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We thank the reviewers for their detailed suggestions and comments on the manuscript. We have 

re-written the manuscript, added substantial new analysis, and included extensive new 

comparisons against independent observations based upon the reviewer suggestions. Below, we 

have replied to each review and have detailed the corresponding edits that we have made to the 

manuscript. We have listed out the reviewer comments in italic font and the replies in regular 

font. 

 

RC1: Referee #1 

The authors have developed a geostatistical inverse method to interpret satellite observations of 

carbon dioxide (CO2) collected by the NASA Orbiting Carbon Observatory collected during 

2016. As far as this reviewer can see the study is scientifically sound but describes only an 

incremental improvement to the method and does not lead to any new scientific insight. 

 

We have re-written most of the manuscript, overhauled the inverse modeling setup, and added 

substantial new analysis to improve the novelty and scientific messaging. Specifically, in the 

revised manuscript, we have added the following new analyses: 

• We compare the environmental relationships that we infer from OCO-2 against the 

relationships that we infer from 15 terrestrial biosphere models (TBMs) from the recent 

TRENDY model comparison project (Sect. 3.3). 

• We evaluate when and where TBMs agree and disagree on these relationships and what 

factors might be driving these disagreements among TBMs (Sect. 3.3). 

• We have expanded the analysis from one year to four years. 

• We have added analysis to better explore what factors limit our ability to infer these 

environmental relationships using current satellite observations from OCO-2 (Sect. 3.1). 
• We have added extensive evaluation against ground-based CO2 observations (the 

Supplemental Sect. S4, Figs. S2-S12, and Tables S2-S3). 
 

The environmental drivers for ecosystems located at mid/high and tropical ecosystems 

are unsurprising. Perhaps that’s the point. I wasn’t sure. PAR is by definition photosynthetic 

active radiation so its ability to describe large-scale CO2 fluxes isn’t anything new, particularly 

over one year that is dominated by the seasonal cycle. Any insights from using the diffuse and 

direct components of PAR? Similarly, temperature and precipitation roles in the tropics are 

nothing new. However, I am surprised that precipitation is such a useful driver over the tropics 

where complex basin-scale hydrologic controls are at play. In other words, where it rains is not 

necessary where the water ends up. 

 

We agree that these environmental drivers are unsurprising. In the revised manuscript, we have 

added analysis comparing the relationships that we infer from OCO-2 observations against those 

inferred from 15 TBMs (Sect. 3.3). Existing terrestrial biosphere models (TBMs) disagree on the 

relationships between these environmental drivers and CO2 fluxes; TBMs show a large range of 

relationships, and for some variables like precipitation, TBMs often disagree on the sign of that 

relationship. We feel that this new comparison with process-based models provides better depth 

and novelty to the manuscript. 

 

It is true that where it rains is not necessarily where water ends up, particularly at fine spatial 

scales like the scale of a stream catchment. In this study, we model fluxes at a much broader 
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spatial resolution that reflects the resolution of the GEOS-Chem model (4 degrees latitude by 5 

degrees longitude). At that broad scale, patterns in spatially-averaged precipitation are more 

strongly correlated with surface soil moisture than at finer spatial scales. Note that we ran several 

test simulations where we offered up both precipitation and soil moisture as auxiliary variables in 

the inverse model, but the model selection framework only chose one of the two (precipitation); 

those two predictor variables were highly colinear or correlated, indicating that the inverse model 

did not have the power to distinguish between the two. Furthermore, precipitation was included 

as a standardized input variable in the TRENDY model inter-comparison, so we wanted to at 

least offer up precipitation as a candidate auxiliary variable in the analysis of OCO-2 and the 

TRENDY models. 

 

The authors have gone some way to ‘fess up that the geostatistical inverse method uses prior 

information for which I commend them. It might not be defined in the same way as the classical 

Bayesian approach but nonetheless it uses prior information. Otherwise, inferring fluxes for 10ˆ6 

grid boxes using 10ˆ5 measurements is an ill-posed problem. The method uses environment 

driver data with uncertainties that are difficult to quantify (see comment below about estimated 

posterior uncertainties). 

 

A geostatistical inverse model certainly does use prior information. That information is just in a 

different form than other types of Bayesian inverse modeling. 

 

It would be useful to reiterate to the reader the benefit of the geostatistical inverse 

method over more traditional methods. Certainly, it provides an alternative perspective 

but I have seen no evidence to suggest it is better or worse. 

 

In the revised manuscript, we have added substantial new analysis to better highlight new 

insights facilitated by this approach. This new analysis includes a comparison of the 

environmental relationships that we infer from OCO-2 against those inferred from 15 state-of-

the-art TBMs (Sect. 3.3). Existing studies have used this geostatistical approach to compare the 

environmental relationships in different TBMs (e.g., Huntzinger et al. 2011) and to compare with 

the relationships inferred from in situ atmospheric observations (e.g., Fang and Michalak, 2015). 

In the revised study, we build upon that existing body of work by comparing the relationships 

inferred from OCO-2 across the globe with those inferred from TBMs. 

 

Line 216: This reader is surprised that OCO-2 data are not sensitive to biomass burning 

emissions, particularly during the El Nino period. The manuscript would benefit from having 

more explanation on this point. 

 

We have overhauled the inverse modeling setup to include more prior information on biomass 

burning (from GFED) and ocean fluxes (Sect. 2.6). We have also added a new discussion in the 

results (Sect. 2.6) and SI (the Supplemental Sect. S2) describing the contribution of biomass 

burning fluxes relative to other types of fluxes. In these sections, we also discuss why biomass 

burning fluxes are challenging to uniquely identify and constrain in an inverse model. 

Specifically, the atmospheric signal from biomass burning (as estimated by GFED) is small (0.19 

ppm) relative to anthropogenic emissions (2.7 ppm) and model-data errors specified in the 

inverse model (standard deviation of 0.29 ppm to 4.8 ppm). 
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Why are correlations higher when environmental drivers are passed through the atmospheric 

model. Figure 3 doesn’t cut it - the color scale is almost binary as currently defined. Using the 

square of the correlation might be a better way to illustrate these calculations. 

 

We agree that Fig. 3 in the original manuscript was confusing and have re-designed this 

discussion to more clearly communicate the message we intended to communicate. We have 

replaced Figure 3 in the revised manuscript. 

 

Line 263: widespread and prolonged drought conditions, together with large-scale 

land-use change, is a more accurate description of what’s going on over these regions. 
 

Noted. We have edited Sect. 3.3 in the revised manuscript accordingly. 

 

Paragraph 298: comparison of the reported work and other groups is weak. Not many 

people have used v9 of OCO-2 data so I think it would be useful for the readership to provide a 

more detailed assessment of results compared with past estimates using v7 data. The comparison 

between the model and independent measurements is minimal (in supplementary information). 

The uncertainties associated with the posterior estimates are unrealistically small. The classical 

Bayesian inversion as typically employed underestimates posterior uncertainties so certainly the 

uncertainties estimates reported with the geostatistical method are grossly underestimated. This 

reviewer is left wondering why this might be so and how a possible explanatory imbalance 

between prior and observation uncertainties would influence model selection and the analysis 

that follows. 

 

We have added substantial comparisons against independent measurements in the revised 

manuscript, including comparisons with observations from twenty regular aircraft sites (the 

Supplemental Sect. S4; Figs. S3-S6), the Atmospheric Tomography Mission (ATom) (Fig. S7), 

and 18 sites from the Total Carbon Column Observing Network (TCCON) (Figs. S8-S12). Note 

that, in the revised manuscript, we have used version 9 for the analysis because version 7 

observations are now several years outdated and contain much larger observational errors.  

 

We have also compared our results against the most recent provisional results from the inverse 

modeling inter-comparison (MIP) project that uses version 9 of OCO-2 retrievals (refer to the 

figure below). We find that our flux estimate is usually close to the ensemble mean of the v9 

MIP and is always within one standard deviation of the MIP estimates. Note that the results 

shown below from the v9 MIP are from the MIP website 

(https://www.esrl.noaa.gov/gmd/ccgg/OCO2_v9mip/) and are provisional results that have not 

yet been finalized.  
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Figure R1. Comparison of biospheric flux estimates by TransCom region from this study (red) 

and the v9 MIP (blue). Error bars in the MIP results indicate one standard deviation of flux 

estimates across the ensemble. Our best estimate is usually close to the mean of the v9 MIP study 

and is always within one standard deviation of the MIP results. Furthermore, the GIM estimate 

does not show any consistent bias relative to the MIP ensemble mean. 

 

 

 

We have also overhauled the inverse modeling setup and have set improved values for the 

covariance matrices in the inverse model (R and Q) (Sect. 2.4 and the Supplemental Sect. S1). 

For example, the model-data mismatch errors are now based upon the reported errors in the 10-

second average OCO-2 data product. We have further estimated the relationships between CO2 

fluxes and environmental driver datasets using two different meteorological products (MERRA-2 

and CRUJRA) to explore the sensitivity of these results to the choice of meteorology used for the 

driver datasets. We believe that this revision has yielded better uncertainty estimates in the 

revised manuscript. 

 

Sure, the tropical flux estimates are important to discuss. However, are the reviewers are in a 

position to dismiss the results over tropical North Africa without further explanation. Why did 

they find themselves in terms of environmental drivers? Surely, their results over tropical Africa 

aren’t exclusively determined by measurements collected over tropical Africa? Do they find that 

seasonal differences in measurement over tropical Africa lead to a bias in the flux? Answers to 

these questions would represent a useful contribution to the field. 
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There is almost nothing in the manuscript about the large differences between other 

geographical areas where we would expect much better agreement, e.g temperature North 

America, Europe, Eurasian temperate. Without a more comprehensive evaluation of the fluxes it 

is difficult to know whether the method is at fault or the data they have used. This manuscript 

would benefit greatly from a better evaluation of the posterior fluxes. 

 

We agree that comparing our results using version 9 of the observations against studies that used 

version 7 is not necessarily a fair comparison; there are large differences between v7 and v9 of 

the OCO-2 observations, and differences between existing studies using version 7 and our results 

using version 9 could reflect differences in the observations as much as differences in inverse 

modeling methodology. When we compare the GIM flux estimate against provisional results 

from the most recent MIP, we find much better agreement between our results and the MIP; our 

estimate is always within one standard deviation of the MIP ensemble mean. 

 

In the revised manuscript, we also evaluate our inverse modeling results using numerous ground-

based datasets (the Supplemental Sect. S4, Figs. S2-S12, and Tables S2-S3). We feel that these 

new model-data comparisons provide a much-improved evaluation of the posterior fluxes.  

 

 

Line 59: it would be fairer that Chevallier 2018 argues not suggests. 

 

We have edited this line accordingly. 

 

For context, it would be useful for the reader to understand that 2016 was an El Nino 

Year. 

 

We include four years of observations in the revised manuscript (instead of the one year in the 

original manuscript). We also point out in Sect. 3.3 that 2015-2016 are El Nino years. 

 

Line 91: how did the authors decide that four months was a sufficient spin-up period? 

 

We have clarified this point in the revised manuscript (the Supplemental Sect. S1). We used this 

setup for the model spin-up because it is the same setup used in Miller et al. (2018). We first 

created an initial condition for 1 Sept., 2012 based on NOAA’s Carbon Tracker (CT) product, 

and used CO2 fluxes from CT to run GEOS-Chem forward for two years until 1 Sept., 2014 

when the inverse modeling begins; we ran the CT fluxes through GEOS-Chem for two years to 

make sure the CO2 mixing ratios are consistent with the GEOS-Chem model grid, and therefore 

to minimize potential spin-up artifacts due to model transport. We then run the inverse model 

starting from 1 Sept., 2014, but we consider the result from 2014 as part of an initial model spin-

up period and do not use it for analysis.  

 

 

 

 

 

SC1: Brad Weir 
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In this work, the authors use a geostatistical inverse modelling approach to infer surface fluxes 

from observations of column CO2 by the Orbiting Carbon Observatory 2 (OCO-2). Using these 

estimates, the authors make claims about the environmental drivers of the spatiotemporal 

variability of surface fluxes. However, their evaluation against independent data (sometimes 

coarsely defined as "validation") is not sufficient to support these claims. 

 

We have added extensive evaluation against ground-based observations, including from 20 

regular aircraft sites (the Supplemental Sect. S4; Figs. S3-S6), the Atmospheric Tomography 

Mission (ATom) (Fig. S7), and 18 sites from the Total Carbon Column Observing Network 

(TCCON) (Figs. S8-S12). We find that model-data biases are small across most of the globe 

(except at sites near urban regions) and that the standard deviation of the model-data residuals is 

within the uncertainties specified in the inverse model (i.e., is within the model-data mismatch 

specified within the covariance matrix). The Supplemental Sect. S4 of the revised manuscript 

includes a detailed discussion of these model-data comparisons. 

 

We have also compared our flux estimate against provisional results from the most recent OCO-

2model inter-comparison (MIP) project, and our flux estimate is typically close to the ensemble 

mean and always within one standard deviation of the mean (refer to Fig. R1 above).  

 

Inferring surface carbon fluxes from observations of atmospheric CO2 is an inherently 

ill-defined problem. Its solution, in any form, requires a number of assumptions that are often 

poorly constrained by existing scientific knowledge. The authors do a commendable job of 

explaining that despite erroneous claims in the existing literature to the contrary, geostatistical 

inverse models do in fact use prior information, just in a different form than more common 

approaches. What the authors fail to do is support that their surface flux estimates are fit for the 

scientific purpose at hand. Typically, this is accomplished through comparisons to other 

independent data products. While pedantic, it seems more and more necessary that we remind 

ourselves that inferred surface fluxes fall into the prediction step of the Scientific Method. 

Between that and the analysis step, is the all important testing step. The testing step cannot be 

shortcut – it is the only thing separating science from plausible guesswork.  

 

In order to make claims about the spatiotemporal variability of surface fluxes, the authors must 

first evaluate the fidelity of their surface fluxes’ spatiotemporal variability. While this reviewer 

admits that there is no ideal method of evaluating global surface fluxes of CO2 on horizontal 

scales greater than a few tens of kilometers, a greater effort must be made to demonstrate the 

product is appropriate for the analysis in the text. In particular, the only evaluation of their 

surface fluxes is that of long-term time mean regional budgets (Figure 6) and simulated CO2 at 

just a handful of aircraft profiling sites (Figures S5 and S6). If one is to make claims about 

seasonal cycles, for example, then the seasonal cycle of the inferred fluxes must be evaluated as 

well. Given the assumptions necessary to make these inferences, it is entirely possible that their 

long-term time mean budgets are reasonable and their seasonal cycles are not. This is especially 

important given the documented impact (Basu et al., 2013, ACP; Crowell et al., 2019) that very 

small seasonal and regional biases from satellite retrievals can have on inferred fluxes. Unless 

the authors are able to demonstrate the skill of their product in reproducing variations over the 
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same spatiotemporal scales as the scientific analysis, this review does not see how their claims 

can be supported. 

 

Thank you for the suggestions. We have greatly expanded the model-data evaluation in the 

manuscript (the Supplemental Sect. S4; Figs. S2-S12; and Tables S2-S3). In the original 

manuscript, we compared against a handful of aircraft sites, as the reviewer points out. In the 

revised manuscript, we compare against numerous additional aircraft sites, as well as 

comparisons against TCCON, and comparisons against campaign data from ATom.  

 

 

 

RC2: Julia Marshall 

At first glance it seems that the results of this study make sense, and are consistent with our 

general understanding of what drives carbon fluxes, with uptake at higher latitudes being mostly 

radiation-limited while in the tropics there are more complex temperature-precipitation 

interactions. So far, so good. The paper is well written and clearly structured, making it easy to 

read. To the careful reader it soon becomes clear that something is going wrong, however, and 

the limited "validation" and comparison to other results from the literature are insufficient to 

explain these problems away. While the geostatistical approach is com mendable in that it 

allows more flexibility in the structure of the prior fluxes, such that perhaps unexpected signals 

may emerge, it also seems to allow for rather unphysical results, as in this case. Given the fact 

that the ocean fluxes (a net sink of more than 2 PgC/year) were rejected by the Bayesian 

Information Criterion (BIC) while the net land fluxes are more or less consistent with other 

studies, it seems impossible that the global atmospheric growth rate can be matched. It just does 

not add up. 

 

We estimated ocean fluxes alongside terrestrial fluxes in the inverse model in the original 

manuscript but did a poor job of communicating those results. In the revised manuscript, we 

have not only improved the discussion of ocean fluxes but have also overhauled the inverse 

modeling setup to include more detailed prior information for ocean fluxes. In the revised 

manuscript, we use prior information for ocean fluxes from the NASA Estimating the Circulation 

and Climate of the Ocean (ECCO) Darwin flux product. In our original setup, prior ocean fluxes 

from Takahashi were not selected using the BIC, and the inverse model instead defaulted to a 

non-informative prior over the ocean. In the revised setup, we have grouped together ECCO-

Darwin, anthropogenic emissions (from ODIAC), and biomass burning emissions (from GFED) 

into a single column in the auxiliary variable matrix (X). ECCO-Darwin, when included as a 

separate column of X is not selected, but a column of X that includes all of these prior emissions 

estimates together is selected. 

 

We describe this updated setup in Sect. 2.6 and the Supplemental Sect. S2 of the revised 

manuscript and show ocean fluxes alongside terrestrial fluxes in the inverse modeling results in 

Fig. 5. 

 

This should be obvious when performing validation, but the very little testing of the 

posterior fluxes, limited to a handful of aircraft measurements far from coasts on a 

scatter plot averaged (monthly?) by height, hidden in the supplement, makes it hard 
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to tell. The paper states that aircraft profiles near coasts were not used because the 

coarse model resolution made it hard to represent these data well, but I wonder if the 

complete absence of ocean fluxes may have also played a role here? 

Since none of the in-situ sites were used for constraining the fluxes (which seems 

an odd choice, even if only for comparison’s sake), it would be instructive to plot the 

concentrations resulting from the posterior fluxes at a few sites to see if the curves 

drift apart over the year as a result of the missing sink. While this might not look too 

bad in a simulation of only one year, this would soon result in wildly divergent curves. 

