

1 **The interaction between urbanization and aerosols during a haze event**

2

3 Miao Yu¹, Guiqian Tang², Yang Yang¹, Qingchun Li¹, Yonghong Wang², Shiguang
4 Miao¹, Yizhou Zhang¹, Yuesi Wang²

5

6

7 1. *Institute of Urban Meteorology, China Meteorological Administration, Beijing, China*
8 2. *State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry
9 (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,
10 China*

11

12

13

14

15 *Submitted to Atmospheric Chemistry and Physics*

16

17

18

19

20

21 *Corresponding author:*

22 Guiqian Tang

23 *State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry
24 (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China*

25

Abstract

27 Aerosols cause cooling at the surface by reducing shortwave radiation, while
28 urbanization causes warming by altering the surface albedo and releasing
29 anthropogenic heat. The combined effect of the two phenomena needs to be studied in
30 depth. The interaction between aerosols and urbanization during the haze event that
31 occurred from the 15th to 22nd of December 2016 in Beijing was investigated using the
32 rapid-refresh multiscale analysis and prediction system-short term (RMAPS-ST). The
33 mechanisms of the impacts of aerosols and urbanization were analyzed and quantified.
34 Aerosols reduced urban-related warming during the daytime. The urban-related
35 warming decreased by 30 to 50% as the concentration of PM_{2.5} increased from 200 to
36 400 $\mu\text{g}\cdot\text{m}^{-3}$. Conversely, aerosols also enhanced urban-related warming at dawn, and
37 the increment was approximately 28%, which contributed to haze formation.
38 Urbanization reduced the aerosol-related cooling effect by approximately 54% during
39 the haze event, and the strength of the impact changed little with increasing aerosol
40 content. The impact of aerosols on urban-related warming was more significant than
41 the impact of urbanization on aerosol-related cooling. Aerosols decreased the urban
42 impact on the mixing layer height by 148% and on the sensible heat flux by 156%.
43 Furthermore, aerosols decreased the latent heat flux; however, this reduction decreased
44 by 48.8% due to urbanization. The impact of urbanization on the transport of pollutants
45 was more important than that of aerosols. The interaction between urbanization and
46 aerosols may enhance the accumulation of pollution and weigh against diffusion.

48 1 Introduction

49 In recent years, heavy haze pollution events have increasingly occurred in densely
50 populated urban areas, such as the Beijing-Tianjin-Hebei region (BTH region) and
51 Yangtze River Delta region of China (Zhang et al., 2019). These events have caused
52 increasingly severe adverse effects on transportation, the ecological environment and
53 human health (Zhao et al., 2012; Wu et al., 2010; Liu et al., 2012). A statistical analysis
54 of the variation in haze days in Beijing over the past 10 years showed that the number

55 of haze days has significantly increased (Chen and Wang, 2015; Zhai et al., 2019). The
56 average annual number of haze days was 162 from 1981-1990, 167 from 1991-2000,
57 and 188 from 2001-2010. The conditions for the formation of heavy haze in the BTH
58 region are very complex (Miao et al., 2017; Wei et al., 2018; Ren et al., 2019). Although
59 emissions, meteorological conditions, terrain, and high-density human activities in
60 urban areas are all important conditions for the evolution of heavy haze (Huang et al.,
61 2008a; Zhu et al., 2018), meteorological conditions are critical for the evolution of
62 heavy haze pollution weather under the background of constant emissions (Wang et al.,
63 2020; Pei et al., 2020).

64

65 The characteristics of the atmospheric boundary layer structure determine the
66 horizontal fluidity, vertical diffusion ability, stability and capacity (mixed layer
67 thickness) of the atmosphere, which are the main factors affecting the formation,
68 intensity and duration of haze and atmospheric pollution (Guo et al., 2016). Coulter R
69 L. (1979) indicated that the height of the mixing layer would affect the concentration
70 and diffusion of pollutants, which has been one of the most important physical
71 parameters in atmospheric numerical models and atmospheric environment evaluations,
72 and urbanization and aerosols have been indicated to influence the boundary layer
73 height (Tao et al., 2015).

74

75 Urbanization, as the most drastic means by which human activities transform the
76 environment, has had an important impact on regional climate and weather processes
77 (Miao et al., 2011; Yu and Liu, 2015; Yu et al., 2017). Existing research suggests that
78 there are three main ways by which urbanization influences the climate (Oke, 1982 and
79 1995). The change in land use from natural surfaces to impervious underlying surfaces
80 in association with urbanization alters the surface albedo and roughness, which results
81 in the formation of urban heat islands (UHIs) (Taha, 1997; Folberth et al., 2014). These
82 alterations lead to a change in the surface energy balance and the form of the thermal
83 difference between urban and rural areas and further change the boundary layer

84 structure (Grimmond, 2007; Li and Bou-Zeid, 2013). Second, thermal differences
85 further lead to heat island circulation, which can influence the local circulation of
86 synoptics and the transport of pollutants (Crutzen, 2004). Anthropogenic aerosols and
87 heat from the development of transportation and industry are also important parts of
88 urban impacts on climate (Huang et al. 2008b). However, in contrast to the effects of
89 urbanization, aerosols cause cooling at the surface by reducing shortwave radiation to
90 enhance static stability (Grimmond, 2007; Crutzen, 2004, Huang et al., 2007).
91 Furthermore, aerosols may increase longwave radiation in urban areas because they are
92 likely to absorb and emit more energy than water vapor or greenhouse gases under
93 certain conditions (Jacobson, 1998; Rudich et al., 2007). There have been few studies
94 on the mechanism of the interaction between urbanization and aerosols, although many
95 studies have focused on their respective effects. Accordingly, the interaction between
96 urbanization and aerosols is important for studying regional climate.

97

98 Researchers are increasingly aware of the importance of the interaction between
99 urbanization and aerosols. A very important study by Cao et al. (2016) was the first
100 attempt to determine the effects of aerosols on urbanization and indicated that aerosols
101 can increase the nighttime UHI effect using a climate model. Yang et al. (2020) obtained
102 different results when using observational data to perform similar research in the BTH
103 region.

104

105 More detailed research needs to be performed by combining observational data and
106 modeling because the conclusions may vary depending on the scale (Xu et al., 2019).
107 Other illuminating work with regional models showed that the combined effect of UHIs
108 and aerosols on precipitation depends on synoptic conditions (Zhong et al., 2015).
109 However, for winter haze, Zhong et al. (2017) evaluated the impact of urban areas on
110 air quality and indicated that urbanization can increase ventilation during the daytime
111 and increase aerosol emissions, and these effects outweigh the UHI effect.

112

113 However, very few studies have quantified the individual effects of urbanization-
114 induced UHIs and elevated aerosol emissions on the formation and development of
115 haze in metropolitan areas. A difficulty faced by such studies is that the radiative forcing
116 of aerosols is not a prognostic variable in most climate models (Cao et al. 2016). Some
117 regional models, such as WRF-Chem, can overcome this problem by parameterizing
118 aerosols to aerosol optical depth (AOD) in some specific radiation schemes. Tao et al.
119 (2015) and Zhong et al. (2018) made some progress in this area, and their results also
120 indicated that a regional model could be used as an effective way to study the interaction
121 between urbanization and aerosols. However, a quantitative evaluation of the impacts
122 or urban areas on aerosols and the simultaneous impacts of aerosols on urban impacts
123 in metropolitan areas has not been attempted.

124

125 In this study, the rapid-refresh multiscale analysis and prediction system-short term
126 (RMAPS-ST) was used to investigate the mechanism of the influence of the above two
127 factors during a typical winter haze event. The objectives of this study are 1) to quantify
128 the impacts of urban areas on aerosols and the impacts of aerosols on urbanization and
129 2) to obtain a better understanding of the interaction between urbanization and aerosols
130 and its influence mechanism on the boundary layer structure and haze transmission
131 during a typical winter haze event in the BTH region.

132

133 **2 Methods**

134 **2.1 Observational data**

135 To investigate the interaction between urbanization and aerosols, observation data on
136 basic meteorological elements, air quality, radiation and surface heat flux and the
137 mixing layer height (MLH) are very important to reveal the impact of urbanization and
138 aerosols during haze events.

139

140 The basic meteorological elements were obtained from 309 national basic weather
141 stations in the BTH region and were provided by the China Meteorological

142 Administration (<http://data.cma.cn/>). The locations of the national basic weather
143 stations are shown in Fig 1 (red dots). The mass concentrations of fine particulate matter
144 (PM_{2.5}) were recorded by 251 environmental monitor stations managed by the Ministry
145 of Ecology and Environment of the People's Republic of China
146 (<http://hbk.cei.cn/aspx/default.aspx>) (Fig 1, black dots). We also used radiation and
147 surface heat flux data to analyze the urban surface energy budget obtained from the
148 Beijing meteorological tower (39.97°N, 116.37°E). The tower is 325 m high and is
149 operated by the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences
150 (CAS). The heat flux data were measured by a fast response eddy covariance sensor
151 system that was sampled at 10 Hz using CR500 (Campbell Scientific Inc., USA). The
152 radiation data were provided by Kipp & Zonen (Netherlands) four-component
153 unventilated CNR1 radiometers. Radiation and surface flux data from 140 m of the
154 tower were used in this study. In addition, the MLH is an important factor affecting
155 pollutant diffusion and is also affected by both urbanization and aerosols. Because the
156 MLH is not a routine observation, we obtained the data from only one site. The MLH
157 and backscattering coefficient were measured by enhanced single-lens ceilometers
158 (Vaisala, CL51, Finland) deployed by the IAP (Tang et al., 2016). Backscattering
159 coefficient profiles were calculated by referencing the attenuation strobe laser LiDAR
160 technique (910 nm), which is cited in Tang et al. (2015).

