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Abstract. Observations from the Orbiting Carbon Observatory 2 (OCO-2) satellite, launched in July 2014, have been used

to estimate CO2 fluxes in many regions of the globe and provide new insight on the global carbon cycle. A challenge now

is to not only estimate fluxes using satellite observations but also to understand how these fluxes are connected to variations

in environmental conditions. In this study, we specifically evaluate the capabilities and limitations of utilizing current OCO-2

observations to infer connections between CO2 fluxes and underlying environmental variables. To do so, we adapt geostatistical5

inverse modeling to satellite-based applications and evaluate a case study for year 2016 using OCO-2. A unique aspect of

the geostatistical approach is that we can use estimates of environmental and meteorological variables to help estimate CO2

fluxes in place of a traditional prior flux model. We are able to quantify the relationships between CO2 fluxes and a few

environmental variables across global biomes; we find that a simple combination of air temperature, daily precipitation, and

photosynthetically active radiation (PAR) can describe almost 90% of the variability in CO2 fluxes as seen through OCO-210

observations. PAR is an adept predictor of fluxes across mid-to-high latitudes, whereas a combined set of air temperature and

precipitation shows strong explanatory power across tropical biomes. However, we are unable to quantify relationships with

additional environmental variables because many variables are correlated or colinear when passed through an atmospheric

model and averaged across a total atmospheric column. Overall, we estimate a global net biospheric flux of -1.73 ± 0.53 GtC

in year 2016, in close agreement with recent inverse modeling studies using OCO-2 retrievals as observational constraints.15

1 Introduction

Over the past decade, the field of space-based CO2 monitoring has undergone a rapid evolution. The sheer number of CO2-

observing satellites has greatly increased, including GOSAT/GOSAT-2 (Kuze et al., 2009; Nakajima et al, 2012), TanSat

(Yang et al., 2018) and OCO-2/OCO-3 (Crisp, 2015; Eldering et al., 2019). These dramatically expanded satellites observe

atmospheric CO2 broadly across the globe, making it possible to estimate the distribution and magnitude of CO2 fluxes in20

many regions of the globe that previously had sparse in situ surface atmospheric CO2 monitoring (e.g., the tropics and the
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Southern Hemisphere). For example, the OCO-2 satellite, launched in July 2014, provides 65,000 high-quality observations

per day (Eldering et al., 2017); the dense, global set of OCO-2 observations, combined with inverse modeling techniques, have

been used to constrain regional- and continental-scale CO2 sources and sinks and provide new insights into CO2 fluxes (e.g.,

Liu et al., 2017; Crowell et al. 2019; Palmer et al., 2019).25

Furthermore, recent advances in OCO-2 retrievals from the NASA ACOS science team have led to widespread improvements

in the observations (e.g., O’Dell et al., 2018), and these improvements have enabled increasingly accurate and detailed CO2

flux constraints from inverse modeling (e.g., Miller and Michalak, 2020). Reducing the biases in satellite retrievals is critical for

understanding CO2 sources and sinks using inverse modeling, as even small retrieval biases can have a large impact on the CO2

flux estimate (e.g., Chevallier et al, 2014; Miller et al., 2018). For example, Miller et al (2018) evaluated the extent to which30

OCO-2 retrievals can detect patterns in biospheric CO2 fluxes and found that an early version of the OCO-2 retrievals (version

7) is only equipped to provide accurate flux constraints across very large continental or hemispheric regions; by contrast, in a

companion paper, Miller and Michalak (2020) re-visited satellite capabilities in light of recently improved OCO-2 retrievals,

and the authors suggested that new OCO-2 retrievals can be used to constrain CO2 fluxes for more detailed regions (i.e., for

seven global biomes).35

A challenge now is to not only estimate the magnitude and distribution of fluxes using these new OCO-2 retrievals but also

to understand how variations in fluxes are connected to variations in environmental drivers. We define the term “environmental

drivers” as any meteorological variables or characteristics of the physical environment that can be modeled or measured and

may correlate with net ecosystem exchange (NEE). Existing studies on the capability of satellite observations have widely

focused on constraining the magnitude and distribution of fluxes (e.g., Eldering et al., 2017; Liu et al., 2017; Palmer et al., 2019;40

Crowell et al., 2019; Chevallier et al., 2019). It is now time to push these satellite observations further and explore whether the

observations can be used to infer connections between fluxes and environmental drivers (refer to hereafter as ‘connections’)

across many different regions of the globe. Variations in CO2 fluxes are closely linked with variations in environmental drivers,

and understanding these connections is key if we are to use these new satellite observations to evaluate and improve process-

based terrestrial biospheric models (TBMs).45

These connections have been extensively studied at local and global scales. At site levels (~1 km2), eddy covariance flux

tower measurements have provided excellent detail to quantify these connections (e.g., Desai et al., 2010; Baldocchi et al.,

2017); At the global level, existing studies (e.g, Wang et al., 2014; Keppel-Aleks et al., 2014; Piao et al., 2013) used atmospheric

CO2 from global background stations (e.g., Mauna Loa, Hawaii, USA and the South Pole) to illustrate a global picture of these

connections. However, intermediate, regional-scale connections are still poorly understood (e.g., Niu et al., 2017; Shiga et50

al., 2018). To date, previous studies have used ground-based and aircraft observations of atmospheric CO2 to link the fluxes

and underlying environmental processes (e.g., Gourdji et al., 2012; Fang and Michalak, 2015; Fang et al., 2017; Shiga et al.,

2018; Hu et al., 2019). However, it is difficult to constrain these connections for regions with few in situ atmospheric CO2

observations (e.g., the tropics and the Southern Hemisphere). The global coverage of OCO-2 observations provides a novel

opportunity to bridge the gap and explore these connections on region scales (e.g., Eldering et al., 2017; Liu et al. 2017).55
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However, it is still unclear the extent to which we can make these regional-scale connections given the accuracy and coverage

of current OCO-2 observations. Indeed, Liu et al. (2017) used net biosphere fluxes inferred from version seven OCO-2 retrievals

along with component carbon fluxes to disentangle environmental processes related to the flux anomalies in tropical regions

during the 2015-2016 El Niño. However, Chevallier (2018) suggested that the satellite retrievals used in Liu et al (2017) cannot

provide sufficient accuracy and sensitivity to separately constrain continental flux anomalies and associated environmental60

processes over the tropics. Hence, we specifically evaluate the capability and limitation of using current OCO-2 retrievals to

infer these connections on regional scales using a geostatistical inverse modeling (GIM).

A GIM is particularly well-suited to systematically evaluating these connections. Specifically, a GIM does not prescribe

or rely on a traditional prior flux model. The choice of prior fluxes in a classical inverse model is often subjective, and this

choice can impact the posterior flux estimate (e.g., Peylin et al., 2013; Houweling et al., 2015; Philip et al., 2019). By contrast,65

a GIM can assimilate a wide range of environmental drivers, making it possible to evaluate data-driven connections between

these variations in environmental drivers and CO2 fluxes inferred from atmospheric observations (see Sect. 2). Existing GIM

studies have investigated connections of CO2 fluxes and environmental drivers for North America (Gourdji et al., 2010, 2012;

Commane et al., 2017; Shiga et al. 2018) and the globe (Gourdji et al., 2008) using a variety of in situ CO2 observations.