But perhaps over a longer simulation the BIC would then choose to select the ocean 

fluxes. Still, the decision to blindly allow the model to return what we know is incorrect 

makes it hard to trust the interpretation of the results. Perhaps Takahashi was not the 

best ocean prior in this case, especially for an El Niño year, and this played a role: this 

could be an area for more analysis. 

 

In the revised manuscript, we include prior information on ocean fluxes from NASA’s ECCO-

Darwin product instead of from Takahashi. Recent inverse modeling studies using OCO-2 (e.g., 

Liu et al. 2020) have used the ECCO-Darwin product in place of Takahashi. Existing studies 

have also shown that ECCO-Darwin exhibits broad consistency with surface ocean pCO2 

observations (e.g., Carroll et al., 2020), and the global ocean sink from ECCO-Darwin shows 

better agreement with the Global Carbon Project (GCP; Friedlingstein et al., 2019) than from 

Takahashi. We have also added extensive additional model-data comparisons using numerous 

ground-based datasets. These datasets include 20 regular aircraft sites (the Supplemental Sect. 

S4; Figs. S3-S6), the Atmospheric Tomography Mission (ATom) (Fig. S7), and 18 sites from the 

Total Carbon Column Observing Network (TCCON) (Figs. S8-S12). We have further evaluated 

our flux estimate against provisional results from the most recent OCO-2 model-intercomparison 

(MIP) (shown in Fig. R1 above). 

 

The comparison to other model output was largely limited to the OCO-2 model intercomparison 

study of Crowell et al. (2019), without following the considerable effort they put into validation 

or consideration of in-situ measurements. Looking at TCCON sites is an obvious choice, as is the 

extension to additional aircraft measurements, such as AToM, which are available for at least a 

couple months of 2016. But comparing your (unclosed) budget to the land biosphere budget of 

other (mass-conserving) studies is intrinsically misleading. (I am not as surprised that BIC did 

not pick out the GFED emissions, as these are a few orders of magnitude smaller and are easily 

swallowed up in the biosphere signal.) 

 

We have included model-data comparisons against both TCCON and ATom in the revised 

manuscript (the Supplemental Sect. S4 and Figs. S7-S12). 

 

We have also overhauled the inverse modeling setup, and we have reformulated the X matrix in 

the inverse model in a way that ensures the inclusion of more detailed prior information on 

biomass burning fluxes (We specifically do so by grouping GFED in the same column of X with 

anthropogenic emissions and ocean fluxes.) 

 

L10 & L204-205: While the difference in wording is subtle, I think the abstract overstates what 

the meteorological variables explain. Do they really describe 90% of the 
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variability in the fluxes (as seen through OCO-2 observations)? This sort of implies 

that OCO-2 can "see" fluxes, which isn’t true of course. The latter explanation that the 

deterministic model accounts for XX% of the variance in the estimated fluxes seems 

more accurate. As you’re only treating fluxes on a daily time scale, you’re definitely not 

describing 90% of the variability in the fluxes themselves. 

 

Thank you for this suggestion. We have revised the wording of the manuscript accordingly. 

 

Figure 3 and discussion around L235: This is actually quite interesting! I would be 

interested in seeing some more analysis of this point. It was also not entirely clear 

to me what was correlated (and how) in Figure 3. The meteorological variables have 

been "passed through an atmospheric [transport] model": were they then sampled 

as column-averaged variables, as OCO-2 views the atmosphere? Were the same 

averaging kernels applied? It also says that this is the correlation "within different 

global biomes". Were these columns averaged across space then, and the correlation 

taken in time? Or is this a spatial correlation coefficient between the column-averaged 

maps for a given time? I feel like there is an intriguing result here, but I don’t fully 

understand what you’ve done. 

 

We have added an entire section to the results and discussion to elaborate on this point (Sect. 

3.1). We have also revised the analysis described above and instead use synthetic data 

simulations to better communicate the overarching message of this discussion. 

 

L238 & 239: How can you be sure that this collinearity is playing a bigger role than 

retrieval or model errors? Would the latter two effects not also limit the model selection? 

 

It is likely that both colinearity and model-data errors play a key role -- in the results of model 

selection and the uncertainties in the resulting regression coefficients. Numerous existing studies 

have shown that small biases in space-based CO2 observations or atmospheric transport models 

can have significant impacts on CO2 fluxes estimated using inverse modeling. The purpose of 

this discussion is not to minimize the importance of these model-data errors, and we have tried to 

make that clear in the revised manuscript. Rather, we felt that colinearity is an interesting, 

additional consideration when interpreting the results. The problems caused by colinearity are 

unrelated to the model-data errors; colinearity depends upon similarities or differences among 

the predictor variables in the regression, not on the accuracy of the OCO-2 data. Even if the 

OCO-2 data had perfect accuracy and there were no errors in the GEOS-Chem model, the 

analysis of relationships between CO2 fluxes and environmental variables would still be limited 

by colinearity. 

 

L244 & L260: These statements seem to contradict each other. The first says that the negative 

beta values for PAR mean that an increase in PAR leads to a decrease in NEE and an increase 

in uptake. The latter says that the negative beta value for scaled temperature means that an 

increase in temperature leads to reduced uptake. How can these both be true? This is 

fundamental to the conclusions drawn. 
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We have clarified this point in the revised manuscript (Sect. 3.2). An increase in PAR is 

associated with greater CO2 uptake by the biosphere (i.e., negative NEE). The scaled temperature 

function is an upside-down parabola, not a monotonically increasing function. At temperatures 

below 20 – 25 degrees Celsius, an increase in temperature is associated with negative change in 

NEE in the inverse model. At temperatures above 20-25 degrees C, an increase in temperature is 

associated with a positive change in NEE. We also describe this scaled temperature function in 

detail in the Supplemental Sect. S3 and Fig. S1. 

 

L257-258: While cloudiness is correlated with clouds and rainfall, it’s also correlated 

with the presence or absence of satellite measurements. What impact might this have 

on your results? 

 

Data sparsity in cloudy regions is certainly an issue for satellite-based greenhouse gas sensors. 

This issue likely increases the uncertainty in our estimated coefficient for precipitation, 

particularly in wet climates like tropical forests. It may also be one factor in why we only 

selected a limited number of environmental driver datasets in many biomes. We point out and 

discuss this issue in Sect. 3.3 of the revised manuscript. 

 

L302: I’m actually surprised Australia matches as well as it does, as you’ve had to fold 

the Southern Ocean sink into the Southern Hemisphere land fluxes somehow. 

 

We did not do a good job of describing the treatment of ocean fluxes in the inverse model. We 

have both improved the description of ocean fluxes and have overhauled the inverse modeling 

setup to more explicitly include a prior ocean flux estimate within the inverse model. 

 

 

 

RC3: Abhishek Chatterjee 

 

This begs the question – is this study intended to demonstrate that the GIM approach has been 

successfully adapted to remote-sensing observations (i.e., a technical study) or is it intended to 

capture the connections between CO2 fluxes and environmental drivers (i.e., a scientific study)? 

Kindly see Major Comment #1. 

I believe the authors ideally wanted it to address a bit of both but unfortunately, in trying 

to address both, the authors end up addressing neither. I highly recommend that the authors take 

a step back and decide whether to focus on the inversion methodology and application to OCO-2 

retrievals OR highlight the scientific questions related to regional and seasonal environmental 

drivers, and then resubmit. In general, the manuscript is well-written and concise, but it falls 

short of a clear formulation in terms of scientific scope, depth and novelty. 

 

We have re-written the manuscript and focused on the second question described above (the 

connections between CO2 fluxes and environmental drivers). We have also de-emphasized the 

technical or methodological components. We hope that the revised manuscript has a much 

clearer formulation in terms of scope, depth, and novelty. 

 

Several other questions persist. These revolve around limited validation of the posterior 
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flux estimates or posterior CO2 concentrations (see Major Comment #4). The choice of the 
model-data-mismatch variance (R) is inconsistent with real OCO-2 retrievals and needs 

justification in the main text (rather than bypassing it and relegating it to the Supplementary 
Section). R, along with the a priori flux covariance matrix Q, balances the relative weight of the 
atmospheric data and the trend in estimating the fluxes. An inverse modeling study cannot gloss 
over these details (see Major Comment #6). 
 

We have greatly expanded model evaluation and have overhauled the inverse modeling setup, 

including the model-data-mismatch variance. These points are discussed in greater detail below 

in reply to individual reviewer comments. 

 

Scope of the study – as mentioned earlier, the authors need to lay out a clear scope early on 

and remain consistent throughout. If the authors are interested in examining the relationship 

between carbon flux and environmental drivers, a one-year study is not justifiable. The 

authors need to examine the relationship over a number of years, make sure they are 

capturing the inter-annual variability in their flux estimates and then assess the relationship 

between drivers and fluxes. In addition, it is worth noting that the selected year is an El Niño 

year. On Page 3, Lines 86 – 88, the authors justify this decision by pointing out that the 

OCO-2 observations had 7-week gap in 2015- and 1.5-month gap in 2017. Remote sensing 

datasets, or rather any real observations, will always have data gaps! Simply discarding entire 

years’ worth of data for a 5-7-week gap is not a reasonable justification. On the other hand, if 

the authors want to highlight the development of a new inversion framework/methodology, 

then it may be out of scope for ACP, and may be better suited to a journal like GMD, where a lot 

of the mathematical nuances can be captured. Right now, a lot of the important mathematical 

details have been relegated to the supplemental material, including important discussions about 

the error covariance parameters and how they are derived. These details need to be included in 

the main text. 

 

We have re-written the manuscript to focus on the relationships between carbon fluxes and 

environmental drivers and have de-emphasized the inversion framework or methodology. We 

feel that these environmental relationships make for a more interesting scientific study than 

focusing on methodological questions, and we hope that this re-write has yielded a manuscript 

with a much clearer purpose and scope. As part of this revision, we have expanded the time 

period of the study from one year (2016) to four years (2015 - 2018). In addition, we have 

included extensive comparisons with terrestrial biosphere models (TBMs) to improve the depth 

and novelty of the analysis in the manuscript (Sect. 3.3). Specifically, in the revised manuscript, 

we compare the environmental relationships that we infer from OCO-2 with the environmental 

relationships that we infer from 15 state-of-the-art TBMs from the recent TRENDY model 

comparison project. 

 

Scientific novelty – The authors report that a combination of PAR, daily temperature and 

daily precipitation are the most adept at capturing the variability in the fluxes (PAR for midto-

high latitudes and a combination of daily temperature and precipitation for the tropical 

biomes). Neither of these findings are unique. The authors have correctly referred to a host of 

studies using GIM (e.g., Gourdji et al. 2008, Fang and Michalak, 2015, among others) or 

studies using OCO-2 data that have examined the response of the land carbon cycle during 
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the 2015-2016 El Niño (e.g., Liu et al., 2017, Crowell et al., 2019). The BIC did its job and 

picked up the variables it was supposed to; hence, it is slightly unclear how this study adds 

new insights into our knowledge about carbon cycle science. In fact, by the authors own 

admission in Sections 3.1.1 and 3.1.2, almost all their findings are exactly the same as 

reported in previous studies. These two sections almost read like a literature review rather 

than a results section with new and exciting science results. 

 

We have added substantial new analysis to the revised manuscript to improve the novelty and 

depth of the scientific results. Specifically, we not only infer environmental relationships using 

observations from OCO-2 but also compare those against the environmental relationships 

inferred from 15 TBMs for the same time period. Using OCO-2, we find stronger relationships 

between temperature and CO2 fluxes across tropical biomes compared to many TBMs, and we 

find that increases in precipitation across the tropics are associated with greater carbon uptake 

across seasonal time scales and biome-level spatial scales, a result that disagrees with about half 

of the TBMs that estimate the opposite relationship. Overall, there are large uncertainties in the 

environmental relationships within TBMs across all global biomes. The relationships with 

precipitation are most uncertain in these models while TBMs show greatest agreement on the 

relationships with temperature. This disagreement over the relationship with precipitation may be 

due, at least in part, to large disagreements over the fate of precipitation in these ecosystems; 

each the TRENDY models input the same precipitation estimate but yield evapotranspiration that 

differs by up to a factor of three among models, depending upon the season and biome. The 

revised manuscript highlights both the opportunities for informing TBM development using 

atmospheric observations but also the challenges of doing so using current satellite-based 

datasets of CO2. 

 

Selection of auxiliary variables and how they are being reported – what may add a new 

dimension, relative to already published studies, is reporting a table with all the 12 selected 

environmental drivers and including the estimated drift coefficients, coefficient of variation, 

annual average contribution to flux and the correlation coefficient between the selected 

auxiliary variables in the model of the trend. Actually, the annually averaged global 

contribution to flux can be reported in typical carbon flux units (like GtC/yr or PgC/yr). That 

would be novel information, especially if it were to be compared against estimates based on 

in situ data. Finally, just out of curiosity, why didn’t the authors select fPAR instead of PAR? 

Also, the authors argument for not including LAI or SIF because they are “remote sensing 

indices” (Page 5, Lines 144-146) is surprising. Almost all of the auxiliary variables listed on 

Lines 138-141 are derived from remote-sensing measurements. What if the authors were to 

include LAI? How would that change their selected model of the trend? 

 

We have greatly expanded the discussion of the auxiliary variables in the re-written manuscript. 

For example, we have included scatter plots showing the estimated coefficients for each year 

(Fig. 4), compared those coefficients against coefficients estimated from 15 TBMs (Fig. 3a), and 

showed the coefficient of variation (as suggested by the reviewer, Fig. 3b). All of the coefficients 

in the manuscript are listed in units of flux (µmol m-2 s-1), so we can better compare the 

coefficients among different auxiliary variables and different biomes. 
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Note that in the revised manuscript, we have included PAR instead of fPAR. This was an 

oversight on our behalf. Furthermore, we decided not to include remote sensing indices in this 

manuscript because we wanted to focus on comparing the environmental processes in state-of-

the-art TBMs against the relationships that we infer from OCO-2. Some TBMs use remote 

sensing indices like SIF, but some do not. Hence, we felt that it was more appropriate to focus on 

environmental processes instead of vegetation indices like SIF or LAI that may not be applicable 

to many of the TBMs compared in the manuscript. Hence, all of the auxiliary variables used in 

the revised manuscript are from meteorological reanalysis. We wanted to clearly focus the scope 

of this manuscript on environmental processes, but we think that an examination of remote 

sensing indices and global carbon fluxes would make for an interesting future study. 

 

More rigorous evaluation of posterior flux estimates and more importantly, posterior 

concentrations, against independent measurements – The biggest surprise of this study is that 

there are extremely limited evaluations presented against independent measurements (only 7 

aircraft sites!). Given the large number of available independent datasets (in situ such as surface 

flask sites, towers and aircraft, TCCON), the absence of a detailed evaluation is striking. 

Especially, from a seasoned inverse modeling team. Since the authors claim that they are 

estimating daily global CO2 fluxes at the GEOS-Chem grid scale (Page 3, Lines 72-73), there 

should be no reason for not evaluating against observations from dedicated aircraft campaigns 

such as ATom or ACT-America. In addition, it is also not clear why in Section S7, the authors 

allude to the results from Crowell et al. 2019. The authors have to back up their own biases and 

RMSD and explain those numbers and their significance, rather than pointing the reader to 

Crowell et al. 2019 for justification. 

 

We have greatly expanded model-data comparisons in the revised manuscript. In the new 

manuscript, we evaluate the model-data residuals both for the full posterior flux estimate and for 

the component of the fluxes that is described by the auxiliary variables. In addition, we compare 

against numerous independent datasets, including 20 regular aircraft sites (the Supplemental 

Sect. S4; Figs. S3-S6), the Atmospheric Tomography Mission (ATom) (Fig. S7), and 18 sites 

from the Total Carbon Column Observing Network (TCCON) (Figs. S8-S12). We also provide 

model-data evaluations for each year of the four-year study period to show that there is no trend 

in the model-data comparisons (Fig. S2). 

 

Comparison of findings against those derived from in situ data – The value of this study will 

be significantly enhanced, if the authors do the same analyses utilizing in situ data (such as 

NOAA obspack). Are the conclusions, especially in terms of the three significant drivers and 

their contribution to the carbon flux, consistent? It has been 12+ years since the Gourdji et al. 

2008 study attempted such an analysis – given the increase in the number of surface flask sites 

and improvements in atmospheric transport model, availability of auxiliary datasets, it will be 

worth revisiting this and comparing against the information reported here from OCO2 datasets. 

 

Several of the reviewers, including this reviewer, recommended defining a more targeted scope 

and more clearly defined aims in the manuscript, and we have tried to do so in the re-written 

manuscript. The focus of this manuscript is estimating the relationships between CO2 fluxes and 

environmental driver datasets using OCO-2 and comparing those inferences against the 

relationships estimated from 15 state-of-the-art TBMs. We agree that an in situ data study would 
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be interesting, but we feel that this focus would be better left for a separate study in the interest 

of maintaining a targeted scope with clearly defined aims. Furthermore, the results and 

discussion section of the revised manuscript are heavily focused on the tropics, and the in-situ 

observation network is very sparse across the tropics; existing studies have raised questions 

about the strength of the tropical flux constraint in in-situ inversions (e.g., Crowell et al. 2019; 

Piao et al. 2020).  

 

Error covariance parameters – Can the authors explain why they switched to a spherical 

covariance model instead of sticking with a simpler exponential covariance model? The 

authors argue that the shorter correlation length is due to higher density of observations 

relative to previous studies. Part of that is true. But I believe that the shorter correlation 

length in the residuals is more reflective of the model of the trend that has been fitted to large 

biome scales. The model of the trend is too complex for the biome scale; for the grid scale 

studies that the authors allude to, it made sense. Additionally, the authors persist with a 

model-data mismatch variance of 1.19 ppm2 based on a previous pseudo-data study. Why? I 

highly encourage the authors to use the reported XCO2 uncertainty for the OCO-2 soundings 

and then add reasonable representation of transport and representation errors to get ‘real’ 

MDM variances. This shouldn’t be a huge task given the involvement of core GEOS-Chem 

developers in this study. It wouldn’t be surprising if more reasonable R values lead to an 

increase in a posteriori uncertainties for their flux estimates (Page 11, Lines 324-325). 