161

162 **2.2 Model description and experimental design**

163 To investigate the respective effects of urbanization and aerosols and further determine
164 the interaction between urbanization and aerosols, a high-resolution regional model
165 with satisfactory performance is necessary for sensitivity tests. The model used in this
166 study is the latest available version of RMAPS-ST, which was developed by the
167 Institute of Urban Meteorology, China Meteorological Administration. RMAPS-ST is
168 based on the Weather Research and Forecasting (WRF v3.8.1) model (Skamarock et
169 al., 2008) and its data assimilation system (WRFDA v3.8). The simulation domain was
170 centered at 37.0 °N, 105.0 °E and implemented with two nested grids with resolutions of

171 9 and 3 km for two domains (D1 and D2, respectively) (Fig 1a). The model performance
172 was verified, and RMAPS-ST was run operationally (Fan et al., 2018). The assimilation
173 began every three hours, and the assimilated data included automatic meteorological
174 station data, sounding data and radar data when available. The model settings are shown
175 in Table 1. The simulation started at 0000 LST and ran from the 15th to 23rd of
176 December 2016 with hourly outputs.

177

178 The urban impact was represented by a high-resolution (30 m) land use map interpreted
179 from Landsat Thematic Mapper satellite data from 2015 in Beijing. The urban canopy
180 parameters were optimized according to Miao and Chen (2014). The impact of aerosols
181 was represented by adding the hourly distribution of AOD in the Rapid Radiation
182 Transfer Model for General Circulation Models (RRTMG) radiation scheme. The AOD
183 was extracted from the output of RMAPS-Chem (Zhao et al., 2019; Zhang et al., 2018)
184 for the BTH region, which is shown in Fig 1b. Anthropogenic emission data were
185 obtained according to the Multiresolution Emission Inventory for China (2012)
186 (<http://www.meicmodel.org/>) with a resolution of 0.1°×0.1°. The particle size
187 distribution and typology of aerosols used in this study is according to Ruiz et al. (2014).
188 The simulated distribution of AOD in Beijing was verified to be satisfactory after
189 comparison with the observed vertical profile of the backscattering coefficient (Fig 2a
190 and b). The correlation between the AOD and the column backscatter coefficient is 0.76
191 (Fig 2c). Four tests were designed to investigate the impacts of aerosols and
192 urbanization on typical haze events. Test 1: Both urban and aerosol impacts were
193 considered in the simulation. We updated the grid AOD distribution hourly as the input
194 field for the RRTMG radiation scheme in Domain 2. Test 2: Only aerosol impact was
195 considered in the simulation, and we replaced the urban grids with cropland to shield
196 the impact of urbanization. Test 3: Only urban impact was considered, and the direct
197 radiative forcing of aerosols was not considered in the simulation. Test 4: Both urban
198 and aerosol impacts were not considered in the simulation.

199

200 The model evaluation results for the four tests are shown in Table 2. As the service
201 operational system, the RMAPS-ST model assessment report indicated that the model
202 performance was satisfactory (Fan et al. 2018). We evaluated not only the conventional
203 meteorological variables (including temperature, humidity and wind speed) but also
204 unconventional but important variables for this study (including radiation and surface
205 heat flux). A total of 309 meteorological station data points were used to evaluate the
206 conventional variables. The unconventional variables were evaluated according to the
207 observational data from 140 m of the Beijing meteorological tower. Test 1 was found
208 to be the best simulation and considered both the urban and aerosol impacts. The
209 deficiency of observation sites, interpolation methods and the height differences
210 between the observations and simulations resulted in higher root mean square error
211 (RMSE) values for radiation and heat flux than for the other variables.

212

213 **3 Results**

214 **3.1 Observation and weather condition analysis**

215 A typical continuous severe heavy haze event occurred from the 15th to 22nd of
216 December 2016 in the BTH region. Three stages dominated by three different synoptic
217 patterns controlled the formation of this haze. In the first stage, northwest airflow in
218 front of a ridge of high pressure was observed in the BTH region at a height of 700 to
219 500 hPa and in eastern China at a height of 850 hPa on the 15th to 16th of December,
220 which induced a sharp warming pattern (Fig 3a and b). At the surface, Beijing was
221 located under the front of the high-pressure system to under the southwest airflow in
222 front of the low-pressure system (Fig 4), which favored pollutant transport from Hebei
223 Province to Beijing. From the 17th to the night of the 18th, the control system turned to
224 latitude circulation at 700 to 500 hPa over the BTH region (there was a trough line south
225 of 40°N at 2000 LST on the 17th and 18th) (Fig 3c). There was a northwest wind located
226 north of 40°N and a southwest wind located south of 40°N at 850 hPa (Fig 3d). The
227 near surface was controlled by the northeast airflow located in the inverted low-pressure
228 trough. The weak convergence of the high trough cooperates with the low pressure at

229 the surface, leading to continuous pollution accumulation near the surface. Under this
230 weather situation, the near-surface temperature began to continuously increase from the
231 16th to 18th, and the specific humidity also correspondingly increased (Fig 5a). The near-
232 surface wind speed and pressure decreased during this period (Fig 5b). The
233 concentration of PM_{2.5} gradually increased from the 16th, and the average concentration
234 of PM_{2.5} reached 200 $\mu\text{g}\cdot\text{m}^{-3}$ on the 18th. The density of ozone obviously decreased
235 from the 16th (Fig 5c).

236

237 The MLH significantly declined beginning on the 16th, and the diurnal cycle almost
238 disappeared during this period, which was accompanied by a reduction in visibility with
239 a diurnal variation (Fig 5d). The downward shortwave radiation and the net radiation
240 gradually decreased from the 16th to the 18th, which directly influenced the trend of the
241 variation in ozone (the maximum density of ozone was less than 110 $\text{mg}\cdot\text{m}^{-3}$), while
242 there was little change detected in longwave radiation (Fig 5e). The observed sensible
243 heat flux also decreased from the 16th to the 19th, although the temperature increased,
244 which means that the heat exchange became weaker in the vertical direction, while the
245 latent heat flux changed little (Fig 5f). Southwest airflow was again captured by a wind
246 profiler on the night of the 18th, and the transport layer occurred from 300 to 1500 m,
247 which differs from the previous surface transport pattern (Fig 4).

248

249 In the second stage, an important change occurred on the morning of the 19th of
250 December, when the control system turned to the northwest airflow on the front of the
251 trough over the BTH region at 500 to 850 hPa (Fig 3e and f). After 2000 LST on the
252 19th, obvious warming occurred again at 850 hPa in eastern China (Fig 3h). However,
253 the near-surface maximum temperature and diurnal range in Beijing significantly
254 decreased but with high specific humidity during the 20th to 21st (Fig 5a). According to
255 the surface weather map, the control system turned to the southwest at 1400 LST on the
256 19th, and a large-scale southeast wind appeared in eastern Beijing after 2000 LST, which
257 induced wide advection fog formation overnight (Fig 3g). Due to the influence of the

258 southwest airflow on the trough at 500 hPa, the inverted trough moved east, and Beijing
259 was located in the southeast wind zone. The near-surface pressure increased slightly,
260 and the wind speed remained low at approximately $1 \text{ m}\cdot\text{s}^{-1}$ (Fig 5b). The synoptic
261 system caused the $\text{PM}_{2.5}$ concentration to peak (approximately $400 \mu\text{g}\cdot\text{m}^{-3}$ on average
262 and above $500 \mu\text{g}\cdot\text{m}^{-3}$ observed at some stations) and was maintained from the 20th to
263 the 21st in the BTH region. The visibility was less than 400 m, and the diurnal cycle
264 disappeared (Fig 5d). The decrease in the downward shortwave and net radiation during
265 this period was more pronounced than that in the previous three days (Fig 5e). The
266 sensible heat flux also decreased, and the diurnal cycle almost disappeared from the
267 19th to the 20th (Fig 5e).

268

269 The whole atmosphere was converted to the northwest stream only when the strong
270 cold air moved southward in the early morning of the 22nd. The air pollutants were
271 completely removed in the third stage.

272

273 **3.2 Interaction between the impacts of urbanization and aerosols on haze events**

274 Four impacts were analyzed as follows. Urban impact under the aero scenario (UI_aero)
275 was represented by the results of Test 1 minus those of Test 2; urban impact under the
276 no-aero scenario (UI_noaero) was represented by the results of Test 3 minus those of
277 Test 4; the impact of the urbanization scenario was represented by the results of Test 1
278 minus those of Test 3 (AI_urban); the impact without urbanization was represented by
279 the results of Test 2 minus those of Test 4 (AI_nourban). The interaction between
280 urbanization and aerosols on local meteorological and regional transportation was
281 discussed.

282

283 **3.2.1 The impact on the local area**

284 The quantitative results of the interaction between urbanization and aerosols are shown
285 in Table 3. Temperature is one of the most sensitive variables affected by urbanization
286 and aerosols and is also the most concerning variable. The impact of urbanization on

287 the near-surface temperature displays diurnal variation in the Beijing area. The warming
288 effect of urbanization was dominant at night. The urban impact on temperature was
289 partly offset under aerosol conditions when comparing the results of UI_aero and
290 UI_noaero, especially during the daytime (Fig 6a, red lines). The urban impact always
291 showed a positive contribution to the temperature throughout the day under the no-
292 aerosol scenario, while the urban impact became slightly negative during the daytime
293 under the aerosol scenario. The maximum difference between UI_aero and UI_noaero
294 occurred on the 20th and 21st, when the AOD value reached its maximum, and the
295 difference almost disappeared on the 15th and 22nd, with a small AOD (Fig 2b). The
296 results indicate that the impact of urbanization on temperature is reduced by aerosols,
297 which is consistent with the findings of Yang et al. (2020). The average urban impact
298 on temperature in Beijing during the 16th to 19th with a PM_{2.5} concentration of
299 approximately 200 mg·m⁻³ was a reduction of 0.42°C according to UI_aero and a
300 reduction of 0.60°C according to UI_noaero. This result means that aerosols reduce the
301 urban impact on temperature by 30%. When the concentration of PM_{2.5} reached 500
302 mg·m⁻³ from the 20th to the 21st, the aerosols reduced urbanization-related warming by
303 54%.

304
305 The impact of aerosols on temperature is negative and without a diurnal cycle under the
306 urbanization scenario for the whole day (Fig 6a, blue lines). However, the impact of
307 aerosols captured by AI_nourban is significant and displays a diurnal cycle. Another
308 important observation is that the impact of aerosols on temperature under the no-urban
309 scenario is not always negative. There is a slight warming period at dawn in the
310 AI_nourban scenario, which may be because the longwave radiation is increased
311 (Jacobson, 1998; Rudich et al., 2007). The average impact of aerosols on temperature
312 in Beijing was -0.16°C with urbanization and -0.34°C without urbanization from the
313 16th to the 19th. The impact of aerosols was -0.19°C with urbanization and -0.43°C
314 without urbanization from the 20th to the 21st. Urbanization decreased the impact of
315 aerosols by 53% under moderate pollution and by up to 56% under heavy pollution.

