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S1. Additional detail on covariance parameter optimization 24 

We use Restricted Maximum Likelihood (RML; e.g., Kitanidis, 1997; Gourdji et al., 2012; 25 

Miller et al., 2016) to estimate the covariance parameters that define Q, including the variance of 26 

Q (referred to as 𝜎𝑄
 2), the decorrelation length (l), and the decorrelation time (t) (Table S1). We 27 

iteratively optimize these covariance parameters using flux data from CarbonTracker (CT2017, 28 

Peters et al., 2007, https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/). Here we assume that 29 

the spatial and temporal properties of CO2 fluxes from CT2017 are a reasonable proxy for the 30 

covariance parameters that should be used in the GIM. Several previous studies have also used 31 

this proxy approach to estimate covariance parameters in the inverse model (e.g., Mueller et al., 32 

2008; Gourdji et al., 2008, 2010, 2012). Note that we estimate the parameters for land and ocean 33 

separately. The terrestrial flux estimate from CT2017 includes several flux types, i.e., biospheric, 34 

fossil fuel and biomass burning fluxes. We sum all of these flux types and apply RML to the 35 

total terrestrial flux. All the flux data from CT2017 are re-gridded to 4o latitude by 5o
 longitude 36 

spatial and daily temporal resolution before applying RML, consistent with our GIM setup.  37 

Note that variances estimated here are similar to previous, global GIM studies but the correlation 38 

lengths are shorter. Specifically, Mueller et al. (2008) and Gourdji et al (2008) estimated global 39 

CO2 fluxes for years 1997 to 2001 using in situ CO2 observations and a GIM. They estimated a 40 

variance (𝜎𝑄
 2) of 0.40 and 0.28 (μmol/m2/s)2 for land regions, respectively, and a variance of 41 

0.003 (μmol/m2/s)2 for oceans, roughly similar to the numbers here. By contrast, they estimated 42 

correlation lengths of 5400 and 8100 km, respectively, for land regions and 17,100 km for 43 

oceans. Note that those studies used an exponential covariance model, and the exponential 44 

correlation length parameters listed in those studies are equal to one-third of the full correlation 45 

lengths listed above. By contrast, the full correlation length and correlation length parameter (l) 46 

are the same for the spherical model used here. Mueller et al. (2008) and Gourdji et al (2008) 47 

estimated global CO2 fluxes using an in situ network that was geographically sparse compared to 48 

the current OCO-2 observations, and the long correlation lengths used in those studies were 49 

likely helpful for interpolating CO2 fluxes in regions with poor observational constraints. By 50 

contrast, the shorter correlation lengths estimated in this study are likely more appropriate given 51 

the greater spatial density of OCO-2 observations relative to the in situ network at the turn of the 52 

century. 53 

https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/)
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We further construct R as a diagonal matrix with constant elements on the diagonal, and here we 54 

use values for R from existing literature (Miller et al., 2018). Miller et al (2018) evaluated when 55 

and where the OCO-2 observations can constrain biospheric flux variability. As part of that 56 

study, the authors estimated a variance for R of (1.19 ppm)2.  57 

Table S1. Estimated covariance matrix parameters using a spherical covariance model 58 

Covariance 

parameters 
𝜎𝑄

 2
 
 ((μmol/m2/s)2) l (km) t (days) 

Land 0.3 1876 5.7 

Ocean 0.012 5013 8.2 

 59 

 S2. Scaled temperature function  60 

Most terrestrial biosphere models (TBMs) estimate CO2 fluxes as a nonlinear or piecewise 61 

function of temperature (e.g., Randerson et al., 1997; Thornton et al., 2009; Dayalu et al., 2018). 62 

In this study, we use a scaled function of temperature from the Vegetation Photosynthesis and 63 