 

We overhauled the inverse modeling setup in response to suggestions from reviewers and have 

changed the covariance matrix parameters in the inverse model as suggested by this reviewer. 

Specifically, we use estimated model-data mismatch errors from the 10-second OCO-2 data 

product (e.g., Crowell et al. 2019), described in Sect. 2.4 and the Supplemental Sect. S1. In 

addition, we use an exponential model for the Q covariance matrix. Note that a spherical is very 

similar to an exponential model, but a spherical model decays to zero, unlike an exponential 

model which decays to near-zero but never actually reaches zero (e.g., Kitanidis, 1997). A 

spherical model therefore yields covariance matrices that require substantially less computer 

memory, a particular benefit for large inverse problems (e.g., Miller et al. 2020). In this study, 

the components of Q are small enough such that we were able to use an exponential model. 
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Abstract. Observations from the Orbiting Carbon Observatory 2 (OCO-2) satellite , launched in July 2014, have been used to

estimate CO2 fluxes in many regions of the globe and provide new insight on
::::
into the global carbon cycle. A challenge now

is to not only estimate fluxes using satellite observations but also to understand how these fluxes are connected to variations

in environmental conditions. In this study , we specifically evaluate the capabilities and limitations of utilizing current
:::
The

:::::::
objective

::
of

::::
this

:::::
study

::
is

::
to

::::
infer

:::
the

:::::::::::
relationships

:::::::
between

:::::::
patterns

::
in OCO-2 observations to infer connections between CO25

fluxes and underlying environmental variables.To do so, we adapt geostatistical inverse modeling to satellite-based applications

and evaluate a case study for year 2016
::::::::::
observations

:::
and

::::::::::::
environmental

::::::
drivers

:::::
(e.g.,

::::::::::
temperature,

::::::::::::
precipitation)

:::
and

::::::::
therefore

:::::
inform

::
a
:::::::
process

:::::::::::
understanding

:::
of

::::::
carbon

:::::
fluxes

:
using OCO-2. A unique aspect of the geostatistical approach is that we can

use estimates of environmental and meteorological variables to help estimate CO2 fluxes in place of a traditional prior flux

model . We
::
We

:::
use

::
a
:::::::
multiple

:::::::::
regression

:::
and

::::::
inverse

::::::
model,

:::
and

:::
the

:::::::::
regression

::::::::::
coefficients

:::::::
quantify

:::
the

:::::::::::
relationships

:::::::
between10

::::::::::
observations

:::::
from

::::::
OCO-2

::::
and

::::::::::::
environmental

:::::
driver

:::::::
datasets

::::::
within

::::::::
individual

:::::
years

:::
for

::::::::::
2015–2018

:::
and

::::::
within

:::::
seven

::::::
global

::::::
biomes.

:::
We

:::::::::::
subsequently

::::::::
compare

::::
these

:::::::::
inferences

::
to

:::
the

::::::::::
relationships

::::::::
estimated

:::::
from

::
15

::::::::
terrestrial

:::::::::
biosphere

::::::
models

:::::::
(TBMs)

:::
that

::::::::::
participated

::
in

:::
the

::::::::
TRENDY

:::::
model

:::::::::::::::
inter-comparison.

:::::
Using

:::::::
OCO-2,

:::
we are able to quantify the relationships between

::::
only

:
a
::::::
limited

:::::::
number

::
of

::::::::::
relationships

::::::::
between

::::::
patterns

::
in
:::::::::::
atmospheric CO2 fluxes and a few environmental variables across global

biomes; we find that a simple combination of air temperature, daily precipitation, and photosynthetically active
::::::::::
observations15

:::
and

:::::::
patterns

::
in

::::::::::::
environmental

:::::
driver

:::::::
datasets

::::
(i.e.,

:::
10

:::
out

::
of

:::
the

::
42

:::::::::::
relationships

:::::::::
examined).

::::
We

::::::
further

:::
find

::::
that

:::
the

::::::::
ensemble

::
of

:::::
TBMs

:::::::
exhibits

::
a
::::
large

::::::
spread

::
in

:::
the

:::::::::::
relationships

::::
with

:::::
these

::::
key

::::::::::::
environmental

:::::
driver

:::::::
datasets.

::::
The

::::::
largest

::::::::::
uncertainty

::
in

::
the

:::::::
models

::
is

::
in

:::
the

::::::::::
relationship

::::
with

:::::::::::
precipitation,

::::::::::
particularly

::
in

:::
the

:::::::
tropics,

::::
with

::::::
smaller

:::::::::::
uncertainties

:::
for

::::::::::
temperature

::::
and

::::::::::::::::::::
photosynthetically-active

:
radiation (PAR)can describe almost 90% of the variability in CO.

::::::
Using

::::::::::
observations

:::::
from

:::::::
OCO-2,

::
we

::::
find

::::
that

:::::::::::
precipitation

::
is

:::::::::
associated

::::
with

:::::::::
increased

:::
CO2 fluxes as seen through

::::::
uptake

::
in

:::
all

:::::::
tropical

:::::::
biomes,

:
a
::::::

result20

:::
that

::::::
agrees

::::
with

::::
half

::
of

:::
the

:::::::
TBMs.

:::
By

:::::::
contrast,

:::
the

:::::::::::
relationships

::::
that

:::
we

::::
infer

:::::
from

:
OCO-2 observations. PAR is an adept

predictor of fluxes across mid-to-high latitudes, whereas a combined set of air temperature and precipitation shows strong

explanatory power across tropical biomes
::
for

:::::::::::
temperature

:::
and

:::::
PAR

:::
are

::::::
similar

::
to

:::
the

:::::::::
ensemble

:::::
mean

::
of

:::
the

::::::
TBMs,

:::::::
though

::
the

::::::
results

:::::
differ

:::::
from

:::::
many

:::::::::
individual

::::::
TBMs.

:::::
These

::::::
results

:::::
point

::
to

:::
the

:::::::::
limitations

:::
of

::::::
current

::::::::::
space-based

:::::::::::
observations

:::
for

:::::::
inferring

::::::::::::
environmental

:::::::::::
relationships

:::
but

::::
also

:::::::
indicate

:::
the

::::::::
potential

::
to

::::
help

::::::
inform

::::
key

:::::::::::
relationships

:::
that

:::
are

:::::
very

::::::::
uncertain25

::
in

::::::::::::
state-of-the-art

::::::
TBMs. However, we are unable to quantify relationships with additional environmental variables because

many variables are correlated or colinear when passed through an atmospheric model and averaged across a total atmospheric

column. Overall, we estimate a global net biospheric flux of -1.73 ± 0.53 GtC in year 2016, in close agreement with recent

inverse modeling studies using OCO-2 retrievals as observational constraints.

1 Introduction30

Over the past decade, the field of space-based CO2 monitoring has undergone a rapid evolution. The sheer number of

CO2-observing satellites has greatly increased, including GOSAT/GOSAT-2 (Kuze et al., 2009; Nakajima et al., 2012),

TanSat (Yang et al., 2018) and OCO-2/OCO-3 (Crisp, 2015; Eldering et al., 2019). These dramatically expanded satellites

2



observe
::::
This

:::::::::
expanding

:::::::::
observing

::::::
system

::::::::
provides

:
atmospheric CO2 ::::::::::

observations
:

broadly across the globe, making it

possible to estimate the distribution and magnitude of CO2 fluxes in many regions of the globe that previously had35

sparse in situ
:::
that

::::
have

::::::
sparse

:::
in

::::
situ

:
surface atmospheric CO2 monitoring (e.g., the tropics and the Southern Hemi-

sphere). For example, the OCO-2 satellite, launched in July 2014, provides
::
∼65,000 high-quality observations per day

(Eldering et al., 2017); the
:::
that

::::
pass

::::::
quality

:::::::::
screening

::::::::::::::::::
(Eldering et al., 2017)

:
;
::::
this

:
dense, global set of OCO-2 observa-

tions, combined with inverse modeling techniques, have
::
has

:
been used to constrain regional- and continental-scale CO2

sources and sinks and provide new insights into CO2 fluxes (e.g., Liu et al., 2017; Crowell et al., 2019; Palmer et al., 2019)40

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Eldering et al., 2017; Liu et al., 2017; Crowell et al., 2019; Palmer et al., 2019; Byrne et al., 2020a).

Furthermore, recent
:::::
Recent

:
advances in OCO-2 retrievals from the NASA ACOS science team have led to widespread

improvements in the observations (e.g., O’Dell et al., 2018), and these improvements have enabled increasingly accurate

and detailed CO2 flux constraints from inverse modeling (Miller and Michalak, 2020)
::::::::
reductions

:::
in

::::::::::
observation

::::::
errors

::::::::::::::::::::
(e.g., O’Dell et al., 2018). Reducing the biases in satellite retrievals

:::::
errors

:::
in

:::::::
satellite

:::::::::::
observations

:::
of

:::::
CO2 :

is critical45

for understanding CO2 sources and sinks using inverse modeling, as even small retrieval biases can have a large

:::::
biases

::
in

::::
the

:::::::::::
observations

:::
can

:::::
have

:::
an

:
impact on the CO2 flux estimate (e.g., Chevallier et al., 2014; Miller et al., 2018)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Chevallier et al., 2007; Feng et al., 2016; Chevallier et al., 2014; Miller et al., 2018). For example, Miller et al. (2018)

evaluated the extent to which OCO-2 retrievals can detect patterns in biospheric CO2 fluxes and found that an early ver-

sion of the OCO-2 retrievals (version 7) is only equipped to provide accurate flux constraints across very large continental or50

hemispheric regions; by contrast, in a companion
::::::::
follow-up paper, Miller and Michalak (2020) re-visited satellite capabilities

in light of recently improved OCO-2 retrievals, and the authors suggested
:::::
argued

:
that new OCO-2 retrievals can be used to

constrain CO2 fluxes for more detailed regions (i.e., for seven global biomes).

A challenge now is to not only estimate the magnitude
::::::
further

:::::::::
challenge

::
is
:::

to
::::

use
:::::

these
:::::

new
::::::

global
::::::::

satellite

::::::
datasets

:::
to

:::::::
evaluate

::::
and

::::::::
improve

::::::::::::
process-based

::::::::
estimates

:::
of

:::
the

::::::
global

:::::::
carbon

:::::
cycle

::::::::
provided

:::
by

::::::::
terrestrial

::::::::::
biospheric55

::::::
models

::::::::
(TBMs).

::::::
TBMs

:::::
have

:::::::
become

:::
an

:::::::
integral

:::::
tool

:::
for

::::::::::::
understanding

:::::::::
regional-

:
and

:::::::::
global-scale

:::::::
carbon

:::::::::
dynamics

:::
and

::::
for

:::::::::
predicting

:::::::
future

:::::::
carbon

:::::::
cycling

::::::
under

:::::::::
changing

::::::::
climate.

:::::
With

:::::
that

:::::
said,

::::::::
existing

:::::::
TBMs

:::::
show

::::::
large

::::::::::
uncertainties

:::
in

:::::::
carbon

::::
flux

:::::::::
estimates

:::
at

::::::::
multiple

::::::
spatial

:::::
and

::::::::
temporal

::::::
scales

:::
–

::
at
::::::::

regional
::::

and
:::::::::

seasonal
::::::
scales

:::::::::::::::::::::::::::::::::
(e.g., Peng et al., 2014; King et al., 2015)

:
,
:
at
::::::
global

:::
and

::::::::::
inter-annual

::::::
scales

::::::::::::::::::
(e.g., Piao et al., 2020)

:
,
:::
and

::
in

::::::::
historical

:::
and

::::::
future

:::::::::
projections

::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Friedlingstein et al., 2006; Huntzinger et al., 2017).

:
60

:::
One

:::::::::
approach

::
to

:::::::
inform

:::::
TBM

:::::::::::
development

:::
is

::
to
::::::::

estimate
::::

flux
::::::

totals
:::::
using

:::::::::::
atmospheric

:::::::::::
observations

::::
and

::::::::
compare

::::
those

::::::
totals

::::::
against

:::::::
TBMs

::
–

::
to

:::::::
inform

:::
the

::::::::::
magnitude,

:::::::::::
seasonality,

:::
or

::::::
spatial

:
distribution of fluxes using these new

OCO-2 retrievals but also to understand how variations in fluxes are connected to variations in environmental drivers

::::::::::::::::::::::::::::::::::
(e.g., King et al., 2015; Bastos et al., 2018)

:
.
::
A

::::
more

::::::::::
challenging

::::::::
approach

::
is

::
to

:::::::
estimate

:::
the

:::::::::::
relationships

:::::::
between

::::
CO2::::::

fluxes

:::
and

::::::::::::
environmental

:::::::
drivers

:::::
using

:::::::::::
atmospheric

:::::::::::
observations

::::
and

:::::::
compare

:::::
those

::::::::::::
relationships

:::::::
directly

::
to

::::
the

:::::::::::
relationships65

::
in

::::::
TBMs. We define the term ”environmental drivers” as any meteorological variables or characteristics of the physical

environment that can be modeled or measured and may correlate with net ecosystem exchange (NEE). Existing studies

on the capability of satellite observations have widely focused on constraining the magnitude and distribution of fluxes
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(Eldering et al. , 2017; Liu et al., 2017; Palmer et al., 2019; Crowell et al., 2019; Chevallier et al., 2019). It is now

time to push these satellite observations further and explore whether the observations can be used to infer connections70

between fluxes
::::::
Several

::::::
studies

:::::
have

:::::
shown

::::
that

::::
these

:::::
types

::
of

:::::::::::
comparisons

:::
are

:::::::
feasible

::::
using

::
in
::::
situ

::::::::::
atmospheric

:::::::::::
observations

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Dargaville et al., 2002; Forkel et al., 2016; Gourdji et al., 2008, 2012; Piao et al., 2013, 2017; Wang et al., 2014; Fang and Michalak, 2015; Shiga et al., 2018; Wang et al., 2020)

:
.
::::::
Among

:::::
other

:::::::
studies,

:::::::::::::::::::::::
Fang and Michalak (2015)

::::
used

::
in

::::
situ

::::::::::
atmospheric

:::::
CO2:::::::::::

observations
::::::
across

:::::
North

::::::::
America

::::
and

::
an

::::::
inverse

:::::::::
modeling

:::::::::
framework

:::
to

:::::
probe

::::
the

:::::::::::
relationships

:::::::
between

:::::
NEE

:
and environmental drivers(refer to hereafter as

‘connections’) across many different regions of the globe. Variations in CO
:
;
:::
the

::::::
authors

:::::::::
compared

::::
these

:::::::::::
relationships

:::::::
directly75

::
to

:::::
those

:::::::
inferred

:::::
from

::::::
several

:::::::
TBMs,

:::
and

::::::
found

::::
that

::::::
TBMs

:::::
have

:::::::::
reasonable

::::
skill

:::
in

:::::::::::
representing

:::
the

::::::::::
relationship

:::::
with

::::::::
shortwave

::::::::
radiation

:::
but

::::
show

:::::
weak

::::::::::
performance

::
in
:::::::::
describing

:::::::::::
relationships

::::
with

:::::
other

:::::
drivers

::::
like

:::::
water

:::::::::
availability.

:::::::::
Similarly,

:::::::::::::::
Shiga et al. (2018)

::::
used

::::::::::
tower-based

:::::::::::
atmospheric

::::
CO2:::::::::::

observations
::
to

::::::
explore

:::::::
regional

::::::::::
interannual

:::::::::
variability

:::::
(IAV)

::
in

:::::
NEE

:::::
across

:::::
North

::::::::
America,

::::
and

:::::
found

:::
that

::::::
TBMs

:::::::
disagree

:::
on

:::
the

::::::::
dominant

::::::
regions

::::::::::
responsible

:::
for

::::
IAV;

::::
this

:::::::::::
disagreement

:::
can

:::
be

:::::
linked

::
to

::::::::
differing

::::::::::
sensitivities

::
of

:::
CO2 fluxes are closely linked with variations in environmental drivers , and understanding80

these connections is key if we are to use these new satellite observations to evaluate and improve process-based terrestrial

biospheric models (TBMs) .

These connections have been extensively studied at local and global scales. At site levels (1 km2), eddy covariance flux

tower measurements have provided excellent detail to quantify these connections (e. g., Desai et al., 2010; Baldocchi et al.,

2017); At the global level, existing studies (e.g, Wang et al., 2014; Keppel-Aleks et al., 2014; Piao et al., 2013) used
:::::
fluxes

::
to85

:::::::::::
environmental

:::::::
drivers

:::::
within

:::
the

::::::
TBMs.

:::
At

::::
even

::::::
longer

::::::::
temporal

:::::
scale,

::::::::::::::::
Wang et al. (2014)

::::::::
employed atmospheric CO2 from

global background stations (e.g.,
:::::
growth

::::
rate

:::::
record

:::::
from Mauna Loa, Hawaii, USA and the South Pole ) to illustrate a global

picture of these connections. However, intermediate, regional-scale connections are still poorly understood (e.g., Niu et al.,

2017; Shiga et al., 2018). To date, previous studies have used ground-based and aircraft observations of atmospheric
::
for

::::
five

::::::
decades

::
to
:::::::
explore

:::
the

::::::::
sensitivity

:::
of

::
the

::::::
global CO2 to link the fluxes and underlying environmental processes (e.g., Gourdji et90

al., 2012; Fang and Michalak, 2015; Fang et al., 2017; Shiga et al., 2018; Hu et al., 2019). However, it is difficult to constrain

these connections for regions with few in situ atmospheric CO
:::::
growth

::::
rate

::
to

:::::::
tropical

:::::::::::
temperature;

:::
the

:::::::
authors

:::::
found

::::
that

::::::
existing

::::::
TBMs

:::
do

:::
not

:::::::
capture

:::
the

:::::::
observed

:::::::::
sensitivity

:::
of

:::
the

::::::
growth

::::
rate

::
to

:::::::
tropical

:::::::
climatic

:::::::::
variability,

::::::::
implying

:
a
:::::::

limited

:::::
ability

::
of

:::::
these

:::::
TBMs

:::
in

::::::::::
representing

:::
the

::::::
impact

::
of

:::::::
drought

:::
and

::::::::
warming

::
on

:::::::
tropical

::::::
carbon

::::::::
dynamics.

