castellanos and Boersma, 2012]. To reduce the influence of observations below the OMI 
detection limit, which mainly occur in remote locations, we conservatively assume an absolute 
uncertainty of 1.0 × 1015molecules cm−2, and we add this value to Sobs.”  
 
 
- did the authors only use the mostly cloud-free OMI retrievals?  
 



 6 

Yes, only retrievals with cloud fraction less than 0.2 are used. This has been stated in section 2.2 
of this manuscript: 
 
“We screen all OMI NO2 retrievals using data quality flags and by the criteria of positive 
tropospheric column, cloud fraction < 0.2, solar zenith angle < 75°, and viewing zenith angle < 
65°.” 
 
Section 2.2: OMI is suffering from the so-called row anomaly, which was absent until mid-2007, 
and then became gradually more important. How did the authors ensure that the growing impact 
of the row anomaly did not unduly affect their trends in NOx emissions?  
 
 
The OMI data affected by row anomaly are filtered out using the quality flag. We added the 
following sentences to section 2.2: 
 
“We excluded all retrievals that are affected by row anomaly.” 
 
We have tested the differences between annual mean OMI NO2 column densities without data 
filling after excluding pixels affected by row anomaly and when filling missing data by linearly 
interpolating column densities from adjacent years in Qu et al. [2017]; we found the filling to 
impact annual mean SCDs by less than 10% for all regions shown in Figure 8 of Qu et al. [2017]. 
Differences in these two SCDs for all studied years are less than 1% in mainland China.    
 
Another approach to mitigate inconsistent sampling of the data is to follow Duncan et al. [2013] 
and consider the trend in NO2 columns from only rows 10 to 23 of the NASA standard product, 
which are unaffected by the row anomaly throughout the period. These are shown in the grey 
lines in Figure 8 of Qu et al. [2017]. Please also note that even though we are using the same 
rows each year, this doesn’t necessarily mean that the number of observations is the same after 
screening according to our other filtering criteria, nor does it mean the same geographical 
locations are observed throughout the period. The correlation of this dataset with OMI data from 
the standard NASA product in all rows is >0.75 in most regions.  
 
Though we recognize the benefits of using a consistent number of observations to analyze the 
trend of NO2 columns alone, this is not necessarily the case for a Bayesian inversion of NOx 
emissions. The inversion is forced by the residual model error summed over all available 
observations; fewer observations in some years or locations will thus naturally result in greater 
dependence on the prior emissions. If we exclude observations to maintain consistency in the 
rows used, emissions in many grid cells do not get updated due to lack of observations (see Fig. 
R1). This would lead to spatial trends in posterior emissions that could have been avoided if 
using all available observations (after data screening). 
 
We think the two approaches to invert NOx emissions, maintaining consistency in rows used or 
not, both have their pros and cons. Since the goal of this work is to derive top-down emissions, 
which would benefit from broader observation coverage (in the example of January 2006 below, 
we would not be able to get posterior emissions for regions covered in white if eliminating those 
rows affected by row anomaly throughout) and the trend of NO2 columns between these two 
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does not differ much, we chose to use all observations available after data selection. 
 
                      Only row 10-23                            All observations after filtering 

 
 
Figure R1. Data coverage in January, 2006,  using only rows 10 to 23 (left) and all rows (right), 
where, red color stands for grid cells that have at least one observation during the month. 
 
 
Section 2.3: it remains unclear what type of surface station was used for the GEOSChem surface 
evaluation. Using urban background and regional stations seems appropriate to evaluate the large 
GC grid cells, but urban street stations should be excluded.  
 
We checked the monitoring site lists and a document defining the site category 
(http://www.bjmemc.com.cn/xgzs_getOneInfo.action?infoID=1661). None of the sites included 
in this study was listed as roadway sites. We added the following sentence to Section 2.3: 
 
“The city monitoring sites included in the analysis represent either urban background or 
the averaged pollutant concentrations over the city.” 
 
 
P5, L152-154: what explains the OMI-driven differences between the posterior NOx emissions, 
differences in tropospheric slant columns or in the AMFs? Presumably the latter, but since the a 
priori profile differences have been “minimized”, the differences must be in the assumptions on 
surface albedo and clouds. It would be best if the authors could shed more light on how the 
scattering weights or averaging kernels are different between the OMI NO2 retrievals. Please 
clarify.  
 
 
We added a new Figure S2 to the supporting information: 
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“  
Figure S2. Differences in tropospheric NO2 SCDs between the NASA and the DOMINO 
products in January 2010. The differences in GEOS-Chem SCDs (left figure) are calculated 
by converting the same GEOS-Chem VCD using scattering weight and averaging kernel 
from the two products. In the right figure, AMFs provided by the two products are applied 
to their corresponding VCDs to calculate the differences in SCDs. ” 
 
We also added the following sentences to the cited paragraph: 
 
“The GEOS-Chem NO2 SCDs converted using scattering weight from the NASA product 
are larger than the SCDs calculated using the DOMINO scattering weight and the same 
GEOS-Chem VCDs (See Fig. S2). These can be explained by the use of different surface 
albedo and cloud product in the two retrievals. The retrieved NO2 SCDs from the NASA 
product are mostly smaller than the DOMINO retrieval except for some regions between 
40°N – 60°N in January 2010. The smaller magnitude in OMI SCD and the larger 
magnitude in GEOS-Chem SCD using the NASA scattering weight lead to smaller 
magnitude of posterior NOx emissions than inversions from the DOMINO product.” 
 
 
P6, L173-174: the statement that “NO2 column simulations at 2◦ × 2.5◦ in this study are likely to 
be underestimated and lead to high biases of posterior NOx emissions to match satellite 
NO2column concentrations” needs more evidence. The hypothesis that instant dilution leads to 
too much OH (by Valin et al. [2011]) may be valid for isolated NOx sources in otherwise pristine 
areas, but instant dilution of NOx emissions situated in high-background NO2 regions such as the 
eastern US or western Europe is probably of less concern.  
 
We removed the cited sentences. 
 
P6, L193: what is the magnitude of the correction factors over China and the US? How do they 
vary by season?  
 
We added the following figure in the SI: 
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“Figure S3. Seasonal variation of the NO2 correction factors in China (black) and the US 
(red) calculated following Lamsal et al. [2008]. “ 
 
We added the following sentences to the cited paragraph: 
 
“The correction factors are generally higher in the US than in China, but have similar 
seasonality (see Fig. S3).” 
 
 
P7, L195-199: this part is rather inconclusive. The GEOS-Chem simulations have been corrected 
for resolution (an increase) and surface measurements have been corrected down for 
molybdenum interference, and still GEOS-Chem with posterior emissions is biased low by 20%-
50%. What explains the persistent low bias?  
 
We added the following sentences to this paragraph: 
 
“These remaining negative biases reflect the unrepresentativeness of 0.1° pseudo 
measurements for real point measurements for resolution bias correction, comparison of 
NO2 concentrations averaged over 2°×2.5° simulation to limited measurements, the 
underestimates of NO2 retrievals using coarse resolution a priori, and the inability of data 
assimilation to increase emissions at grid cell where NO2 retrievals are below the detection 
limit of OMI.” 
 
Also, we do not expect the posterior simulations to be completely unbiased given the potential 
biases from model and satellite retrieval.  
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P7, L224-225: OMI measurements frequently miss the high values of NO2 column densities that 
occur before or after its overpassing time. OMI was never designed to measure NO2 before or 
after its overpass time, so to say that OMI misses these high values is misleading. Please 
rephrase. 
 
We changed the sentence to: 
 
“The daily NO2 column densities from OMI are also underestimated compared to the 
diurnally varying ground-based retrievals [Herman et al., 2019].” 
 
P7, L226: twice-per-day constraints on NOx emissions have been achieved in earlier studies 
based on SCIAMACHY + OMI (Boersma et al. [2008], GOME-2 + OMI [Lin et al., 2011], 
including via sophisticated assimilation schemes [Miyazaki et al., 2017].  
 
We changed the sentence to “Assimilating NO2 observations from instruments overpassing 
at different times of the day [e.g., Boersma et al., 2008; Lin et al., 2010; Miyazaki et al., 
2017] and using hourly constraints from the geostationary satellite data (e.g., Geo-stationary 
Environmental Monitoring Spectrometer (GEMS), Tropospheric Emissions: Monitoring of 
Pollution (TEMPO) [Zoogman et al., 2017] and Sentinel-4) have the potential to improve 
simulations of ozone diurnal variations and different ozone metrics, although the ratio of NO2 
column densities from satellites that overpass in the morning and afternoon are generally 
lower than the same ratio from surface measurements [Penn and Holloway, 2020].”  
 
P8, L237: the June peak in NO2 over China can be easily traced back to crop residu burning in 
that month – e.g. Stavrakou et al. [2016].  
 
We added the following sentence: 
 
 “The June peak in China has been explained by the crop residual burning [Stavrakou et 
al., 2016].” 
 
P8, L238-240: can you explain more why the DOMINO product would be more sensitive to soil 
NOx emissions? It’s not because of the different a priori profiles assumed in the NASA and 
DOMINO retrievals?  
 
As the reasons are not entirely clear, we changed the cited sentence to: 
 
“The peak of the DOMINO posterior NOx emissions in the United States and Mexico shifted 
earlier in the year to June and July compared to the prior and NASA posterior emissions, similar 
to the results from Miyazaki et al. [2017]. The peak in DOMINO posterior emissions 
corresponds to the time of high soil NOx emissions, which are reported to be 
underestimated in high-temperature agricultural systems in the bottom-up inventory 
[Oikawa et al., 2015; Miyazaki et al., 2017].” 
  
P8, L243-244: please see my previous comment. The authors seem to know something very 
interesting here, but they don’t show it. Is there any evidence that one retrieval would be more 



 11 

sensitive to NOx sources than the other? That would be extremely relevant to know more about. 
Since the satellite measurements are identical for the NASA and OMI retrievals, it must have to 
do with AMF differences , see e.g. Lorente et al. [2017]. But what drives the apparent difference 
in sensitivity – albedo, cloud fraction, cloud pressure?  
 
The two retrievals have the same spectrum but the retrieved tropospheric SCDs are not exactly 
the same (for instance, the two products use different stratosphere-troposphere separation), see 
our previous response and the new figure S2. All of the factors the reviewer mentioned here are 
different between the two products. It is hard for us to pinpoint which of the albedo, cloud 
fraction, or cloud pressure drives the sensitivity without running the radiative transfer model and 
performing the retrieval ourselves, which is beyond the scope of this study.  
 