GIMs, however, have never been applied to global satellite observations, and the extension of GIMs from small, regional70

in situ datasets to a massive, global satellite datasets like OCO-2 presents novel computational and statistical challenges. To

overcome this challenge, we combine the GIM with the adjoint of a global chemical transport model. Using this framework,

we not only estimate daily global CO2 fluxes at the model grid scale (4° latitude × 5° longitude) but also quantify posterior

uncertainties in the estimated fluxes. This study builds upon previous efforts (Miller et al., 2018; Miller and Michalak, 2020)

in which the authors evaluated when and where the OCO-2 observations can be used to constrain biospheric CO2 fluxes. In75

this study we push one step further and explore the connections between CO2 fluxes and environmental drivers. The primary

purpose of this study is to couple a GIM to a global adjoint model and use this framework to systematically evaluate what

kind of regional-scale connections we can (and cannot) make using current OCO-2 observations. We focus on a single year

(i.e., 2016) as an initial case study – to explore the applicability of the geostatistical approach to large satellite-based inverse

problems. We first describe the implementation of the GIM for OCO-2 observations; we then evaluate and discuss the results80

of this approach using the 2016 exploratory case study.

2 Data and Methods

2.1 Approach overview

We design a framework that couples the GIM to a global adjoint model (version v35n of the GEOS-Chem adjoint, Henze et

al., 2007) and explore the applicability of the geostatistical approach to inverse problems with a large number of flux grid85

boxes (i.e., 1.2× 106) and a large number of OCO-2 satellite observations (i.e., 9× 104). We use year 2016 as an initial case

study, as there is better temporal coverage of good-quality data from OCO-2 throughout the entire year relative to years 2015

and 2017. For example, there are 7 week-long gaps in the OCO-2 data in year 2015 and a 1.5-month gap in the OCO-2 data
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in year 2017, whereas there are no such gaps in year 2016. This time period also overlaps with an OCO-2 inverse modeling

inter-comparison (MIP) study, enabling direct comparison with those results (Crowell et al., 2019). We specifically estimate90

CO2 fluxes for September 1, 2015 to December 31, 2016 but discard the first four months as a spin-up time period. We also

offer up a wide range of environmental drivers and allow the GIM to select a subset that best predicts spatiotemporal patterns

in CO2 fluxes at the model grid scale, described in detail below (Sects. 2.2-2.4).

2.2 OCO-2 satellite observations

We utilize 10-s average XCO2 generated from version 9 of the satellite observations for the period from September 1, 201595

through the end of year 2016 (e.g., Chevallier et al., 2019). We use both land nadir- and land glint-mode retrievals in the inverse

model. Recent retrieval updates have eliminated biases that previously existed between land nadir and land glint observations

(O’Dell et al., 2018). Moreover, Miller and Michalak (2020) evaluated the impact of these updated OCO-2 retrievals on the

terrestrial CO2 flux constraint in different regions of the globe; the authors found that the inclusion of both land nadir and land

glint retrievals yielded a stronger constraint on CO2 fluxes relative to using only a single observation type.100

2.3 Geostatistical inverse model

A GIM does not require an emission inventory or a bottom-up model as an initial guess of fluxes; instead, a GIM can leverage

a wide range of environmental driver datasets to help predict spatial and temporal patterns in the CO2 fluxes (e.g., Gourdji et

al., 2008, 2012; Shiga et al., 2018). We further pair the GIM with a statistical approach known as model selection to objectively

determine which set of drivers can best reproduce CO2 observations from OCO-2. This setup makes it feasible to both estimate105

CO2 fluxes and to explicitly quantify the relationships between the fluxes and the underlying environmental drivers. The fluxes,

as estimated by the GIM, consist of two components. First, the GIM will scale the environmental drivers to match patterns in

the atmospheric observations, and this component of the flux estimate is referred to as the ‘deterministic model’. Second, the

GIM will model space-time patterns in the CO2 fluxes that are implied by the atmospheric observations but not explained by

any environmental drivers, and this component of the fluxes is referred to as the ‘stochastic component’. The best flux estimate110

is a sum of the deterministic model and the stochastic component:

s = Xβ+ ζ (1)

where s are m×1 unknown fluxes, X is a m×p matrix of environmental drivers (see Sect. 2.4), β are p×1 unknown scaling

factors or drift coefficients. These coefficients quantify the relationships between each of thep environmental drivers (i.e.,

each column of X) and the estimated CO2 fluxes. The product of X and β is the deterministic model (Xβ). The stochastic115

component (ζ) is zero-mean with a pre-specified spatial and/or temporal correlation structure; it describes spatial and temporal

patterns in the fluxes that are not captured by the deterministic model. For the setup here, the drift coefficient (β) associated

with each environmental driver is constant in space and time, while the stochastic component (ζ) varies at the model grid scale.
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We estimate both the fluxes (s) and the drift coefficients (β) by minimizing the GIM cost function (e.g., Kitanidis and

Vomvoris, 1983; Kitanidis, 1995; Michalak et al., 2004):120

Ls,β = 1
2 (z−h(s))T R−1(z−h(s)) + 1

2 (s−Xβ)T Q−1(s−Xβ) (2)

The cost function includes two components: the first component indicates that the fluxes (s), when run through an atmospheric

model, h(s), should match the observations (z) to within a specific error tolerance (z−h(s)) that is prescribed by the covariance

matrix R (n×n). R describes model-data mismatch errors, including errors from the atmospheric transport model and the

OCO-2 retrievals, among other errors. The second component of Eq. 2 stipulates that the structure of the stochastic component125

(s−Xβ) is described by the covariance matrix Q (m×m). Q, like R, must be defined by the modeler before estimating the

fluxes; it represents the variances and spatiotemporal covariances of the stochastic component. We estimate Q using a statistical

approach known as Restricted Maximum Likelihood (RML; e.g., Kitanidis, 1997; Gourdji et al., 2012; Miller et al., 2016). Q

includes both diagonal and off-diagonal elements; the latter decay with the separation time and distance between two model

grid boxes. We construct R as a diagonal matrix with constant elements on the diagonal. The Supplement Sect. S1 provides a130

detailed explanation of the approach used here to estimate the covariance matrix parameters.

After estimating the covariance matrix parameters, we then estimate the CO2 fluxes by iteratively minimizing Eq. 2 using

the Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS, Liu and Nocedal, 1989). We use this approach

to simultaneously estimate both s and β. Miller et al (2019) describe this iterative approach to minimize Eq. 2 in detail.

2.4 Auxiliary environmental drivers135

We consider a wide range of environmental drivers (X). These are meteorological variables primarily related to heat, water, and

radiation, available from NASA’s Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2,

Rienecker et al., 2011). Specifically, we consider daily 2-m air temperature, daily precipitation, 30-day average precipitation,

photosynthetically active radiation (PAR), surface downwelling shortwave radiation, soil temperature at 10-cm depth, soil

moisture at 10-cm depth, specific humidity, and relative humidity. We also include a non-linear function of 2-m air temperature140

as an environmental driver (refer to hereafter as scaled temperature). This function is from the Vegetation Photosynthesis

and Respiration Model (VPRM, Mahadevan et al., 2008) and describes the non-linear relationship between temperature and

photosynthesis (e.g., Raich et al. 1991, see the Supplement Sect. S2).

Note that we do not include any remote sensing indices (e.g., solar-induced chlorophyll fluorescence (SIF) or leaf area index

(LAI)) in the present study. Rather, the focus of this study is to explore environmental drivers of CO2 fluxes, not remote sensing145

proxies for CO2 fluxes.