:

::::
More

::::::::
recently,

::
a

::::::
handful

:::
of

::::::
studies

:::::
have

::::::
shown

:::
that

::
it
::
is
::::::::

possible
::
to

:::::
tease

:::
out

:::::::::::
relationships

:::::::
between

::::
CO2 observations95

(e.g., the tropics and the Southern Hemisphere). The global coverage of
::::
fluxes

::::
and

::::::::::::
environmental

::::::
drivers

:::::
using

:::::
global

:::::::
satellite

::::::::::
observations

::
of

::::
CO2::::::::::::::::::::::::::::::::::

(e.g., Liu et al., 2017; Byrne et al., 2020b)
:
.
:::
For

::::::::
example,

::::::::::::::
Liu et al. (2017)

::::
used

::::::::::
observations

::::
from

:
OCO-2

observations provides a novel opportunity to bridge the gap and explore these connections on region scales (e. g., Eldering et

al., 2017; Liu et al. 2017).

However, it is still unclear the extent to which we can make these regional-scale connections given the accuracy and coverage100

of current OCO-2 observations . Indeed, Liu et al. (2017) used net biosphere fluxes inferred from version seven OCO-2

retrievals along with component carbon fluxes to disentangle
:
to

::::::::::
disentangle

:::
the

:
environmental processes related to the flux

anomalies in tropical regions during the 2015-2016 El Niño. However, Chevallier (2018) suggested that the satellite retrievals
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used in Liu et al (2017) cannot provide sufficient accuracy and sensitivity to separately constrain continental flux anomalies

and associated environmental processes over the tropics. Hence, we specifically evaluate the capability and limitation of using105

current
:::::::::::::::::
Byrne et al. (2020b)

:::::::::
assimilated

::
in

:::
situ

:::
and

:::::::
GOSAT

:::::::::::
observations

::
of

::::::::::
atmospheric

::::
CO2:::

and
:::
an

::::::
inverse

:::::
model

::::::::::
framework,

:::
and

:::::
found

:::::::::
contrasting

::::::::::::
environmental

::::::::::
sensitivities

::
of

::::
IAV

::
in

::::
CO2:::::

fluxes
:::::::
between

:::::::
western

:::
and

::::::
eastern

:::::::::
temperate

:::::
North

::::::::
America.

:::
The

::::
goal

::
of

::::
this

::::
study

::
is
::
to
::::
use

::::::::::
atmospheric

::::
CO2:::::::::::

observations
::::
from OCO-2 retrievals to infer these connections on regional

scales using a geostatistical inverse modeling
::
to

:::::::
quantify

:::
the

:::::::::::
relationships

::::::::
between

::::::::::::
spatiotemporal

:::::::
patterns

:::
in

::::
CO2::::::

fluxes110

:::
and

:::::::
patterns

::
in

::::::::::::
environmental

:::::
driver

::::::::
datasets.

:::
We

:::::::
conduct

:::
this

:::::::
analysis

:::
for

:::::
years

::::
2015

::
–
::::
2018

::::
and

:::::
focus

::
on

:::::::::::
relationships

::::
that

:::::::
manifest

:::::
across

:::
an

::::::::
individual

::::
year

:::
and

:::::::::
individual

::::::
biome.

:::
We

:::::::::
specifically

:::::::
quantify

:::
the

:::::::::::
relationships

:::::
using

:
a
::::::::
top-down

:::::::::
regression

:::::::::
framework

:::
and

:
a
:::::::::::
geostatistical

:::::::
inverse

:::::
model

:
(GIM).

A GIM is particularly well-suited to systematically evaluating these connections. Specifically, a GIM does not

prescribe or rely on a traditional prior flux model . The choice of prior fluxes in a classical inverse model115

is often subjective, and this choice can impact the posterior flux estimate (e.g., Peylin et al., 2013; Houweling

et al., 2015; Philip et al., 2019) . By contrast, a GIM can assimilate a wide range of environmental drivers,

making it possible to evaluate data-driven connections between these variations in environmental drivers and

CO2 fluxes inferred from atmospheric observations (see Sect.
:::
We

:::::
then

::::::::
compare

::::
the

:::::::::::
relationships

::::::::
inferred

::::::
using

::::::
OCO-2

:::::::::::
observations

:::::::
against

::::::
those

:::::::
inferred

::::::
from

:::
15

:::::::::::::
state-of-the-art

:::::::
TBMs

:::::
from

:::
the

::::::::::
TRENDY

::::::
model

:::::::::::
comparison120

::::::
project

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(v8, https://sites.exeter.ac.uk/trendy; see Table S1 for a full list of TBMs; Sitch et al., 2015; Friedlingstein et al., 2019)

:
.
:::
The

:::::::
primary

::::::::
objectives

::
of

::::
this

::::::
analysis

:::
are

::::::::
threefold:

:::
(1)

:::::::
evaluate

:::::
what

::::
kinds

::
of

::::::::::::
environmental

:::::::::::
relationships

:::
we

:::
can

::::
infer

:::::
using

::::::
current

::::::
satellite

:::::::::::
observations

::::
from

:::::::
OCO-2,

:
(2) . Existing GIM studies have investigated connections of

:::::
assess

::::::
where

:::
and

:::::
when

:::::
TBMs

:::
do

:::
and

:::
do

:::
not

:::::
show

::::::::
consensus

:::
on

:::
the

:::::::::::
relationships

:::::::
between

:
CO2 fluxes and environmental drivers for North America

(Gourdji et al., 2010
:::::
salient

::::::::::::
environmental

::::::
drivers, 2012; Commane et al., 2017; Shiga et al. 2018) and the globe (Gourdji et125

al., 2008) using a variety of in situ CO2 observations.

GIMs, however, have never been applied to global satellite observations, and the extension of GIMs from small, regional

in situ datasets to a massive, global satellite datasets like
:::
and

:::
(3)

:::::::
compare

::::
the

::::::::::
relationships

:::::::
inferred

:::::
from

:
OCO-2 presents

novel computational and statistical challenges. To overcome this challenge, we combine the GIM with the adjoint of a global

chemical transport model. Using this framework, we not only estimate daily global CO
::::::
against

:::::
those

:::::::
inferred

::::
from

::::::
TBMs

::::
with130

::
the

::::
goal

:::
of

::::::::
informing

:::
and

:::::::::
improving

:::::
TBM

:::::::::::
development.

:

2
:::::::
Methods

2.1
::::::::
Overview

:::
We

:::::::
quantify

:::
the

:::::::::::
relationships

:::::::
between

::::
CO2 fluxes at the model grid scale (latitude × longitude) but also quantify posterior

uncertainties in the estimated fluxes. This study builds upon previous efforts (Miller et al., 2018; Miller and Michalak, 2020) in135

which the authors evaluated when and where the OCO-2 observations can be used to constrain biospheric CO2 fluxes. In this

5



study we push one step further and explore the connections
::::::::::
observations

::::
from

:::::::
OCO-2

:::
and

:::::::::::::
environmental

:::::
driver

:::::::
datasets

:::
for

:::::::
different

::::::
regions

::
of

:::
the

:::::
globe

:::::
using

:
a
::::::::
top-down

:::::::::
regression

:::::::::
framework

::::
and

:
a
:::::
GIM.

:::
We

::::::
cannot

::::::
directly

:::::::
observe

:::
the

:::::::::::
relationships

between CO2 fluxes and environmental drivers. The primary purpose
:::::
driver

:::::::
datasets.

:::::
With

:::
that

::::
said,

:::
an

:::::::::
overarching

::::
idea

:
of this

study is to couple a GIM to a global adjoint model and use this framework to systematically evaluate what kind of regional-scale140

connections we can (and cannot) make using current OCO-2 observations . We focus on a single year (i.e., 2016) as an initial

case study – to explore the applicability of the geostatistical approach to large satellite-based inverse problems. We first describe

the implementation of the GIM for
:::
that

:::::
these

:::::::::::
relationships

:::::::
manifest

::
in
:::::::::::
atmospheric

::::
CO2:::::::::::

observations,
:::
and

:::
we

::::
can

:::::::
quantify

::
at

::::
least

::::
some

:::
of

::::
these

:::::::::::
relationships

:::::
using

::::::::::
observations

:::::
from OCO-2 observations; we then evaluate and discuss the results of this

approach using the 2016 exploratory case study
::
and

::
a
::::::::
weighted,

::::::::
multiple

:::::::::
regression.

::::
The

:::::::::
coefficients

:::::::::
estimated

::
as

:::
part

:::
of

:::
the145

::::::::
regression

:::::
relate

:::::::
patterns

::
in

::::::::::
atmospheric

::::
CO2:::::::::::

observations
::
to

:::::::
patterns

::
in

:::
the

::::::::::::
environmental

:::::
driver

:::::::
datasets.

2. Data and Methods

2.1 Approach overview

We design a framework that couples the GIM to a global adjoint model (version v35n of the GEOS-Chem adjoint, Henze et

al., 2007) and explore the applicability of the geostatistical approach to inverse problems with a large number of flux grid boxes150

::
As

::::
part

::
of

::::
this

:::::::
analysis,

:::
we

::::
also

::::::
explore

::::::::::
differences

::
in

:::
the

::::::::
estimated

::::::::::::
environmental

:::::::::::
relationships (i.e., 1.2× 106) and a large

number of OCO-2 satellite observations (i. e., 9× 104). We use year 2016 as an initial case study, as there is better temporal

coverage of good-quality data from OCO-2 throughout the entire year relative to years
::::::::
regression

:::::::::::
coefficients)

:::::
among

::::::::
different

::::
years

::::
and

:::::::
different

:::::::
biomes.

::
To

::::
this

::::
end,

::
we

::::::::
estimate

:::::::
separate

::::::::
regression

::::::::::
coefficients

:::
for

::::
each

::
of

:::::
seven

:::::::
different

::::::
global

:::::::
biomes,

:::
and

:::
we

:::::::
estimate

::::::::
separate

::::::::::
coefficients

:::
for

::::
each

:::::::::
individual

::::
year

:::
of

:::
the

:::::
study

::::::
period

:
(2015

:
–
::::::
2018).

::::::
Hence,

:::::
each

:::::::::
coefficient155

::::::::
estimated

::::
here

::::::::
represents

:::
the

:::::::::::
relationship

:::::::
between

::::::
OCO-2

:::::::::::
observations

:::
and

:::
an

::::::::::::
environmental

:::::
driver

::::::
dataset

::::::
across

:::
an

:::::
entire

:::
year

:
and 2017. For example, there are 7 week-long gaps in the

:
a
:::::
global

::::::
biome.

::::::::::::::::::::::::
Miller and Michalak (2020)

:::::::
explored

::::
when

::::
and

:::::
where

::::::
current

:
OCO-2 data in year 2015 and a 1.5-month gap in the OCO-2 data in year 2017, whereas there are no such gaps

in year 2016. This time period also overlaps with an OCO-2 inverse modeling inter-comparison (MIP) study, enabling direct

comparison with those results (Crowell et al., 2019). We specifically estimate
::::::::::
observations

::::
can

::
be

:::
use

::
to
::::::

detect
:::::::::
variability

::
in160

::::::
surface CO2 fluxesfor September 1, 2015 to December 31, 2016 but discard the first four months as a spin-up time period.

We also offer up a wide range of environmental drivers and allow the GIM to select a subset thatbest predicts spatiotemporal

patterns in CO2 fluxes at the model grid scale, described in detail below (Sects. 2.2-2.4
:::
and

:::
the

:::::::
authors

:::::
argue

::::
that,

::
in

:::::
most

:::::::
seasons,

:::
the

:::::::
satellite

:::
can

:::
be

::::
used

::
to

::::::::
constrain

::::::
fluxes

::::
from

::::::
seven

::::
large

:::::::::::
biome-based

:::::::
regions.

::::::
Hence

:::
the

::::::
choice

::
of

::::
the

:::::
seven

::::::
biomes

::::
used

::
in

:::
this

:::::
study

:::::
(Fig.

:
1).165

2.2 OCO-2 satellite observations

We utilize 10-s average XCO2 generated from version 9 of the satellite observations for the period from September 1,

2015 through the end of year 2016 (e.g., Chevallier et al., 2019) . We use both land nadir- and land glint-mode retrievals

in the inverse model . Recent retrieval updates have eliminated biases that previously existed between land nadir and land

glint observations (O’Dell et al., 2018
:::
We

:::
first

:::::::
conduct

::::
this

:::::::
analysis

:::::
using

::::
CO2:::::::::::

observations
::::
from

:::::::
OCO-2.

::::
We

::::
then

:::::::
conduct170

:
a
:::::::
parallel

:::::::
analysis

:::::
using

:::
the

::::::
outputs

:::
of

::
15

:::::::::
terrestrial

::::::::
biosphere

::::::
models

::::::::
(TBMs)

::::
from

:::
the

:::::::::
TRENDY

:::::
model

:::::::::::::::
inter-comparison
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::::::
project

:::
(v8). Moreover, Miller and Michalak (2020) evaluated the impact of these updated

:::
The

::::
goal

::
of

::::
this

:::
step

::
is
::
to

::::::::
compare

::
the

:::::::::::::
environmental

::::::::::
relationships

:::::
(i.e.,

::::::::
regression

:::::::::::
coefficients)

:::
that

:::
we

:::::
infer

::::
from

:
OCO-2 retrievals on the terrestrial CO2 flux

constraint in different regions of the globe; the authors found that
:::::
against

:::
the

:::::::::
regression

::::::::::
coefficients

::::
that

:::
we

:::::::
estimate

:::::
from

::::::::
numerous

::::::::::::
state-of-the-art

::::::
TBMs.

::::
We

:::
can

::::
then

:::::::
identify

:::
any

:::::::::
similarities

:::
or

:::::::::
differences

:::::::
between

:::
the

::::::
TBMs

:::
and

:::::::::
inferences

:::::
using175

::::::
OCO-2

:::::::::::
observations.

:::
We

::::::::::
specifically

::::::
analyze

:::::::::
TRENDY

:::::
model

::::::
outputs

:::
for

:::::
years

::::::::::
2015–2018,

:::
the

::::
same

:::::
years

::
as the inclusion of

both land nadir and land glint retrievals yielded a stronger constraint on CO2 fluxes relative to using only a single observation

type.

2.3 Geostatistical inverse model

A GIM does not require an emission inventory or a bottom-up model as an initial guess of fluxes; instead, a GIM can180

leverage a wide range of environmental driver datasets to help predict spatial and temporal patterns in the CO2 fluxes (e. g.,

Gourdji et al., 2008, 2012; Shiga et al., 2018). We further pair the GIM with a statistical approach known as model selection

to objectively determine which set of drivers can best reproduce CO2 observationsfrom OCO-2
::::::
analysis

:::::::::
described

::::::
above.

::
To

:::::::
conduct

::::
this

:::::::
analysis,

:::
we

::::::::
generate

::::::::
synthetic

::::::
OCO-2

:::::::::::
observations

:::::
using

::::
each

:::
of

:::
the

::
15

::::::
TBMs

::::
and

:::::
using

::
an

:::::::::::
atmospheric

:::::::
transport

::::::
model.

::::
We

::::
then

:::
run

:::
the

::::::::
multiple

:::::::::
regression

::
on

:::::
these

::::::::
synthetic

:::::::::::
observations. This setup makes it feasible to both185

estimate CO2 fluxes and to explicitly quantify the relationships between the fluxes and the underlying environmental drivers.

The fluxes, as estimated by the GIM, consist of two components. First, the GIM will scale the environmental drivers to match

patterns in the atmospheric observations , and this component of the flux estimate is referred to as the ‘deterministic model’.

Second, the GIM will model space-time patterns in the CO2 fluxes that are implied by the atmospheric observations but not

explained by any environmental drivers, and this component of the fluxes is referred to as the ‘stochastic component’. The best190

flux estimate is a sum of the deterministic model and the stochastic component:
::::::
mirrors

::::
that

::
of

:::::::::::::::::::::::
Fang and Michalak (2015)

:::
and

::::::
creates

:::
an

:::::::::::::
apples-to-apples

::::::::::
comparison

::::::::
between

:::
the

::::::
TBMs

:::
and

:::::::
OCO-2

:::::::::::
observations;

::
in

::::
each

:::::
case,

:::
we

:::
use

:::::::::::
atmospheric

::::::::::
observations

::::::
(either

:::
real

::
or

:::::::::
synthetic)

:::
and

:::
use

:::
the

:::::
same

:::
set

::
of

::::::::
equations

::
to

:::::::
estimate

:::
the

:::::::::
regression

::::::::::
coefficients.

:

:::
The

:::::::
multiple

:::::::::
regression

::::
used

::
in

::::
this

::::
study

::::
has

:::
the

::::::::
following

:::::::::::
mathematical

::::
form

:::::::::::::::::::::::::::
(e.g., Fang and Michalak, 2015):

:

z = h(
:

Xβ+ ζ)+
::
ε (1)195

where s are m× 1 unknown fluxes, X is a
::
z

::::::
(n× 1)

::
is

:
a
:::::
vector

:::
of

:::
real

::
or

::::::::
synthetic

::::
CO2:::::::::::

observations
::::
from

:::::::
OCO-2,

::
X

:
(m×p

:
)

:
is
::
a matrix of environmental drivers (see Sect. 2.4),

:::::
driver

:::::::
datasets

::::::::
(described

:::
in

::::
Sect.

::::
2.2),

::::
and β are

:
(p× 1unknown scaling

factors or drift coefficients. These coefficients quantify the relationships between each of the p environmental drivers (i. e., each

:
)
:::
are

:::
the

::::::::
regression

::::::::::
coefficients

:::
that

:::
are

:::::::::
estimated

::
as

:::
part

:::
of

::
the

::::::::::
regression.

::::
Each

:
column of X ) and the estimated CO2 fluxes.