We changed the cited sentence to: 
 
“These retrieval products have similar number of observations and spatial distributions of 
observation densities after the filtering. The different seasonal variations in the posterior NOx 
emissions may reflect the AMF structural uncertainties when the retrieved NO2 column 
densities use different ancillary data [Lorente et al., 2017]. For instance, the GEOS-Chem 
NO2 SCDs converted using the scattering weight from the NASA product have larger 
seasonal variations than the SCDs converted using the DOMINO averaging kernel in the 
US, reflecting the different seasonal variations of vertical sensitivities from the two 
retrievals.” 

 
Figure R2. Seasonal variations of OMI NO2 SCDs from NASA (red) and DOMINO (green) 
retrievals, and the GEOS-Chem simulated NO2 SCDs using scattering weight from the NASA 
(blue) and the DOMINO (black) products.  
 
P8, L246-256: Figure 5 – the daytime O3 simulations in China all seem strongly low biased 
relative to the observations. The other ozone metrics in China and all in the US match much 
better. Why is this?  
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Thanks for pointing this out. There was a bug in processing daytime ozone in China, which is 
fixed now. Please see the revised Figure 5 below.  
 

 
Figure 5. Seasonality of surface ozone concentration at 2 meters in 2010 compared with TOAR 
(top) and in 2015 compared with CNEMC (bottom). Surface measurements are shown in 
magenta lines. Simulations are performed using GCv12 with NOx emissions from CEDS (black 
line), NASA posterior (blue line) and DOMINO posterior (red line).  
 
 
 
P9, L271-272: “also not reflected”?  
 
Changed to “not reflected” 
 
P9, L276: no reduction of NOx emissions in Europe? This is strange – NO2 tropopsheric columns 
are decreasing over Europe, and Miyazaki et al. [2017] showed reductions in for NOx emissions. 
Overall, Figure 6 looks very odd to me. DOMINO NO2 columns are 40% higher than NASA, but 
the NOx emissions inferred from DOMINO are more than 40% higher than the emissions 
inferred with NASA (L278-281). Also, Miyazaki et al. [2017] (Figure 9) still find reductions in 
NOx emissions over Europe between 2005 and 2014 based on the same DOMINO data, so how 
can you find increases? Please clarify.  
 
We do not expect the relative differences in the direct comparison of NO2 column densities from 
the two OMI products to have similar magnitude with the differences in their posterior 
emissions. As shown in the newly added Figure S2, the adjustment in NOx emissions are 
determined not only by the differences in NO2 SCDs from OMI retrievals but also by the GEOS-
Chem SCDs after applying scattering weight / averaging kernel (equivalent to converting OMI 
SCD to VCD using a new AMF based on GEOS-Chem profile and compare with GEOS-Chem 
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simulated VCD). The smaller magnitude in OMI SCD and the larger magnitude in GEOS-Chem 
SCD using the NASA scattering weight leads to even smaller magnitude of posterior NOx 
emissions than the posterior constrained by the DOMINO product.  
 
As for the posterior emissions in Europe, the result from Miyazaki et al. (screenshot shown in the 
left panel of Figure R3) shows large fluctuations around 0 throughout 2005 and 2014, and it is 
hard to say there is a decreasing trend from their Figure 9. The relative change from 2005 to 
2014 in this study, shown in the right panel of Figure R2, is also negative (-1.3%), consistent 
with results in Miyazaki et al. [2017]. The slight upward fluctuation of posterior NOx emissions 
in this study happened after 2014, which is not included in the time range of Miyazaki et al. 
[2017].  
 
We changed the cited sentence to: 
 
“In Western Europe and Africa, posterior NOx emissions fluctuate and do not have a 
significant consistent trend from the two inversions.” 
 

 
Figure R3. Relative changes in NOx from Miyazaki et al. [2017] (left) and this study (right). 
 
 
P10, L295-297: I’m missing an explanation or hypothesis why NOx emissions from one dataset 
would do better than the other for different ozone metrics.  
 
We added the following sentences to the cited paragraph: 
   
“The different performance of NOx emission datasets for different ozone metrics is a 
consequence of the hard constraint on NO2 diurnal variations within the assimilation (and 
the lack of sufficient observations to constrain this). This can lead to better agreement of 
mean ozone concentration with measurements over particular hours but worse mean 
concentrations averaged over other hours.” 
 
 
P10, L304 and L315: please clarify how the impact of meteorology and non-NOx sources on O3 
changes was evaluated.  
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We changed the original sentence on L304 to “The trends of simulated annual MDA8 ozone 
concentrations are correlated with impacts from meteorology and non-NOx sources based on 
simulations (shown as green lines) that use the same anthropogenic NOx emissions for all 
years and simulations that use interannually varied anthropogenic NOx emissions, leading 
to …” 
 
We added the following sentences to the original sentence on L315: 
 
“…as well as meteorology and non-NOx sources. The second trend is calculated through 
simulations that use constant NOx emissions throughout the studied years. It has similar 
trend from GCv12 and GCadj as shown in the green lines in Fig. 9. The trend caused by 
NOx emissions is obtained by subtracting the second trend from the ozone trend simulated 
using NOx emissions at each corresponding year. The ozone trends…” 
 
L306-307: “The trends of simulated MDA8 ozone are similar when using the NASA and the 
DOMINO posterior NOx emissions as inputs” – yes, but please also explain why the magnitude 
of the NASA-derived MDA8 O3 levels are biased high then.  
 
The blue and red colors in this figure now represent ozone simulations from different models. 
The differences from NO2 retrievals are now represented in the error bars. The NASA-derived 
MDA8 ozone are actually lower than the DOMINO-derived one. We added the following 
sentences to this paragraph: 
 
“The DOMINO-derived MDA8 ozone concentrations are higher than the NASA-derived 
ones in all studied regions, represented by the upper and lower limit of the error bars 
respectively. GCv12 simulated ozone concentrations are smaller than simulations from 
GC-adj, especially over relatively less polluted regions, consistent with the inclusion of 
halogen chemistry in GCv12, which depleted ozone.” 
 
 
P11, L332-333: the prior simulated O3 profiles in Figure 10 agree much better with the O3 
sondes between 800-400 hPa than the assimilated profiles. I don’t understand why that is, since 
the effect of the updated NOx emissions should be mostly felt in the lower 2 kms of the 
atmosphere. Or is this the impact of changes in background O3 in response to changing Asian 
emissions?  
 
The reviewer must have been mistaken when considering this figure, as it is not true that all nor 
even most prior simulations (black dotted and black solid lines) agree better with ozone sondes 
(magenta solid) in Figure 10. In the 800-400 hPa range, the figure shows the GC-adj simulation 
using the DOMINO posterior NOx emissions (dashed red) is almost always the closest to the 
sonde data. More detailed statistics of ozone profiles between 700-900 hPa, where ozone is 
mainly impacted by Asian emissions (Figure S8), show that the posterior O3 from GC-adj have 
smaller NMB and NMSE than the prior at 4 of 6 sites.  
 
We added the following sentence to the title of Figure 10: 
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“The six sites are over remote regions and are used to evaluate the intercontinental 
transport of ozone.” 
  
 
P13, L394-395: one important difference between this research and the work done by Miyazaki 
in a number of papers, is that the latter assimilates also other species relevant for NOx inversions 
and O3 simulations (e.g. CO, HNO3, SO2). It would be interesting to also discuss to what extent 
these additional constraints can help explain the “remaining differences between simulated and 
measured ozone”.  
 
We added the following sentence: 
 
“Assimilation of multiple species (e.g, ozone, CO, HNO3 and SO2) together with NO2 may 
improve posterior ozone simulations, but the performance of posterior simulations may 
depend on the chemical transport model, as shown in Miyazaki et al. [2020], where the 
GEOS-Chem adjoint model v35 shows mixed performance in correcting the bias between 
ozonesonde and posterior simulations between 850-500 hPa at different latitude band.” 
 
P13, L398-400: the statement “Both OMI NO2 retrievals employed in this study use NO2 vertical 
shape factors from coarse resolution simulations, and therefore are biased low compared to in-
situ measurements [Goldberg et al., 2017].” Brought up the question (again) whether both OMI 
NO2 retrievals are at least consistent now in their use of the same coarse-resolution vertical shape 
factors (i.e. those from GEOS-Chem).  
 
Yes, we converted GEOS-Chem VCD to SCD using scattering weight from these two products 
for comparison, but mathematically they are equivalent to replacing the shape factor with the 
same GEOS-Chem one. Please see more detail in our response to previous comment.  
 
 
P13, L401: “retrievals also have not explicitly accounted for the aerosol optical effects, which 
are demonstrated to degrade the accuracy of NO2 column concentrations”. This is an 
overstatement. Only when AOD is very high (>0.5-1.0) there are indications that implicit 
corrections break down. Even in Liu et al. [2019] accounting for AOD did not solve the low bias 
in tropospheric NO2 which was not apparent in the DOMINO scheme without an explicit aerosol 
correction.  
 
We change this sentence to “which are demonstrated to degrade the accuracy of NO2 column 
concentrations when AOD is very high”. 
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Response to review 2 
 
This manuscript has presented top-down estimates of global NOx emissions using two OMI 
satellite NO2 products over 2005-2016 and using the GEOS-Chem adjoint inversion method. 
Considerable differences are found between the two top-down emission estimates. Implementing 
the top-down NOx emissions to the GEOS-Chem atmospheric chemistry model shows some 
improvements on the model simulation of tropospheric ozone. The study also points out that 
model improvements largely depend on the top-down emissions, the ozone metrics used, and 
model versions. The manuscript is in general well organized and meets the scope of ACP. One 
main concern is that the manuscript has been presented as a model evaluation paper that 
comparing several model simulations with different NOx emissions with surface and sonde ozone 
measurements. It lacks some analyses in depth to understand the driving factors of the 
differences. The key findings of this study are also not clear. Do we have a better understanding 
of the NOx emission trends as constrained by the satellite measurements, or how NOx emission 
changes affect tropospheric ozone? I think the concern and the following specific comments 
should be addressed before considering publish. 
 
 
We appreciate the comments from the reviewer. We added the following sentences in the 
abstract to address the concern on the NOx emission trends: 
 
“Posterior NOx emissions show consistent trend over China, US, India, and Mexico 
constrained by the two retrievals. Emission trends are less robust over South America, 
Australia, Western Europe and Africa, where the two retrievals show less consistency.”  
 
Limited by the availability of surface measurements, we cannot claim that NOx emission trends 
are improved everywhere. However, we demonstrate in this study that there are several regions 
where top-down NOx emission trends are consistent across different retrievals and we are more 
confident about these.  
 