Respiration Model (VPRM, Mahadevan et al., 2008; Dayalu et al., 2018) as an environmental 64 

driver in the inverse model (in X, Eq. 1). This function peaks at the optimal temperature for 65 

photosynthesis and declines at higher and lower temperatures: 66 

𝑻𝒔𝒄𝒂𝒍𝒆 =
(𝑻𝒂𝒊𝒓−𝑻𝒎𝒊𝒏)(𝑻𝒂𝒊𝒓−𝑻𝒎𝒂𝒙)

(𝑻𝒂𝒊𝒓−𝑻𝒎𝒊𝒏)(𝑻𝒂𝒊𝒓−𝑻𝒎𝒂𝒙)−(𝑻𝒂𝒊𝒓−𝑻𝒐𝒑𝒕)
𝟐                                                               (S1) 67 

The scaled temperature (Tscale) is calculated based on a minimum (Tmin = 0 oC) and maximum 68 

(Tmax = 40 oC) temperature threshold and an optimal temperature (Topt) for photosynthesis which 69 

is set for each biome. In this study, we follow existing literature (Mahadevan et al., 2008; Luus 70 

et al., 2017; Dayalu et al., 2018) and set an optimal temperature of 15 oC for tundra and boreal 71 

biomes, and 20 oC for temperate, tropical, and desert/shrubland biomes. An example of scaled 72 

temperature as a function of air temperature over the temperate forest biome is illustrated in Fig. 73 

S1.  74 

 75 

S3. Additional detail on the Bayesian Information Criterion (BIC) 76 

We evaluate a total of 5,366 combinations of environmental drivers using model selection, and 77 

Table S2 lists 10 combinations of environmental drivers with the lowest BIC scores. The BIC 78 

rewards combinations of environmental drivers in X that better reproduce OCO-2 observations 79 
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and penalizes combinations with many environmental drivers to prevent overfitting; the best 80 

combination of environmental drivers is the combination with the lowest score. Note that the 81 

branch and bound algorithm used here (Yadav et al., 2013) is designed to minimize the number 82 

of combinations that need to be evaluated to find the combination with the lowest BIC score. As 83 

a result, Table S2 is not exhaustive and only lists the top 10 combinations among those 84 

evaluated. 85 

The differences in BIC scores among models provides a way of evaluating evidence for or 86 

against each model. Previous studies (e.g., Kass and Raftery, 1995; Raftery, 1995) suggested that 87 

differences in BIC scores from 0 to 2, 2 to 6, 6 to 10, and larger than 10 indicate weak, positive, 88 

strong and very strong evidence, respectively, for the lower-scoring model. For example, the 89 

difference in BIC scores between the best and 2nd-best models is 1, indicating weak evidence for 90 

the best model over the 2nd-best model (Kass and Raftery, 1995). The 2nd-best model includes 91 

two additional drivers than the best model -- scaled temperature in temperate grasslands and in 92 

temperate forests. However, these additional environmental drivers play a very small role in the 93 

deterministic model; the estimated β values assigned to scaled temperature from temperate 94 

grasslands and from temperate forests are very small (i.e., -0.04 and -0.07, respectively). By 95 

contrast, the difference in BIC scores between the best model and 10th-best model is 8, 96 

suggesting strong evidence in favor of the best model over the 10th-best model.  97 

Most of the models in positions 2 through 10 in Table S2 contain more variables than the best 98 

model. Many of these models include scaled temperature for temperate biomes and many include 99 

soil moisture for the desert/shrubland biome. For example, we select four more drivers in the 100 

10th-best model than in the best model. These additional environmental drivers in models 2 101 

through 10 result in a larger penalty term in the BIC, and that penalty is greater than the 102 

improvement in model-data fit due to the inclusion of additional drivers. 103 

 104 

 105 

 106 

 107 

 108 

 109 

 110 
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Table S2. Combinations of environmental drivers with the lowest BIC scores 111 
Model Selected Environmental drivers* 

 