The product of X and β is the deterministic model(Xβ). The stochastic component (
::::::::
represents

:
a
::::::::
different

::::::::::::
environmental

:::::
driver200

::::::
dataset

::
for

::
a

::::::
specific

::::::
biome

::
in

:
a
::::::
specific

:::::
year.

::::
Note

:::
that

:::
we

:::::::
estimate

:::
all

::
of

::
the

::::::::::
coefficients

:::
for

:::
the

:::::::
different

::::::::::::
environmental

::::::
drivers

:::
and

:::::::
different

:::::::
biomes

::::::::::::
simultaneously

::
in
:::
the

:::::::::
regression

::::::
model.

::
In

::::::::
addition,

:
ζ ) is zero-mean with a pre-specified spatial and/or

temporal correlation structure; it describes spatial and temporal
:::::::
(m× 1)

::::::::
represents

:
patterns in the fluxes that are not captured

by the deterministic model. For the setup here, the drift coefficient (β) associated with each environmental driver is constant in

space and time, while the stochastic component
::::::
cannot

::
be

::::::::
described

:::
by

:::
the

::::::::::::
environmental

:::::
driver

:::::::
datasets,

::::
and

::::
these

::::::
values

:::
are205
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::::::::
unknown.

::::
This

:::::::::
component

::
of

:::
the

::::::
fluxes

:
is
::::
also

:::::::::
commonly

:::::::
referred

::
to

::
as

:::
the

::::::::
stochastic

::::::::::
component

:::
and

::
is

::::::::
discussed

::
in

::::
Sect.

::::
2.5.

:::
h()

:
is
:::
an

::::::::::
atmospheric

::::::::
transport

:::::
model

:
(ζ) varies at the model grid scale.

::::::::
described

::::
later

::
in

:::
this

:::::::
section)

::::
that

:::::
relates

:::::::
surface

::::
CO2

:::::
fluxes

::::::::
(Xβ+ ζ)

::
to

:::
the

::::::::::
atmospheric

:::::
CO2 :::::::::::

observations,
:::
and

::
ε

::::::
(n× 1)

::
is

:
a
::::::
vector

::
of

:::::
errors

::
in

:::
the

::::::
OCO-2

:::::::::::
observations

::::::
and/or

::
in

::
the

:::::::::::
atmospheric

::::::
model.

:::
The

::::::::
statistical

:::::::::
properties

::
of

::::
these

::::::
errors

::
are

:::::::::
estimated

:::::
before

:::::::
running

:::
the

::::::::
regression

:::::::::
(described

::
in

:::::
Sect.

::::
2.4).210

We estimate both the fluxes (s) and the drift coefficients (β) by minimizing the GIM cost function (e.g., Kitanidis and

Vomvoris, 1983; Kitanidis, 1995; Michalak et al. , 2004):

Ls,β = 1
2 (z−h(s))TR−1(z−h(s))+ 1

2 (s−Xβ)TQ−1(s−Xβ)

The cost function includes two components: the first component indicates that the fluxes (s), when run through an atmospheric

model, h(s), should match the observations (z) to within a specific error tolerance (z−h(s)) that is prescribed by the215

covariance matrix R (n×n) . R describes model-data mismatch errors , including errors from the atmospheric transport

model and
::::
Note

:::
that

::::
this

:::::::::
framework

::::::::
assumes

:::::
linear

:::::::::::
relationships

:::::::
between

::::
the

::::::::::::
environmental

:::::
driver

:::::::
datasets

::::
and

:
the OCO-

2 retrievals, among other errors. The second component of Eq. 2 stipulates that the structure of the stochastic component

(s−Xβ) is described by the covariance matrix Q (m×m). Q, like R, must be defined by the modeler before estimating the

fluxes; it represents the variances and spatiotemporal covariances of the stochastic component. We estimate Q using a statistical220

approach known as Restricted Maximum Likelihood (RML; e.g., Kitanidis, 1997; Gourdji et al., 2012; Miller et al., 2016). Q

includes both diagonal and off-diagonal elements; the latter decay with the separation time and distance between two model

grid boxes. We construct R as a diagonal matrix with constant elements on the diagonal. The Supplement Sect. S1 provides a

detailed explanation of the approach used here to estimate the covariance matrix parameters.

After estimating the covariance matrix parameters, we then estimate the
:::::::::::
observations.

::::::::::
Numerous

::::::::
existing225

::::::
studies

:::::
have

:::::
used

::::::
linear

:::::::
models

:::
to

::::::::::::
approximate

:::::::::::
relationships

:::::
with

:::::::::::::
environmental

::::::
driver

:::::::::
datasets.

::::
For

:::::::::
example,

::::::
studies

:::::
have

:::::
used

::::::
linear

::::::::
models

:::
to

::::::::
compare

::::
the

::::::::::::
relationships

::::::::
between

::
CO2 fluxes by iteratively minimizing

Eq. 2 using the Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS, Liu and Nocedal,

1989). We use this approach to simultaneously estimate both s and β. Miller et al (2019)describe this iterative

approach to minimize Eq. 2 in detail.
::
and

:::::::::::::
environmental

::::::
driver

::::::::
datasets

:::
in

:::::::
TBMs

:::::::::::::::::::::::::
(e.g., Huntzinger et al., 2011)230

:
,
::::

to
::::::

infer
:::::::

these
::::::::::::

relationships
:::::::

using
:::::::

eddy
:::::

flux
:::::::::::::

observations
:::::::::::::::::::::::::::::::::::::::

(e.g., Mueller et al., 2010; Yadav et al., 2010)

:
,
:::::

and
:::

to
::::::

infer
:::::::::::::

relationships
:::::::::

between
:::::::::::

atmospheric
::::::

CO2:::::::::::::
observations

:::::
and

:::::::::::::
environmental

:::::::
driver

:::::::::
datasets

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Gourdji et al., 2012; Fang et al., 2014; Fang and Michalak, 2015; Piao et al., 2013, 2017; Rödenbeck et al., 2018)

:
.

2.4 Auxiliary environmental drivers235

We consider a wide range of environmental drivers (X).These are meteorological variables primarily related to heat,

water, and radiation, available from NASA’s
:::
The

::::::::
equations

:::::
above

:::::::
require

::
an

:::::::::::
atmospheric

:::::::
transport

::::::
model

:::::
(h()).

:::
We

::::
use

:::
the

::::::
forward

:::::::::::
GEOS-Chem

::::::
model

:::::::
(version

::::::
v9-02;

::::::::::::::::::::::
http://www.geos-chem.org)

::
in

::::
this

:::::
study,

:::
and

:::
we

::::::
further

:::
use

:::::
wind

::::
fields

:::::
from

:::
the

Modern-Era Retrospective Analysis for Research and Applications , Version 2 (MERRA-2, Rienecker et al. , 2011)
:
)
::
to

:::::
drive
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::::::::::
atmospheric

:::::::
transport

::::::
within

:::::::::::
GEOS-Chem

:::::::::::::::::
(Gelaro et al., 2017).

::::
The

:::::::::::
GEOS-Chem

::::::::::
simulations

::::
used

::::
here

::::
have

::
a

:::::
global

::::::
spatial240

::::::::
resolution

::
of

:::
4◦

::::::
latitude

:::
by

::
5◦

::::::::
longitude

::::
and

::::::::
therefore

:::
are

:::
best

::::
able

::
to
:::::::

capture
::::::
broad,

:::::::
regional

:::::
spatial

:::::::
patterns

::
in
:::::::::::
atmospheric

::::
CO2. Specifically, we consider daily 2-m

2.2
::::::::::::

Environmental
::::::
driver

:::::::
datasets

:::
We

:::::::
estimate

:::
the

:::::::::::
relationships

:::::::
between

::::::
OCO-2

:::::::::::
observations

::::::
(either

:::
real

::
or

:::::::::
synthetic)

:::
and

::::::::::::
environmental

:::::
driver

:::::::
datasets

::::::
drawn

::::
from

:::::::::::::
commonly-used

:::::::::::::
meteorological

:::::::::
reanalysis.

:::
We

::::::::::
specifically

:::::::
consider

:::
the

:::::::::
following

:::::
driver

:::::::
datasets

::
as

::::::::
predictor

::::::::
variables245

::
in

:::
the

:::::::
multiple

:::::::::
regression:

:::::::
2-meter air temperature, daily precipitation, 30-day average precipitation,

::::::::::
precipitation,

:
photosyn-

thetically active radiation (PAR), surface downwelling shortwave radiation, soil temperature at 10-cm depth, soil moisture at

10-cm depth, specific humidity, and relative humidity.
:::
and

::::::
specific

::::::::
humidity.

:

We also include a non-linear function of 2-m
:::::::
2-meter

:
air temperature as an environmental driver (refer

:::::
dataset

:::
in

::
the

:::::::::
regression

::::::::
(refered

:
to hereafter as scaled temperature). This function ;

:::::::
plotted

::
in

::::
Fig.

:::
S1

::::
and

:::::::::
described

::
in

:::::
detail

:::
in250

::::::::::
Supplement

::::
Sect.

::::
S3).

:::::::::
Numerous

:::::::
existing

::::::
studies

:::::
show

::::
that

:::
the

::::::::::
relationship

:::::::
between

:::::::::::
temperature

:::
and

:::::::::::::
photosynthesis

:::
has

::
a

:::::::
different

::::
sign

:::::::::
depending

::::
upon

::::
the

::::::::::
temperature

:::::
range;

::
at
::::::::::

sufficiently
:::::
warm

::::::::::::
temperatures,

::
an

:::::::
increase

:::
in

::::::::::
temperature

:::::
yields

::
a

:::::::
decrease

::
in

::::::::::::
photosynthesis

:::::::::::::::::::::::
(e.g., Baldocchi et al., 2017)

:
.
:::
The

::::::
scaled

::::::::::
temperature

:::::::
function

:::::::::
considered

::::
here

:::
can

::::::
account

:::
for

:::::
those

:::::::::
differences,

::::
and

::
we

::::
find

::::
that

:::
this

:::::::
function

:::::
yields

::
a

:::::
better

:::::::::
model-data

::
fit

::
in

:::
the

:::::::::
regression

:::::::
analysis

::::
than

::::
using

::::::::::
temperature

::::::
alone.

:::
The

::::::
scaled

::::::::::
temperature

:::::::
function

::::
used

::::
here

:
is from the Vegetation Photosynthesis and Respiration Model (VPRM, Mahadevan255

et al., 2008)
:
)
:::::::::::::::::::::
(Mahadevan et al., 2008) and describes the non-linear relationship between temperature and photosynthesis (e.

g. , Raich et al. 1991, see the Supplement Sect. S2).
:::::::::::::::
(Raich et al., 1991)

:
.
::::
The

:::::::
function

::
is

::::::
shaped

:::
like

:::
an

::::::::::
upside-down

::::::::
parabola

::::::
(shown

::
in

::::
Fig.

::::
S1).

:::::::::::
Furthermore,

::::
this

::::
type

::
of

:::::::::
non-linear

:::::::::::
temperature

:::::::
function

:::
has

:::::
been

:::::::::
commonly

:::::
used

::
in

:::::::
existing

::::::
TBMs

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Heskel et al., 2016; Luus et al., 2017; Dayalu et al., 2018; Chen et al., 2019)

:
.

:::
The

:::::::::::::
environmental

:::::
driver

:::::::
datasets

:::::::::
described

::::::
above

:::
are

::::::
drawn

:::::
from

:::
the

::::::::
Climatic

::::::::
Research

:::::
Unit

::::::
(CRU)

::::
and

::::::::
Japanese260

:::::::::
Reanalysis

:::::
(JRA)

:::::::::::
meteorology

:::::::
product

::::::::::::::::::::
(CRUJRA; Harris, 2019)

:
.
:::
We

:::
use

:::::::::::::
environmental

:::::
driver

::::
data

::::
from

:::::::::
CRUJRA

:::::::
because

:
it
::
is
:::
the

:::::
same

:::::::
product

:::::
used

::
to

:::::::
generate

::::
the

::::::::
TRENDY

::::::
model

:::::::::
estimates.

:::
All

::::
flux

:::::::
outputs

::::
from

:::::::::
TRENDY

:::
are

::::::::
provided

::
at

::
a

:::::::
monthly

:::::::
temporal

::::::::::
resolution,

::
so

:::
we

:::::
input

:::::::
monthly

:::::::::::::
meteorological

::::::::
variables

:::::
from

::::::::
CRUJRA

::::
into

:::
the

:::::::::
regression

::::::::::
framework.

::::::::::
Furthermore,

:::
we

::::::
regrid

:::
the

::::::::::::
environmental

:::::
driver

:::::::
datasets

:::
to

:
a
:::
4◦

::::::
latitude

:::
by

::
5◦

:::::::::
longitude

:::::
spatial

:::::::::
resolution

::::::
before

::::::::
inputting

::::
these

:::::::
datasets

:::
into

:::
the

:::::::::
regression.

::::
This

::::::
spatial

::::::::
resolution

:::::::
matches

:::
the

::::::::
resolution

:::
of

::
the

:::::::::::
atmospheric

:::::::
transport

::::::::::
simulations

::::
used

::
in265

:::
this

:::::
study

::::::::
(described

::
in
:::::
Sect.

::::
2.1).

:::
The

:::::::::
regression

::::::::::
coefficients

:::::::
therefore

:::::::
quantify

:::
the

:::::::::::
relationships

:::::::
between

::::::
OCO-2

:::::::::::
observations

:::
and

:::::::
patterns

::
in

::::::::::::
environmental

:::::
driver

:::::::
datasets

:::
that

::::::::
manifest

::
at

:::
this

::::::
spatial

:::
and

::::::::
temporal

:::::::::
resolution.

:::
We

:::::::::::
subsequently

:::::
re-run

:::
the

:::::::::
regression

:::::::
analysis

:::::
using

:::::::::::::
environmental

:::::
driver

:::::::
datasets

::::::
drawn

::::
from

::
a
::::::
second

:::::::::::::
meteorological

:::::::
product.

::::::::
Estimates

::
of

::::::::::::
environmental

:::::
driver

::::
data

::::
like

::::::::::
temperature

::
or

:::::::::::
precipitation

:::
can

::::
vary

::::::
among

::::::::::::
meteorological

:::::::
models,

::::
and

::::
these

:::::::::
differences

::::::
among

:::::::
models

:::
are

:
a
::::::
source

::
of

:::::::::
uncertainty

::
in

:::
the

::::::::
estimated

:::::::::
regression

::::::::::
coefficients.

::::::
Hence,

:::
the

:::
use

::
of

::
a
::::::
second270

::::::::::::
meteorological

:::::::
product

:::
can

::
at

::::
least

:::::::
partially

::::::
account

:::
for

:::::
these

:::::::::::
uncertainties.

:::
We

:::::::::
specifically

::::::
re-run

:::
the

::::::::
regression

:::::::
analysis

:::::
using

:::::::::::
environmental

::::::
driver

::::::
datasets

::::::
drawn

::::
from

::::::::::
MERRA-2.

:::
We

::::::
choose

:::::::::
MERRA-2

:::::::
because

::
it

::
is

:
a
:::::::::
commonly

:::::
used,

:::::
global

:::::::::
reanalysis

::::::
product

::::
from

:::
the

::::::
NASA

::::::
Global

::::::::
Modeling

::::
and

::::::::::
Assimilation

::::::
Office

::::::::
(GMAO).

:::::::::::
Furthermore,

:::
we

:::
use

::::
wind

:::::
fields

::::
from

::::::::::
MERRA-2
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::
to

::::
drive

:::
all

::::::::::
atmospheric

::::::::
transport

::::::
model

::::::::::
simulations

::
in

::::
this

:::::
study

:::::::::
(described

::
in

::::
Sect.

:::::
2.1),

::
so

:::
the

::::
use

::
of

::::::::::
MERRA-2

:::
for

:::
the

:::::::::::
environmental

::::::
driver

:::::::
datasets

::
in

:::
the

::::::::
regression

:::::::
creates

:::::::::
consistency

:::::
with

:::
the

::::
wind

:::::
fields

::
in

:::
the

::::::::::
atmospheric

::::::
model

::::::::::
simulations275

:::
that

::::::
support

:::
the

::::::::::
regression.

Note that we do not include any remote sensing indices (e.g., solar-induced chlorophyll fluorescence (SIF)
:::::::::::
solar-induced

:::::::::
chlorophyll

:::::::::::
fluorescence or leaf area index(LAI) ) in the present study. Rather, the focus of this study is to explore environ-

mental drivers of CO2 fluxes, not remote sensing proxies for CO2 fluxes.

We group the globe into seven biome-based regions and allow the GIM to use different environmental drivers in different280

biomes. Miller and Michalak (2020) found that current OCO-2 retrievals can be used to constrain terrestrial CO2 fluxes for

regions of this size. The seven-biome map (Fig.1) is derived from the biomes in Olson et al (2001), aggregated to form larger

regions.As a result of this setup, each column of X includes a single environmental driver for a single biome. Therefore, each

environmental driver is represented by a total of seven columns in X. Within each column, all elements are zeros except for

elements that correspond to a single biome
::::
Also

::::
note

:::
that

:::
we

::::::::::
standardize

::::
(i.e.,

::::::::::
normalize)

::::
each

::
of

:::
the

::::::::::::
environmental

::::::
driver285

::::::
datasets

::::::
within

::::
each

::::::
biome

::::
and

::::
each

::::
year

::::::
before

:::::::
running

:::
the

:::::::::
regression,

:::
as

:::
has

::::
been

:::::
done

::
in

::::::
several

::::::::
previous

::::
GIM

:::::::
studies

::::::::::::::::::::::::::::::::::::::::::
(e.g., Gourdji et al., 2012; Fang and Michalak, 2015)

:
.
::::
This

:::
step

::::::
means

::::
that

::
all

::
of

:::
the

::::::::
estimated

:::::::::
regression

:::::::::
coefficients

::::
(β)

::::
have

::
the

:::::
same

:::::
units,

:::
are

:::::::::::
independent

::
of

:::
the

:::::::
original

:::::
units

::
on

:::
the

::::::::::::
environmental

::::::
driver

::::
data,

::::
and

:::
can

:::
be

::::::
directly

:::::::::
compared

::
to

::::
one

::::::
another.