The impact of NOx emission on ozone simulations have spatial heterogeneity due to the 
nonlinear response of ozone to NOx and our different understanding of local sources, physics, 
and chemistry. So, there is no generalized conclusion at global scale. We added the following 
sentences to the abstract to summarize our findings from this work: 
 
“The performance of posterior ozone simulations is spatially heterogeneous from region to 
region. On a global scale, ozone simulations using NASA-based emissions remove the  
double peak in the prior simulation of global ozone. The higher abundances of NO2 from 
the DOMINO posterior increase the global background ozone concentrations and therefore 
reduce the negative biases more than the NASA posterior in the GEOS-Chem v12 
simulations at remote sites. Compared to surface ozone measurements, posterior 
simulations have more consistent magnitude and interannual variations than the prior, but 
the performance from the NASA-based and DOMINO-based emissions varies across ozone 
metrics. The current hard-constraints on NOx diurnal variations and limited availability of 
remote sensing data hinder improvement of ozone diurnal variations from the assimilation, 
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and therefore have mixed performance on improving different ozone metrics. Additional 
improvements in posterior NO2 and ozone simulations require more precise and consistent 
NO2 retrieval products, more accurate diurnal variations of NOx and VOC emissions, and 
improved simulations of ozone chemistry and depositions.” 
 
 
Specific comments:  
 
1) Page 1, Line 24-25 in the Abstract: The statement “using NOx emission datasets that have the 
best performance . . .” is not clear. As ozone simulation is affected by many other factors, the 
NOx emissions that have the best performance on ozone simulation may not be the correct one. 
Some results in this study also showed that satellite constrained NOx emissions did not 
necessarily improve ozone simulation (e.g., China daytime surface ozone in Figure 5)  
 
We have revised the abstract, see response above.  
 
2) Page 3, Section 2.1: What was the spin-up time for the model simulations? Were you using 
the same initial conditions? Please clarify.  
 
The initial conditions are different for each NOx emission datasets. We added the following 
sentence to the last paragraph of Section 2.1: 
 
“For each NOx emission dataset, the model is spun-up for 6 months, starting from July 
2005. Therefore, we derive NOx emissions from 2005, but only evaluate simulations with 
measurements from 2006.” 
 
 
3) Page 6, Line 179: Should here “the average of GEOS-Chem simulated NO2 column density” 
be OMI observed NO2 column density over 2x2.5 grid cell? Here you are generating pseudo 
measurements in the statement. The ratio should be calculated by OMI observations to avoid the 
OMI vs. model biases. 
 
Thanks for pointing this out. We are calculating in the way the reviewer suggested, but did not 
describe it correctly. We changed the sentence to: 
 
“…by the ratio of OMI NO2 column density gridded at 0.1° × 0.1° to the OMI NO2 column 
density gridded at 2° × 2.5° grid cell” 
 
 
4) Page 8, Line 240-245: The large differences in seasonal variations of DOMINO and NASA 
posterior NOx emissions seem interesting. Here you explained that the DOMINO posterior may 
better constrain soil emissions. Do you have any evidence or support for that?  
 
We changed the cited sentence to: 
 



 19 

“The peak of the DOMINO posterior NOx emissions in the United States and Mexico shifted 
earlier in the year to June and July compared to the prior and NASA posterior emissions, similar 
to the results from Miyazaki et al. [2017]. The peak in DOMINO posterior emissions 
corresponds to the time of high soil NOx emissions, which are reported to be 
underestimated in high-temperature agricultural systems in the bottom-up inventory 
[Oikawa et al., 2015; Miyazaki et al., 2017].  
 
5) Page 8, Line 250-256: Here you showed that prior simulated surface ozone concentrations had 
double maxima in April and August, and the posterior results partly corrected the biases. What 
cause the double maxima in the prior simulation? And how NOx emission changes correct the 
August maximum? Please clarify.  
  
 
We added the following sentences to the cited paragraph: 
 
“The August ozone peak in the prior simulation is mainly due to the high ozone 
concentrations in North China, Southwest China, and North India. The NASA and 
DOMINO posterior simulations have both reduced surface ozone concentrations in North 
China Plain and Northeast China in August due to the larger posterior NOx emissions than 
the prior in these high-NOx regions. Both posterior ozone simulations are also smaller than 
the prior in Tibet and North India due to the reductions of posterior NOx emissions in low-
NOx region. The August ozone peak in the DOMINO posterior comes from the higher 
ozone concentrations in Angola and Democratic Republic of the Congo compared to the 
NASA posterior and prior simulations in the same month and DOMINO posterior 
simulations in the previous months. This can be explained by the larger upward 
adjustment of DOMINO posterior NOx emissions in South Africa in August. These results 
show the large spatial heterogeneities on the responses of ozone seasonality to the changes 
in NO2 abundances on a global scale.” 
 
 
6) Page 9, Line 269-271: As indicated in Figure 6, interannual changes in the two posterior NOx 
emissions in Australia over 2005-2016 are not that consistent. The DOMINO results show large 
reduction over 2006-2010 and then increase afterwards. Do you have any explanation why the 
two satellite products show different interannual variation and trends over some regions?  
 
The different trends in posterior NOx emissions are propagated from the different trend in NO2 
column densities retrieved from these two products, as shown in Figure R4. This could possibly 
be caused by the differences in scattering weight / averaging kernel, but it is hard for us to 
pinpoint what is the exact cause. We made the following modification to the cited sentence: 
 
“In Mexico, the two posterior NOx emissions consistently increased by 6% (NASA) and 13% 
(DOMINO) from 2005 to 2016. The DOMINO posterior shows more obvious increase in 
Mexico from 2010 to 2016. ... In Australia, the NASA posterior increases by 10% from 2005 
to 2016. In comparison, the DOMINO posterior decreases from 2005 to 2010 and increases 
afterwards, consistent with the posterior trend from Miyazaki et al. [2017]. The different 
trends in posterior NOx emissions are propagated from the trends in the two OMI NO2 
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retrieval products. The discrepancies are likely due to the different surface albedo and 
cloud products used in the two retrievals, which affect averaging kernel sensitivities.” 
 
 

 
Figure R4. NO2 column densities in Australia from OMI. 
 
7) Page 10, Line 319: “Ozone measurements in 2014 decreased compared to the 2006 level in 
China, the US, South America and Mexico”. I do not see from Figure 9 that in China ozone 
concentration in 2014 was lower than 2006.  
 
Thanks for pointing this out. That statement comes from an earlier analysis that used all available 
TOAR sites at each year, not just sites that have continuous measurements throughout the years. 
We removed China and South America from that sentence. 
 
 
8) Page 10, Line 314-316: How did you separate the ozone trends caused by NOx emissions vs. 
meteorology? A description in the main text is needed. Also, you may calculate the meteorology 
(non-NOx) effects using either GC-adj or GCv12 results? Which one did you use in Figure 9, and 
how they differed?  
 
We added the following sentences to this paragraph: 
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“The second trend is calculated through simulations that use constant NOx emissions 
throughout the studied years. It has a similar trend from GCv12 and GC-adj as shown in 
the green lines in Fig. 9. The trend caused by NOx emissions is obtained by subtracting the 
second trend from the ozone trend simulated using NOx emissions at each corresponding 
year.” 
 
We also added dotted green lines in Fig. 9 to separately show simulated trend from non-NOx 
sources from GCv12 and GCadj.  
 
 

 
Figure 9. Changes of regional mean annual MDA8 ozone concentrations compared to 2006 
from TOAR measurements (magenta line), due to changes in bottom-up NOx emissions 
(black), due to changes in top-down NOx emissions (blue lines for simulations from GC-adj 
and red lines for simulations from GCv12), and due to changes in meteorology and non-
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NOx emissions (green lines). Only sites that have continuous measurements throughout the 
9 years are included. The vertical bars represent the spread of changes from simulations 
using the NASA and the DOMINO posterior NOx emissions. The impact of meteorology 
and natural sources are removed from black, blue and red lines by subtracting simulations 
using 2010 bottom-up anthropogenic emissions for all years from simulations that use 
bottom-up NOx emissions corresponding to each year.  
 
 
9) Page 11, Line 338: It is surprising that the model versions (GCadj and GCv12) simulate very 
different ozone vertical profiles. GCv12, which is a more updated version, has much large biases 
in the upper troposphere, in particular with the updated NOx emissions. Can you explain why in 
GCv12 changes in surface NOx emissions would lead to large ozone changes in the upper 
troposphere? 
 
GCv12 includes halogen chemistry, which is not included in GCadj. This chemistry depletes 
ozone. Its impact is especially larger at locations away from NOx sources, e.g., upper 
troposphere, leading to much lower ozone concentrations in the GCv12 simulations.  
 
We modified the following sentences in the cited paragraph: 
 
“The different biases in ozone simulations close to surface can be explained by the usage of 
different emission inventories (e.g., different biogenic emissions) and different boundary layer 
mixing scheme (non-local mixing [Lin and McElroy, 2010] in GCv12 and full mixing in GCadj). 
The different chemical mechanisms in the two model versions affect the different model 
biases especially in the upper troposphere. For instance, …” 
 
We also added the following sentences to the cited paragraph: 
 
“The prior simulations in GCv12 applies NOx emissions at different altitude, whereas the 
posterior GCv12 and all GC-adj simulations apply all NOx emissions to the surface. This 
leads to different transport and formation of ozone at different model layers and therefore 
causes larger differences in ozone simulations in the upper troposphere.” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1 
 

Impacts of global NOx inversions on NO2 and ozone simulations 

Zhen Qu1,2, Daven K. Henze1, Owen R. Cooper3,4, Jessica L. Neu5 
1Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA 
2School of Engineering and Applied Science, Harvard University, Cambridge, MA, 02138, USA 
3Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, 80309, USA 5 
4NOAA Chemical Sciences Laboratory, Boulder, CO, 80305, USA 
5Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA 
 

Correspondence to: Zhen Qu (zhen.qu@colorado.edu) 

Abstract. Tropospheric NO2 and ozone simulations have large uncertainties, but their biases, seasonality and trends can be 10 

improved with NO2 assimilations. We perform global top-down estimates of monthly NOx emissions using two OMI NO2 

retrievals (NASAv3 and DOMINOv2) from 2005 to 2016 through a hybrid 4D-Var / mass balance inversion. Discrepancy in 

NO2 retrieval products is a major source of uncertainties in the top-down NOx emission estimates. The 12-year averages of 

regional NOx budgets from the NASA posterior emissions are 37% to 53% smaller than the DOMINO posterior. 