We group the globe into seven biome-based regions and allow the GIM to use different environmental drivers in different

biomes. Miller and Michalak (2020) found that current OCO-2 retrievals can be used to constrain terrestrial CO2 fluxes for

regions of this size. The seven-biome map (Fig. 1) is derived from the biomes in Olson et al (2001), aggregated to form larger

regions. As a result of this setup, each column of X includes a single environmental driver for a single biome. Therefore, each150
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environmental driver is represented by a total of seven columns in X. Within each column, all elements are zeros except for

elements that correspond to a single biome.

We also include several constant columns of ones in X. These columns are analogous to the intercept in a linear regression.

Existing GIM studies always include one or more constant columns within X (e.g., Gourdji et al. 2008; Gourdji et al., 2012;

Miller et al., 2018). In this study, we specifically use a total of seven constant columns, one for each biome. We also include a155

constant column for the ocean.

We further consider non-biospheric fluxes in the X matrix, including fossil fuel emissions from the Open-source Data Inven-

tory for Anthropogenic CO2 monthly fossil fuel emissions (ODIAC2016, Oda et al., 2018), climatological ocean fluxes from

Takahashi et al. (2016), and biomass burning fluxes from the Global Fire Emissions Database (GFED) version 4.1 (Randerson

et al., 2018). We only allocate a single column of X for fossil fuel, biomass burning, and ocean fluxes, respectively, because160

these fluxes are not the focus of this study.

In total, we consider a total of 81 columns for the X matrix: 8 constant columns of ones, 70 columns associated with

environmental drivers, and 3 columns associated with anthropogenic, ocean, and biomass burning fluxes.

2.5 Model selection

We utilize a model selection framework to evaluate which subset of the environmental drivers (i.e., columns of X) best describe165

variations in CO2 fluxes as inferred from the OCO-2 observations. The inclusion of additional environmental drivers or columns

in X will always improve the model-data fit, but the inclusion of too many variables in X can yield an overfit of the OCO-2

observations or can yield unrealistic drift coefficients (β) (e.g., Zucchini, 2000). Instead of including all environmental drivers

in X, we use model selection to decide which set of environmental drivers to include in X. In this study, we implement a type

of model selection known as the Bayesian Information Criterion (BIC; Schwarz, 1978), which has been extensively used in170

recent GIM studies (e.g., Gourdji et al., 2012; Miller et al. 2013; Fang and Michalak, 2015). Using the BIC, we score different

combinations of environmental drivers that could be included in X based on how well each combination reproduces the OCO-2

observations. We calculate these scores using the following equation for the implementation here (Miller et al. 2018; Miller

and Michalak, 2020):

BIC = L + pln(n∗) (3)175

where L is log likelihood of a particular combination of environmental drivers (i.e., columns of X),p is the number of environ-

mental drivers in this particular combination, and n∗ is the effective number of independent observations. The first component

(L) rewards combinations that are a better fit to the observations, whereas the second component in Eq. 3 (pln(n∗)) penalizes

models with a greater number of columns to prevent overfitting. The best combination of environmental drivers for X is the

combination that receives the lowest score (the Supplement Sect. S3 and Table S2). We implement the BIC using a heuristic180

branch and bound algorithm (Yadav et al., 2013) to reduce computing time. Miller et al (2018) describes this model selection

procedure in greater detail, including the specific setup and equations for the BIC.
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2.6 Posterior uncertainties

In a GIM, the direct solution to calculate the posterior covariance matrix Vs (dimensions m×m) can be computed as (e.g.,

Saibaba and Kitanidis, 2014; Miller et al., 2019):185

Vs = V1 +V2V3VT
2 (4)

V1 = (Q−1 +HT R−1H)−1 (5)

V2 = V1Q−1X (6)

V3 = (XT Q−1X− (Q−1X)T V1Q−1X)−1 (7)

where the posterior error covariance matrix Vs is the sum of V1 and V2V3VT
2 , and H is a n×m matrix describing the190

footprint sensitivity of the observations (z) to the fluxes (s). Note that V1 is the posterior error covariance matrix in a classic

Bayesian inverse model (e.g., Rodgers, 2000; Brasseur and Jacob, 2017). V2V3VT
2 accounts for the additional uncertainty in

the fluxes due to the unknown drift coefficients (β).

The calculations in Eq. 5 are not computationally feasible for most inverse problems with very large datasets; the matrix sum

in V1 is often too large to invert, and we do not explicitly construct an H matrix or its transpose HT . Instead, we employ a low-195

rank approximation of V1 that circumvents these problems (e.g., Bousserez and Henze, 2018; Wells et al., 2018). Specifically,

we approximate the matrices in V1 as a low rank update to Q using a limited number of eigenpairs (i.e., eigenvectors and

eigenvalues). Miller et al (2019) and the Supplement Sect. S4 describe the uncertainty quantification in greater detail.

3 Results and Discussion

3.1 Connections between CO2 fluxes and environmental drivers200

A small number of environmental drivers can describe most spatiotemporal variability in CO2 fluxes as estimated in the

GIM. In this study, we define spatiotemporal variability as any spatial or temporal patterns in CO2 fluxes that manifest at

the daily, 4° (latitude) × 5° (longitude) resolutions of the GEOS-Chem model during the one-year study period (year 2016).

The deterministic model accounts for ~89.6% of the variance in the estimated fluxes (Fig. 2a), and the stochastic component

conversely accounts for only 10.4% of the flux variance (Fig. 2b).205

A combination of PAR, daily temperature, and daily precipitation best describe patterns in CO2 fluxes in most biomes across

the globe (Table 1). PAR is an adept predictor of fluxes across mid-to-high latitudes, whereas a combined set of daily air

temperature and daily precipitation are better predictors across tropical biomes.

The deterministic model also includes fossil fuel emissions from ODIAC2016 but not biomass burning fluxes from GFED

or ocean fluxes from Takahashi et al., (2016). Fossil fuel emissions from ODIAC2016, when passed through the GEOS-Chem210

model, help describe enough variability in the OCO-2 observations to be selected using the BIC. By contrast, neither biomass

burning fluxes from GFED nor ocean fluxes from Takahashi et al. (2016) help reproduce the OCO-2 observations more than

the penalty term in the BIC, and these fluxes are therefore not selected using the BIC. Specifically, biomass burning and
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ocean fluxes may not have been selected for several reasons: either those fluxes are small relative to fossil fuel emissions and

biospheric fluxes, the land OCO-2 observations from 2016 are not sensitive to biomass burning and ocean fluxes, and/or the flux215

patterns in GFED and Takahashi et al. (2016) are not consistent with the OCO-2 observations. Instead, biomass burning and

ocean fluxes are included within the stochastic component of the flux estimate. The Supplement Sect. S6 describes a sensitivity

analysis using the BIC that provides further explanation why the deterministic model does not include GFED or ocean fluxes

from Takahashi et al. (2016).

Overall, we only select a limited number of environmental drivers (12 out of 70, ~18%) using model selection. Specifically,220

we never select more than 3 environmental drivers in any individual biome (Table 1). This result indicates two likely con-

clusions. First, a few simple linear relationships may adeptly describe flux variability at the scale and resolution of a global

gridded atmospheric model, although the underlying leaf- and organism-level processes are admittedly more complex. Indeed,

previous top-down studies (e.g., Gourdji et al., 2008, 2012; Fang and Michalak, 2015; Shiga et al., 2018) also found that simple

linear relationships can effectively describe broad spatial and temporal patterns in CO2 flux variability across North America225

and across the globe. Such simple linear relationships allow for a straightforward assessment of the explanatory power of en-

vironmental drivers, and make it possible to compare these relationships inferred from atmospheric observations against the

relationships used in TBMs (e.g., Huntzinger et al., 2013; Fang and Michalak, 2015).