We also include several constant columns of ones in X. These columns are analogous to the intercept in a linear regression.290

Existing GIM studies always include one or more constant columns within X (e. g., Gourdji et al. 2008; Gourdji et al., 2012;

Miller et al., 2018). In this study, we specifically use a total of seven constant columns, one for each biome. We also include a

constant column for the ocean.

2.3
:::::

Model
::::::::
selection

We further consider non-biospheric fluxes in the X matrix, including fossil fuel emissions from the Open-source Data Inventory295

for Anthropogenic CO2 monthly fossil fuel emissions (ODIAC2016, Oda et al., 2018) , climatological ocean fluxes from

Takahashi et al. (2016), and biomass burning fluxes from the Global Fire Emissions Database (GFED) version 4.1 (Randerson

et al., 2018). We only allocate a single column of X for fossil fuel, biomass burning, and ocean fluxes, respectively, because

these fluxes are not the focus of this study.

In total, we consider a total of 81 columns for the X matrix: 8 constant columns of ones, 70 columns associated with300

environmental drivers, and 3 columns associated with anthropogenic, ocean, and biomass burning fluxes.

2.5 Model selection

We utilize a model selection framework to evaluate which subset of the environmental drivers (i.e., columns of
:::
use

:::::
model

::::::::
selection

:::
to

::::::
decide

::::::
which

::::::::::::
environmental

::::::
driver

:::::::
datasets

:::
to

:::::::
include

:::
in

:::
the

::::::::
analysis

::
of

::::
the

:::::::
OCO-2

:::::::::::
observations

:::
and

::
in
::::

the
:::::::
analysis

:::
of

:::::
each

:::::
TBM

:::::
using

::::::::
synthetic

::::::::::::
observations.

::::::
Model

::::::::
selection

:::::::
ensures

::::
that

::::
the

::::::::::::
environmental

::::::
driver305

::::::
datasets

:::
in

:::
the

:::::::::
regression

::
(X) best describe variations in CO2 fluxes as inferred from the

::
do

:::
not

::::::
overfit

::::
the

::::::::
available

OCO-2 observations
:::
data

:::
(z). The inclusion of additional environmental drivers

:::::
driver

:::::::
datasets

:
or columns in X will al-

10



ways improve the model-data fit
:
in
::::

the
:::::::::
regression, but the inclusion of too many variables

::::
driver

::::::::
datasets

:
in X can

yield an overfit of the
::::::
overfit

:::
the

:::::::::
regression

:::
to

::::::::
available

:
OCO-2 observations or can yield unrealistic drift

::::
data

::::
and

::::
result

:::
in

:::::::::
unrealistic

:
coefficients (β) (e. g., Zucchini, 2000). Instead of including all environmental drivers in X, we310

use model selection to decide which set of environmental drivers to include in X
:::::::::::::::::
(e.g., Zucchini, 2000)

:
.
:::
In

::::::::
addition,

:::::
model

::::::::
selection

::::::::
indicates

::::::
which

:::::::::::
relationships

:::::
with

:::::::::::::
environmental

::::::
drivers

:::
we

::::
can

::::::::::
confidently

:::::::::
constrain

:::
and

::::::
which

::::
we

:::::
cannot

::::::
given

::::::
current

:::::::
OCO-2

::::::::::::
observations

::::::::::::::::::::
(e.g., Miller et al., 2018). In this study, we implement a type of model se-

lection known as the Bayesian Information Criterion (BIC; Schwarz, 1978) , which has been extensively used in

recent GIM studies (e. g., Gourdji et al., 2012; Miller et al. 2013; Fang and Michalak, 2015). )
:::::::::::::::::::

(Schwarz et al., 1978)315

:
,
::::
and

:::::::
various

:::::
forms

:::
of

::::
the

::::
BIC

:::::
have

:::::
been

::::::::::::
implemented

::
in
:::::::::

numerous
:::::::

recent
::::::::::
atmospheric

:::::::
inverse

:::::::::
modeling

:::::::
studies

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Gourdji et al., 2012; Miller et al., 2013; Fang and Michalak, 2015; Miller et al., 2018; Miller and Michalak, 2020).

::
Us-

ing the BIC, we score different combinations of environmental drivers
:::::
driver

::::::
datasets

:
that could be included in X based on how

well each combination reproduces the
::::
helps

::::::::
reproduce

::::::
either

:::
the

:::
real

:::
or

::::::::
synthetic OCO-2 observations . We calculate these

scores
:::
(z,

:::
Eq.

:::
1).

:::
We

:::::::::
specifically

::::
use

::
an

:::::::::::::
implementation

::
of

:::
the

::::
BIC

::::
from

:::::::::::::::::
Miller et al. (2018)

::
and

::::::::::::::::::::::::
Miller and Michalak (2020)320

:::
that

::
is

::::::::
designed

::
to

:::
be

:::::::::::::
computationally

::::::::
efficient

:::
for

::::
very

::::
large

:::::::
satellite

::::::::
datasets.

::::
The

::::
BIC

:::::
scores

:::
in

:::
this

::::::::::::::
implementation

:::
are

::::::::
calculated

:
using the following equationfor the implementation here (Miller et al. 2018; Miller and Michalak, 2020):

:
:

BIC = L+ p lnn∗ (2)

where L is
::
the

:
log likelihood of a particular combination of environmental drivers

:::::
driver

:::::::
datasets

:
(i.e., columns of X), p

is the number of environmental drivers in this
:::::
driver

:::::::
datasets

::
in

:
a
:

particular combination, and n∗ is the effective number of325

independent observations.
::::
This

:::
last

:::::::
variable

:::::::
accounts

:::
for

:::
the

:::
fact

::::
that

:::
not

::
all

::::::::::
atmospheric

:::::::::::
observations

:::
are

:::::::::::
independent,

:::
and

:::
the

:::::::::
model-data

::::::::
residuals

:::
can

::::::
exhibit

:::::::
spatially

:::
and

:::::::::
temporally

:::::::::
correlated

:::::
errors

::::::::::::::::
(Miller et al., 2018).

:::
For

:::
all

::::::::::
simulations

::::
here,

:::
we

:::
use

::
an

:::::::
estimate

::
of

:::
n∗

:::
for

:::
the

::
v9

:::::::
OCO-2

::::::::::
observations

:::::
from

:::::::::::::::::::::::
Miller and Michalak (2020).

:
The first component

::
of

:::
Eq.

::
2 (L) rewards

combinations that are a better fit to the observations
::::::
OCO-2

:::::::::::
observations

:::
(z), whereas the second component in Eq. 3

:
of

::::
Eq.

:
2
:
(p lnn∗) penalizes models with a greater number of columns to prevent overfitting. The best combination of environmental330

drivers for X is the combination that receives the lowest score (the Supplement Sect. S3 and Table S2). We implement the BIC

using a heuristic branch and bound algorithm (Yadav et al., 2013) to reduce computing time. Miller et al (2018) describes this

model selection procedure
:::
BIC

:::::
score.

::::::::::::::::
Miller et al. (2018)

::::::::
describes

:::
this

:::::::::::::
implementation

::
of

:::
the

::::
BIC

:
in greater detail, including

the specific setup and equationsfor the BIC.
:
.

2.6 Posterior uncertainties335

In a GIM, the direct solution to calculate the posterior covariance matrix Vs (dimensions m×m) can be computed as (
::::
Note

:::
that

:::
we

:::
run

:::::
model

::::::::
selection

:::
for

:::
the

::::::
OCO-2

::::
data

:::
and

::::::
re-run

:::::
model

::::::::
selection

:::
for

::::
each

::
set

:::
of

:::::::
synthetic

:::::::
OCO-2

::::::
datasets

:::::::::
generated

::::
using

:::::
each

:::::
TBM.

:::
As

::
a
::::::
result,

:::
we

:::::::::
sometimes

:::::
select

::::::::
different

::::::::::::
environmental

::::::
driver

:::::::
datasets

:::
for

:::
the

:::::::
analysis

:::::
using

::::::::
different

::::::
TBMs.

::::
This

:::::
setup

:::::::
parallels

:::
that

:::
of

::::::::::::::::::::
Huntzinger et al. (2011)

:::
and

::::::::::::::::::::::
Fang and Michalak (2015).

:::::::::::
Furthermore,

:::
we

:::
use

:::
the

:::::
same

:::
set

11



::
of

::::::::::::
environmental

:::::
driver

:::::::
datasets

::
in

::::
each

::::
year

::
of

:::
the

:::::
study

:::::
period

::
(e.g., Saibaba and Kitanidis, 2014; Miller et al. , 2019):340

Vs = V1 +V2V3V
T
2

V1 = (Q−1 +HTR−1H)−1

V2 = V1Q
−1X

V3 = (XTQ−1X− (Q−1X)TV1Q−1X)−1

::::::::::
2015–2018),

:::
a

:::::
setup

:::::
that

::::::::
parallels

::::::::
existing

::::::
GIM

:::::::
studies

::::
that

:::::
use

::::::::
multiple

::::::
years

:::
of

:::::::::::
atmospheric

::::::::::::
observations345

:::::::::::::::::::
(e.g., Shiga et al., 2018)

:
.
:::
We

:::::::
estimate

::::::::
different

:::::::::
regression

::::::::::
coefficients

:::
(β)

:::
for

:::::
each

::::
year

::
of

:::
the

:::::
study

:::::::
period,

:::
but

:::
the

::::::
actual

:::::::::::
environmental

::::::
driver

:::::::
datasets

:::::::
included

::
in

:::
the

:::::::::
regression

::::
does

:::
not

:::::::
change

::::
from

::::
one

::::
year

::
to

:::
the

::::
next.

:::
An

::::::::::::
environmental

::::::
driver

::::::
dataset

:
is
:::::
either

:::::::
selected

::
to
:::
be

:::::::
included

:::
for

:::
all

::::
years

::
in

::
a
::::::
specific

::::::
biome

::::::
(based

::
on

:::
the

::::
BIC

:::::::
scores),

::
or

:
it
::
is
:::
not

::::
used

::
in
::::
any

::::
year

::
of

:::
the

:::::::
analysis.

:

2.4
::::::::
Statistical

::::::
model

:::
for

:::::::::
estimating

:::
the

::::::::::
coefficients

:::
(β)350

::::
Once

:::
we

::::
have

::::::
chosen

::
a
:::
set

::
of

::::::::::::
environmental

:::::
driver

:::::::
datasets

:::::
using

:::::
model

::::::::
selection,

:::
we

:::::::
estimate

:::
the

::::::::::
coefficients

:::
(β)

::::
that

:::::
relate

::
the

::::
real

::
or

::::::::
synthetic

::::::
OCO-2

:::::::::::
observations

::
to

::::
these

::::::::::::
environmental

:::::::
datasets

:::::::::::::::::::::::::::::::::::::::::::
(e.g., Gourdji et al., 2012; Fang and Michalak, 2015)

:
:

β̂ = (h(X)TΨ−1h(X))−1h(X)TΨ−1z
:::::::::::::::::::::::::::::::::

(3)

where the posterior error covariance matrix Vs is the sum of V1 and V2V3V
T
2 , and H is a n×m matrixdescribing355

the footprint
::
Ψ

:::::::
(n×n)

:::
is

::
a

::::::::::
covariance

::::::
matrix

::::
that

:::::::::
describes

::::::::::
model-data

:::::::::
residuals

:::::::::
(discussed

:::
at

::::
the

::::
end

:::
of

::::
this

:::::::
section).

:::::::::::
Furthermore,

::::
the

:::::::::::
uncertainties

:::
in

:::::
these

:::::::::
estimated

::::::::::
coefficients

::::
can

::::
also

:::
be

:::::::::
estimated

:::::
using

::
a
::::::

linear
::::::::
equation

::::::::::::::::::::::::::::::::::::::::::
(e.g., Gourdji et al., 2008; Fang and Michalak, 2015)

:
:

Vβ̂ = (h(X)TΨ−1h(X))−1

::::::::::::::::::::::::

(4)

:::::
where

:::
Vβ̂::

is
::
a

::::
p× p

:::::::::
covariance

:::::::
matrix.360

:::
We

:::
test

:::
out

::::
two

:::::::
different

:::::::::::
formulations

:::
for

:::
the

:::::::::
covariance

:::::
matrix

:::
Ψ

::
to

:::::::
evaluate

:::
the

:
sensitivity of the observations (z) to the

fluxes (s). Note that V1 is the posterior error covariance matrix in a classic Bayesian inverse model
:::::
results

::
to
:::
the

:::::::::::
assumptions

::::
made

::::::
about

:::
the

:::::::::
covariance

::::::
matrix

::::::::::
parameters.

::
In

::::
one

:::
set

::
of

:::::::::::
simulations,

:::
we

::::::
model

::
Ψ

:::
as

:
a
::::::::
diagonal

::::::
matrix.

::::
The

::::::::
diagonal

:::::
values

::::::::::
characterize

::::::::::
model-data

:::::
errors

:::
(ε),

::::::::
estimated

:::
for

:::
the

::::::
version

::
9

:::::::
retrievals

:::::
from

:::
the

:::::
recent

::::::
OCO-2

::::::
model

::::::::::::::
inter-comparison

::::::
project

:::::::::::::::::::::
(e.g., Crowell et al., 2019)

:
.
:::
The

::::::
values

:::::
have

::
an

:::::::
average

:::::::
standard

::::::::
deviation

:::
of

::::
0.98

::::
ppm

::::
and

:::::
range

::::
from

::::
0.29

:::::
ppm

::
to365

:::
4.8

::::
ppm.

::
In

::
a
::::::
second

:::
set

::
of

::::::::::
simulations,

:::
we

::::
use

:
a
:::::
more

:::::::
complex

::::
and

::::
more

::::::::
complete

::::::::::
formulation

:::
of

:::
Ψ:

:::::::::::::::::
Ψ = h(h(Q)T )+R

::::::::::::::::::::::::::
(e.g., Fang and Michalak, 2015),

::::::
where

::
R

:
(e. g. , Rodgers, 2000; Brasseur and Jacob, 2017) . V2V3V

T
2 accounts for the

additional uncertainty
::::::
n×n)

:::::::::::
characterizes

:::
the

:::::::::
model-data

::::::
errors

:::::::::
(described

::::::
above),

::::
and

::
Q

::::::::
(m×m)

::
is

::
a

:::::::::
covariance

::::::
matrix

:::
that

::::::::
describes

::
ζ
::::
(the

:::::::
patterns

:
in the fluxes due to the unknown drift

:::
that

::::::
cannot

:::
be

::::::::
described

:::
by

:::
the

::::::::::::
environmental

::::::
driver

12



:::::::
datasets).

:::::
This

::::::::::
formulation

::
is
:::::
more

::::::::
complete

:::::::
because

::
it
:::::

fully
::::::::
accounts

:::
for

:::
the

::::::::
residuals

:::::::
between

::
z
::::

and
::::
Xβ.

:::::::::
However,

::
it370

:
is
:::::::::

extremely
::::::::::::::
computationally

::::::::
intensive

::
to

:::::::
estimate

::::
the coefficients (β) .

::::
using

::::
this

::::::::
complex

::::::::::
formulation

::
of

:::
Ψ.

::::
We

::::::
cannot

::::::::
explicitly

::::::::
formulate

:::
this

:::::
more

::::::::
complex

::::::
version

::
of

:::
Ψ

:::
due

::
to
:::

its
:::::
large

:::
size

::::
and

:::
the

:::::::
number

::
of

::::::::::
atmospheric

::::::
model

::::::::::
simulations

::::
(h())

:::
that

::::::
would

::
be

::::::::
required.

::
As

::
a

:::::
result,

:::
we

:::
find

:::
the

:::::::
solution

::
to

:::
Eq.

:
3
:::::
using

:::
this

::::::::
complex

::::::
version

::
of

::
Ψ

:::
by

::::::::
iteratively

::::::::::
minimizing

::
the

::::
cost

::::::::
function

::
for

::
a
:::::::::::
geostatistical

::::::
inverse

::::::
model

::::::
(GIM)

::::::
(Sects.

:::
2.5

:::
and

::::
S1),

::
a

::::::
process

::::
that

::::
takes

:::::::::::::
approximately

:::
two

::::::
weeks

::
for

::::
each

::::
year

:::
of

:::::
model

::::::::::
simulations

::
in

:::
the

:::::
setup

::::
used

::::
here.

:
375

The calculations in Eq. 5 are not computationally feasible for most inverse problems with very large datasets; the matrix

sum in V1 is often too large to invert, and we do not explicitly construct an H matrix or its transpose HT . Instead, we

employ a low-rank approximation of V1 that circumvents these problems (e. g., Bousserez and Henze, 2018; Wells et al. ,

2018). Specifically, we approximate the matrices in V1 as a low rank update to Q using a limited number of eigenpairs (i. e.,

eigenvectors and eigenvalues). Miller et al (2019) and the Supplement Sect.S4 describe the uncertainty quantification in greater380

detail.
:::
We

:::
use

::::
both

:::
the

::::::
simple

:::
and

::::::::
complex

::::::::::
formulations

:::
of

::
Ψ

:::::
when

::::::::
analyzing

:::
the

::::
real

::::::
OCO-2

:::::::::::
observations.

:::::
Both

:::
the

::::::
simple

:::
and

:::::::
complex

:::::::::::
formulations

::
of

:::
Ψ

::::
yield

::::::
similar

::::::::
estimates

:::
for

:::
the

::::::::::
coefficients

::
β,

::
as

:::::::::
discussed

::
in

:::
the

::::::
Results

::
&

::::::::::
Discussion

:::::
(Sect.

::::
3.2).

:::::
When

::::::::
analyzing

:::
the

::
15

:::::::::
TRENDY

:::::::
models,

::
we

::::
only

::::
use

::
the

:::::::
simple,

:::::::
diagonal

::::::::::
formulation

::
of

::
Ψ

::
–

:::::::
because

::
of

:::
the

:::::::::
prohibitive

:::::::::::
computational

:::::
costs

:::
that

::::::
would

::
be

:::::::
required

:::
to

:::
run

:::
the

::::
more

::::::::
complex

:::::::
approach

:::
for

:::
all

::
15

:::::::::
TRENDY

:::::::
models.