Consequently, the DOMINO posterior surface NO2 simulations greatly reduced the negative biases in China (by 15%) and 15 

the US (by 22%) compared to surface NO2 measurements. Posterior NOx emissions show consistent trend over China, US, 

India, and Mexico constrained by the two retrievals. Emission trends are less robust over South America, Australia, Western 

Europe and Africa, where the two retrievals show less consistency. NO2 trends have more consistent decreases (by 26%) 

with the measurements (by 32%) in the US from 2006 to 2016 when using the NASA posterior. The performance of 

posterior ozone simulations has spatial heterogeneities from region to region. On a global scale, ozone simulations using 20 

NASA-based emissions alleviates the double peak in the prior simulation of global ozone seasonality. The higher 

abundances of NO2 from the DOMINO posterior increase the global background ozone concentrations and therefore reduce 

the negative biases more than the NASA posterior in the GEOS-Chem v12 simulations at remote sites. Compared to surface 

ozone measurements, posterior simulations have more consistent magnitude and interannual variations than the prior 

estimates, but the performance from the NASA-based and DOMINO-based emissions varies across ozone metrics. The 25 

current hard-constraints on NOx diurnal variations and limited availability of remote sensing data hinder improvement of 

ozone diurnal variations from the assimilation, and therefore have mixed performance on improving different ozone metrics. 

Additional improvements in posterior NO2 and ozone simulations require more precise and consistent NO2 retrieval 

products, more accurate diurnal variations of NOx and VOC emissions, and improved simulations of ozone chemistry and 

depositions.  30 
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1 Introduction 

Tropospheric ozone is a harmful secondary air pollutant affecting human health, sensitive vegetation, and ecosystems [NRC, 

1991; Monks et al., 2015]. Long-term ozone (O3) exposure is estimated to cause 1.04 – 1.23 million respiratory deaths in 

adults [Malley et al., 2017]. Short-term exposure to high ambient ozone is associated with respiratory and cardiovascular 

mortality [Turner et al., 2016; Fleming et al., 2018]. Accurate simulations of ozone in highly polluted regions are important 45 

for better pollution forecasts and more effective emission regulations. Tropospheric ozone is formed through photochemical 

reactions between nitrogen oxide (NOx = NO + NO2), carbon monoxide (CO), methane (CH4), and volatile organic 

compounds (VOCs) in the presence of sunlight [Crutzen, 1973; Derwent et al., 1996]. These precursor gases are mainly 

emitted from fossil fuel combustion, biomass burning, oil and gas production, industry, agriculture, and biogenic activities. 

Tropospheric ozone can also be transported from the stratosphere through stratosphere-troposphere exchange [Stohl et al., 50 

2003; Hsu and Prather, 2009; Stevenson et al., 2006], but this magnitude is smaller than the amount from chemical 

production by a factor of 5 – 7 [Young et al., 2013]. Ozone is removed from the troposphere through deposition [Fowler et 

al., 2009], photo-dissociation, and reactions with HO2, NO2, unsaturated VOCs, halogens, and aerosols [Crutzen, 1973]. 

 

From 1850 to 2000, global mean tropospheric ozone burden has increased by 29% [Young et al., 2013]. Human activities are 55 

major sources of ozone precursor gases, contributing to 9% (24.98 Tg) increase of the global tropospheric ozone burden 

from 1980 to 2010 [Zhang et al., 2016]. Ozone formation and trends depend nonlinearly on the local relative abundances of 

NOx and VOCs and the radiative regime in which these occur. Previous studies have shown that changes in surface ozone are 

dominated by regional emission trends of precursor gases [Zhang et al., 2016]. At the global scale, 77% of NOx emissions 

are from anthropogenic sources, according to the HTAP 2010 inventory [Janssens-Maenhout, 2015]. Anthropogenic NOx 60 

emissions have been decreasing in North America and Europe due to transportation and energy transformations [Simon et 

al., 2015], but have been increasing in China up until 2011 according to bottom-up emission inventories [Liu et al., 2016; 

Hoesly et al., 2018]. Top-down NOx emission estimates using satellite observations from the Ozone Monitoring Instrument 

(OMI) showed a similar turning point in China [Miyazaki et al., 2017; Qu et al., 2017], but a slowdown in reductions in the 

US compared to bottom-up estimates [Miyazaki et al., 2017; Jiang et al., 2018]. However, in India and the Middle East, 65 

where ozone production is more efficient than higher latitude regions [Zhang et al., 2016], NO2 column densities from OMI 

are continuing to increase [Krotkov et al., 2016]. 

 

Top-down methods have the advantage of being able to update emissions in a more timely fashion than the bottom-up 

approaches; still, top-down approaches can contain large differences and uncertainties. For instance, the magnitude of 70 

tropospheric NO2 column densities from two global retrievals from the National Aeronautics and Space Administration 

(NASA) and the Royal Netherlands Meteorological Institute (KNMI) differ by 50%, and have different trends at the regional 

scale [Zheng et al., 2014; Canty et al., 2015; Qu et al., 2017]. These differences in column densities can propagate to 
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differences in top-down NOx emission estimates [e.g., Miyazaki et al., 2017; Qu et al., 2017]. In this study, we assess the 

importance of these discrepancies in NOx emissions for the simulation of ozone. We derive global top-down NOx emissions 90 

from 2005 to 2016 using two widely used products (OMNO2 v3 and Dutch OMI NO2 (DOMINO) v2) based on the same 

inversion process for consistent evaluations (Sect. 3). We also evaluate a new OMI NO2 retrieval product, the Quality 

Assurance for the Essential Climate Variables (QA4ECV) [Boersma et al., 2018], and apply it to derive monthly NOx 

emissions in 2010. We do not repeat our entire set of ozone evaluations with this product given that its magnitude and 

seasonality does not significantly differ from the other two products. We further explore the impact of adjusting NOx 95 

emissions on ozone simulations, by evaluating the ozone simulations produced from bottom-up and top-down NOx emissions 

against global surface measurements from the Tropospheric Ozone Assessment Report (TOAR) database and the China 

National Environmental Monitoring Center (CNEMC) network.  

 

In addition to local sources, the lifetime of ozone (~22 days on global average) is sufficiently long enough for 100 

intercontinental transport [UNECE, 2010]. Consequently, every country is an exporter as well as an importer of ozone 

pollution. Transport from East Asia can be an important contributor to ozone exceedances in the western US [Goldstein et al., 

2004; Zhang et al., 2009; Zhang et al., 2014; Fiore et al., 2014; Verstraeten et al., 2015; Lin et al., 2017; Jaffe et al., 2018]. 

The influence of intercontinental ozone transport is strongest in spring and summer, when background ozone concentrations 

reach 50 ppbv at the west coast of the US [Jaffe et al., 2018]. The impact of background ozone is increasingly important and 105 

challenging due to the decreased local sources of precursor gases in the US [Hoesly et al., 2018] and the recent stricter ozone 

standard in the US lowering the annual 4th highest maximum daily 8-hour average ozone concentration from 75 ppbv to 70 

ppbv in 2015 [Cooper et al., 2015]. Optimization of NOx emissions in the upwind regions can improve remote ozone 

simulations in downwind regions after transport of intercontinental pollution plumes from the free troposphere to the surface 

[Zhang et al., 2008; Verstraeten et al., 2015]. Therefore, we also evaluate the model simulations of remote ozone at the west 110 

coast of the United States using bottom-up and top-down NOx emissions in Sect. 4. 

2 Methods 

2.1 GEOS-Chem and its adjoint model 

The GEOS-Chem adjoint model [Henze et al., 2007] v35k is used to derive global NOx emission estimates at 2° × 2.5° 

resolution. It was developed for inverse modelling of aerosol and gas emissions using the 4D-Var method by Henze et al. 115 

[2007, 2009] based on version 8 of GEOS-Chem, with bug fixes and updates up to version 10. Simulations in this study are 

driven by Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) meteorological fields 

from NASA Global Modeling and Assimilation Office (GMAO). Anthropogenic emissions of NOx, SO2, NH3, CO, 

NMVOCs and primary aerosol from the HTAP 2010 inventory version 2 [Janssens-Maenhout et al., 2015] are used to drive 

all prior simulations from 2005 to 2017. The diurnal variation of NOx emissions is derived from EDGAR hourly variations ( 120 
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http://wiki.seas.harvard.edu/geos-chem/index.php/Scale_factors_for_anthropogenic_emissions#Diurnal_Variation) and is 

not optimized in the inversion. The use of non-anthropogenic emissions and other setups follow Qu et al. [2017, 2019]. In 125 

the following analyses, we refer to this model as “GC-adj.” 

 

GC-adj does not include several halogen chemistry mechanisms that affect ozone depletions primarily over the oceans 

[Sherwen et al., 2016a; Wang et al., 2019] and at high altitude regions [Sherwen et al., 2016a]. Given their impact on the 

global background ozone concentrations, we also use GEOS-Chem v12.1.1 to evaluate ozone simulations at 2° × 2.5° 130 

resolution driven by the MERRA-2 meteorological fields. The chemistry updates include the stratospheric chemistry from 

the Universal tropospheric-stratospheric Chemistry eXtension (UCX) [Eastham et al., 2014], halogen chemistry [Bell et al., 

2002; Parrella et al., 2012; Sherwen et al., 2016a, 2016b; Schmidt et al., 2016; Sherwen et al., 2017], and updated isoprene 

and monoterpene chemistry [Chan Miller et al., 2017; Fisher et al., 2016; Marais et al., 2016; Travis et al., 2016]. The 

Harvard-NASA Emission Component (HEMCO) is employed to process emissions in this version of GEOS-Chem [Keller et 135 

al., 2014]. We use 72 levels of vertical grid and global anthropogenic emissions from the Community Emissions Data 

System (CEDS) [Hoesly et al., 2018]. Top-down NOx emissions derived using GC-adj are also input to this model to 

evaluate the impact of NO2 data assimilation on ozone simulations under different chemical mechanisms. We refer to this 

model as “GCv12” in this manuscript. 