316 Two different impacts of aerosols on urban-related warming were observed. There was
317 a reducing effect in the daytime with a strength of approximately 30 to 50% of the
318 concentration, and an increasing effect occurred at dawn with a strength of
319 approximately 28%. Urbanization reduced the aerosol-related cooling effect by
320 approximately 54%.

321

322 The observed specific humidity continued to increase as the aerosol concentration
323 increased (Fig 5b) and was closely related to the UHI effect and aerosol composition
324 (Zhang et al. 2010; Sun et al., 2013; Wang et al., 2020). The specific humidity also
325 increased with urbanization throughout the day (Fig 6b, red lines). Similar to
326 temperature, urbanization had a more pronounced impact on specific humidity at night.
327 The average urban impact on specific humidity was $3.66 \times 10^{-2} \text{ g} \cdot \text{kg}^{-1}$ according to
328 UI_aero and $4.78 \times 10^{-2} \text{ g} \cdot \text{kg}^{-1}$ according to UI_noaero from the 16th to 19th and 3.08×10^{-2}
329 and $4.48 \times 10^{-2} \text{ g} \cdot \text{kg}^{-1}$ from the 20th to 21st. Aerosols not only reduced the urban impact
330 on the average daily specific humidity by 23.43% but also reduced the diurnal range of
331 specific humidity.

332

333 In contrast to urbanization, aerosols were found to reduce the specific humidity (Fig 6b,
334 blue lines). The impact of aerosols under the urbanization scenario was small and did
335 not exhibit a diurnal pattern. However, the impact of aerosols under the no-urban
336 scenario was more distinct and exhibited a diurnal cycle. The average impact of aerosols
337 on specific humidity was $-0.88 \text{ g} \cdot \text{kg}^{-1}$ according to AI_urban and $-1.36 \text{ g} \cdot \text{kg}^{-1}$ according
338 to AI_nourban throughout the study period. Urbanization reduced the impact of
339 aerosols on specific humidity by 35.3%. The impacts of urbanization and aerosols on
340 humidity were slightly greater than those of aerosols on urban impacts.

341

342 There was no effect of urbanization on downward shortwave radiation according to
343 both UI_aero and UI_noaero (Fig 6c, red lines), although the value was not absolutely
344 related to aerosols because of model uncertainty. Aerosols reduce the downward

345 shortwave radiation during the daytime, and the differences between AI_urban and
346 AI_nourban are very small.

347

348 The average decrease in shortwave radiation caused by aerosols was approximately 7%
349 of the total downward shortwave radiation during the 16th to the 20th and up to 17%
350 when the PM_{2.5} was greater than 400 $\mu\text{g}\cdot\text{m}^{-3}$. The urban impact increased the longwave
351 radiation at night according to UI_aero, while the impact of urbanization was always
352 positive for longwave radiation during the study period according to UI_noaero (Fig
353 6d, red lines). Because it is closely related to temperature, the urban impact on
354 longwave radiation was also reduced by aerosols, with reductions of 83% from the 16th
355 to the 19th and 97% from the 20th to the 21st. The impact of aerosols on longwave
356 radiation was smaller than that of shortwave radiation, and there was a slight decrease
357 captured by AI_urban with an increase from noon on the 20th to nighttime on the 21st.
358 The impact of aerosols decreased the longwave radiation captured by AI_nourban
359 during the 16th to the 20th and increased it on the night of 21st (Fig 6d, blue lines).
360 Urbanization reduced the impact of aerosols on longwave radiation by 67%, while
361 aerosols reduced the urban impact on longwave radiation by 89%. The impacts of
362 urbanization and aerosols on longwave radiation are unimportant because they are both
363 smaller than 2 $\text{W}\cdot\text{m}^{-2}$.

364

365 The change in radiation further alters the MLH. Previous studies suggested that the
366 MLH is important for the diffusion of pollutants and haze formation (Sun et al. 2013;
367 Quan et al. 2014). Previous studies on urbanization indicated that urban-induced
368 warming will increase the MLH during the daytime (Wang et al., 2007; Miao et al.
369 2012), and the results of UI_noaero showed the same pattern. However, when we
370 introduced aerosols into the simulation, urbanization was found to decrease the MLH
371 during the daytime according to UI_aero. The impact of aerosols decreased the average
372 urbanization by 148% during the haze event (Fig 6e, red lines). Aerosols significantly
373 decreased the MLH during the daytime according to both AI_urban and AI_nourban

374 (Fig 6e, blue lines). Urbanization decreased the impact of aerosols on the MLH by 58%
375 during the haze event.

376

377 Urban land use change directly alters the surface heat flux. Urbanization increased the
378 sensible heat flux according to UI_noaero but decreased the sensible heat flux
379 according to UI_aero (Fig 6f, red lines). The impact of aerosols in reducing the urban
380 impact on sensible heat flux was 156% during the haze event. Aerosols reduced the
381 sensible heat flux according to both AI_urban and AI_nourban (Fig 6f, blue lines). The
382 maximum impact of aerosols occurred on the 21st, with the maximum AOD. The impact
383 of urbanization reduced the impact of aerosols on sensible heat flux by 59%.

384

385 There was little effect of urbanization on latent heat flux because the observed latent
386 heat flux in urban areas was small (Fig 6g, red lines, and Fig 5e). Aerosols decreased
387 the latent heat flux, and the impact increased with increasing AOD (Fig 6g, blue lines).
388 The impact of urbanization reduced the impact of aerosols on the latent heat flux by
389 48%.

390

391 The above results indicate that the offsetting effect of aerosols on urbanization is more
392 important than the impact of urbanization on aerosols on local weather.

393

394 **3.2.2 Effects on regional circulation**

395 There are few valuable findings from the diurnal average wind speed analysis because
396 the average wind speed was low during the haze event. Wind speed is likely to become
397 more meaningful during the spatial analysis of wind vectors. There are two main
398 transmission processes of pollution from Hebei Province to Beijing during this haze
399 process according to the weather map and wind profile analysis (Fig 4). Accordingly,
400 the diurnal pattern of PM_{2.5} in Beijing (Fig 5c) also displays two increasing processes
401 on the 16th and 19th (from 1800 to 2400 LST). The observed near-surface wind vector
402 displays these two pollutant transport processes (Fig 7). In the first processes, obvious

403 aerosol transport began on the night of the 15th and continued to the night of the 16th
404 (Fig 6). The southwest wind dominated most of the southern part of Hebei Province.
405 The transmission flux was strong during the daytime on the 16th, leading to the
406 concentration of PM_{2.5} continuing to increase in Beijing and in its transmission path.
407 The wind speed remained low from the 17th to the 18th in most of the plain area, and the
408 concentration of PM_{2.5} continued to increase in the southwest and northeast of Hebei
409 Province. The second processes began at 1400 LST on the 19th, and the south wind
410 dominated the south of Beijing and turned to the southwest in Beijing at 1400 to 1800
411 LST. The dominant wind direction turned to the southwest at 2200 LST in the southern
412 part of Hebei Province with a rapid increase in the concentration of PM_{2.5}.

413

414 Most industrial aerosols in Beijing are transported from the southwest and northeast of
415 Hebei Province due to the control of pollutant discharge in the Beijing area during haze
416 events. Therefore, the impact of urban areas and aerosols on transport, namely, wind
417 fields, is very important for air quality in Beijing. The modeling results show that
418 urbanization not only increased the temperature in urban areas (Fig 8a and b) but also
419 increased the average south-wind transport flux in the two main transmission processes
420 of pollution in the southwest area of Beijing (Fig 8a and b). The transmission flux
421 captured by UI_noaero was stronger than that captured by UI_aero. The local cyclonic
422 circulation induced by urbanization further induced upward movement, which was
423 beneficial to diffusion conditions. Although aerosols decrease the transmission flux
424 induced by urbanization, the strength of local cyclonic circulation is also reduced by
425 aerosols. Furthermore, the aerosols reduced the temperature in most of the plain area in
426 Hebei Province (Fig 8c and d). Urbanization decreased the impact of aerosols on
427 temperature. There was no local or systemic effect on the wind field captured by either
428 AI_urban or AI_nourban.

429

430 Taylor diagrams were used to analyze the relative contributions of urbanization and
431 aerosols over time (Fig 9). The daily mean differences in these four types of impact

432 (UI_aero, UI_noaero, AI_urban, and AI_nourban) over the eight days in the Beijing
433 area are shown by Taylor diagrams. UI_noaero shows that temperature continued to
434 increase from Day 1 to Day 5 and reached a maximum on Day 7. The variation in
435 temperature according to UI_aero was small. This result means that the effect of
436 urbanization on temperature is decreased by aerosols. Temperature increased from Day
437 1 to Day 7 according to AI_urban, while AI_nourban showed an increase from Day 3
438 to Day 7. The reduction in the urban impact on temperature by aerosols was more
439 important than the reduction in aerosol impact on temperature by urbanization (Fig 9a).
440 The effect of aerosols on the urban impacts on temperature was more important than
441 the urban impacts on the effects of aerosols on temperature (Fig 9a). Specific humidity
442 continued to increase from Day 1 to Day 5 according to UI_noaero, while the variation
443 in specific humidity was small according to UI_aero (Fig 9b). Similar to what was
444 observed for temperature, reducing the urban impact on specific humidity by aerosols
445 is more important than reducing the impacts to aerosols by urban areas. The ventilation
446 coefficient (VC) in UI_aero showed little change over these eight days, and this
447 coefficient showed increases on Days 2, 3, 5, and 6 and decreases on Days 4, 7, and 8
448 according to UI_noaero. The reduction in the urban impact on the VC by aerosols was
449 more important than the reduction in the impact of aerosols by urbanization. The
450 analysis of shortwave radiation also provided the same conclusion that the reduction in
451 the urban impact on the daily mean by aerosols was more important than the reduction
452 in the impact of aerosols by urbanization (Fig 9d).