Number 

of 

selected 

environ

mental 

drivers 

BIC 

Score 

BIC 

difference 

Boreal 

forests 

Temperat

e 

grasslands 

Temperat

e forests 

Tropical 

grassland

s 

Tropica

l forests 

Deserts/shru

blands 

1 (the best 

model) 

PAR Precip; 

PAR 

Precip; 

PAR 

Precip; 

Scaled 

Temp 

Precip; 

Scaled 

Temp; 

PAR 

Precip; 

Scaled Temp 

12 10217 0 

2 PAR Precip; 

PAR; 

Scaled 

Temp 

Precip; 

PAR; 

Scaled 

Temp 

Precip; 

Scaled 

Temp 

Precip; 

Scaled 

Temp; 

PAR 

Precip; 

Scaled Temp 

14 10218 1 

3 PAR Precip; 

PAR; 

Scaled 

Temp 

Precip; 

PAR; 

Scaled 

Temp 

Precip; 

Scaled 

Temp 

Precip; 

Scaled 

Temp; 

PAR 

Precip; 

Scaled Temp 

Soil moist 

15 10219 2 

4  PAR Precip; 

PAR 

Precip; 

PAR; 

Scaled 

Temp 

Precip; 

Scaled 

Temp 

Precip; 

Scaled 

Temp; 

PAR 

Precip; 

Scaled Temp 

13 10220 3 

5 PAR Precip; 

PAR; 

Scaled 

Temp 

Precip; 

PAR 

Precip; 

Scaled 

Temp 

Precip; 

Scaled 

Temp; 

PAR 

Precip; 

Scaled Temp 

13 10221 4 

6 PAR Precip; 

PAR; 

Scaled 

Temp 

Precip; 

PAR; 

Scaled 

Temp 

Precip; 

Scaled 

Temp 

Precip; 

Scaled 

Temp; 

PAR 

Precip; 

Scaled 

Temp; 

PAR 

15 10224 7 

7 PAR Precip; 

PAR 

 

Precip; 

PAR; 

Scaled 

Temp 

Precip; 

Scaled 

Temp 

Precip; 

Scaled 

Temp; 

PAR 

Precip; 

Scaled 

Temp; 

Soil moist 

14 10224 7 

8 PAR PAR Precip; 

PAR 

Precip; 

Scaled 

Temp 

Precip; 

Scaled 

Temp; 

PAR 

Precip; 

Scaled Temp 

11 10225 8 

9  PAR Precip; 

PAR; 

Scaled 

Temp 

Precip; 

PAR; 

Scaled 

Temp 

Precip; 

Scaled 

Temp 

Precip; 

Scaled 

Temp; 

PAR 

Precip; 

Scaled 

Temp; 

Soil moist; 

PAR 

16 10225 8 

10 PAR Precip; 

PAR; 

Scaled 

Temp 

Precip; 

PAR; 

Scaled 

Temp 

Precip; 

Scaled 

Temp; 

PAR 

Precip; 

Scaled 

Temp; 

PAR 

Precip; 

Scaled 

Temp; 

Soil moist 

16 10225 8 

*Precip, Scaled Temp, and Soil moist denote daily precipitation, scaled temperature, and soil moisture, 112 
respectively.  113 

 114 
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S4. Additional detail on the reduced-rank approximation approach 115 

We estimate the posterior uncertainties using a reduced rank algorithm (e.g., Saibaba and 116 

Kitanidis, 2015; Miller et al. 2019). This algorithm is computationally feasible even for very 117 

large inverse problems; it uses a reduced rank approximation of a matrix product to improve the 118 

computational efficiency of the uncertainty calculations. The more eigenpairs used in this 119 

approximation, the more accurate the uncertainty estimate. Fig. S2 displays the estimated 120 

posterior uncertainties as a function of the number of eigenpairs used in the reduced rank 121 

approach. In brief, we employ two forward model runs and two adjoint model runs to create each 122 

approximate eigenpair using a randomized algorithm (Halko et al., 2011; Saibaba and Kitanidis, 123 