Second, additional environmental drivers, when run through an atmospheric transport model and interpolated to the times

and locations of OCO-2 observations, are not sufficiently unique to parse out their differing relationships with CO2 fluxes.230

Model selection ensures that we only include environmental drivers that contribute unique information to the flux estimate and

do not overfit the OCO-2 observations. If multiple environmental drivers are highly correlated or colinear, then the inclusion

of more than one of these drivers will not contribute unique information. As a result, we are unable to quantify a larger number

of environmental driver relationships using OCO-2. Fig. 3 illustrates an example of air temperature and PAR. In most of the

biomes, there is a weak correlation (R < 0.4; left column) between 2-m air temperature and PAR; however, the correlation is235

much stronger (R > 0.8; right column) when these environmental drivers are passed through an atmospheric model (h(X)). A

larger number of environmental drivers is not selected due to this high level of correlation or collinearity among the columns in

h(X). This collinearity, not errors in the OCO-2 retrievals or atmospheric model, appears to be a limiting factor in the model

selection results.

3.1.1 PAR shows stronger explanatory power than temperature or precipitation in mid-to-high latitudes240

PAR is selected for four biomes: temperature forests, temperate grasslands, boreal forests and tropical forests (Table 1). In the

middle and high latitudes, PAR, rather than temperature or precipitation, appears to be a better proxy for seasonal patterns in

CO2 fluxes (Figs. 4a, b and S3a-f). This result reflects the fact that light availability is likely an important factor that drives

CO2 flux variability in mid-to-high latitudes (e.g., Fang and Michalak, 2015; Baldocchi et al., 2017). The β values for PAR

indicate a strong to moderate negative correlation with estimated CO2 fluxes, suggesting that an increase (or decrease) in PAR245

is associated with a decrease (or increase) in NEE, and an increase (or decrease) in carbon uptake; this β value is larger in
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boreal and temperate forests relative to grasslands, indicating a stronger relationship between PAR and net biosphere CO2

fluxes in those biomes (Table 1; Figs. 5a and S3d-f).

Indeed, previous studies also indicate that PAR and similar environmental drivers (e.g., shortwave radiation) are closely

associated with CO2 fluxes. For example, a top-down study of North America (Fang and Michalak, 2015) found that shortwave250

radiation is more adept than other environmental variables in reproducing spatiotemporal variability of NEE, particularly across

the growing season. Moreover, several site-level studies have reached parallel conclusions (e.g., Mueller et al., 2010; Yadav

et al., 2010); these studies indicated that PAR is strongly correlated with photosynthesis, consistent with current mechanistic

understandings of the light limitation on photosynthesis (e.g., Gough et al., 2007).

3.1.2 Drought is likely associated with flux variations across tropical forests255

A composite of PAR, scaled temperature, and daily precipitation adeptly describe variability in CO2 fluxes across tropical

forests (Figs. 4c and 4d), as seen through the OCO-2 observations. PAR in tropical forests is usually a function of the presence

or absence of clouds (e.g., Baldocchi et al., 2017; Zeri et al., 2014); cloudiness is also associated with rainfall. Therefore,

low PAR over tropical forests is likely an indicator of cloud presence and rainfall. A positive β estimated for PAR suggests

that a decrease in PAR, indicative of enhanced precipitation, is associated with 380 increased carbon uptake. Furthermore, the260

negative β value assigned to scaled temperature (the Supplement Sect. S2) implies that an increase in air temperature, which

often exceeds optimal temperature over tropical forests, is associated with reduced carbon uptake.

Recent studies (e.g., Jiménez-Muñoz et al., 2016; Liu et al., 2017; Palmer et al., 2019) indicated that tropical droughts

associated with the 2015-2016 El Niño events likely resulted in above average carbon release. Indeed, the combination of high

values of PAR, high air temperature, and low precipitation may be a manifestation of these drought patterns.265

Indeed, multiple lines of evidence indicate that drought is associated with diminished carbon uptake in tropical forests (e.g.,

Phillips et al., 2009; Brienen et al., 2015; Baccini et al., 2017). For example, Gatti et al (2014) suggested that a suppression of

photosynthesis during tropical drought may cause a reduction in carbon uptake. Brienen et al (2015) added that tropical drought

is often associated with higher-than-normal temperature, which may further contribute to reducing gross primary production

(GPP) and carbon uptake. Overall, this GIM study supports the conclusion that environmental conditions indicative of drought270

are associated with net carbon emissions from tropical forests.

3.1.3 CO2 fluxes, as inferred from OCO-2, are closely correlated with temperature and precipitation in tropical

grasslands

Temperature and precipitation closely correlate with variability in CO2 fluxes across tropical grasslands (Figs. S3g and S3j).

This result suggests that heat and water availability are likely associated with carbon fluxes across this biome.275

A negative β value for precipitation indicates that an increase in precipitation is associated with an increase in carbon

uptake, which is in line with current knowledge that water availability facilitates photosynthesis, especially in arid or semi-

arid regions. In addition, a negative β value for scaled temperature (the Supplement Sect. S2) indicates that an increase in

air temperature is associated with a reduction in carbon uptake. Specifically, high temperatures in the tropics often exceed
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the optimal temperature for photosynthesis (e.g., Baldocchi et al., 2017), which can suppress GPP (e.g., Doughty and Golden,280

2008). Overall, a combined set of air temperature and precipitation adeptly describes CO2 flux variability in tropical grasslands,

rendering it a net source in year 2016.

3.2 Estimated biospheric flux totals for different global regions

We estimate a global terrestrial biospheric CO2 budget of -1.73 ± 0.53 GtC (Uncertainties listed are the 95% confidence

interval. The Supplement Sect. S5 provides detail on the posterior uncertainty estimate for biospheric fluxes.). Among the285

seven biomes, middle to high latitudes (primarily temperate, boreal and tundra biomes) act as a significant carbon sink; tropical

biomes are a net source; desert and shrubland regions play a small, neutral role (Table 2). Note that we subtract flux patterns

that map onto fossil fuels (Xβ, Fig. 5d) from the posterior flux estimate (s, Fig. 2c) to obtain an estimate for biospheric fluxes

(including terrestrial NEE and biomass burning fluxes). We estimate a β value of 1.09 ± 0.05 (95% confidence interval) for the

fossil fuel emissions from ODIAC2016, indicating that the overall global magnitude of ODIAC2016 is consistent with OCO-2290

observations. We therefore assume that ODIAC2016 is a reasonable global estimate for fossil fuel emissions.

These flux totals are broadly consistent with a recent MIP of different inverse models that assimilate OCO-2 observations

(Crowell et al., 2019). The inverse modeling teams that participated in the MIP employed different transport models, inverse

modeling approaches, and prior flux assumptions. The total global terrestrial biospheric flux, averaged across all models, was

-1.4 ± 0.7 GtC for the year of 2016. The MIP fluxes assimilate v7 of land nadir-mode XCO2 retrievals; unlike this study in295

which we use v9 of land nadir- and glint-mode retrievals. In spite of this difference, the averaged global flux from the MIP

study and the estimate reported here are very similar.