 140 

For each NOx emission dataset, the model is spun-up for 6 months, starting from July 2005. Therefore, we derive NOx 

emissions from 2005, but only evaluate simulations with measurements from 2006. To avoid high biases when comparing 

simulated ozone averaged over the first vertical model layer (~100 m in box height) with surface measurements, 2-meter 

ozone mixing ratios are calculated by scaling simulated ozone mixing ratios in the first layer using adjusted dry deposition 

velocities at 2 meters following Zhang et al. [2012] and Lapina et al. [2015]. 145 

2.2 Satellite observations and global top-down NOx emissions 

We estimate global top-down NOx emissions at the surface from 2005 to 2016 at 2° × 2.5° resolution using tropospheric NO2 

column densities from OMI. OMI is an Ultraviolet/Visible nadir solar backscatter spectrometer aboard the NASA Aura 

satellite. It has a local overpass time of about 13:45 and a nadir resolution of 13 km × 24 km. OMI was launched in July 

2004 and has provided operational data products since October 2004. Two Level 2 NO2 retrieval products are used to derive 150 

long-term top-down NOx emissions in this study: the NASA standard product OMNO2 version 3 [Krotkov et al., 2017] and 

the DOMINO version 2 from KNMI [Boersma et al., 2011]. A new OMI NO2 retrieval, the Quality Assurance for the 

Essential Climate Variables (QA4ECV) [Boersma et al., 2018], has recently become available. This product is jointly 

developed by KNMI, the Belgian Institute for Space Aeronomy (BIRA-IASB), University of Bremen, Max-Plank Institute 

for Chemistry, and Wageningen University. We evaluate the magnitude of NO2 column densities and the seasonality of 155 

posterior NOx emissions in 2010 from this product. We screen all OMI NO2 retrievals using data quality flags and by the 
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criteria of positive tropospheric column, cloud fraction < 0.2, solar zenith angle < 75°, and viewing zenith angle < 65°. We 

excluded all retrievals that are affected by row anomaly.  

 

We converted GEOS-Chem NO2 VCD to SCD using scattering weight (NASA product) and averaging kernel (DOMINO 160 

and QA4ECV product) from the OMI retrievals and then compare GEOS-Chem SCD with SCD retrieved from OMI. A cost 

function is defined as the observation error weighted differences between simulated and retrieved NO2 SCD, plus the prior 

error weighted departure of the emission scaling factors from the prior estimates. We minimize the cost function using the 

quasi-Newton L-BFGS-B gradient-based optimization technique [Byrd et al., 1995; Zhu et al., 1994], in which the gradient 

of the cost function with respect to the control parameter is calculated using the adjoint method. Details of the assimilation of 165 

NO2 slant column densities (SCDs), how vertical sensitivities of satellite retrievals are accounted for, and the hybrid 4D-Var 

/ mass balance inversion of NOx emissions are described in Qu et al. [2017]. We use top-down NOx emissions estimated 

from the NASA standard product and the DOMINO product in the evaluations of ozone simulations.  

2.3 Surface measurements 

We evaluate surface NO2 simulations with measurements from the Environmental Protection Agency (EPA) Air Quality 170 

System (AQS) in the US and the China National Environmental Monitoring Center (CNEMC) network in China. The city 

monitoring sites included in the analysis represent either urban background or the averaged pollutant concentrations over the 

city. Simulated ozone mixing ratios from 2006 to 2016 are compared to surface observations from the TOAR Surface Ozone 

Database [Schultz et al., 2017] at the global scale and the CNEMC network in China. TOAR has produced a relational 

database of global surface ozone observations at all available sites; see Gaudel et al. [2018] for illustrations of the global 175 

coverage of the TOAR data. Precompiled TOAR data (https://doi.pangaea.de/10.1594/PANGAEA.876108, available from 

1995 to 2014) at each individual site are used in this study. Given the sparse TOAR data coverage of only 32 sites over 

China, hourly surface ozone measurements from the CNEMC (http://106.37.208.233:20035/) are used to evaluate 

simulations in China from 2014 to 2016. The CNEMC national network was designed for urban and suburban air pollution 

monitoring. The archive contains hourly observations of ozone, carbon monoxide, nitrogen dioxide, sulfur dioxide and fine 180 

particulate matter across mainland China since 2013.  

2.4 Ozonesonde measurements 

Ozone profile measurements from the Intercontinental Chemical Transport Experiment Ozonesonde Network Study (IONS-

2010) [Cooper et al., 2011] are used to evaluate the continental inflow of ozone along the west coast of the United States, 

where air masses are not influenced by recent US emissions. IONS-2010 was a component of the California Research at the 185 

Nexus of Air Quality and Climate Change (CalNex) 2010 experiment [Ryerson et al., 2013] and was a continuation of 

previous IONS experiments to measure tropospheric ozone variability across North America [Thompson et al., 2007, 2008; 

Cooper et al., 2007]. Balloon-borne electrochemical cell sensors were used to measure ozone profiles with an accuracy of +/- 
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10% in the troposphere [Johnson et al., 2002; Smit et al., 2007]. All six sites in California from IONS-2010 (Trinidad Head, 

Point Reyes, Point Sur, San Nicolas, Joshua Tree, and Shasta) are included in this study. These measurements are made in 

the mid-afternoon (95% occurring between 14:00 and 16:59 local time) over a six-week period from May 10 to June 19, 

2010. There are 34-37 profiles for all sites except for San Nicolas Island, where only 26 profiles are available due to multiple 195 

instrument failures. Measurements made between 700 – 800 hPa are used to evaluate remote ozone simulations.  

3 Magnitude, seasonality and trend of NOx emissions, surface NO2 and surface ozone 

Differences between the prior and posterior NOx emission estimates are mainly driven by the differences between simulated 

and retrieved tropospheric NO2 vertical column densities (VCDs), which are compared in Sect. S1 in the supporting 

information. The GEOS-Chem NO2 SCDs converted using scattering weight from the NASA product are larger than the 200 

SCDs calculated using the DOMINO scattering weight and the same GEOS-Chem VCDs (See Fig. S2). These can be 

explained by the use of different surface albedo and cloud product in the two retrievals. The retrieved NO2 SCDs from the 

NASA product are mostly smaller than the DOMINO retrieval except for some regions between 40°N – 60°N in January 

2010. The smaller magnitude in OMI SCD and the larger magnitude in GEOS-Chem SCD using the NASA scattering weight 

lead to smaller magnitude of posterior NOx emissions than inversions from the DOMINO product. The cost function has 205 

reduced by 6% - 29% in the monthly inversion. 

3.1 Annual average 

As shown in Table 1, the global budgets of NOx emissions from the NASA posterior in 2010 is 0.7% smaller than the prior; 

DOMINO posterior is 18% larger than the prior; QA4ECV posterior is 11% larger than the prior. The positive increment in 

the DOMINO posterior emissions is consistent with the +26% increments of 10-year mean posterior NOx emissions in 210 

Miyazaki et al. [2017]. The annual global NOx emissions from Miyazaki et al. [2017] are between 46.7 Tg N yr-1 and 50.9 Tg 

N yr-1 from 2005 to 2014, which are within 31% from the DOMINO posterior emissions in 2010 in this study. 

 

As shown in Fig. 1, the NASA posterior NOx emissions are less than the prior NOx emissions in the northeast US, northeast 

China, and southeast China. The DOMINO posterior NOx emissions are larger than the prior in most regions except for 215 

North Mexico and most parts of the tropics. The QA4ECV posterior NOx emissions have more consistent negative 

increments in Eastern China with the NASA posterior emissions and more consistent positive increments in the United 

States, India, Europe, and Australia with the DOMINO posterior emissions. At the regional scale, NASA posterior 

increments are -3% in China, -1% in the US, +0.3% in India, and -1% in Western Europe. The increments from the 

DOMINO posterior emissions are +21% in China, +31% in the US, +28% in India, and +38% in Western Europe. The 220 

different changing directions in the above two posterior NOx emissions are consistent with the reportedly higher magnitude 

of NO2 column densities in the DOMINO product than the NASA product in densely populated and industrial regions 
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[Zheng et al., 2014; Canty et al., 2015; Qu et al., 2017]. The increments from the QA4ECV posterior emissions are +5% in 

China, +19% in the US, +18% in India, and +14% in Western Europe.  

 230 

To evaluate the magnitude of the posterior NOx emissions, we compare simulations of surface NO2 concentrations using the 

NASA and DOMINO based NOx emissions with surface measurements in the US and China. Surface NO2 simulations at 

coarse resolution are usually biased low compared to measurements at urban sites, due to the short lifetime of NOx. We 

therefore start with analysing this resolution error by generating high-resolution pseudo surface measurements at 0.1° × 0.1° 

and compare them with low-resolution model simulations at 2° × 2.5°. We generate high-resolution surface NO2 235 

concentrations by scaling simulated surface NO2 concentrations at 2° × 2.5° grid cells by the ratio of OMI NO2 column 

density gridded at 0.1° × 0.1° to the OMI NO2 column density gridded at 2° × 2.5° grid cell. We identify 0.1° × 0.1° grid 

cells that include surface monitoring sites and treat downscaled surface NO2 concentrations at these grid cells as the pseudo 

surface measurements. Comparisons of pseudo surface measurements and NO2 simulations at 2° × 2.5° purely reflect 

differences caused by comparing NO2 concentrations at 2° × 2.5° with higher resolution surface measurements at urban 240 

regions. The mean of the pseudo NO2 measurements is 32% higher than the low-resolution simulations in the US, and it is 

18% higher than the low-resolution simulations in China. The real surface measurements, which represent a single point 

within the 0.1° × 0.1° grid cell, are expected to have even larger biases than the values calculated here, where we assume the 

measurements are at 0.1° × 0.1° grid cells. The smaller bias in China in comparison to the US is related to the higher 

background NO2 concentrations in China.  245 

 

Figure 2 shows the comparisons of annual mean surface NO2 concentrations in 2015 from measurements and simulations 

using different NOx emission inputs. The selection of this year is due to the limited availability of nation-wide surface NO2 

measurements in China. Surface NO2 concentrations in both China and the US are measured by chemiluminescence 

analyzers, each equipped with a molybdenum converter, which converts additional NOy compounds to NO and leads to a 250 

positive bias in NO2 measurements [Dunlea et al., 2007; Steinbacher et al., 2007]. We therefore calculate a correction factor 

following Lamsal et al. [2008] for each GEOS-Chem simulation and divide the simulated NO2 concentrations by this 

correction factor to convert simulated NO2 to the measured species. The correction factors are generally higher in the US 

than in China, but have similar seasonality (see Fig. S3). Subtracting the resolution bias from the statistics shown on Fig. 2, 

the equivalent normalized mean bias (NMB) of surface NO2 concentrations using the NASA posterior is -54% in China and -255 

41% in the US. The equivalent NMB using the DOMINO posterior is -38% in China and -19% in the US. These remaining 

negative biases reflect the unrepresentativeness of 0.1° pseudo measurements for real point measurements for resolution bias 

correction, comparison of NO2 concentrations averaged over 2°×2.5° simulation to limited measurements, the underestimates 

of NO2 retrievals using coarse resolution a priori, and the inability of data assimilation to increase emissions at grid cell 

where NO2 retrievals are below the detection limit of OMI. Although we have not performed a NOx emission inversion using 260 
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the QA4ECV product for 2015, we expect its bias to lie between the results from the NASA and DOMINO products, based 

on the magnitude of NOx emissions in 2010.  