453

454 **3.2.3 Impacts on the vertical distribution**

455 In the period from 0000 LST to 0800 LST on the 16th to 20th, there was an interesting
456 phenomenon that temperature was slightly larger in UI_aero than in UI_noaero, and the
457 urban impact reached a maximum at the same time. Such an outcome is easy to overlook
458 if the analysis focuses on only the daily average. Therefore, a detailed vertical
459 temperature and wind field analysis of the four addressed scenarios (UI_aero,
460 UI_noaero, AI_urban, and AI_nourban) was used to determine the mechanism behind

461 this finding (Fig 10).

462

463 The impact on warming by urbanization reached 350 m in UI_aero and 450 m in
464 UI_noaero (Fig 10a and b). Aerosols not only increased the warming impact induced
465 by urbanization but also reduced the warming height. Aerosols increase the near-surface
466 warming effect induced by urbanization because of the absorption of longwave
467 radiation. Although absorption by aerosols was always observed during the study period,
468 the impact increased with the increase in longwave radiation induced by urbanization.
469 Therefore, the warming effect of aerosols may dominate at night in the near-surface
470 layer. This effect further induces urban-related warming to increase and compress this
471 effect to a lower height with a lower MLH in UI_aero than in UI_noaero (Fig 10a). The
472 aerosols reduced the temperature below 450 m in the urban area of Beijing (Fig 10c and
473 d), and the cooling effect was reduced by urbanization below 450 m. Urbanization also
474 reduced the near-surface west wind induced by aerosols in urban areas because of the
475 drag caused by buildings.

476

477 **4 Conclusion**

478 A typical persistent haze process occurred on the 15th to 22nd of December 2016 in the
479 BTH region. The average concentration of PM_{2.5} was approximately 200 $\mu\text{g}\cdot\text{m}^{-3}$, and
480 the maximum was 695 $\mu\text{g}\cdot\text{m}^{-3}$. The interaction between aerosols and urbanization on
481 haze events was investigated in this study. Four tests were designed using RMAPS-ST
482 to study the mechanism of the impacts of aerosols and urbanization.

483

484 Two different impacts of aerosols on urban-related warming were found. A reducing
485 effect occurred during the daytime, and the strength was approximately 30 to 50% of
486 the concentration. An increasing effect occurred at dawn, and the strength was
487 approximately 28%, which is important for haze formation. The combined effect was a
488 reducing effect on the daily mean of urban-related warming. Urbanization reduced the
489 aerosol-related cooling effect by approximately 54% during the haze event, and the

490 strength of the impact changed little with increasing aerosol content. The impact of
491 urbanization on the effect of aerosols on humidity is slightly larger than the impact of
492 aerosols on urban impact. Aerosols reduce the average downward shortwave radiation
493 from 7% to 17% with concentrations of $PM_{2.5}$ of 200 to 400 $\mu g \cdot m^{-3}$. There is no urban
494 impact on downward shortwave radiation or an impact of aerosols on shortwave
495 radiation. The impacts of urban areas and aerosols on longwave radiation are both
496 smaller than $2 W \cdot m^{-2}$. The most significant impact of aerosols is observed on the MLH
497 and sensible heat flux. The decrease in urban impact caused by aerosols reaches 148%
498 for MLH and 156% for sensible heat flux. These values are much larger than those for
499 urbanization, which reduces the impact of aerosols on the MLH and sensible heat flux.
500 There is little urban impact on latent heat flux. However, aerosols decreased the latent
501 heat flux, and the impact was reduced by 48.8% by urbanization. In general, the impact
502 of aerosols on urban impact is more important than the impact of urbanization on
503 aerosol impacts in terms of regional averages.

504

505 Urbanization increased the wind speed southwest of the Beijing area and the local
506 cyclonic circulation in the urban area of Beijing during the two main transmission
507 processes. Although aerosols reduced the urban-related southwest transmission, they
508 worsened the diffusion conditions in urban areas. The impact of urbanization on wind
509 fields, namely, the transport of pollutants, is more important than that of aerosols.
510 However, the interaction between urbanization and aerosols may enhance the
511 accumulation of pollution and weigh against diffusion.

512

513 The impact of aerosols on urban-related warming is more significant than the impact of
514 urbanization on aerosol-related cooling according to spatial statistical analysis. Similar
515 results were found for absolute humidity, VC and shortwave radiation. Aerosol-related
516 warming is dominant at dawn in the near-surface layer. Aerosols increase urban-related
517 warming and reduce the impact height of urban-related warming. This further enhances
518 stability and reduces the MLH.

519 **5 Discussion**

520 In this study, it was easier to distinguish the impacts of aerosols and urbanization by
521 using RMAPS-ST with AOD hourly inputs than with RMAPS-Chem. One reason for
522 this difference is that the model performance of RMAPS-ST is much better than that of
523 RMAPS-Chem in meteorological fields. Although real-time feedback in modeling is
524 not provided, RMAPS-ST is more efficient and more suitable for short-term operational
525 forecasting.

526

527 This study not only qualified the impacts of aerosols and urbanization on haze events
528 but also analyzed the interaction between aerosols and urbanization during haze events.
529 This research will help to improve air quality under the continuous
530 urbanization and sustainable development of large cities.

531

532 The government has taken a series of emission reduction measures, including limiting
533 industrial emissions and vehicle plate number traffic restriction measures, to improve
534 the air quality in the BTH region. The policies have been effective in reducing aerosols.
535 At the same time, urbanization continues mainly in the areas around Beijing (such as
536 the Xiongan New Area). The results of this study show that the combined impact of
537 urbanization and decreasing aerosols will increase the downward shortwave radiation
538 and further increase the surface temperature and ozone concentration in the boundary
539 layer. Previous studies indicated that ozone generally increases with temperature and
540 decreases with humidity (Camalier et al., 2007; Cardelino et al., 1990). It is well known
541 that ozone is not only a pollutant but also a greenhouse gas. Therefore, ozone will form
542 a positive feedback mechanism to induce warming and ozone pollution in the boundary
543 layer. This feedback will pose a new challenge regarding how to reduce ozone pollution
544 in urban areas. Some studies have suggested that urban greening can effectively reduce
545 ozone pollution (Nowak et al., 2000; Benjamin and Winer, 1998). More attempts should
546 be made to add the interaction between urbanization and ozone in regional models.

547

548 **Data availability**

549 The data in this study are available from the corresponding author upon request
550 (tgq@dq.cern.ac.cn).

551 **Author contribution**

553 Miao Yu designed the research and wrote the paper. Guiqian Tang conducted the
554 measurements and reviewed the paper. Yang Yang conducted modeling tests. Qingchun
555 Li and Yonghong Wang performed synoptic analysis. Shiguang Miao, Yizhou Zhang
556 and Yusi Wang reviewed and commented on the paper.

557 **Competing interests**

559 The authors declare that they have no conflicts of interest to disclose.

561 Table 1 RMAPS-ST model settings.

WRF v3.8.1	D01	D02
Horizontal grid	649×400	550×424
Grid horizontal spacing (km)	9	3
Vertical layers	49	
PBL	YSU (Hong et al., 2006)	
Microphysics	Thompson (Thompson et al., 2008)	
Cumulus	Kain-Fritsch (Kain, 2004)	None
LW radiation	RRTMG	
SW radiation	RRTMG	
LSM	Noah LSM+SLUCM	
Urban parameter values	Modified according to Miao and Chen (2014)	

567

Table 2 Model evaluation (RMSE and BIAS) for the four tests.

	Test 1		Test 2		Test 3		Test 4	
	RMSE	BIAS	RMSE	BIAS	RMSE	BIAS	RMSE	BIAS
Temperature	1.27	0.35	1.45	-0.73	2.12	1.04	1.78	-0.45
Specific	0.26	-	0.31	0.019	0.34	-0.05	0.29	0.03
Wind speed	1.62	0.97	2.08	1.68	1.85	1.04	1.96	1.67
Shortwave	40.91	11.85	40.95	11.89	47.35	17.45	46.26	16.45
Longwave	51.39	-	51.32	-	51.24	-	52.76	44.97
Sensible heat	8.09	-1.19	9.13	-3.92	9.34	-3.43	12.3	-6.17
Latent heat	14.09	-5.75	14.52	-5.95	14.85	-5.87	16.76	-6.23

568

569

570

571

572

573

Table 3 Quantitative results of the interaction between urbanization and aerosols

Time	Temperature		Specific humidity		Longwave		MLH m	Sensible heat flux W·m ⁻²	Latent heat flux W·m ⁻²
	°C	16 th -19 th	20 th -21 st	16 th -19 th	20 th -21 st	16 th -19 th	20 th -21 st		
UI_aero	0.42	0.19	3.66	3.08	0.10	-0.02	-1.97	-1.01	0.03
UI_noaero	0.60	0.35	4.78	4.48	0.62	0.51	4.04	1.74	0.49
AI_urban	-0.16	-0.19	-0.88		-0.24		-4.37	-1.64	-0.50
AI_nourban	-0.34	-0.43	1.36		-0.73		-10.38	-4.02	-0.96

574

575

576 References

577 Benjamin, M. T., Winer, A. M.: Estimating the ozone-forming potential of urban trees and shrubs,
578 Atmospheric Environment, 32(1), 53-68, 1998.

579 Camalier, L., Cox, W. , and Dolwick, P.: The effects of meteorology on ozone in urban areas and
580 their use in assessing ozone trends, Atmospheric Environment, 41(33), 7127-7137, 2007.

581 Cao, C., Lee, X., Liu, S., Schultz, N., Xiao, W., Zhang, M., and Zhao, L.: Urban heat islands in
582 China enhanced by haze pollution, Nature Communications, 7(1), 1-7, 2016.

583 Cardelino, C. A., and Chameides, W. L.: Natural hydrocarbons, urbanization, and urban
584 ozone, Journal of Geophysical Research, 95(D9), 13971, 1990.

585 Chen, H., and H. Wang: Haze Days in North China and the associated atmospheric circulations
586 based on daily visibility data from 1960 to 2012, J. Geophys. Res. Atmos., 120, 5895–5909,
587 2015.