2015). The posterior uncertainties decrease and gradually converge toward the solution as the 124 

number of eigenpairs increases. In this particular study, the posterior uncertainties begin to 125 

asymptote toward a stable value when the number of eigenpairs approaches 90. To be safe, we 126 

use 100 eigenpairs to estimate the uncertainties in this study. 127 

 128 

S5. Additional detail on the posterior uncertainty estimate for biospheric fluxes  129 

We estimate biospheric fluxes as the difference between the posterior flux estimate and the flux 130 

patterns that map onto the ODIAC fossil fuel inventory, 𝒔 − 𝑿𝒇𝒇𝛽𝑓𝑓. Xff (m × 1) is the column 131 

associated with fossil fuel emissions included in X, and βff is the drift coefficient for fossil fuel 132 

emissions.  133 

We also estimate the uncertainty in this biospheric contribution (Table 2 and Figure 5). These 134 

uncertainty calculations require calculating the posterior covariance of both s and β (e.g., 135 

Michalak et al., 2004; Saibaba and Kitanidis, 2015): 136 

[
𝐕𝐬  𝐕𝐬𝛃

 𝐕𝛃𝐬  𝐕𝛃
] = [

(𝐐−𝟏 + 𝐇𝐓(𝐑−𝟏𝐇) −𝐐−𝟏𝐗

−𝐗𝐓𝐐−𝟏 𝐗𝐓𝐐−𝟏𝐗
]

−1

                                    (S2) 137 

where 𝐕𝐬 (m × m), 𝐕𝛃 (p × p), 𝐕𝐬𝛃 (m × p), and 𝐕𝛃𝐬 (p × m) is the posterior covariance of s, the 138 

posterior covariance of β, the posterior covariance of s and β, and the posterior covariance of β 139 

and s, respectively. It is not computationally feasible to directly calculate Eq. S2 due to the size 140 

of the matrix inverse on the right-hand side. Hence, we take the inverse of the matrices in Eq. S2 141 

using the properties of a block matrix (e.g., Lu and Shiou, 2002; Saibaba and Kitanidis, 2015) 142 

and then substitute the equations for the matrices V1, V2, and V3 (Eqs. 5-7) into the expression of 143 
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𝐕𝐬, 𝐕𝛃, 𝐕𝐬𝛃, and 𝐕𝛃𝐬: 144 

𝐕𝐬 = 𝐕𝟏 + 𝐕𝟐𝐕𝟑𝐕𝟐
𝐓                                                                                                  (S3)    145 

𝐕𝛃 = 𝐕𝟑                                                                                                                    (S4) 146 

𝐕𝐬𝛃 = 𝐕𝟐𝐕𝟑                                                                                                              (S5) 147 

𝐕𝛃𝐬 = 𝐕𝟑𝐕𝟐
𝑻                                                                                                             (S6)  148 

Following the variance sum law, we estimate the posterior uncertainty for biospheric fluxes 149 

(𝐕𝐬−𝑿𝒇𝒇𝛽𝑓𝑓 
, dimensions m × m): 150 

𝐕𝐬−𝑿𝒇𝒇𝛽𝑓𝑓
= 𝐕𝐬 + 𝑿𝒇𝒇𝑉𝛽,𝑓𝑓𝑿𝒇𝒇

𝑻 − 𝟐𝑽𝒔𝜷,𝒇𝒇𝑿𝒇𝒇
𝑻                                                         (S7) 151 

where 𝑉𝛽,𝑓𝑓 (1 × 1) is the covariance matrix of β associated with fossil fuel emissions (βff), 152 