 

We evaluate the simulated ozone concentrations with global surface measurements from the TOAR database using three 

ozone metrics: maximum daily 8-hour average (MDA8) ozone, daytime average ozone (8:00 – 20:00 local time), and 24-275 

hour average ozone. In addition to the GC-adj simulation, with which we derived top-down NOx emissions, we also input the 

same top-down emissions to GCv12 and evaluate ozone simulations from this more recent version of the GEOS-Chem that 

includes updated halogen and isoprene chemistry. 

 

All GC-adj simulations of 2-meter ozone concentrations have a high bias compared to the TOAR measurements in 2010. 280 

NMB and Normalized Mean Square Error (NMSE) are largest for 24-hour ozone concentrations. Simulations using posterior 

NOx emissions have slightly better agreement with the measurements from TOAR in 2010 (Fig. 3). In particular, simulations 

using the DOMINO posterior NOx emissions have the smallest NMB in all ozone metrics and the smallest NMSE in all 

metrics except for the North Hemisphere (NH) summertime MDA8 ozone. Simulations using the NASA posterior NOx 

emissions have the best spatial correlation when compared with measurements for all metrics except for the NH summer 285 

daytime ozone and annual MDA8 ozone, for which DOMINO posterior simulations have the largest correlation coefficient 

(Fig. S4).  

 

In comparison, GCv12 simulations have a low bias in daytime ozone, but high bias in 24-hour average ozone, reflecting the 

potential underestimate of ozone loss at night. The impact of NO2 assimilation on improving estimates of surface ozone 290 

simulations in GCv12 depends upon the ozone metric, as shown in the bottom left panel of Fig. 3. Simulations using the 

DOMINO posterior emissions have the smallest NMB for annual mean daytime ozone; simulations using bottom-up NOx 

emissions have the smallest NMB for annual mean MDA8 ozone; simulations using the NASA posterior emissions have the 

smallest NMB for annual mean 24-hour averaged ozone. These results suggest that the simulated diurnal variations of 

surface ozone concentrations may not be correct. The current constraints on NOx emissions use observations from OMI, 295 

which overpasses the same location approximately once per day. The diurnal variations of NOx emission are constrained to 

be those of the prior emissions. The daily NO2 column densities from OMI are also underestimated compared to the 

diurnally varying ground-based retrievals [Herman et al., 2019]. Assimilating NO2 observations from instruments 

overpassing at different time of the day [e.g., Boersma et al., 2008; Lin et al., 2010; Miyazaki et al., 2017] and using hourly 

constraints from the geostationary satellite data (e.g., Geo-stationary Environmental Monitoring Spectrometer (GEMS), 300 

Tropospheric Emissions: Monitoring of Pollution (TEMPO) [Zoogman et al., 2017] and Sentinel-4) have the potential to 

improve simulations of ozone diurnal variations and different ozone metrics, although the ratio of NO2 column densities 

from satellites that overpass in the morning and afternoon are generally lower than the same ratio from surface 

measurements [Penn and Holloway, 2020]. Simulated MDA8 ozone values are mostly biased low in NH summer but biased 
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high in annual mean concentrations, reflecting different seasonal variations in simulated and measured ozone concentrations, 

which will be further discussed in Sect. 3.2. Evaluations with the CNEMC ozone measurements in China are in Sect. S2.  

3.2 Seasonal variation 315 

The seasonal variations of monthly NOx emissions are consistent between the prior and the NASA posterior emissions (Fig. 

4). The DOMINO posterior emissions show different seasonal variations in several regions. In China, the prior and the 

NASA posterior NOx emissions show summer peaks, which are mainly caused by the increase of natural sources when 

temperatures are high and lightning occurs more often [Qu et al., 2017]. The DOMINO posterior emissions have the largest 

values in January and June in China, consistent with the posterior seasonality from Miyazaki et al. [2017] constrained by the 320 

same OMI NO2 product. The June peak in China has been explained by the crop residual burning [Stavrakou et al., 2016]. 

The peak of the DOMINO posterior NOx emissions in the United States and Mexico shifted earlier in the year to June and 

July compared to the prior and NASA posterior emissions, similar to the results from Miyazaki et al. [2017]. The peak in 

DOMINO posterior emissions corresponds to the time of high soil NOx emissions, which are reported to be underestimated 

in high-temperature agricultural systems in the bottom-up inventory [Oikawa et al., 2015; Miyazaki et al., 2017]. The 325 

differences between the DOMINO posterior and the other two sets of emissions are especially large during the springtime in 

India, when biomass burning activity increases [Miyazaki et al., 2017; Venkataraman et al., 2006]. These retrieval products 

have similar number of observations and spatial distributions of observation densities after the filtering. The different 

seasonal variations in the posterior NOx emissions may reflect the AMF structural uncertainties when the retrieved NO2 

column densities use different ancillary data [Lorente et al., 2017]. For instance, the GEOS-Chem NO2 SCDs converted 330 

using the scattering weight from the NASA product have larger seasonal variations than the SCDs converted using the 

DOMINO averaging kernel in the US, reflecting the different seasonal variations of vertical sensitivities from the two 

retrievals. The seasonal variations of simulated surface NO2 concentrations are similar with measurements in China and the 

US (see Fig. S6).  

 335 

Seasonal variations of 2-meter ozone concentrations simulated by the GC-adj are also similar despite different NOx emission 

inputs: the differences in correlation coefficients of the simulated and the measured monthly ozone concentrations are less 

than 9%. The simulations of 2-meter ozone concentrations from GCv12 show better seasonality when using the posterior 

NOx emissions than using the prior, as shown in Fig. 5. Simulations using the CEDS inventory show double maxima in April 

and August, whereas surface measurements only show a single maximum in April. Assimilation of NASA NO2 340 

concentrations alleviates this difference and leads to the largest correlation with measured MDA8 and 24-hour average 

ozone; simulations using the DOMINO posterior emissions have the largest correlation coefficient for daytime ozone. That 

being said, the correlation coefficients are not notably different. The August ozone peak in the prior simulation is mainly due 

to the high ozone concentrations in North China, Southwest China, and North India. The NASA and DOMINO posterior 

simulations have both reduced surface ozone concentrations in North China Plain and Northeast China in August due to the 345 
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larger posterior NOx emissions than the prior in these high-NOx regions. Both posterior ozone simulations are also smaller 

than the prior in Tibet and North India due to the reductions of posterior NOx emissions in low-NOx region. The August 

ozone peak in the DOMINO posterior comes from the higher ozone concentrations in Angola and Democratic Republic of 355 

the Congo compared to the NASA posterior and prior simulations in the same month and DOMINO posterior simulations in 

the previous months. This can be explained by the larger upward adjustment of DOMINO posterior NOx emissions in South 

Africa in August. These results show the large spatial heterogeneities on the responses of ozone seasonality to the changes in 

NO2 abundances on a global scale. Compared with CNEMC measurements in China, simulations using the prior emissions 

have the most consistent seasonal variations and smallest NMSE. All simulations have smaller seasonal variations than the 360 

measurements in daytime ozone. 

3.3 Inter-annual variations 

The three different versions of NOx emissions have different regional trends from 2005 to 2016 as shown in Fig. 6. In China, 

the NASA posterior NOx emissions increased by 32% and the DOMINO posterior NOx emissions increased by 32% from 

2005 to 2011. From 2011 to 2016, they decreased by 20% (NASA) and 11% (DOMINO). This turning point reflects the 365 

regulation of NOx emissions in China since the “11th 5-year plan” in 2011. In India, both posterior NOx emissions showed 

continuous increases (by 24% from the NASA posterior and 34% from the DOMINO posterior) from 2005 to 2016. The 

sources of NOx emissions in India are mainly from thermal power and transportation and are expected to continue increasing 

in the near future under current regulations [Venkataraman et al., 2018]. In the US, NOx emissions decreased by 24% 

(NASA) and 19% (DOMINO) from 2005 to 2010 and then flattened from 2010 to 2016. This slowdown in the total top-370 

down NOx emissions was attributed to the growing contribution from industrial, areal, and off-road mobile sources as well as 

the slower than expected decreases in on-road diesel NOx emissions by Jiang et al. [2018]. Silvern et al. [2019], however, 

argued that the slowdown was driven by the weaker decreases in background sources of NOx, which has increasing 

contribution with the decrease of anthropogenic NOx sources. In Mexico, the two posterior NOx emissions consistently 

increased by 6% (NASA) and 13% (DOMINO) from 2005 to 2016. The DOMINO posterior shows more obvious increase in 375 

Mexico from 2010 to 2016. This increase in Mexico is not reflected in the bottom-up estimates from the EPA National 

Emissions Inventory. In Australia, the NASA posterior increases by 10% from 2005 to 2016. In comparison, the DOMINO 

posterior decreases from 2005 to 2010 and increases afterwards, consistent with the posterior trend from Miyazaki et al. 

[2017]. The different trends in posterior NOx emissions are propagated from the trends in the two OMI NO2 retrieval 

products. The discrepancies are likely due to the different surface albedo and cloud products used in the two retrievals, 380 

which affect averaging kernel sensitivities. The trends of NOx emissions in South America are different in the two posterior 

estimates after 2012, when the NASA posterior emissions started to decrease by 27% and the DOMINO posterior emissions 

started to increase by 11% up until 2016. In Western Europe and Africa, posterior NOx emissions fluctuate and do not have a 

significant consistent trend from the two inversions. 

 385 
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The magnitudes of DOMINO posterior NOx emissions are consistently larger than the NASA ones throughout the period. 