588 Coulter, R.L.: A Comparison of three methods for measuring mixing-layer height, J Appl
589 Meteor, 18(11):1495-1499, 1979.

590 Crutzen, P. J.: New directions: the growing urban heat and pollution ‘island’ effect-impact on
591 chemistry and climate, Atmos. Environ, 38, 3539–3540, 2004.

592 Fan, S.: Assessment report of regional high resolution model (RMAPS-ST), IUM Technical Note
593 IUM/2018-1, Beijing, China: IUM, 2018.

594 Folberth, G. A., Rumbold, S. T., Collins, W. J., and Butler, T. M.: Global radiative forcing and
595 megacities, Urban Climate., 1, 4–19, 2014.

596 Grimm, N. B. et al.: Global change and the ecology of cities, Science, 319 (5864), 756–760, 2008.

597 Grimm, C.S. B., Kuttler, W., Lindqvist, S., and Roth, M.: Urban climatology icuc6, International
598 Journal of Climatology, 27(14), 1847-1848, 2010.

599 Grimm, S.U. E.: Urbanization and global environmental change: local effects of urban warming,
600 Geographical Journal, 173(1), 83-88, 2007.

601 Guo, J., Miao, Y., Zhang, Y., Liu, H., Li, Z., Zhang, W., ...and Zhai, P.: The climatology of planetary
602 boundary layer height in China derived from radiosonde and reanalysis data, Atmospheric
603 Chemistry and Physics, 16(20), 13309-13319, 2016.

604 Huang, J., Minnis, P., Yi, Y., Tang, Q., Wang, X., Hu, Y., ... and Winker, D. M.: Summer dust aerosols
605 detected from CALIPSO over the Tibetan Plateau, Geophysical Research Letters, 34(18),
606 DOI:10.1029/2007GL029938, 2007.

607 Huang, J., Minnis, P., Chen, B., Huang, Z., Liu, Z., Zhao, Q., ... and Ayers, J. K.: Long-range
608 transport and vertical structure of Asian dust from CALIPSO and surface measurements during
609 PACDEX, Journal of Geophysical Research, 113, DOI:10.1029/2008JD010620., 2008a.

610 Huang J., W. Zhang, J. Zuo, J. Bi, J. Shi, X. Wang, Z. Chang, Z. Huang, S. Yang, B. Zhang, G. Wang,
611 G. Feng, J. Yuan, L. Zhang, H. Zuo, S. Wang, C. Fu and J. Chou.: An overview of the semi-arid
612 climate and environment research observatory over the Loess Plateau, Advances in Atmospheric
613 Sciences, 25(6), 1-16. DOI: 10.1007/s00376-008-0906-7, 2008b.

614 Hong, S. Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with an explicit treatment of
615 entrainment processes, Monthly Weather Review, 134, 2318–2341, 2006.

616 Jacobson, M. Z.: Studying the effects of aerosols on vertical photolysis rate coefficient and
617 temperature profiles over an urban airshed, Journal of Geophysical Research, 103, 10593–10604,

618 1998.

619 Kain, J. S.: The Kain–Fritsch convective parameterization: An update, *Journal of Applied*
620 *Meteorology*, 43, 170–181, 2004.

621 Li, D. and Bou-Zeid, E.: Synergistic interaction between urban heat islands and heat waves: the
622 impact in cities is larger than the sum of its parts, *J. Appl. Meteorol. Climatol*, 52, 2051–2064,
623 2013.

624 Liu, Q., Geng, H., Chen Y.: Vertical distribution of aerosols during different intense dry haze period
625 around Shanghai, *China Environmental Science* (in Chinese), 32(2), 207-213, 2012.

626 Miao, S, Dou J., Chen, F., Li, J., and Li A.: Analysis of observations on the urban surface energy
627 balance in Beijing, *Science China Earth Sciences*, 055(11), 1881-1890, 2012.

628 Miao, S. and Chen, F.: Enhanced modeling of latent heat flux from urban surfaces in the
629 Noah/single-layer urban canopy coupled model, *Science China Earth Sciences*, 057(10), 2408-
630 2416, 2014.

631 Miao, S., Chen, F., Li, Q., and Fan, S.: Impacts of urban processes and urbanization on summer
632 precipitation: A case study of heavy rainfall in Beijing on 1 August 2006, *Journal of Applied*
633 *Meteorology and Climatology*, 50, 806–825, <https://doi.org/10.1175/2010JAMC2513.1>, 2011

634 Miao, Y., Guo, J., Liu, S., Liu, H., Li, Z., Zhang, W., and Zhai, P.: Classification of summertime
635 synoptic patterns in Beijing and their associations with boundary layer structure affecting aerosol
636 pollution., *Atmos. Chem. Phys*, 17(4), 3097-3110, 2017.

637 Nowak, D. J., Civerolo, K. L., Rao, S. T., Sistla, G., Luley, C. J., and Crane, D. E.: A modeling study
638 of the impact of urban trees on ozone, *Atmospheric Environment*, 34(10), 1601-1613, 2000.

639 Oke, T.R.: The energetic basis of the urban heat island, *Quarterly Journal of the Royal*
640 *Meteorological Society*, 108, 1–24, 1982.

641 Oke, T.R.: The heat island of the urban boundary layer: Characteristics, causes and effects, *Wind*
642 *Climate in Cities*, 81-107, 1995.

643 Pei, L., Yan, Z., Chen, D., & Miao, S.: Climate variability or anthropogenic emissions: which caused
644 Beijing Haze? *Environmental Research Letters*, 15(3), 034004, 2020.

645 Quan, J., Tie, X., Zhang, Q., Liu, Q., Li, X., and Gao, Y., et al.: Characteristics of heavy aerosol
646 pollution during the 2012–2013 winter in Beijing, China, *Atmospheric Environment*,
647 88(Complete), 83-89, 2014.

648 Ren, Y., Zhang, H., Wei, W., Wu, B., Cai, X., and Song, Y.: Effects of turbulence structure and
649 urbanization on the heavy haze pollution episodes, *Atmospheric Chemistry and Physics*, 19.
650 1041-1057, 2019.

651 Rudich, Y., Donahue, N. M. & Mentel, T. F. Aging of organic aerosol: bridging the gap between
652 laboratory and field studies, *Ann. Rev. Phys. Chem.*, 58,321–352, 2007.

653 Ruiz-Arias, J. A., Dudhia, J., & Gueymard, C. A.: A simple parameterization of the short-wave
654 aerosol optical properties for surface direct and diffuse irradiances assessment in a numerical
655 weather model. *Geoscientific Model Development*, 7(3), 1159-1174, 2014.

656 Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D., Wang, W., and Powers, J. G.: A description of
657 the advanced research WRF version 3, NCAR/TN-475 + STR, 2008.

658 Sun, Y., Wang, Z., Fu, P., Jiang, Q., Yang, T., Li, J., and Ge, X.: The impact of relative humidity on
659 aerosol composition and evolution processes during wintertime in Beijing, China, *Atmospheric*
660 *Environment*, 77, 927-934, 2013.

661 Taha, H.: Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat,
662 Energy and Buildings, 25, 99–103, 1997.

663 Tang, G., Zhu, X., Hu, B., Xin, J., and Wang, Y.: Impact of emission controls on air quality in Beijing
664 during APEC 2014: lidar ceilometer observations, Atmospheric Chemistry and Physics, 15(21),
665 12667-12680, 2015.

666 Tang, G. , Zhang, J. , Zhu, X. , Song, T. , and Wang, Y. : Mixing layer height and its implications
667 for air pollution over Beijing, China, Atmospheric Chemistry and Physics, 16(4), 2459–2475,
668 2016.

669 Tao, W., Liu, J., Ban-Weiss, G. A., Hagnlustaine, D. A., Zhang, L., Zhang, Q.,... and Tao, S.: Effects
670 of urban land expansion on the regional meteorology and air quality of eastern China,
671 Atmospheric Chemistry and Physics, 15(15), 8597–8614, <https://doi.org/10.5194/acp-15-8597-2015>, 2015.

673 Thompson, G., Field, P. R., Rasmussen, R. M., & Hall, W. D.: Explicit forecasts of winter
674 precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new
675 snow parameterization, Monthly Weather Review, 136, 5095–5115, 2008.

676 Wang, K., Wang, J., Wang, P., Sparrow, M., Yang, J., Chen, H.: Influences of urbanization on
677 surface characteristics as derived from the Moderate-Resolution Imaging Spectroradiometer:
678 A case study for the Beijing metropolitan area, Journal of Geophysical Research, 112 (D22),
679 doi:10.1029/2006jd007997, 2007.

680 Wang, Y., Yu, M., Wang, Y., Tang, G., Song, T., Zhou, P., ... and Zhu, X.: Rapid formation of intense
681 haze episodes via aerosol–boundary layer feedback in Beijing, Atmospheric Chemistry and
682 Physics, 20(1), 45-53, 2020.

683 Wei, W., Zhang, H., Wu, B., Huang, Y., Cai, X., Song, Y., and Li, J.: Intermittent turbulence
684 contributes to vertical dispersion of PM_{2.5} in the North China Plain: cases from Tianjin,
685 Atmospheric Chemistry and Physics, 18, 12953–12967, <https://doi.org/10.5194/acp-18-12953-2018>, 2018.

687 Wu, D., Wu, X., Li, F., et al.: Temporal and spatial variation of haze during 1951-2005 in Chinese
688 mainland, Acta Meteorologica Sinica (in Chinese), 68(5), 680-688, 2010.

689 Xu, X., Chen, F., Barlage, M., Gochis, D., Miao, S., and Shen, S.: Lessons learned from modeling
690 irrigation from field to regional scales, Journal of Advances in Modeling Earth Systems, 11,
691 2428–2448, <https://doi.org/10.1029/2018MS001595>, 2019.

692 Yang, Y., Zheng, Z., Yim, S. Y. L., Roth, M., Ren, G., Gao, Z., et al.: PM_{2.5} pollution modulates
693 wintertime urban heat island intensity in the Beijing - Tianjin - Hebei Megalopolis, China,
694 Geophysical Research Letters, 47, e2019GL084288. <https://doi.org/10.1029/2019GL084288>,
695 2020.