𝑽𝒔𝜷,𝒇𝒇 (m × 1) is the covariance of s and βff. 153 

 154 

S6. Sensitivity analysis on the impact of biomass burning and ocean fluxes in the model 155 

selection 156 

We do not select biomass burning emissions from the Global Fire Emissions Database (GFED) 157 

version 4.1 (Randerson et al., 2018) or ocean fluxes from Takahashi et al. (2016) using the BIC. 158 

This result suggests that neither biomass burning fluxes from GFED nor ocean fluxes from 159 

Takahashi et al. (2016) help reproduce the OCO-2 observations more than the penalty term in 160 

the BIC (Sect. 2.5).  161 

Indeed, we construct a sensitivity test to examine the impact of GFED and ocean fluxes from 162 

Takahashi et al. (2016) on the model selection. In the sensitivity test, we only evaluate 163 

combinations of variables for X that include biomass burning emissions from GFED and ocean 164 

fluxes from Takahashi et al. (2016) (Table S3). The sensitivity test shows that the inclusion of 165 

GFED and/or ocean fluxes from Takahashi et al. (2016) in X yields much larger BIC scores 166 

(>10) relative to formulations of X that do not include these variables (Table S3). Furthermore, 167 

the inverse model assigns negative β values to GFED and ocean fluxes from Takahashi et al. 168 

(2016). Evidently, the OCO-2 observations are not sufficient to constrain physically realistic 169 

coefficients (β) for these variables. Moreover, the negative β values associated with GFED and 170 

ocean fluxes from Takahashi et al. (2016) will potentially introduce spurious noise into the flux 171 

estimate and therefore do not help reproduce the OCO-2 observations.  172 

 173 
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Table S3. The impact of biomass burning fluxes from GFED and ocean fluxes from Takahashi 174 

et al. (2016) on BIC scores calculated in model selection. 175 

Case scenarios GFED fluxes are 

always included in 

X 

Ocean fluxes from 

Takahashi et al. 

(2016) are always 

included in X 

Both GFED and 

ocean fluxes from 

Takahashi et al. 

(2016) are always 

included in X 

No requirement 

that GFED or 

Takahashi et al. 

(2016) is included 

in X.  

Lowest BIC 

score 

10298 10275 10284 10217 

 176 

 177 

S7. Comparison of posterior atmospheric CO2 concentrations and aircraft-based in situ 178 

observations 179 

We pass the posterior fluxes (s, Figure 2c) through the transport model (GEOS-Chem) to 180 

estimate atmospheric CO2 and compare this estimate with aircraft observations of CO2. We 181 

obtain aircraft data from the GLOBALVIEW+ package (Version 5.0, Cooperative Global 182 

Atmospheric Data Integration Project, 2019) and the National Institute for Space Research 183 

(INPE) ObsPack data product (version 2.0, NOAA Carbon Cycle Group ObsPack Team, 2018; 184 

Masarie et al., 2014). Here we compare against aircraft observations from six sampling sites 185 

(Table S4) across boreal, temperate and tropical regions. We do not compare against aircraft 186 

observations from sites that are on or off the coast of continents (e.g., Offshore Cape May, New 187 

Jersey, USA (CMA), or Offshore Corpus Christi, Texas, USA (TGC) ), as it is difficult to 188 

simulate atmospheric CO2 for coastal sites given relatively coarse spatial resolution of GEOS-189 

Chem (i.e., 4 o latitude × 5 o longitude in this study). We also do not use aircraft data with very 190 

limited temporal coverage. For example, there are only two months of available observations at 191 