3. Results and Discussion
::::
Note

:::
that

:::
we

:::::::
estimate

:::
the

::::::
values

::
of

:::
Q,

::
the

::::::::::
covariance

:::::
matrix

::::
that

::::::::
describes

::
ζ,

:::::
using

::
an

::::::::
approach385

:::::
known

:::
as

:::::::
restricted

:::::::::
maximum

:::::::::
likelihood

::::::::
estimation

:::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Mueller et al., 2008; Gourdji et al., 2008, 2010, 2012).

::
In

:::
the

:::
SI,

:::
we

::::::
discuss

:::
the

:::::::
structure

::
of

:::
Q

::
in

:::::
detail,

:::::::
describe

::::::
RML,

:::
and

:::::::
compare

:::
the

::::::::
estimated

::::::::::
parameters

:::
for

::
Q

::::::
against

:::::::
existing

::::::
studies.

:

3.1 Connections between CO2 fluxes and environmental drivers

2.5
::::::::

Statistical
::::::
model

:::
for

:::::::::
estimating

:::::
CO2 :::::

fluxes
:::::
using

:::::::
OCO-2

:::::::::::
observations

A small number of environmental drivers can describe most spatiotemporal variability in
::
To

::::::::::
complement

:::
the

:::::::
analysis

::::::::
described390

:::::
above,

:::
we

::::
take

::
an

::::::::
additional

::::
step

:::
for

:::
the

:::
real

::::::
OCO-2

:::::::::::
observations

::
of

:::::::::
estimating

::
ζ,

::::::
patterns

::
in

:::
the

:::::
fluxes

::::
that

:::::
cannot

:::
be

::::::::
described

::
by

:::
the

::::::::::::
environmental

:::::
driver

:::::::
datasets,

::::
also

::::::
known

::
as

:::
the

:::::::::
stochastic

:::::::::
component

::
of

:::
the

:::::
fluxes

::::
(Eq.

:::
1).

::::
This

::::
step

::::::
thereby

::::::
creates

::
a

:::::::
complete

::::::::
estimate

::
of

::::
CO2:::::

fluxes
:::::
using

:::::::
OCO-2

:::::::::::
observations.

::::
This

:::::::::
additional

:::
step

::::::::::::
accomplishes

:::
two

::::::
goals.

::::
First,

:::
the

::::::
fluxes

::
in

:
ζ
:::
can

::::::
reveal

:::
flux

:::::::::
anomalies

::
or

:::::::
patterns

:::
that

:::
are

:::
too

::::::::
complex

::
to

:::::::
quantify

:::::
using

:
a
:::::
linear

:::::::::::
combination

::
of

::::::::::::
environmental

::::::::
variables

:::::
and/or

::::
can

:::::::
indicate

:::
the

::::::::
strengths

:::
and

::::::::
shortfalls

:::
of

:::
the

:::::::::
regression.

:::::::
Second,

:::
by

:::::::::
estimating

:::
all

::::::::::
components

:::
of

:::
the

::::
CO2::::::

fluxes395

::::
(Xβ

:::
and

:::
ζ),

:::
we

:::
can

:::::
better

:::::::
evaluate

:::
our

:::::::::
inferences

:::::
using

::::::
OCO-2

::::::
against

:::::::::::
independent,

:::::::::::
ground-based

:::::::::::
observations

::
of

:::::
CO2.

::::
This

::::::::::
independent

::::::::
evaluation

::
is
::::::::
important

:::::::
because

:::::::
OCO-2

::::::::::
observations

:::
and

:::
the

:::::::::::
atmospheric

:::::::
transport

::::::
model

::::
(i.e.,

:::::::::::
GEOS-Chem)

::::
can

::::::
contain

::::::
errors.

:::
We

::::::::
generate

::
a
:::::::::

complete
::::::::

estimate
::::

of
::::

the
:

CO2 fluxes as estimated in the GIM. In this study, we define

spatiotemporal variability as any spatial or temporal patterns
::::
(Xβ

::
+
:::
ζ)

:::
by

::::::::::
minimizing

::::
the

::::
cost

::::::::
function

:::
for

::
a
:::::
GIM400

:::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Kitanidis, 1986; Michalak et al., 2004; Miller et al., 2020).

::::
We

:::::::
describe

:::
this

:::::::
process

::
in

:::::
detail

::
in
::::::::::::
Supplemental

:::::
Sect.

:::
S1.

::::
This

::::::
process

:::::::
requires

::::
two

:::::::::
covariance

:::::::
matrices

:::
(R

::::
and

:::
Q),

::::
and

:::
we

:::
use

:::
the

:::::
same

:::::::::
parameters

:::
for

:::::
these

:::::::::
covariance

:::::::
matrices

:::
as

::::::::
described

:::::
above

::
in

:::::
Sect.

:::
2.4.

:::::
Note

:::
that

:::
for

:::
the

:::::
setup

::::
here,

:::
we

::::::::
estimate

:
ζ
::
at
::
a
::::::
spatial

::::::::
resolution

::
of

:::
4◦

:::::::
latitude

::
by

:::
5◦

::::::::
longitude

13



::
to

:::::
match

::::
that

::
of

::::::::::::
GEOS-Chem,

:::
and

:::
we

:::::::
estimate

::
ζ
::
at

:
a
:::::

daily
::::::::
temporal

::::::::
resolution

::
to
::::::

better
::::::
account

:::
for

:::::::::::
sub-monthly

:::::::::
variability

in CO2 fluxesthat manifest at the daily, (latitude) × (longitude) resolutions of the GEOS-Chem model during the one-year405

study period (year 2016) . The deterministic model accounts for 89.6% of the variance in the estimated fluxes (Fig. 2a), and the

stochastic component conversely accounts for only 10.4% of the flux variance (Fig. 2b).
:
.
::::
Also

::::
note

::::
that

:::::::::
minimizing

:::
the

:::::
GIM

:::
cost

::::::::
function

:::::
yields

:::
the

:::::
same

:::::::
estimate

:::
for

:::
the

::::::::::
coefficients

:::
(β)

::
as

:::
in

:::
Eq.

::
3,

::::::::
provided

:::
that

:::
the

::::::::::
covariance

:::::::
matrices

::
in

:::
the

:::::
GIM

:::
cost

:::::::
function

::::
and

::
in

:::
Eq.

:
3
:::
are

::::::::
identical.

::::
The

:::::::::::
Supplemental

:::::
Sect.

::
S1

::::
and

::::::::::::::::
Miller et al. (2020)

::::::
describe

:::
the

:::::::
process

::
of

::::::::::
minimizing

::
the

:::::
GIM

::::
cost

:::::::
function

::
in

::::::
greater

:::::
detail.

:
410

A combination of PAR, daily temperature, and daily precipitation best describe patterns in

2.6
:::::::

Analysis
:::::
using

::::
real

:::::::::::
observations

::::
from

:::::::
OCO-2

:::
For

::::::::
analysis

:::::
using

::::::::
OCO-2

::::::::::::
observations,

::::
we

:::::::
employ

::::::::::
10-second

::::::::
averages

:::
of

::::
the

:::::::
version

:::
9
:::::::

OCO-2
::::::::::::

observations

::::::::::::::::::::::
(e.g., Crowell et al., 2019)

::
and

:::::::
include

::::
both

::::
land

::::::
nadir-

:::
and

::::
land

::::::::::
glint-mode

::::::::
retrievals.

::::::
Recent

:::::::
retrieval

:::::::
updates

:::::
have

::::::
greatly

::::::
reduced

::::::
biases

::::
that

::::::::::
previously

::::::
existed

::::::::
between

::::
land

::::::
nadir

:::
and

:::::
land

:::::
glint

:::::::::::
observations

:::::::::::::::::
(O’Dell et al., 2018).

::::::::::
Moreover,415

:::::::::::::::::::::::
Miller and Michalak (2020)

:::::::
evaluated

::::
the

::::::
impact

::
of

:::::
these

:::::::
updated

:::::::
OCO-2

::::::::
retrievals

:::
on

:::
the

:::::::::
terrestrial CO2 fluxes in most

biomes across the globe(Table 1). PAR is an adept predictor of fluxes across mid-to-high latitudes, whereas a combined set of

daily air temperature and daily precipitation are better predictors across tropical biomes
:::
flux

::::::::
constraint

:::
in

:::::::
different

::::::
regions

:::
of

::
the

::::::
globe;

:::
the

::::::
authors

:::::
found

::::
that

:::
the

::::::::
inclusion

::
of

::::
both

::::
land

::::
nadir

::::
and

::::
land

::::
glint

::::::::
retrievals

::::::
yielded

::
a

:::::::
stronger

::::::::
constraint

:::
on

::::
CO2

:::::
fluxes

::::::
relative

::
to

:::::
using

::::
only

:
a
::::::

single
::::::::::
observation

::::
type.420

The deterministic model also includes fossil fuel emissionsfrom ODIAC2016 but not biomass burning fluxes from GFED

or ocean fluxesfrom Takahashi et al., (2016). Fossil fuel emissions from ODIAC2016, when passed through the GEOS-Chem

model, help describe enough variability in the
::
We

::::
also

::::::
include

::
a
::::::
column

::
of

:::
X

::
in

::
all

::::::::::
simulations

::::
using

::::
real OCO-2 observations

to be selected using the BIC. By contrast, neither
::::::::::
observations

::
to

:::::::
account

:::
for

:::::::::::::
anthropogenic

:::::::::
emissions,

:::::
ocean

::::::
fluxes,

::::
and

:::::::
biomass

:::::::
burning.

::::
This

:::::::
column

:::::::
includes

::::::::::::
anthropogenic

:::::::::
emissions

::::
from

::::
the

:::::::::
Open-Data

::::::::
Inventory

:::
for

:::::::::::::
Anthropogenic

:::::::
Carbon425

::::::
Dioxide

:::::::::
(ODIAC)

::::::::::::::
(Oda et al., 2018)

:
,
:::::
ocean

:::::
fluxes

:::::
from

::::::
NASA

:::::::::
Estimating

:::
the

:::::::::
Circulation

::::
and

:::::::
Climate

::
of

:::
the

::::::
Ocean

:::::::
(ECCO)

::::::
Darwin

:::::::::::::::::
(Carroll et al., 2020)

:
,
:::
and

:
biomass burning fluxes from GFED nor ocean fluxes from Takahashi et al. (2016) help

reproduce the
:::
the

::::::
Global

:::
Fire

:::::::::
Emissions

::::::::
Database

:::::::
(GFED)

:::::::::::::::::::
(Randerson et al., 2018)

:
.
:::
We

:::::::
estimate

:
a
::::::
single

:::::::::
coefficient

::
or

::::::
scaling

:::::
factor

:::
(β)

:::
for

:::
this

:::::::
column.

:::::
These

:::::
fluxes

:::
are

:::::
input

::::
into

::
the

:::::::::
regression

::
at

:
a
:::
4◦

::::::
latitude

:::
by

::
5◦

::::::::
longitude

::::::
spatial

::::::::
resolution

::
to
::::::
match

:::
that

::
of

::::::::::::
GEOS-Chem.

:::
The

::::::::::::
supplemental

::::
Sect.

:::
S2

:::::::
contains

::::::
greater

:::::::::
discussion

::
of

::::
these

:::::
CO2 :::::::

sources.430

2.7
:::::::
Analysis

:::::
using

:::
the

::::::
TBMs

:::
We

:::::::
compare

:::
the

:::::::::
estimated

:::::::::
coefficients

::::
(β)

::::
from

::::
real OCO-2 observations more than the penalty term in the BIC, and these

fluxes are therefore not selected using the BIC. Specifically, biomass burning and ocean fluxes may not have been selected for

several reasons: either those fluxes are small relative to fossil fuel emissions and biospheric fluxes, the land
::::::
against

::::::::::
simulations

::::
using

::::::::
synthetic

:
OCO-2 observations from 2016 are not sensitive to biomass burning and ocean fluxes,

::::::::::
observations

:::::::::
generated435

::::
from

::
15

::::::::
different

::::::
TBMs

::
in

::::::::
TRENDY

:::::
(v8).

:::
We

:::
list

:::
out

:::
all

::
of

:::
the

::::::::
individual

:::::::
models

::
in

:::
the

:::::::::
TRENDY

:::::::::
comparison

:::
in

:::::
Table

:::
S1.
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:::::
Model

:::::::
outputs

::::
from

:::
the

:::::::::
TRENDY

::::::
project

::::
were

::::::::
provided

::
at

:
a
:::::::
monthly

:::::
time

:::::::::
resolution, and /or the flux patterns in GFED and

Takahashi et al. (2016) are not consistent with
:::
the

:::::
spatial

:::::::::
resolution

:::::
varies

:::::
from

:::
one

::::::
model

::
to

:::::::
another

::::::
(though

:::::
many

:::::::
models

::::
have

:
a
:::::
native

::::::
spatial

:::::::::
resolution

::
of

:::::
either

::::
0.5◦

::::::::::::::
latitude-longitude

:::
or

::
1◦

::::::::::::::::
latitude-longitude).

:::
We

::::::::::
specifically

:::
use

::::::::
TRENDY

::::::
model

::::::
outputs

::::
from

:::::::
scenario

::
3
::::::::::
simulations,

::
in

::::::
which

::
all

::::::
TBMs

:::
are

:::::
forced

::::
with

:::::::::::
time-varying

:::::
CO2,

:::::::
climate,

:::
and

::::
land

::::
use.440

:::
We

:::::::
generate

::::::::
synthetic

::::::
OCO-2

:::::::::::
observations

:::::
using

::::
each

:::
of

::::
these

:::::
TBM

::::
flux

:::::::::
estimates.

::
To

:::
do

:::
so,

:::
we

::::
first

:::::
regrid

::::
each

:::
of

:::
the

::::::::
TRENDY

::::::
model

::::::::
estimates

::
to

::
a
::::::
spatial

::::::::
resolution

:::
of

::
4◦

:::::::
latitude

:::
by

::
5◦

:::::::::
longitude,

:::
the

::::::
spatial

:::::::::
resolution

::
of

:::
the

::::::::::::
GEOS-Chem

::::::
model.

::::
We

::::
then

:::
run

:::
the

:::::::::
TRENDY

::::::
model

:::::
fluxes

:::::::
through

:::
the

:::::::::::
GEOS-Chem

::::::
model

:::
for

:::::
years

:::::
2015

:
–
:::::
2018

:::
and

::::::::::
interpolate

:::
the

:::::
model

::::::
outputs

:::
to

:::
the

::::
times

::::
and

::::::::
locations

::
of

:
the OCO-2 observations. Instead, biomass burning and ocean fluxes are included

within the stochastic component of the flux estimate . The Supplement Sect. S6 describes a sensitivity analysis using the BIC445

that provides further explanation why the deterministic model does not include GFED or ocean fluxes from Takahashi et al.

(2016).

Overall, we only select a limited

3
::::::
Results

::
&

::::::::::
discussion

3.1
::::::

Results
::
of

::::::
model

:::::::
selection450

:::
The

::::::
model

::::::::
selection

:::::::
results

::::::::
highlight

:::
the

:::::::::
strengths

::::
and

:::::::::
limitations

:::
of

::::::
using

::::::
current

:::::::
OCO-2

:::::::::::
observations

:::
to

::::::::
estimate

::::::::::
relationships

::::
with

::::::::::::
environmental

:::::
driver

::::::::
datasets.

:::
We

:::
use

:::::
model

::::::::
selection

:::::
based

::
on

:::
the

::::
BIC

::
to

:::::::::
determine

:
a
:::
set

::
of

::::::::::::
environmental

:::::
driver

::::::
datasets

::
to
:::::::
include

::
in

::
the

:::::::
analysis

:::::
using

::::::
OCO-2

:::::::::::
observations

:::
and

:::::
using

:::
the

::::::
TBMs.

:::
We

:::
only

:::::
select

:::
10

::::::::::::
environmental

:::::
driver

::::::
datasets

:::::
when

:::
we

:::
run

::::::
model

:::::::
selection

:::
on

:::
the

::::::
OCO-2

:::::::::::
observations

:
–
::::
both

:::::
when

:::
we

:::
use

::::::::::::
environmental

::::::
driver

::::::
datasets

:::::
from

:::
the

::::::::
CRUJRA

:::
and

::::::::::
MERRA-2

::::::::
products.

:::
We

:::
are

::::::::
generally

::::
able

::
to

:::::::
identify

::
at

:::::
least

:::
one

::
or

::::
two

::::
key

::::::::::::
environmental

:::::::::::
relationships

::
in455

::::
each

:::::
biome

:::::
using

::::
total

:::::::
column

::::
CO2::::::::::

observations
:::::::

(shown
::
on

:::
the

::::::
x-axis

::
of

::::
Fig.

::
3).

:::::
With

:::
that

:::::
said,

:::
we

::
are

:::::
only

:::
able

:::
to

:::::::
quantify

::::::::::
relationships

::::
with

:::::
these

::::
few,

:::::
salient

::::::::::::
environmental

::::::::
variables.

:::::
More

:::::::
detailed

::::::::::::
environmental

:::::::::::
relationships

:::::
within

::::
each

::::::
biome

:::
are

::::::
difficult

::
to

:::::::
discern.

:

::::
Note

:::
that

:::
we

::::::
select

:
a
::::::
similar

:
number of environmental drivers (12 out of 70, 18%) using model selection. Specifically, we

never select more than 3 environmental drivers in any individual biome (Table 1)
:::::
driver

:::::::
datasets

:::::
when

:::::
using

:::::::
synthetic

:::::::
OCO-2460

::::::::::
observations

:::
that

:::
are

::::::::
generated

:::::
from

::::
each

::
of

:::
the

::::::
TBMs.