696 Yu, M., and Y. Liu: The possible impact of urbanization on a heavy rainfall event in Beijing,
697 Journal of Geophysical Research: Atmospheres , 120, 8132–8143, doi:10.1002/2015JD023336,
698 2015.

699 Yu, M., Miao, S., and Li, Q.: Synoptic analysis and urban signatures of a heavy rainfall on 7 August
700 2015 in Beijing, Journal of Geophysical Research: Atmospheres, 122, 65–78,
701 <https://doi.org/10.1002/2016JD025420>, 2017.

702 Yu, M., Y. M. Liu, Y. F. Dai, et al.: Impact of urbanization on boundary layer structure in Beijing,
703 Climatic Change, 120(1-2), 123-136, 2013.

704 Zhai, S.X, Jacob, Daniel, Wang, X., Lu, S., Li, K. , Zhang, Y.Z., Gui, K., Zhao, T.L., and Liao, H.: Fine particulate matter (PM2.5) trends in China, 2013–2018: contributions from meteorology, Atmospheric Chemistry and Physics, 19(16), 11031-11041, 2019.

705

706

707 Zhang, C., Liu, C., Hu, Q., Cai, Z., Su, W., Xia, C., ... and Liu, J.: Satellite UV-Vis spectroscopy: implications for air quality trends and their driving forces in China during 2005–2017, Light- Science & Applications, 8(1), 1-12, 2019.

708

709 Zhang, N., Gao, Z., Wang, X., and Chen, Y.: Modeling the impact of urbanization on the local and regional climate in Yangtze River Delta, China, Theoretical and applied climatology, 102(3-4), 331-342, 2010.

710

711

712 Zhang, W., Zhuang, G., Guo, J., Xu, D., Wang, W., and Baumgardner, D.,... and Yang, W.: Sources of aerosol as determined from elemental composition and size distributions in Beijing, Atmospheric Research, 95(2-3), 0-209, 2010.

713

714

715 Zhang, Z., Zhao, X., Xiong, Y., Ma, X.H.: The Fog/Haze Medium-range Forecast Experiments Based on Dynamic Statistic Method, Journal of Applied Meteorological Science (in Chinese), 29(1),57-69, 2018.

716

717

718 Zhao, P., Xu, X., Meng, W. Dong, ... and Zhang, X.L.: Characteristics of haze days in the region of Beijing, Tianjin, and Hebei, China Environmental Science (in Chinese), 31(1), 31-36, 2012.

719

720 Zhao, X., Li, Z., and Xu, J.: Beijing regional environmental meteorology prediction system and its performance test of PM2.5 concentration, Journal of Applied Meteorological Science (in Chinese), 27(2),160-172, 2016.

721

722

723 Zhao, X.J., Li, Z.M., Xu, J.: Modification and performance tests of visibility parameterizations for haze days. Environmental. Science, 40 (4), 1688–1696 (in Chinese), 2019.

724

725 Zhong, S., Qian, Y., Sarangi, C., Zhao, C., Leung, R., Wang, H.,... and Yang, B.: Urbanization effect on winter haze in the Yangtze River Delta region of China, Geophysical Research Letters, 45, 6710–6718, <https://doi.org/10.1029/2018GL077239>, 2018.

726

727

728 Zhong, S., Qian, Y., Zhao, C., Leung, R., and Yang, X. Q.: A case study of urbanization impact on summer precipitation in the Greater Beijing Metropolitan Area: Urban heat island versus aerosol effects, Journal of Geophysical Research: Atmospheres, 120, 10,903–10,914. <https://doi.org/10.1002/2015JD023753>, 2015.

729

730

731

732 Zhong, S., Qian, Y., Zhao, C., Leung, R., Wang, H. L., Yang, B., ... and Liu, D.: Urbanization-induced urban heat island and aerosol effects on climate extremes in the Yangtze River Delta region of China. Atmospheric Chemistry and Physics, 17(8), 5439–5457, <https://doi.org/10.5194/acp-17-5439-2017/>, 2017.

733

734

735

736 Zhu, X., Tang, G., Guo, J., Hu, B., Song, T., Wang, L., Xin, J., Gao, W., Münkel, C., Schäfer, K., Li, X., and Wang, Y.: Mixing layer height on the North China Plain and meteorological evidence of serious air pollution in southern Hebei, Atmospheric Chemistry and Physics, 18, 4897–4910, <https://doi.org/10.5194/acp-18-4897-2018>, 2018.

737

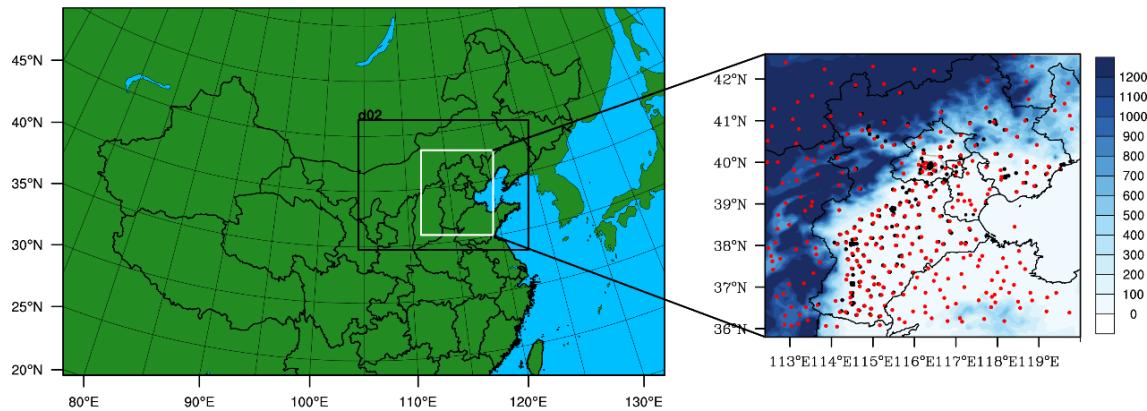
738

739

740

741

742


743

744

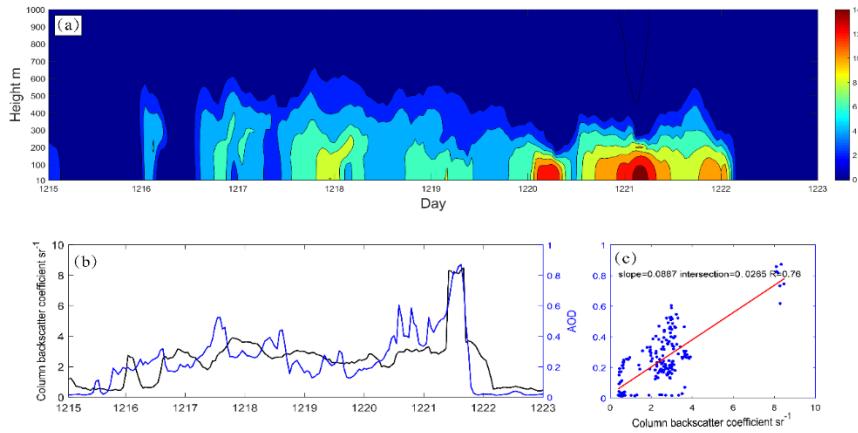
745

746

747 **Figure**

748

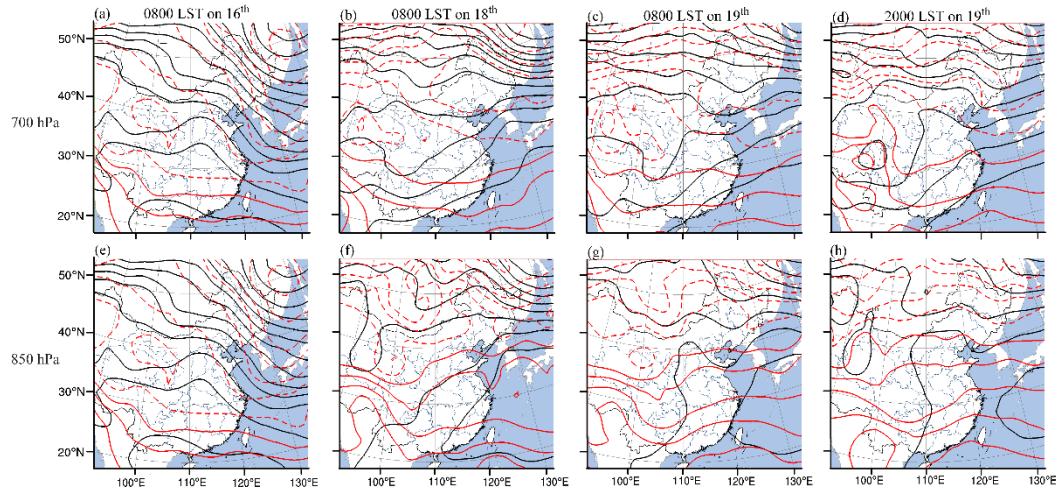
749 Figure 1 Domain configuration of RMAPS-ST and the location of the study area, indicated by the
750 solid white line. The black dots indicate the locations of the 251 environmental monitoring stations,
751 and the red dots represent the 309 meteorological stations in the BTH region, where the gray loop
752 lines show the locations of the second to sixth ring roads. The shading is the terrain height (unit: m).