In order to provide an additional comparison with the MIP results, we group the estimated fluxes into TRANSCOM land

regions (Gurney et al., 2002). We split the classic TRANSCOM regions at the Equator to avoid regions that encompass parts

of both the northern and southern hemisphere, as in Crowell et al (2019). In most of the regions, the fluxes estimated using the300

GIM are very similar to those reported in the MIP (Fig. 6); however, the fluxes estimated here are significantly different in a

limited number of regions (e.g., tropical Australia and northern tropical Africa), a possible reflection of differences between

the v9 and v7 OCO-2 retrievals (O’Dell et al., 2018; Miller et al., 2019). For example, we estimate a smaller CO2 source for

northern tropical Africa relative to the MIP study. However, previous studies (e.g., Wang et al., 2019) indicated that existing

satellite-based estimates of CO2 fluxes for this region may be too high. OCO-2 collects far more observations across northern305

Africa during the dry season than the wet season due to persistent cloudiness in the wet season, and existing studies have

postulated that this difference in data availability may be to blame for a high bias in CO2 fluxes estimated from OCO-2

(Crowell et al. 2019; Wang et al. 2019).

The fluxes estimated here are also broadly consistent with aircraft-based in situ CO2 observations, a topic discussed in the

Supplement Sect. S7.310
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3.3 Estimated posterior uncertainties

The posterior uncertainties for individual biomes range from 0.25 to 0.76 GtC yr−1. Estimated fluxes for tropical forests

have higher uncertainties than any other biome (0.76 GtC yr−1), likely a consequence of poor observational coverage due to

persistent cloudiness. By contrast, a large number of good-quality OCO-2 retrievals provides robust constraints over temperate

forests, yielding a small posterior uncertainty (0.27 GtC yr−1) in the estimated flux.315

It is important to note that the posterior uncertainties calculated in most classical Bayesian or geostatistical inverse models

account for many but not all possible sources of uncertainty. For example, the posterior uncertainties presented here account

for the sparsity of the OCO-2 observations, random observational or atmospheric transport errors, and uncertainties due to

uncertain drift coefficients (β) (e.g., Kitanidis and Vomvoris, 1983; Michalak et al., 2004). However, these calculations do

not fully account for bias-type errors: regional- or continental-scale biases in the OCO-2 observations, biases in modeled320

atmospheric convection (e.g., Basu et al., 2018; Schuh et al., 2019), or biases in modeled interhemispheric transport, among

other possible biases. Most classical Bayesian and geostatistical inverse models assume that the observational or model errors

are Gaussian with a mean of zero (e.g., Kitanidis and Vomvoris. 1983; Michalak et al., 2004; Tarantola, 2005), making it

challenging to account for the types of biases listed above. As a result, the posterior uncertainties estimated in this study are

typically smaller than the range of flux estimates produced from the recent MIP study (Fig. 6; Crowell et al., 2019).325

4 Conclusions

In this study, we adapt the geostatistical approach to inverse modeling for global satellite observations of CO2, and evaluate

the extent to which we can use these observations to make connections between CO2 fluxes and environmental drivers. We find

that

1. A simple combination of environmental drivers can adeptly describe patterns in CO2 fluxes across different biomes of330

the globe, as seen through observations from the OCO-2 satellite;

2. PAR is an adept predictor of fluxes across mid-to-high latitudes, whereas a combination of daily air temperature and

daily precipitation shows strong explanatory power across tropical biomes;

3. A larger number of environmental drivers is not selected because many drivers are correlated or colinear when passed

through an atmospheric model and averaged across a total atmospheric column. This high collinearity, not errors in the335

OCO-2 retrievals or atmospheric model, appears to be a limiting factor in using satellite observations to connect CO2

fluxes with environmental drivers;

4. We estimate a global terrestrial biospheric budget of -1.73 ± 0.53 GtC in year 2016, in close agreement with recent

inverse modeling studies that use OCO-2 retrievals as observational constraints.

11

https://doi.org/10.5194/acp-2020-285
Preprint. Discussion started: 24 April 2020
c© Author(s) 2020. CC BY 4.0 License.



Data availability. The version 9 of 10-s average OCO-2 retrievals are available at ftp://ftp.cira.colostate.edu/ftp/BAKER/; data information340

of the OCO-2 MIP is available at https://www.esrl.noaa.gov/gmd/ccgg/OCO2/; data information of the ObsPack data product is available at

http://www.esrl.noaa.gov/gmd/ccgg/obspack/.

Author contributions. Z.C. and S.M.M. designed the study. Z.C. analyzed the data. Z.C. and S.M.M. wrote the manuscript. All authors

reviewed and edited the paper.

Competing interests. The authors declare they have no competing interests.345

Acknowledgements. We thank David Baker and Andrew Jacobson for their help with the OCO-2 retrievals and the NASA MIP products.

We thank Colm Sweeny and Kathryn McKain for their help with aircraft datasets from the NOAA/ESRL Global Greenhouse Gas Reference

Network. We also thank John Miller, Luciana Gatti, Wouter Peters and Manuel Gloor for their help with the aircraft data from the INPE

ObsPack data product. Financial support for this research has been provided by NASA ROSES grant no. 80NSSC18K0976. All modeling

and analysis was performed on the NASA Pleiades Supercomputer.350

12

https://doi.org/10.5194/acp-2020-285
Preprint. Discussion started: 24 April 2020
c© Author(s) 2020. CC BY 4.0 License.



References

Baccini, A., Walker, W., Carvalho, L., Farina, M., Sulla-Menashe, D., and Houghton, R. A.: Tropical forests are a net carbon source based

on aboveground measurements of gain and loss. Science, 358(6360), 230-234. https://doi.org/10.1126/science.aam5962, 2017

Baldocchi, D., Chu, H., and Reichstein, M.:Inter-annual variability of net and gross ecosystem carbon fluxes: A review. Agricultural and

Forest Meteorology, 249(November 2016), 520–533. https://doi.org/10.1016/j.agrformet.2017.05.015, 2018355

Basu, S., Baker, D. F., Chevallier, F., Patra, P. K., Liu, J., and Miller, J. B.: The impact of transport model differences on CO2 surface flux

estimates from OCO-2 retrievals of column average CO 2. Atmospheric Chemistry and Physics, 18(10), 7189-7215, 2018

Bousserez, N., and Henze, D. K.: Optimal and scalable methods to approximate the solutions of large-scale Bayesian problems: theory and

application to atmospheric inversion and data assimilation. Quarterly Journal of the Royal Meteorological Society, 144(711), 365-390.

DOI:10.1002/qj.3209, 2018360

Brasseur, G. P. and Jacob, D. J.: Modeling of Atmospheric Chemistry, chap. 11, Cambridge University Press, Cambridge,

https://doi.org/10.1017/9781316544754, 2017

Brienen, R. J. W., Phillips, O. L., Feldpausch, T. R., Gloor, E., Baker, T. R., Lloyd, J., et al.: Long-term decline of the Amazon carbon sink.