West Branch, Iowa, USA (WBI) and Homer, Illinois, USA (HIL) in year 2016. We further 192 

compare modeled and measured aircraft observations both above and below 3000 masl., 193 

consistent with the set up in Crowell et al (2019).  194 

Modeled CO2 mixing ratios agree closely with aircraft observations (Figs. S5 and S6). For 195 

aircraft observations above 3000 masl. (Fig. S5), the biases between modeled and observed CO2 196 

mixing ratios are small (i.e., -0.33 to 0.14 ppm), and the root-mean-square errors (RMSEs) range 197 

https://www.esrl.noaa.gov/gmd/dv/site/CMA.html
https://www.esrl.noaa.gov/gmd/dv/site/CMA.html
https://www.esrl.noaa.gov/gmd/dv/site/TGC.html
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from 0.63 to 1.04 ppm. For aircraft observations below 3000 masl (Fig. S6), there are larger 198 

model-data biases (i.e., -0.37 to 0.82 ppm) than those above 3000 masl, but the biases reported 199 

here are nevertheless broadly consistent with comparisons in the recent MIP study (Crowell et 200 

al., 2019). This agreement between modeled and observed CO2 implies an absence of major 201 

biases in the GIM flux estimate. Crowell et al (2019) provide further comparisons between CO2 202 

flux estimates derived from OCO-2 and global in situ CO2 observations.    203 

 204 

Table S4. Regular aircraft monitoring sites used in this study 205 

Site code Location Longitude Latitude Network 

PFA Poker Flat, Alaska, 

USA 

-148.76 64.90 NOAA/ESRL 

Global 

Greenhouse Gas 

Reference 

Network (e.g., 

Sweeny et al., 

2015) 

ETL East Trout Lake, 

Saskatchewan, Canada 

-104.99 54.35 

SGP Southern Great Plains, 

Oklahoma, USA 

-97.49 36.61 

LEF Park Falls, Wisconsin, 

USA 

-90.27 45.95 

ALF Alta Floresta, Brazil -56.79 -8.92 INPE 

RBA Rio Branco, Brazil -67.6 -9.36 

 206 

 207 

 208 

 209 
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Figure S1. Scaled air temperature function for photosynthesis. This figure displays the 

function used for the temperate forest biome; the function has different optimal temperatures 

in different biomes. 

 210 

 211 
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Figure S2. Estimated posterior uncertainties as a function of the number of eigenpairs 

using the reduced rank approach. The estimated uncertainties decrease as the number of 

eigenpairs increases, and the uncertainty estimate flattens out when the number of 

eigenpairs is 90 or above.   

 212 
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Figure S3. Monthly averaged biospheric CO2 fluxes over (a) boreal forests, (b) temperate grasslands, 

(c) temperate forests, (g) tropical grasslands, (h) tropical forests, and (i) deserts/shrublands; and 

contributions from different environmental drivers (Xβ), the intercept terms and the stochastic 

component (ζ), respectively, to the flux estimate in each biome (d-l). Shaded areas indicate associated 

uncertainties with 95% confidence interval. Precp, Scaled temp, and Intercepts + sc denote daily 

precipitation, scaled temperature, and combined intercept term and stochastic component, respectively. 

Note we do not show the seasonal patterns over tundra because no environmental drivers are selected 

over tundra (Table 1). The seasonal patterns shown here is a mix of both northern and southern 

hemisphere within each biome. In Fig. S4 we split each biome at the Equator and show more detailed, 

hemispheric seasonal patterns from within each biome.  

 213 
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Figure S4. Monthly averaged biospheric CO2 fluxes from the northern (red) and southern (blue) 

hemisphere, respectively, within each biome. Note we do not show the seasonal pattern from the 

southern hemisphere for boreal forests, as there is no boreal forests biome in the southern hemisphere 

based on the seven-biome map (Fig. 1).  

 214 
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Figure S5. Comparison of modeled and observed CO2 mixing ratios above 3000 masl. at 

several aircraft monitoring sites: (a) PFA, (b) ETL, (c) ESP, (d) LEF, (e) ALF, and (f) RBA.  

 215 

 216 
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Figure S6. Comparison of modeled and observed CO2 mixing ratios below 3000 masl. at 

several aircraft monitoring sites: (a) PFA, (b) ETL, (c) ESP, (d) LEF, (e) ALF, and (f) RBA.  

 217 

 218 
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