753

754

755

756


757

758

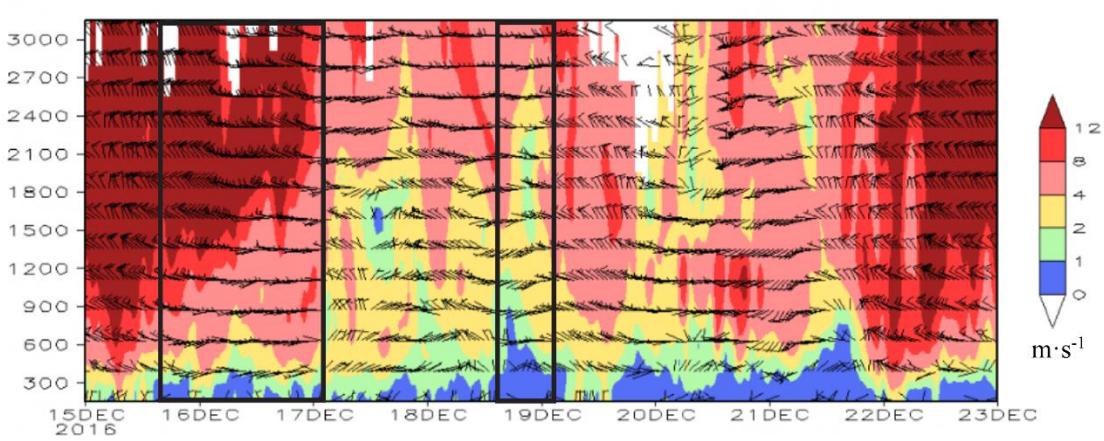
759 Figure 2 (a) Hourly backscattering coefficient (shading; $Mm \cdot sr^{-1}$) observed by single-lens
 760 ceilometers ($39.97^\circ N$, $116.37^\circ E$) from the 15th to 23rd of December; (b) hourly column backscatter
 761 coefficient (black line; sr^{-1}) and AOD used in modeling for Beijing (blue line) and (c) scatter
 762 diagram of hourly column backscatter coefficient and AOD (blue dots) and their correlations (red
 763 line).
 764

765

766

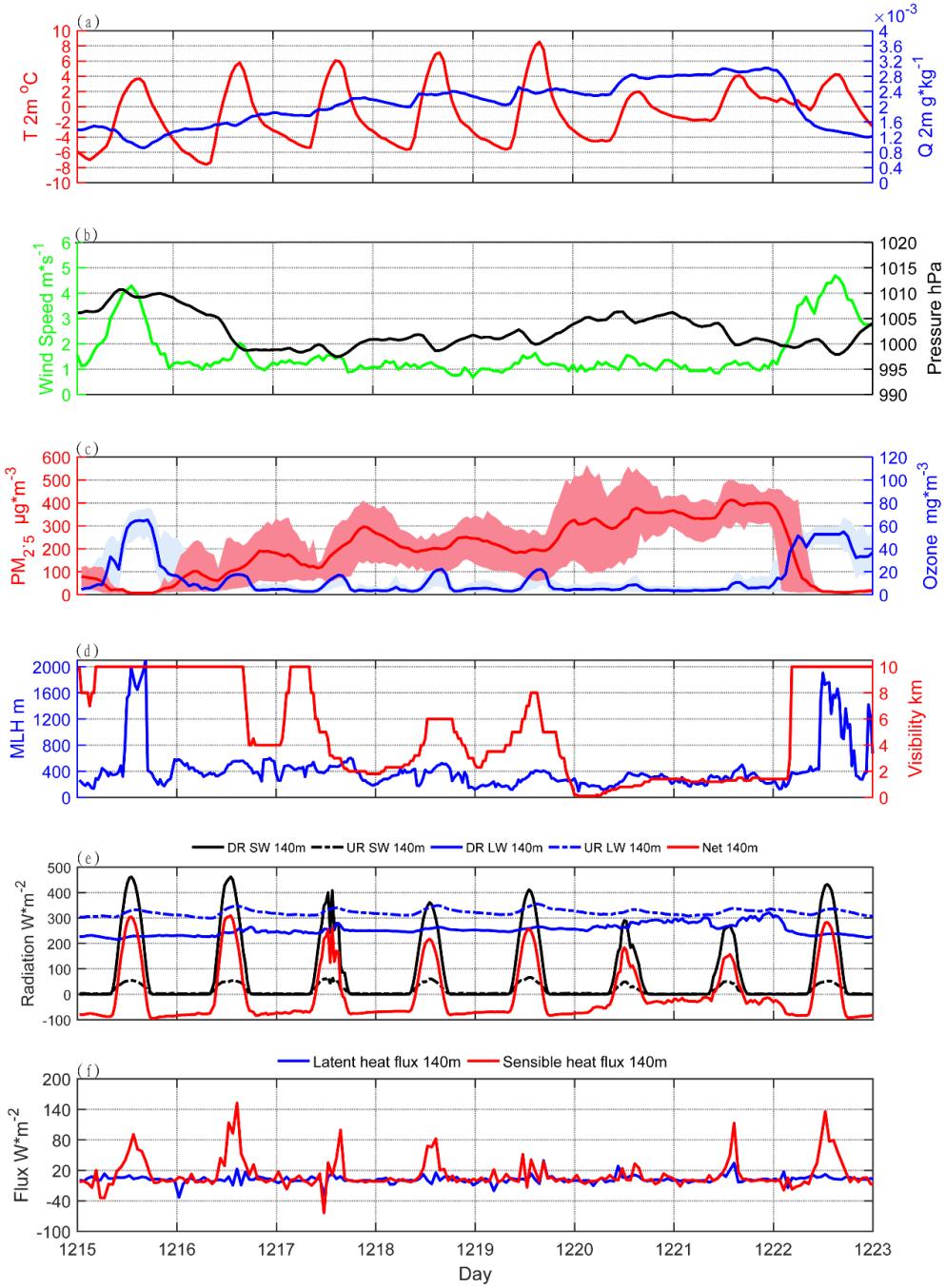
767 Figure 3 Weather maps. (a) 0800 LST on the 16th at 700 hPa; (b) 0800 LST on the 18th at 700 hPa;
 768 (c) 0800 LST on the 19th at 700 hPa; (d) 2000 LST on the 19th at 700 hPa; (e) 0800 LST on the
 769 16th at 850 hPa; (f) 800 LST on the 18th at 850 hPa; (g) 0800 LST on the 19th at 850 hPa; (h) 2000
 770 LST on the 19th at 850 hPa.