The 12-year averages of annual NOx budgets from NASA posteriors are 37% (China), 53% (India), 43% (US), 50% 

(Mexico), 45% (Australia), 58% (South America), 47% (Western Europe), and 46% (Africa) smaller than the DOMINO 

posterior.  400 

 

We evaluate the trend of simulated surface NO2 concentrations in the US with AQS measurements due to its availability 

throughout the study period (Fig. 7). From 2006 to 2016, the surface NO2 concentrations show consistent decreases in the 

AQS measurements (by 32%) and GC-adj simulations (by 26% using the NASA posterior, by 10% using the DOMINO 

posterior, and by 7% using the prior emissions). Since we use the same anthropogenic emissions throughout 2006-2016 in 405 

the prior simulations, the variations in the black line reflect changes from natural sources and the impact of meteorological 

factors (e.g., temperature, humidity, wind, etc.). Surface NO2 simulations using the NASA posterior NOx emissions also 

have the largest correlation coefficient when compared to the measurements (R2 = 0.93 for the NASA posterior, R2 = 0.81 

for the DOMINO posterior, and R2 = 0.74 for the prior). The more consistent trends and correlations in surface NO2 

simulations using the NASA posterior emissions are consistent with the larger decrease of NASA posterior NOx emissions in 410 

the US (by 20%, or for comparison a decrease of 1% in the DOMINO posterior) from 2006 to 2016, as shown in Fig. 6. 

 

The interannual variability of global simulations of 2-meter ozone sampled at the TOAR locations is similar between GC-adj 

and GCv12. During the NH summer, simulations using the DOMINO posterior NOx emissions have the most consistent 

trend in daytime and 24-hour average ozone in both models (see Table S1); GC-adj simulations using the NASA posterior 415 

emissions have the best consistency with the measured trend of MDA8 ozone. The different performance of NOx emission 

datasets for different ozone metrics is a consequence of the hard constraint on NO2 diurnal variations within the assimilation 

(and the lack of sufficient observations to constrain this). This can lead to better agreement of mean ozone concentration 

with measurements over particular hours but worse mean concentrations averaged over other hours. Detailed analyses of 

global ozone trends are in Sect. S3. At the regional scale, shown in Fig. 8, surface ozone measurements from TOAR mostly 420 

fall within the ranges of assimilation results. The interannual variations of simulated ozone over the whole region (black 

dotted lines) are generally smaller than the ones at grid cells that include surface measurements (black solid lines). The 

number of years that ozone measurements are available in each grid cell is shown in Fig. S8. The overlap of solid black and 

green lines in Fig. 8 suggests that interannual variations of anthropogenic NOx emissions from CEDS do not have a large 

impact on surface ozone simulations. The trends of simulated annual MDA8 ozone concentrations are correlated with 425 

impacts from meteorology and non-NOx sources based on simulations (shown as green lines) that use the same 

anthropogenic NOx emissions for all years and simulations that use interannually varied anthropogenic NOx emissions, 

leading to ozone changes of up to 4 ppbv (China), 5 ppbv (South Korea), 1ppbv (US), 2 ppbv (Mexico), 1 ppbv (South 

America), 1 ppbv (Australia), 1 ppbv (Western Europe), and 6 ppbv (Africa) from one year to the next. The trends of 

simulated MDA8 ozone are similar when using the NASA and the DOMINO posterior NOx emissions as inputs. The 430 
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DOMINO-derived MDA8 ozone concentrations are higher than the NASA-derived ones in all studied regions, represented 

by the upper and lower limit of the error bars respectively. GCv12 simulated ozone concentrations are smaller than 435 

simulations from GC-adj, especially over relatively less polluted regions, consistent with the inclusion of halogen chemistry 

in GCv12, which depleted ozone. The simulated MDA8 ozone trends in grid cells that include measurements in the US and 

Australia are more consistent with the TOAR measurements than the other regions, with coefficients of determination (R2) 

larger than 0.45. The larger differences in ozone between the prior and posterior emissions as well as variability between the 

two top-down NOx emissions in GCv12 suggest a larger responsiveness of the ozone chemistry to changes in NOx. We do 440 

not expect simulated ozone trends to be completely consistent with the measurements in the TOAR database due to errors in 

the model’s transport, chemical mechanism, and VOC emissions.   

 

We further separate the ozone trends in grid cells that include measurements into changes caused by NOx emissions as well 

as meteorology and non-NOx sources. The second trend is calculated through simulations that use constant NOx emissions 445 

throughout the studied years. It has similar trend from GCv12 and GC-adj as shown in the green lines in Fig. 9. The trend 

caused by NOx emissions is obtained by subtracting the second trend from the ozone trend simulated using NOx emissions at 

each corresponding year. The ozone trends due to changes in meteorology and non-NOx sources (green lines) are moderately 

correlated (R > 0.5) with measurements from TOAR in Australia, the US, South America, and India. The ozone trends due to 

changes in posterior NOx emissions (red and blue lines) only have positive correlations with TOAR measurements in both 450 

GC-adj and GCv12 simulations in Africa and Australia. Ozone measurements in 2014 decreased compared to the 2006 level 

in the US and Mexico. GC-adj simulations do not have big trends in these regions, whereas GC-v12 simulations show 

increases in China, the US, and Mexico. Meteorological and non-NOx sources lead to larger inter-annual variations in ozone 

simulations than those driven by NOx emissions in South America, Australia, and Africa, where anthropogenic activities are 

much less than the other regions. These underscore the challenges of attributing observed variations in ozone to changes in 455 

NOx emissions at regional scales. 

 4 Western US remote ozone 

Assimilations of ozone precursor gases have the potential to improve remote ozone simulations, which can be used to 

provide boundary conditions for regional air quality models and to quantify and attribute sources of background ozone. We 

therefore focus specifically on remote regions in the US in this section to evaluate the vertical profile and surface 460 

concentrations of ozone simulations.   

4.1 Evaluations with ozonesonde profiles 

Field campaigns and routine observations of ozone concentrations along the west coast of the US have provided 

opportunities to understand regional and intercontinental influences on surface air quality [Cooper et al., 2015]. Evaluations 
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with the IONS-2010 measurements in Fig. 10 show that the GCv12 simulations of ozone vertical profiles have negative 

biases (NMB between -8% and -32%) above all six sites. The standard deviations of ozonesonde and simulated profiles 470 

overlap with each other (see Fig. S9). The GC-adj simulations have positive biases at San Nicolas and Trinidad Head and 

have smaller negative biases (NMB between -3% and -11%) at the remaining sites than the GCv12 simulations. The 

magnitudes of the NMSE and NMB of the GCv12 simulations at 700 – 900 hPa are also larger than those of the GC-adj 

simulations (see Fig. S10). The prior simulations in GCv12 applies NOx emissions at different altitude, whereas the posterior 

GCv12 and all GC-adj simulations apply all NOx emissions to the surface. This leads to different transport and formation of 475 

ozone at different model layers and therefore causes larger differences in ozone simulations in the upper troposphere. The air 

masses at this altitude in the eastern Pacific are demonstrated to impact inland near surface ozone concentrations [Cooper et 

al., 2011; Lin et al., 2012; Yates et al., 2015]. The different biases in ozone simulations close to surface can be explained by 

the usage of different emission inventories (e.g., different biogenic emissions) and different boundary layer mixing scheme 

(non-local mixing [Lin and McElroy, 2010] in GCv12 and full mixing in GCadj). The different chemical mechanisms in the 480 

two model versions affect the different model biases especially in the upper troposphere. For instance, inclusion of halogen 

chemistry and additional chlorine chemistry in GCv12 leads to 19% and 7% decreases of global tropospheric ozone burden 

[Sherwen et al., 2016a; Wang et al., 2019]. GCv12 simulations using the CEDS emissions have smaller NMSE and NMB 

than the simulations using the posterior NOx emissions in all 6 sites in 2010. In comparison, the GC-adj simulations using 

the DOMINO posterior NOx emissions have the smallest NMSE and NMB at all sites except for San Nicolas and Trinidad 485 

Head, where the prior simulations have the smallest error and bias. Further evaluations with ozonesondes at Trinidad Head in 

2016 are shown in Sect. S4. 

4.2 Evaluations with TOAR surface ozone measurements at remote sites 

To further evaluate the model performance under different geographical scenarios, we compare surface ozone simulations 

from GC-adj and GCv12 with observations from simple to complex environments. These include 1) Mauna Loa Observatory 490 

and Mt Bachelor Observatory at night, which represent the lower free troposphere; 2) Mt. Bachelor Observatory, Lassen 

Volcanic National Park, Great Basin National Park, and Sequoia / Kings Canyon National Park at daytime, representing high 

elevation rural sites during well-mixed daytime conditions. The coefficients of determination (see Table S2) between the 

simulations and the measurements are larger than 0.6 for all daytime ozone comparisons except for Mt. Bachelor 

Observatory. The correlation coefficients are smaller than 0.5 for all nighttime comparisons, reflecting the need to further 495 

improve simulations of nighttime chemistry and atmospheric processes.  

 

In Fig. 11, the surface ozone concentrations from both GC-adj and GCv12 simulations have low biases compared to the 

surface measurements at remote sites. These low biases in the GCv12 simulations are consistent with its performances when 

evaluated with ozonesondes from IONS-2010 and with daytime surface ozone at the global scale. However, the low biases in 500 

the GC-adj simulations are different from its high biases when compared with the global surface ozone concentrations and 
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the ozone profiles at San Nicolas and Trinidad Head. This demonstrates the different biases in ozone simulations at rural and 

urban sites. Simulations using the DOMINO posterior emissions have the smallest NMSE and NMB at all remote sites 510 

except for the GCv12 simulations at Mauna Loa at night and Great Basin during the daytime. 

5 Discussion and conclusions 

We performed global inversions of NOx emissions from 2005 to 2016 using two widely used OMI NO2 retrievals from 

NASA (OMNO2 v3) and KNMI (DOMINO v2). The DOMINO posterior NOx emissions have larger magnitude than the 

prior and the NASA posterior. Consequently, GC-adj simulations using the DOMINO posterior NOx emissions have the 515 

smallest negative bias in surface NO2 and the smallest positive bias in 2-meter ozone. The impact of NO2 assimilations on 

improving estimates of the GCv12 surface ozone simulations depends upon the ozone metrics, suggesting inaccurate diurnal 

variations in the surface ozone simulations. GEOS-Chem simulations using the DOMINO posterior emissions have the 

largest coefficients of determination for summertime daytime (R2=0.81) and summertime 24-hour (R2=0.96) ozone. 

Simulations using the NASA posterior emissions have the smallest bias and error for all ozone metrics and the largest 520 

correlation for summertime MDA8 ozone (R2 = 0.88). Ozone simulations with GEOS-Chem v12.1.1 using the DOMINO 

posterior NOx emissions lead to the most consistent seasonality in 24-hour average ozone (R2 = 0.99) with TOAR 

measurements, while the NASA posterior emissions lead to the best agreement in seasonal variations of MDA8 (R = 0.96) 

and daytime ozone (R = 0.98). The interannual variations of posterior NOx emissions from the two products are similar in 

China, India, the US, Mexico and Australia, but different in South America, West Europe and Africa. Surface NO2 525 

simulations using the NASA posterior have the best agreement with measurements in the US. Daytime and 24-hour average 

ozone simulations using the DOMINO posterior also have the best trend (R = 0.72 and 0.88) in the Northern Hemisphere 

summer. The GC-adj simulations using the NASA posterior NOx emissions have the best trend in MDA8 ozone in NH 

summer.  