Nature, 519(7543), 344–348. https://doi.org/10.1038/nature14283, 2015

Chatterjee, A., Gierach, M. M., Sutton, A. J., Feely, R. A., Crisp, D., Eldering, A., et al.: Influence of iño on atmospheric CO2 over the365

tropical Pacific Ocean: Findings from NASA’s OCO-2 mission. Science, 358(6360). https://doi.org/10.1126/science.aam5776, 2017

Commane, R., Lindaas, J., Benmergui, J., Luus, K. A., Chang, R. Y. W., Daube, B. C., et al.: Carbon dioxide sources from Alaska driven by

increasing early winter respiration from Arctic tundra. Proceedings of the National Academy of Sciences of the United States of America,

114(21), 5361–5366. https://doi.org/10.1073/pnas.1618567114, 2017

Crisp, D.: Measuring atmospheric carbon dioxide from space with the Orbiting Carbon Observatory-2 (OCO-2). Earth Observing Systems370

XX, 9607(September 2015), 960702. https://doi.org/10.1117/12.2187291, 2015

Crowell, S., Baker, D., Schuh, A., Basu, S., Jacobson, A. R., Chevallier, F., Liu, J., Deng, F., Feng, L., McKain, K., Chatterjee, A., Miller,

J. B., Stephens, B. B., Eldering, A., Crisp, D., Schimel, D., Nassar, R., O’Dell, C. W., Oda, T., Sweeney, C., Palmer, P. I., and Jones,

D. B. A.: The 2015–2016 carbon cycle as seen from OCO-2 and the global in situ network, Atmos. Chem. Phys., 19, 9797–9831,

https://doi.org/10.5194/acp-19-9797-2019, 2019. https://doi.org/10.5194/acp-2019-87, 2019375

Chevallier, F.: Comment on “Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño”. Science, 362(6418),

https://doi.org/10.1126/science.aar5432, 2018

Chevallier, F., Palmer, P. I., Feng, L., Boesch, H., O’Dell, C. W., and Bousquet, P.: Toward robust and consistent regional CO2 flux estimates

from in situ and spaceborne measurements of atmospheric CO2. Geophysical Research Letters, 41(3), 1065-1070, 2014

Chevallier, F., Remaud, M., O’Dell, C. W., Baker, D., Peylin, P., and Cozic, A.: Objective evaluation of surface-and satellite-driven CO2380

atmospheric inversions. Atmospheric Chemistry and Physics Discussions, https://doi.org/10.5194/acp-2019-213, 2019

Desai, A. R.: Climatic and phenological controls on coherent regional interannual variability of carbon dioxide flux in a heterogeneous

landscape. Journal of Geophysical Research: Biogeosciences, 115(G3), 2010

Eldering, A., Wennberg, P. O., Crisp, D., Schimel, D. S., Gunson, M. R., Chatterjee, A., ... and Frankenberg, C.: The Orbiting Car-

bon Observatory-2 early science investigations of regional carbon dioxide fluxes. Science, 358(6360), eaam5745. DOI: 10.1126/sci-385

ence.aam5745, 2017

13

https://doi.org/10.5194/acp-2020-285
Preprint. Discussion started: 24 April 2020
c© Author(s) 2020. CC BY 4.0 License.



Eldering, A., Taylor, T. E., O’Dell, C. W., and Pavlick, R.: The OCO-3 mission: Measurement objectives and expected performance based

on 1 year of simulated data. Atmospheric Measurement Techniques, 12(4), 2341–2370. https://doi.org/10.5194/amt-12-2341-2019, 2019

Fang, Y., and Michalak, A. M.: Atmospheric observations inform CO2 flux responses to enviroclimatic drivers. Global Biogeochemical

Cycles, 29(5), 555-566. https://doi.org/10.1002/2014/GB005034, 2015390

Gatti, L. V., Gloor, M., Miller, J. B., Doughty, C. E., Malhi, Y., Domingues, L. G., et al.: Drought sensitivity of Amazonian carbon balance

revealed by atmospheric measurements. Nature, 506(7486), 76–80. https://doi.org/10.1038/nature12957, 2014

Gough, C. M., C. S. Vogel, C. Kazanski, L. Nagel, C. E. Flower, and P. S. Curtis.: Coarse woody debris and the carbon balance of a north

temperate forest, For. Ecol. Manage., 244, 60–67, doi:10.1016/j.foreco.2007.03.039, 2007

Gourdji, Sharon M., Mueller, K. L., Schaefer, K., and Michalak, A. M.: Global monthly averaged CO2 fluxes recovered using a geostatis-395

tical inverse modeling approach: 2. Results including auxiliary environmental data . Journal of Geophysical Research, 113(D21), 1–15.

https://doi.org/10.1029/2007jd009733, 2008

Gourdji, S. M., Hirsch, A. I., Mueller, K. L., Yadav, V., Andrews, A. E., and Michalak, A. M.: Regional-scale geostatistical in-

verse modeling of North American CO 2 fluxes: A synthetic data study. Atmospheric Chemistry and Physics, 10(13), 6151–6167.

https://doi.org/10.5194/acp-10-6151-2010, 2010400

Gourdji, S. M., et al.: North American CO2 exchange: Inter-comparison of modeled estimates with results from a fine-scale atmospheric

inversion, Biogeosciences, 9(1), 457–475, https://doi.org/10.5194/bg-9-457-2012, 2012

Helfter, C., et al.: Drivers of long-term variability in CO2 net ecosystem exchange in a temperate peatland. Biogeosciences 12 (6), 1799–1811.

https://doi.org/10.5194/bg-12-1799-2015, 2015

Houweling, S., Baker, D., Basu, S., Boesch, H., Butz, A., Chevallier, F., et al.: An intercomparison of inversemodels for es-405

timating sources and sinks of CO2 using GOSAT measurements. Journal of Geophysical Research, 120(10), 5253–5266.

https://doi.org/10.1002/2014JD022962, 2015

Hu, L., Andrews, A. E., Thoning, K. W., Sweeney, C., Miller, J. B., Michalak, A. M., ... and Nehrkorn, T.: Enhanced North American carbon

uptake associated with El Niño. Science advances, 5(6), eaaw0076, 2019

Huntzinger, D. N., Schwalm, C., Michalak, A. M., Schaefer, K., King, A. W., Wei, Y., et al.: The North American carbon program multi-scale410

synthesis and terrestrial model intercomparison project - Part 1: Overview and experimental design. Geoscientific Model Development,

6(6), 2121–2133. https://doi.org/10.5194/gmd-6-2121-2013, 2013

Huntzinger, D. N., Michalak, A. M., Schwalm, C., Ciais, P., King, A. W., Fang, Y., et al.: Uncertainty in the response of terrestrial carbon sink

to environmental drivers undermines carbon-climate feedback predictions. Scientific Reports, 7(1), 1–8. https://doi.org/10.1038/s41598-

017-03818-2, 2017415

Jimenez-Muñoz, J. C., Mattar, C., Barichivich, J., Santamaría-Artigas, A., Takahashi, K., Malhi, Y., ... and Van Der Schrier, G.: Record-

breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Scientific reports, 6, 33130.

https://doi.org/ 10.1038/srep33130, 2016

Kitanidis, P. K., and Vomvoris, E. G.: A geostatistical approach to the inverse problem in groundwater modeling (steady state) and one-

dimensional simulations. Water Resources Research, 19(3), 677-690, 1983420

Kitanidis, P.: Introduction to Geostatistics: Applications in Hydrogeology, Stanford-Cambridge program, Cambridge University Press, Cam-

bridge, 1997

14

https://doi.org/10.5194/acp-2020-285
Preprint. Discussion started: 24 April 2020
c© Author(s) 2020. CC BY 4.0 License.