771

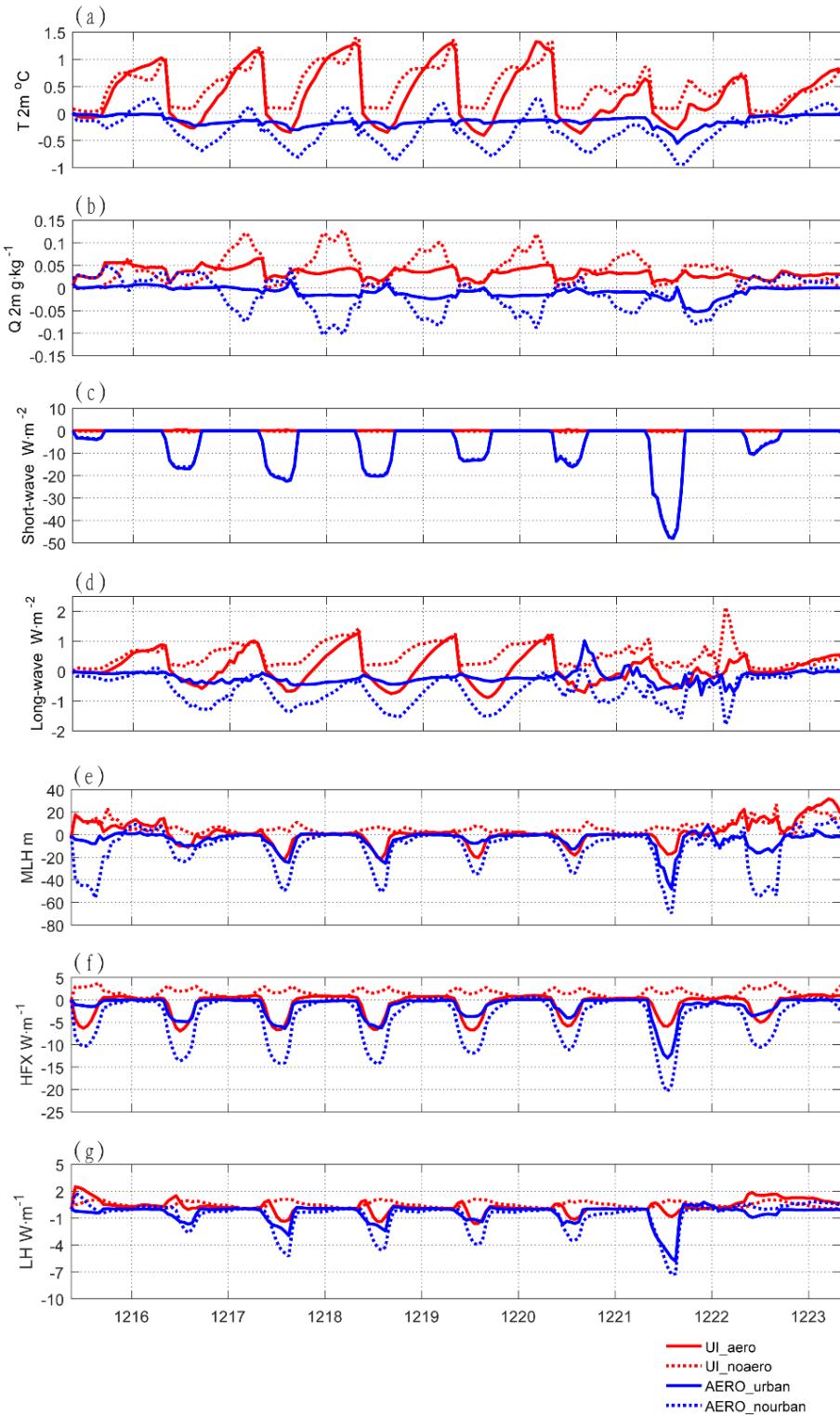

772

773

774

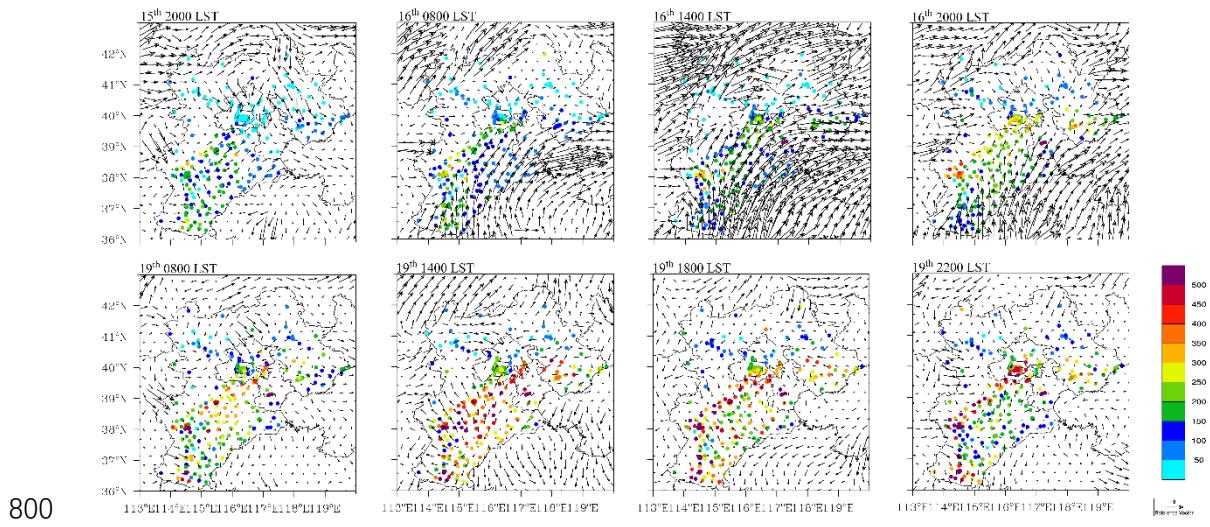

775

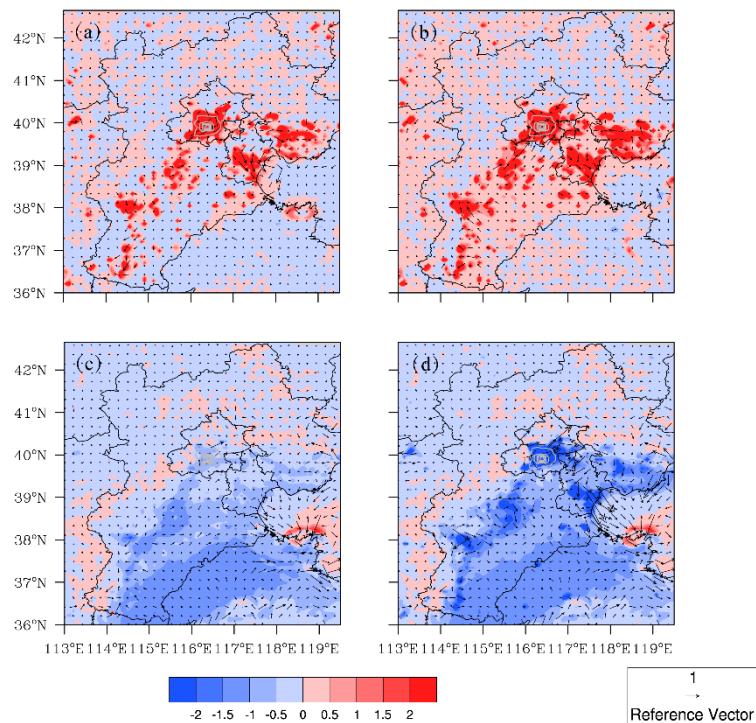
776


777

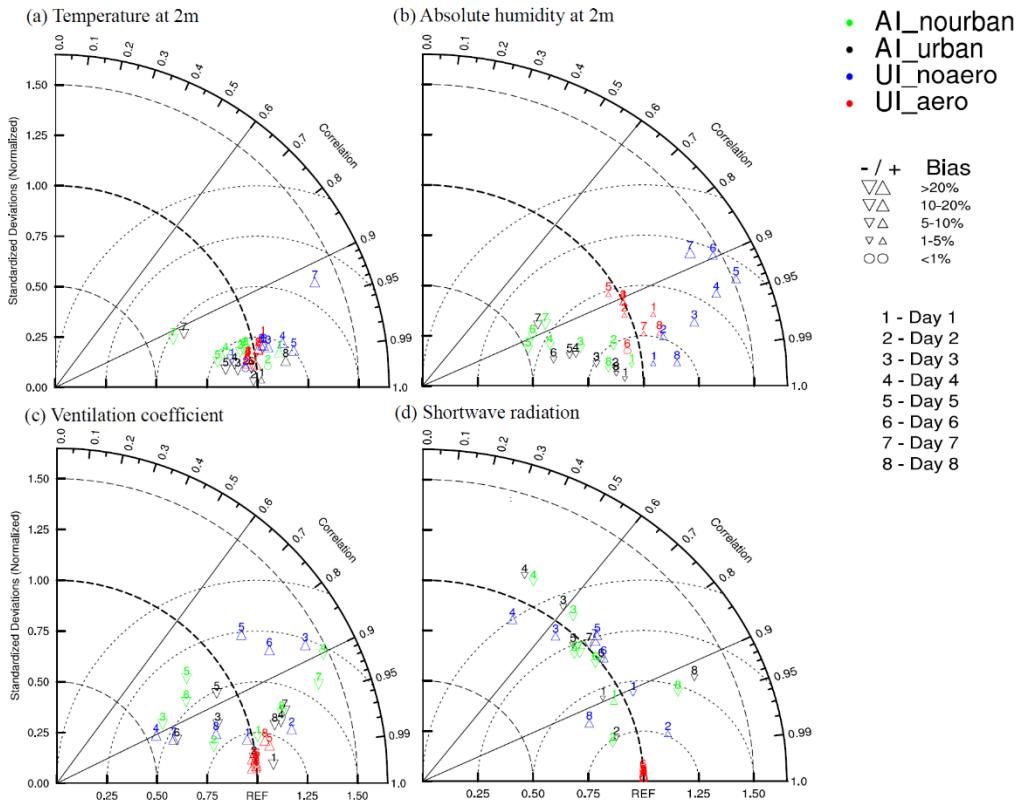
778 Figure 4 Hourly wind profile from the 15th to 23rd of December. Wind speed (shading; $\text{m} \cdot \text{s}^{-1}$) and
 779 horizontal wind field (vector; $\text{m} \cdot \text{s}^{-1}$). The black boxes show the two periods of south wind
 780 conveyance.

781


782 Figure 5 Diurnal pattern of observed variables from the 15th to 23rd of December in Beijing. (a)
783 Temperature (red line; $^{\circ}\text{C}$) and absolute humidity (blue line; g kg^{-1}) at 2 m; (b) wind speed at 10
784 m (green line; m s^{-1}) and pressure (black line; hPa); (c) average $\text{PM}_{2.5}$ concentration (red line is
785 the average and the shading indicates the standard deviation; ug m^{-3}) and ozone concentration
786 (blue lines and the shading indicate the standard deviation; mg m^{-3}) of 35 environmental
787 monitoring stations in Beijing; (d) mixing layer height (blue line; m) and visibility (red line; km);
788 (e) radiation from the observation tower at 140 m, downward shortwave radiation (solid black
789 line; W m^{-2}), upward shortwave radiation (dashed black line; W m^{-2}), downward longwave
790 radiation (solid blue line; W m^{-2}), upward longwave radiation (dashed blue line; W m^{-2}), net
791 radiation (red line; W m^{-2}); and (f) sensible heat flux (red line; W m^{-2}) and latent heat flux (red
792 line; W m^{-2}).

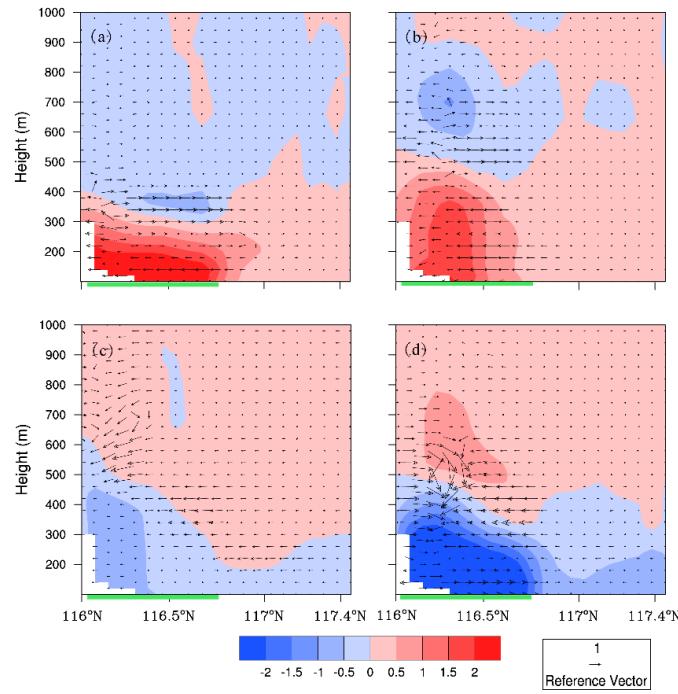

793

794


795 Figure 6 Diurnal patterns of simulated variables from the 15th to 23rd of December. (a)
796 Temperature at 2 m ($^{\circ}\text{C}$); (b) specific humidity (g kg^{-1}) at 2 m; (c) shortwave radiation (W m^{-2});
797 (d) longwave radiation (W m^{-2}); (e) MLH (m); (f) sensible heat flux (W m^{-2}); and (g) latent heat
798 flux (W m^{-2}).
799

800
801 Figure 7 Spatial distribution of the observed concentration of PM_{2.5} (dots; ug m⁻³) and wind field
802 (vector; m s⁻¹) for two increasing processes of the concentration of PM_{2.5}.
803

804
805 Figure 8 Spatial distribution of simulated temperature (shading; °C) and wind field (vector; m s⁻¹).
806 (a) UI_aero; (b) UI_noaero; (c) AI_urban; (d) AI_nourban.
807
808
809



810

811 Figure 9 Daily means of the four types of impacts (UI_aero, UI_noaero, AI_urban, AI_nourban) in
 812 the eight days are shown in Taylor diagrams in the Beijing area. (a) Temperature at 2 m ($^{\circ}\text{C}$); (b)
 813 absolute humidity (g kg^{-1}); (c) ventilation coefficient ($\text{m}^2 \text{ s}^{-1}$); (d) shortwave radiation (W m^{-2}).

814

815

816

817

818 Figure 10 Cross section at 39.9 °N of average temperature (shading; °C) and wind field (vector; $m s^{-1}$)
 819 from 0000 LST to 0800 LST on the 16th to 20th. (a) UI_aero; (b) UI_noaero; (c) AI_urban; (d)
 820 AI_nourban.

821

822

823

824

825

826