 530 

Posterior NOx emissions lead to improved simulations of ozone at several remote sites in the western US. The GC-adj 

simulations using the DOMINO posterior emissions have the smallest NMSE and NMB compared to ozonesonde 

measurements during IONS-2010, except for the San Nicolas and Trinidad Head sites. At the remote surface sites evaluated 

in this study, surface ozone simulations using the DOMINO posterior emissions have the best performance except for 

GCv12 simulations at Mauna Loa at night and Great Basin during the daytime. The reduced negative biases in daytime 535 

surface ozone simulations using the DOMINO posterior emissions at these remote sites and at most IONS-2010 sites are 

consistent with the increases of daytime remote ozone in the western US through NO2 and ozone data assimilation in Huang 

et al. [2015]. Simulations using the DOMINO posterior emissions are demonstrated to provide more precise magnitudes at 

these remote sites and can potentially be used as boundary conditions for regional air quality models for further air pollution 

and health studies. 540 
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The remaining differences between simulated and measured ozone can be explained by the roles of VOCs, errors in satellite 

retrievals, and uncertainties in the chemical and physical processes in the model simulations. In addition to NOx, emissions 

of other ozone precursors also impact the accuracy of ozone simulations. For instance, inversion of isoprene emissions over 

the southeast US decreases surface ozone simulations by 1-3 ppbv [Kaiser et al., 2018]. Inversion of non-methane VOC 545 

emissions changes surface afternoon ozone simulations by up to 10 ppbv in China [Cao et al., 2018]. Assimilation of 

multiple species (e.g, ozone, CO, HNO3 and SO2) together with NO2 may improve posterior ozone simulations, but the 

performance of posterior simulations may depend on the chemical transport model, as shown in Miyazaki et al. [2020], 

where the GEOS-Chem adjoint model v35 shows mixed performance in correcting the bias between ozonesonde and 

posterior simulations between 850-500 hPa at different latitude band. Both OMI NO2 retrievals employed in this study use 550 

NO2 vertical shape factors from coarse resolution simulations, and therefore are biased low compared to in-situ 

measurements [Goldberg et al., 2017]. These retrievals also have not explicitly accounted for the aerosol optical effects, 

which are demonstrated to degrade the accuracy of NO2 column concentrations when AOD is very high [Chimot et al., 2016; 

Liu et al., 2019; Cooper et al., 2019]. The differences in the magnitude of ozone concentrations from GC-adj and GCv12 

reflect the impact of other species emissions and chemical mechanisms on the bias of ozone simulations. Previous studies 555 

also show that global simulations at coarse resolution are not able to capture the observed persistence of chemical plumes in 

the free troposphere on intercontinental scales, therefore leading to underestimates of remote ozone concentrations [Hudman 

et al., 2004; Zhuang et al., 2018].   

 

Although biases, errors, seasonalities and inter-annual variations of ozone simulations have been improved in several cases 560 

through constraints on NOx emissions, there are still large discrepancies in the vertical profile and diurnal variations between 

ozone simulations and measurements. For instance, the different performances of each set of NOx emissions on the 

simulations of different ozone metrics reflect errors in the ozone diurnal simulations. The differences in ozone vertical 

profiles suggest errors in vertical transport in the model. These discrepancies could not be improved by adjusting only 

surface NOx emissions using observations at one time of the day, as performed in this study. Future geostationary satellite 565 

observations will provide opportunities to update NOx emissions at every hour. Separately constraining NOx emissions from 

surface (e.g., anthropogenic sources) and upper atmosphere (e.g., lightning sources [Pickering et al., 2016]) and 

implementing these posterior NOx emissions at their corresponding vertical levels can potentially improve the vertical profile 

of ozone simulations. 

  570 
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The OMI NO2 NASA standard product is downloaded from GES DISC 

(https://atrain.gesdisc.eosdis.nasa.gov/data/OMI/OMNO2_CPR.003/). The DOMINO and QA4ECV NO2 retrievals are from 575 

KNMI (http://www.temis.nl/airpollution/no2col/no2regioomi_v2.php, 

http://www.temis.nl/airpollution/no2col/no2regioomi_qa.php). Ozonesonde profiles from Shasta, Big Sur, Point Reyes, 

Joshua Tree and San Nicolas Island are available from the NOAA Global Monitoring Laboratory 

(ftp://aftp.cmdl.noaa.gov/data/ozwv/Ozonesonde/2_Field%20Projects/CALNEX/ 

Ozonesondes from Trinidad Head are also available from the NOAA Global) Monitoring Laboratory( 580 

ftp://aftp.cmdl.noaa.gov/data/ozwv/Ozonesonde/Trinidad%20Head,%20California/100%20Meter%20Average%20Files/). 

Precompiled TOAR ozone data were downloaded from: https://doi.pangaea.de/10.1594/PANGAEA.876108. 
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Table 1. Total NOx emission (anthropogenic + natural) budgets in 2010 [Tg N yr-1] 

 Bottom-up NASA posterior DOMINO 

posterior 

QA4ECV 

posterior 

Global  52.20 51.86 61.36 57.97 

China 9.85 9.57 11.94 10.30 

US 5.69 5.63 7.45 6.78 

India 4.03 4.04 5.16 4.74 

Western Europe 3.13 3.09 4.33 3.57 
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Figure 1. (a) Global total NOx emissions from the bottom-up inventory and the differences between 4D-Var posterior and bottom-
up estimates constrained by (b) NASA standard product v3, (c) DOMINO product v2, and (d) QA4ECV product in 2010. 
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 830 
Figure 2. Evaluation of annual mean surface NO2 mixing ratios with measurements in China (top) and the US (bottom) in 2015. 
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 835 
Figure 3. NMB and NMSE of annual mean and NH summertime surface ozone concentrations when comparing all measurements 
from TOAR in 2010 with GC-adj (top) and GCv12 (bottom) simulations. The simulations are input with three sets of NOx 
emissions: CEDS bottom-up inventory (HTAP for GC-adj and CEDS for GCv12), posterior emissions constrained by the NASA 
product, and posterior emissions constrained by the DOMINO product. 
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Figure 4. Seasonal variations of total 4D-Var posterior NOx emissions in 2010. The black lines are prior emissions from bottom-up 
inventories (solid lines are from GC-adj, dashed lines are from GCv12). The blue lines are the emissions constrained by OMI NO2 845 
NASA product. The red lines are emissions constrained by OMI NO2 DOMINO product. The green lines are emissions 
constrained by OMI NO2 QA4ECV product.  
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Figure 5. Seasonality of surface ozone concentration at 2 meters in 2010 compared with TOAR (top) and in 2015 compared with 850 
CNEMC (bottom). Surface measurements are shown in magenta lines. Simulations are performed using GCv12 with NOx 
emissions from CEDS (black line), NASA posterior (blue line) and DOMINO posterior (red line).  
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Figure 6. Annual total posterior NOx emissions from 2005 to 2016. The black lines show prior total NOx emissions from bottom-up 
inventories, which use HTAP anthropogenic emissions in 2010 for all years. The blue lines represent the emissions constrained by 
the OMI NO2 NASA product. The red lines represent emissions constrained by the OMI NO2 DOMINO product. 
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Figure 7. The trend of annual mean surface NO2 concentrations over the US from 2006 to 2016, expressed as a percent of the 2006 
values. Surface measurements are from EPA AQS sites (magenta line). GEOS-Chem simulations are performed using prior 
emissions (black line) with constant anthropogenic emissions throughout the years, posterior NOx emissions constrained by NASA 
product (blue line), and posterior NOx emissions constrained by DOMINO product (red line).  
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Figure 8. The trends of regional mean annual MDA8 ozone concentrations from 2006 to 2014. Surface measurements are from the 
TOAR database (magenta line). Only sites that have continuous measurements throughout the 9 years are included. The numbers 
in the parenthesis are the number of 2° × 2.5° grid cells that include monitoring sites in each region. The black dotted lines show 
national mean of surface ozone from GCv12 simulations using the CEDS inventory. The other lines are simulations from GC-adj 870 
and GCv12 averaged over the 2° × 2.5° grid cells that include monitoring sites. Black lines show ozone simulations using the 
bottom-up NOx emissions from CEDS in each corresponding year. Green lines show ozone simulations using 2010 bottom-up NOx 
emissions for all years (HTAP 2010 for GC-adj shown in solid lines, CEDS 2010 for GCv12 shown in dashed lines). The vertical 
bars represent the spread of simulated surface ozone concentrations using the NASA and the DOMINO posterior NOx emissions.  
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Figure 9. Changes of regional mean annual MDA8 ozone concentrations compared to 2006 from TOAR measurements (magenta 
line), due to changes in bottom-up NOx emissions (black), due to changes in top-down NOx emissions (blue lines for simulations 
from GC-adj and red lines for simulations from GCv12), and due to changes in meteorology and non-NOx emissions (green lines). 
Only sites that have continuous measurements throughout the 9 years are included. The vertical bars represent the spread of 880 
changes from simulations using the NASA and the DOMINO posterior NOx emissions. The impact of meteorology and natural 
sources are removed from black, blue and red lines by subtracting simulations using 2010 bottom-up anthropogenic emissions for 
all years from simulations that use bottom-up NOx emissions corresponding to each year.  
  

Deleted: 885 



36 
 

 
 
Figure 10. Ozone vertical profiles averaged over May and June of 2010 from 6 ozonesonde measurement sites from the IONS-2010 
field experiment in California. The six sites are over remote regions and are used to evaluate the intercontinental transport of 
ozone. Solid black (prior), blue (NASA posterior) and red (DOMINO posterior) lines are from the GCv12 simulations (prior 890 
anthropogenic emission from CEDS), whereas dashed lines are from the GC-adj simulations (prior anthropogenic emission from 
HTAP). The horizontal bars show the standard deviations of the measurements at each vertical layer.  
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Figure 11. NMSE and NMB of GC-adj (top) and GCv12 (bottom) ozone simulations in 2010 -2014 evaluated with surface 895 
measurements at remote sites. Three sets of NOx emissions, i.e., bottom-up inventory (HTAP for GC-adj, CEDS for GCv12), 
DOMINO posterior, and NASA posterior, are input in each model. 
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