Kuze, A., Suto, H., Nakajima, M., and Hamazaki, T.: Thermal and near infrared sensor for carbon observation Fourier-transform

spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Applied Optics, 48(35), 6716–6733.

https://doi.org/10.1364/AO.48.006716, 2009425

Liu, D. C., and Nocedal, J.: On the limited memory BFGS method for large scale optimization. Mathematical programming, 45(1-3), 503-

528, 1989

Liu, J., Bowman, K. W., Schimel, D. S., Parazoo, N. C., Jiang, Z., Lee, M., ... and O’Dell, C. W.: Contrasting carbon cycle responses of the

tropical continents to the 2015–2016 El Niño. Science, 358, 191. HTTPS://DOI.ORG/ 10.1126/science.aam5690, 2017

Mahadevan, P., Wofsy, S. C., Matross, D. M., Xiao, X., Dunn, A. L., Lin, J. C., ... and Gottlieb, E. W.: A satellite-based biosphere parame-430

terization for net ecosystem CO2 exchange: Vegetation Photosynthesis and Respiration Model (VPRM). Global Biogeochemical Cycles,

22(2). https://doi.org/10.1029/2006GB002735, 2008

Ma, S., Baldocchi, D., Wolf, S., Verfaillie, J.: Slow ecosystem responses conditionally regulate annual carbon balance over 15 years in

Californian oak-grass savanna. Agric. Forest Meteorol. 228, 252–264. https://doi.org/10.1016/j.agrformet.2016.07.016, 2016

Michalak, A. M., Bruhwiler, L., and Tans, P. P.: A geostatistical approach to surface flux estimation of atmospheric trace gases. Journal of435

Geophysical Research D: Atmospheres, 109(14), 1–19. https://doi.org/10.1029/2003JD004422, 2004

Miller, S. M. and Michalak, A. M.: The impact of improved satellite retrievals on estimates of biospheric carbon balance, Atmos. Chem.

Phys., 20, 323–331, https://doi.org/10.5194/acp-20-323-2020. https://doi.org/10.5194/acp-20-323-2020, 2020

Miller, S. M., Michalak, A. M., Yadav, V., and Tadié, J. M.: Characterizing biospheric carbon balance using CO2 observations from the

OCO-2 satellite. Atmospheric Chemistry and Physics, 18(9), 6785–6799. https://doi.org/10.5194/acp-18-6785-2018, 2018440

Miller, S. M., Miller, C. E., Commane, R., Chang, R. Y. W., Dinardo, S. J., Henderson, J. M., et al.: A multiyear esti-

mate of methane fluxes in Alaska from CARVE atmospheric observations. Global Biogeochemical Cycles, 30(10), 1441–1453.

https://doi.org/10.1002/2016GB005419, 2016

Miller, S. M., Saibaba, A. K., Trudeau, M. E., and Andrews, A. E.: Geostatistical inverse modeling with very large datasets: an example from

the OCO-2 satellite. Geoscientific Model Development, https://doi.org/10.5194/gmd-2019-185, 2019445

Miller, S. M., Wofsy, S. C., Michalak, A. M., Kort, E. A., Andrews, A. E., Biraud, S. C., ... and Miller, B. R.: Anthro-

pogenic emissions of methane in the United States. Proceedings of the National Academy of Sciences, 110(50), 20018-20022.

https://doi.org/10.1073/pnas.1314392110, 2013

Mueller, K. L., Yadav, V., Curtis, P. S., Vogel, C., and Michalak, A. M.: Attributing the variability of eddy-covariance CO2 flux measure-

ments across temporal scales using geostatistical regression for a mixed northern hardwood forest. Global Biogeochemical Cycles, 24(3).450

https://doi.org/10.1029/2009GB003642, 2010

Nassar, R., Hill, T. G., McLinden, C. A., Wunch, D., Jones, D. B. A., and Crisp, D.: Quantifying CO2 Emissions From Individual Power

Plants From Space. Geophysical Research Letters, 44(19), 10,045-10,053. https://doi.org/10.1002/2017GL074702, 2017

Nakajima, M., Kuze, A., and Suto, H.: The current status of GOSAT and the concept of GOSAT-2. In Sensors, Systems, and Next-Generation

Satellites XVI (Vol. 8533, p. 853306). International Society for Optics and Photonics. https://doi.org/10.1117/12.974954, 2012455

Niu, S., Fu, Z., Luo, Y., Stoy, P. C., Keenan, T. F., Poulter, B., ... and Han, J.: Interannual variability of ecosystem carbon exchange: From

observation to prediction. Global ecology and biogeography, 26(11), 1225-1237, 2017

O’Dell, C. W., Eldering, A., Wennberg, P. O., Crisp, D., Gunson, M. R., Fisher, B., et al.: Improved retrievals of carbon dioxide

from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm. Atmospheric Measurement Techniques, 11(12), 6539–6576.

https://doi.org/10.5194/amt-11-6539-2018, 2018460

15

https://doi.org/10.5194/acp-2020-285
Preprint. Discussion started: 24 April 2020
c© Author(s) 2020. CC BY 4.0 License.



Oliphant, A., C. Susan, B. Grimmond, H. P. Schmid, and C. A. Wayson: Local-scale heterogeneity of photosynthetically active radiation

(PAR), absorbed PAR and net radiation as a function of topography, sky conditions and leaf area index, Remote Sens. Environ., 103(3),

324–337, doi:10.1016/j.rse.2005.09.021, 2006

Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., et al.: Terrestrial Ecoregions of the

World: A New Map of Life on Earth. BioScience, 51(11), 933. https://doi.org/10.1641/0006-3568(2001)051[0933:teotwa]2.0.co;2, 2006465

Palmer, P. I., Feng, L., Baker, D., Chevallier, F., Bösch, H., and Somkuti, P.: Net carbon emissions from African biosphere dominate pan-

tropical atmospheric CO2 signal. Nature Communications, 10(1), 3344. https://doi.org/10.1038/s41467-019-11097-w, 2019

Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Conway, T. J., Masarie, K., et al.: An atmospheric perspective on North American

carbon dioxide exchange: CarbonTracker. Proceedings of the National Academy of Sciences of the United States of America, 104(48),

18925–18930. https://doi.org/10.1073/pnas.0708986104, 2007470

Peylin, P., Law, R. M., Gurney, K. R., Chevallier, F., Jacobson, A. R., Maki, T., et al.: Global atmospheric carbon budget: Results from an

ensemble of atmospheric CO 2 inversions. Biogeosciences, 10(10), 6699–6720. https://doi.org/10.5194/bg-10-6699-2013, 2013

Philip, S., Johnson, M. S., Potter, C., Genovesse, V., Baker, D. F., Haynes, K. D., Henze, D. K., Liu, J., and Poulter, B.: Prior bio-

sphere model impact on global terrestrial CO2 fluxes estimated from OCO-2 retrievals, Atmos. Chem. Phys., 19, 13267–13287,

https://doi.org/10.5194/acp-19-13267-2019, 2019475

Phillips, O. L., Aragão, L. E., Lewis, S. L., Fisher, J. B., Lloyd, J., López-González, G., ... and Van Der Heijden, G.: Drought sensitivity of

the Amazon rainforest. Science, 323(5919), 1344-1347. https://doi.org/10.1126/science.1164033, 2009

Piao, S., Liu, Z., Wang, T., Peng, S., Ciais, P., Huang, M., ... and Jeong, S. J.: Weakening temperature control on the interannual variations

of spring carbon uptake across northern lands. Nature Climate Change, 7(5), 359-363, 2017

Raich, J. W.: Potential net primary productivity in South America: application of a global model. Ecological Applications, 1(4), 399–429.480

https://doi.org/10.2307/1941899,1991

Randerson, J.T., G.R. van der Werf, L. Giglio, G.J. Collatz, and P.S. Kasibhatla.: Global Fire Emissions Database, Version 4.1 (GFEDv4).

ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1293, 2018

Rodgers, C. D.: Inverse methods for atmospheric sounding: theory and practice (Vol. 2). World scientific, 2000

Schuh, A. E., Jacobson, A. R., Basu, S., Weir, B., Baker, D., Bowman, K., ... and Denning, S.: Quantifying the impact of atmospheric transport485

uncertainty on CO2 surface flux estimates. Global Biogeochemical Cycles, 33(4), 484-500. https://doi.org/10.1029/2018GB006086, 2019

Schwarz, G.: Estimating the dimension of a model, Ann. Stat., 6, 461–464, available at: http://www.jstor.org/stable/2958889, 1978

Shiga, Y. P., Michalak, A. M., Fang, Y., Schaefer, K., Andrews, A. E., Huntzinger, D. H., ... and Wei, Y.: Forests dominate the interannual

variability of the North American carbon sink. Environmental Research Letters, 13(8), 084015. https://doi.org/10.1088/1748-9326/aad505,

2018490

Takahashi, T., Sutherland, S., and Kozyr, A.: Global Ocean Surface Water Partial Pressure of CO2 Database: Measurements Performed

During 1957–2015 (Version 2015), ORNL/CDIAC-160, NDP-088(V2015), Oak Ridge National Laboratory, U.S. Department of Energy,

Oak Ridge, Tennesee, http://doi.org/10.3334/CDIAC/OTG.ND P088(V2015), 2016

Tarantola, A.: Inverse problem theory and methods for model parameter estimation (Vol. 89). SIAM, 2005

Wang, X., Piao, S., Ciais, P., Friedlingstein, P., Myneni, R. B., Cox, P., ... and Yang, H.: A two-fold increase of carbon cycle sensitivity to495

tropical temperature variations. Nature, 506(7487), 212-215, 2014

Wang, H., Jiang, F., Wang, J., Ju, W., and Chen, J. M.: Terrestrial ecosystem carbon flux estimated using GOSAT and OCO-2 XCO 2 retrievals

. Atmospheric Chemistry and Physics, 19(18), 12067–12082. https://doi.org/10.5194/acp-19-12067-2019, 2019

16

https://doi.org/10.5194/acp-2020-285
Preprint. Discussion started: 24 April 2020
c© Author(s) 2020. CC BY 4.0 License.



Wells, K. C., Millet, D. B., Bousserez, N., Henze, D. K., Griffis, T. J., Chaliyakunnel, S., Dlugokencky, E. J., Saikawa, E., Xiang, G., Prinn,

R. G., O’Doherty, S., Young, D., Weiss, R. F., Dutton, G. S., Elkins, J. W., Krummel, P. B., Langenfelds, R., and Steele, L. P.: Top-down500

constraints on global N2O emissions at optimal resolution: application of a new dimension reduction technique, Atmospheric Chemistry

and Physics, 18, 735–756, https://doi.org/10.5194/acp18-735-2018, 2018

Yadav, V., Mueller, K. L., Dragoni, D., and Michalak, A. M.: A geostatistical synthesis study of factors affecting gross primary productivity

in various ecosystems of North America. Biogeosciences, 7(9), 2655-2671. https://www.biogeosciences.net/7/2655/2010/, 2010

Yadav, V., Mueller, K. L., and Michalak, A. M.: A backward elimination discrete optimization algorithm for model selection in spatio-505

temporal regression models. Environmental Modelling and Software, 42, 88–98. https://doi.org/10.1016/j.envsoft.2012.12.009, 2013

Yang, D., Liu, Y., Cai, Z., Chen, X., Yao, L., and Lu, D.: First Global Carbon Dioxide Maps Produced from TanSat Measurements. Advances

in Atmospheric Sciences, 35(6), 621–623. https://doi.org/10.1007/s00376-018-7312-6, 2018

Zeri, M., Sá, L. D. A., Manzi, A. O., Araú, A. C., Aguiar, R. G., Von Randow, C., et al.: Variability of carbon and water fluxes following

climate extremes over a tropical forest in southwestern amazonia. PLoS ONE, 9(2). https://doi.org/10.1371/journal.pone.0088130, 2014510

Zucchini, W: An introduction to model selection. Journal of mathematical psychology, 44(1), 41-61, 2000

17

https://doi.org/10.5194/acp-2020-285
Preprint. Discussion started: 24 April 2020
c© Author(s) 2020. CC BY 4.0 License.



Figure 1. The seven biome-based regions aggregated from a world biome map in Olson et al (2001). .
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Figure 2. Estimated terrestrial fluxes from (a) the deterministic component (Xβ) and (b) the stochastic component (ζ). The sum of these

two components equals (c) the posterior flux estimates (s). Here the posterior flux estimates include contributions from all source types,

including flux patterns that map onto fossil fuels from ODIAC2016. 19

https://doi.org/10.5194/acp-2020-285
Preprint. Discussion started: 24 April 2020
c© Author(s) 2020. CC BY 4.0 License.



Figure 3. . The correlation coefficient (R) between 2-m air temperature and PAR within different global biomes. The left panel shows

correlations between air temperature and PAR from MERRA-2, re-gridded to the GEOS-Chem model grid; these environmental drivers

are the columns of X (Eq. 1). The right panel displays the correlations between these variables after they have been passed through an

atmospheric model, h(X). The correlation between 2-m air temperature and PAR is weak (R < 0.4) in most of the biomes; however, the

correlation is much stronger (R > 0.8) when these environmental drivers are passed through an atmospheric model. The correlations among

other pairs of environmental drivers show similar patterns.
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Figure 4. Monthly averaged biospheric CO2 fluxes over (a) temperate forests and (c) tropical forests; and contributions from different

environmental drivers (Xβ), the intercept terms and the stochastic component (ζ), respectively, to the flux estimate (b and d). Shaded

areas indicate the 95% confidence interval. Precp, Scaled temp, and Intercepts + sc denote daily precipitation, scaled temperature, and

combined intercept term and stochastic component, respectively. The example shown here is a prototypical example for two biomes, and Fig.

S3 displays the results for all global biomes.
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Figure 5. The contribution of different environmental drivers (Xβ) to estimated CO2 fluxes from the GIM. The individual panels display the

contribution of a) PAR, b) scaled temperature, c) daily precipitation, d) fossil fuel, e) the intercept terms, and f) the full deterministic model

(Xβ). White colors in panels (a-c) reflect the fact that not all environmental drivers are selected in all biomes.
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Figure 6. Comparison of regional (TRANSCOM-based) biospheric flux estimates in this study (red) and the MIP study (blue).

23

https://doi.org/10.5194/acp-2020-285
Preprint. Discussion started: 24 April 2020
c© Author(s) 2020. CC BY 4.0 License.



Table 1. Estimated drift coefficients (β) and associated uncertainties in β for environmental drivers selected using the BIC.

Biomes Selected environmental drivers Drift coefficients (β) Uncertainties in β, with 95% confidence interval∗

Boreal forests PAR -1.20 0.16

Temperate grasslands
Daily precipitation -0.15 0.05

PAR -0.29 0.04

Temperate forests
Daily precipitation -0.36 0.03

PAR -0.81 0.03

Tropical grasslands
Daily precipitation -0.55 0.06

Scaled Temperature -0.35 0.04

Tropical forests

Daily precipitation -0.23 0.05

PAR 0.27 0.05

Scaled Temperature -0.04 0.02

Desert and shrublands
Daily precipitation -0.27 0.03

Scaled Temperature -0.07 0.01
∗The Supplement Sect. S5 provides detail on the calculations of uncertainties in β .

Table 2. Biospheric CO2 flux totals estimated for different global biomes.

Biomes Tundra Boreal forestsTemperate grasslandsTemperate forestsTropical grasslandsTropical forestsDesert/shrublands

Flux budget (Gt C yr−1, -0.01 ± -0.62 ± -1.71 ± -1.78 ± 1.21 ± 1.16 ± 0.02 ±
with 95% confidence interval) 0.31 0.25 0.43 0.27 0.44 0.76 0.30
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