:::
We

:::::
select

::::::::
anywhere

:::::::
between

:
8
::::
and

::
13

::::::::::::
environmental

:::::
driver

:::::::
datasets

:::
(an

::::::
average

::
of

:::
10

:::::::
datasets)

::
in

:::
the

:::::::
analysis

:::::
using

::::
each

::
of

:::
the

::::::
TBMs. This result indicates two likely conclusions. First, a few simple

linear relationships may adeptly describe flux variability at the scale and resolution of a global gridded atmospheric model,

although the underlying leaf- and organism-level processes are admittedly more complex. Indeed, previous top-down studies

(e.g. , Gourdji et al. , 2008, 2012; Fang and Michalak, 2015; Shiga et al. , 2018) also found that simple linear relationships can465

effectively describe broad spatial and temporal patterns in CO
::::::::::
consistency

:::::::
between

:::
the

:::::::
analysis

::::
using

::::
real

::::::
OCO-2

:::::::::::
observations

:::
and

:::
the

:::::::
analysis

:::::
using

::::::::
synthetic

::::::
OCO-2

:::::::::::
observations

::::::::
generated

:::::
using

::::
CO2 flux variability across North America and across

the globe. Such simple linear relationships allow for a straightforward assessment of the explanatory power of environmental
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drivers, and make it possible to compare these relationships inferred from atmospheric observations against the relationships

used in TBMs (e. g. , Huntzinger et al., 2013; Fang and Michalak, 2015).
:::::
fluxes

::::
from

::::
each

::
of

:::
the

:::
15

:::::::
different

::::::
TBMs.

:
470

Second, additional environmental drivers, when run through an atmospheric transport model
::::::
Overall,

:::
we

:::::
have

::::::::
difficulty

:::::::
detecting

::::
the

::::::
unique

:::::::::::
contributions

:::
of

:::::
many

::::::::::::
environmental

::::::
driver

:::::::
datasets

::
to
:::::::::

variability
:::

in
:::
the

:::::::
OCO-2

:::::::::::
observations.

:::::
This

::::
issue

::
is

::::::::::
highlighted

::
by

:::
an

:::::::::::
examination

::
of

:::::::::
colinearity

::
in
::::

the
::::::::
regression

:::::::
model.

::
In

:
a
::::::::::

regression,
:::
we

::::::
cannot

:::::::
estimate

::::::::
different

:::::::::
coefficients

::::
(β)

:::
for

:::
two

::::::::
predictor

::::::::
variables

::::
(i.e.,

::::::::
columns

::
of

:::
X)

::::
that

:::
are

::::::::
identical

::
or

::::::
nearly

::::::::
identical;

:::
the

:::::::::
regression

::::::
cannot

::
be

::::
used

:::
to

:::::::
estimate

::::::
unique

::::::::::
coefficients

:::::::
because

:::
the

::::::::
predictor

::::::::
variables

::::::::::
themselves

:::
are

:::
not

:::::::
unique.

::
In

:::::::::
regression

:::::::::
modeling,475

:::
this

:::::::::::
phenomenon

::
is
::::::

known
:::

as
::::::::::
colinearity.

::::
The

::::::::::
coefficients

:::
(β)

:::::::::
estimated

:::
for

:::::::
colinear

::::::::
variables

:::
are

:::::
often

::::::::::
unrealistic,

:
and

interpolated to the times and
::
the

::::::::
standard

:::::
errors

:::
or

:::::::::::
uncertainties

::
in

:::::
those

::::::::::
coefficients

:::::
(Vβ̂)

::::
are

:::::
often

:::::::::::
unexpectedly

:::::
large

:::::::::::::::::::::::::::
(e.g., Ramsey and Schafer, 2012).

::::::
Model

:::::::
selection

::
is

:::
one

::::
way

::
to

::::::
reduce

::
or

::::::
remove

::::::::::
colinearity;

:::::::
colinear

::::::::
variables,

::
by

:::::::::
definition,

::
do

:::
not

:::::::::
contribute

:::::
unique

::::::::::
information

::
to
::
a
::::::::
regression

::::
and

:::
are

:::::::
therefore

:::::
rarely

:::::::
selected

:::::
using

::
a

:::::
model

::::::::
selection

:::::::
approach

::::
like

:::
the

::::
BIC.

::::
One

:::::::
common

:::::::
method

:::
for

:::::::
detecting

::::::::::
colinearity

:
is
:::
to

:::::::
estimate

:::
the

:::::::::
correlation

:::::::::
coefficient

:::
(r)

:::::::
between

:::::::
different

::::::::
columns

::
of480

::
X;

::
a

::::
value

:::::::
greater

:::
than

::::::
∼0.55

:::
can

:::::::
indicate

:::
the

::::::::
presence

::
of

:::::::::
colinearity

::::::::::::::::
(e.g., Ratner, 2012).

:

:::
We

:::
find

::::::::::
substantial

:::::::::
colinearity

::
in
::::

the
:::::::::
regression

:::::::
analysis

::::
(Fig.

:::
2).

:::::
This

:::::::::
colinearity

:::::
likely

:::::
plays

:::
an

::::::::
important

::::
role

:::
in

:::
the

:::::
model

::::::::
selection

::::::
results,

::
in

::::::::
addition

::
to

:::::
errors

::
in

:::
the

:::::::
OCO-2

:::::::::::
observations

:::
and

:::::
errors

:::
in

:::
the

:::::::::::
GEOS-Chem

::::::
model;

::
it
:::::::::
represents

:::
and

::::::::
important

:::
but

::::::::::
potentially

:::::::::
overlooked

::::::::
challenge

:::
in

::::::
relating

::::::::::::
satellite-based

:::::
CO2 ::::::::::

observations
:::
to

::::::
patterns

:::
in

::::::::::::
environmental

::::::
drivers.

::::
The

::::::::::::
environmental

:::::
driver

:::::::
datasets

:::
are

::::::
passed

:::::::
through

:::
the

:::::::::::
GEOS-Chem

:::::
model

:::::
(h())

::::
and

::::::::::
interpolated

:::
the locations of485

OCO-2 observations , are not sufficiently unique to parse out their differing relationships with
:
as

::::
part

::
of

:::
the

:::::::::
regression

::::::
(h(X),

::::
Eqs.

::
1
::::
and

:::
3).

::
In

:::::
other

::::::
words,

::::
these

::::::
driver

:::::::
datasets

:::
are

:::::
input

:::
into

::::::::::::
GEOS-Chem

::
in

:::::
place

::
of

::
a
:::::::::
traditional CO2 fluxes. Model

selection ensures that we only include environmental drivers that contribute unique information to the flux estimate and do

not overfit the
:::
flux

::::::::
estimate.

::::
This

:::
step

::
is
:::::::::
necessary

::
so

::::
that

:::
the

::::::::::::
environmental

:::::
driver

:::::::
datasets

:::
can

::
be

:::::::
directly

:::::::::
compared

::::::
against

::::::
patterns

::
in
::::

the OCO-2 observations. If multiple environmental drivers are highly correlated or colinear, then the inclusion of490

more than one of these drivers will not contribute unique information. As a result, we are unable to quantify a larger number

of environmental driver relationships using OCO-2
::::
The

:::::
driver

:::::::
datasets

::::
(i.e.,

:::::::
columns

:::
of

:::
X)

:::
that

:::
we

::::
use

::
in

:::
the

:::::::::
regression

:::
are

:::::::
generally

:::::::
unique

::::
from

::::
one

::::::
another

:::::
(i.e.,

::::
have

::::::
unique

::::::
spatial

::::
and

:::::::
temporal

:::::::::
patterns).

::::::::
However,

:::
the

::::::::::
differences

::::::
among

:::::
many

:::::
driver

:::::::
datasets

::::::::
disappear

:::::
once

:::::
those

:::::::
datasets

::::
have

:::::
been

::::::
passed

:::::::
through

:::::::::::
GEOS-Chem. Fig. 3 illustrates an example of air

temperature and PAR. In most of the biomes, there is aweak correlation (R < 0.4; left column) between 2-m air temperature495

and PAR; however, the correlation is much stronger (R > 0.8; right column) when these environmental drivers are passed

through an atmospheric model (h(X) ). A larger number of environmental drivers is not selected due to this high level of

correlation or collinearity among the columns in h(X). This collinearity, not errors in the
:
2
:::::::
displays

:::
the

:::::::::
correlation

::::::::::
coefficients

::
(r)

::::::
among

::::::::::::
environmental

:::::
driver

:::::::
datasets

:::::
from

:::::::::
MERRA-2

:::
for

::::::::
temperate

:::::::
forests,

::::
both

:::::
before

:::::
(Fig.

:::
2a)

:::
and

::::
after

:::::
(Fig.

:::
2b)

:::::
those

:::::
driver

::::::
datasets

:::::
have

::::
been

::::::
passed

::::::
through

:::::::::::
GEOS-Chem

::::
and

::::::::::
interpolated

::
to

:::
the OCO-2 retrievals or atmospheric model, appears500

to be a limiting factor in the model selection results.

3.1.1 PAR shows stronger explanatory power than temperature or precipitation in mid-to-high latitudes
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PAR is selected for four biomes: temperature forests, temperate grasslands, boreal forests and tropical forests (Table 1).

In the middle and high latitudes, PAR, rather than temperature or precipitation, appears to be a better proxy for seasonal

patterns in
::::::::::
observations.

::::
The

:::::::::
correlation

::::::::::
coefficients

:::::::
increase

::::::::::
substantially

::::
from

:::
the

::::::
former

::
to

:::
the

:::::
latter

::::
case.

::::
This

:::::::::
colinearity

::
is505

::::::::::
independent

::
of

:::::
errors

::
in

:::
the

::::::
OCO-2

:::::::::::
observations

:::
and

::::::::
indicates

:
a
::::
hard

:::::
limit

::
on

:::
the

:::::::
number

::
of

:::::::::::
relationships

::::
with

::::::::::::
environmental

:::::
driver

:::::::
datasets

::::
(i.e.,

::::::::::
coefficients)

::::
that

:::
we

::::
can

:::::::
quantify

::
in

:::
the

::::::::::
regression.

::
In

:::::
other

::::::
words,

:::::
model

::::::::
selection

::::::
results

:::
are

::
at
:::::

least

:::::::
partially

::::::
limited

:::
by

:::
the

:::::::
limited

:::::::::
sensitivity

:::
of

::::::
OCO-2

:::::::::::
observations

:::
to

::::::::
variations

:::
in

:::::
these

::::::::::::
environmental

::::::
driver

:::::::
datasets

::
–

:::::
either

:::
due

:::
to

::::::::::
atmospheric

:::::::::
smoothing

::::::
and/or

::::
due

::
to

::::::::::
limitations

::
in

:::
the

::::::::::
availability

::
of

:::::::
OCO-2

:::::::::::
observations

::
in

:::::
some

:::::::
regions

::
of

:::
the

:::::
globe.

::::
This

:::::::::
limitation

::
is

::
in

:::::::
addition

::
to

:::
the

:::::::::::
uncertainties

:::
due

::
to
::::::

errors
::
in

:::
the

::::::
OCO-2

:::::::::::
observations

:::
and

:::
the

::::::::::::
GEOS-Chem510

::::::
model,

::::::
which

::::
also

::::
have

::
a

::::::
critical

::::::
impact

:::
on

::::::::
inferences

:::::
about

:
CO2 fluxes (Figs. 4a, b and S3a-f).

:::::
using

::::::
OCO-2

:::::::::::
observations

:::::::::::::::::::::::::::::::::::::::::::
(e.g., Chevallier et al., 2007, 2014; Miller et al., 2018)

:
.

3.2
::::::::::::

Environmental
::::::::::::
relationships

:::::::
inferred

:::::
using

:::::::::::
observations

:::::
from

:::::::
OCO-2

:::
We

:::
are

::::
able

:::
to

:::::::
quantify

::::
the

:::::::::::
relationships

::::::::
between

:::::::
OCO-2

:::::::::::
observations

:::
and

:::::::
several

::::
key

::::::::::::
environmental

::::::
driver

::::::::
datasets.

::::
Figs.

::
3
::::
and

::
4

:::::::
displays

:::
the

:::::::::
estimated

::::::::::
coefficients

:::::
from

:::
the

:::::::::
regression

::::::::
analysis

:::::
using

:::::::::::
observations

:::::
from

:::::::
OCO-2.

:::::::
Across515

::::::::::
extratropical

:::::::
biomes,

:::::
PAR

::
is

:::
the

:::::
most

::::::::::
commonly

:::::::
selected

::::::::
variable.

:
This result reflects the fact that light availability is

likely an important
:
a
::::

key
:
factor that drives CO2 flux variability in mid-to-high latitudes (e. g., Fang and Michalak, 2015;

Baldocchi et al., 2017). The β values for PAR indicate a strong to moderate negativecorrelation with estimated CO2

fluxes, suggesting
:::::::::::::::::::::::::::::::::::::::::::::
(e.g., Fang and Michalak, 2015; Baldocchi et al., 2017).

:::
As

::::::::
expected,

::::
the

::::::::
estimated

::::::::::
coefficients

:::
for

:::::
PAR

::
are

::::::::
negative,

:::::::::
indicating that an increase (or decrease) in PAR

::
in

:::
the

::::::
model is associated with a decrease (or increase) in NEE,520

and
::::::::
indicating an increase (or decrease) in carbon uptake; this β value is larger in boreal and temperate forests relative to

grasslands, indicating a stronger relationship between PAR and net biosphere .
:::::
Note

:::
that

::
in

::::
this

:::::
study,

:::::::
negative

::::::
values

::
for

:::::
NEE

::::
refer

::
to CO2 fluxes in those biomes (Table 1; Figs. 5a and S3d-f).

Indeed, previous studies also indicate that PAR and similar environmental drivers (e.g., shortwave radiation) are closely

associated with
::::::
uptake

:::::
while

:::::::
positive

::::::
values

:::::
refer

::
to

:::
net

:
CO2 fluxes. For example, a top-down study of North America525

(Fang and Michalak, 2015) found that shortwave radiation is more adept than other environmental variables in reproducing

spatiotemporal variability of NEE, particularly across the growing season. Moreover, several site-level studies have reached

parallel conclusions (e.g., Mueller et al., 2010; Yadav et al., 2010); these studies indicated that PAR is strongly correlated with

photosynthesis, consistent with current mechanistic understandings of the light limitation on photosynthesis (e.g., Gough et al.,

2007).
:::::
release

::
to

:::
the

::::::::::
atmosphere.

:
530

3.1.2 Drought is likely associated with flux variations across tropical forests

A composite of PAR, scaled temperature, and daily precipitation adeptly describe variability in CO
::
By

:::::::
contrast,

:::::::::::
precipitation

:::
and

:::::
scaled

:::::::::::
temperature

::
are

:::
the

:::::
most

:::::::::
commonly

:::::::
selected

::::::::::::
environmental

:::::
driver

:::::::
datasets

::::::
across

::::::
tropical

:::::::
biomes.

::::
The

:::::::::
magnitude

::
of

:::
the

::::::::::
coefficients

:::
for

::::
each

::
of

:::::
these

::::
two

::::::::
variables

::
is

::::::
similar

::
in

:::::
most

:::::::
biomes,

::::::::
indicating

::::
that

:::::::
patterns

::
in

:::::
both

::::
have

::::::::
similarly

::::::::
important

::::::::::
associations

:::::
with

:::::::
patterns

::
in

::::
CO2 fluxes across tropical forests (Figs. 4c and 4d), as seen through the OCO-2535

observations. PAR in tropical forests is usually a function of the presence or absence of clouds (e.g., Baldocchi et al., 2017; Zeri
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et al., 2014); cloudiness is also associated with rainfall. Therefore, low PAR over tropical forests is likely an indicator of cloud

presence and rainfall. A positive β estimated for PAR suggests that a decrease in PAR, indicative of enhanced precipitation,

is associated with 380 increased carbon uptake. Furthermore, the negative β value
::::::
fluxes.

::::::::::
Specifically,

:
a
::::::::

negative
:::::::::
coefficient

assigned to scaled temperature (the Supplement Sect. S2) implies
:::::::
indicates

:
that an increase in air temperature , which often540

exceeds optimal temperature over tropical forests, is associated with
:::::::
increased

::::::
carbon

::::::
uptake

:::::
when

:::
air

:::::::::::
temperatures

:::
are

::::
cool

:::
and reduced carbon uptake .

Recent studies (e.g., Jiménez-Muñoz et al., 2016; Liu et al., 2017; Palmer et al., 2019) indicated that tropical droughts

associated with the 2015-2016 El Niño events likely resulted in above average carbon release. Indeed, the combination of high

values of PAR, high air temperature, and low precipitation may be a manifestation of these drought patterns.545

Indeed, multiple lines of evidence indicate that drought is associated with diminished carbon uptake in tropical forests
:::::
when

::
air

:::::::::::
temperatures

:::
are

:::
hot;

:::
the

::::::
scaled

::::::::::
temperature

:::::::
function

:::
has

:::
the

:::::
shape

::
of

:::
an

:::::
upside

:::::
down

::::::::
parabola,

:::
and

::::::::::
temperature

::::
thus

:::
has

::
a

:::::::
different

:::::::::
association

::::
with

::::
CO2:::::

fluxes
:::::::::
depending

::::
upon

:::::::
whether

:::
the

:::
air

::::::::::
temperature

:
is
:::::
above

::
or

::::::
below

:::
the

::::::
optimal

::::::::::
temperature

:::
for

::::::::::::
photosynthesis (e.g., Phillips et al. , 2009; Brienen et al., 2015; Baccini et al., 2017). For example, Gatti et al (2014) suggested

that a suppression of photosynthesis during tropical drought may cause a reduction in carbon uptake. Brienen et al (2015) added550

that tropical drought is often associated with higher-than-normal temperature , which may further contribute to reducing gross

primary production (GPP) and carbon uptake . Overall, this GIM study supports the conclusion that environmental conditions

indicative of drought are associated with net carbon emissions from tropical forests.

3.1.3 CO2 fluxes, as inferred from OCO-2, are closely correlated with temperature and precipitation in tropical

grasslands555

Temperature and precipitation closely correlate with variability in CO2 fluxes across tropical grasslands (Figs. S3g and S3j).

This result suggests that heat and water availability are likely associated with carbon fluxes across this biome.

A negative β value for precipitation indicates
:::
Fig.

::::
S1).

::::::
Indeed,

:::::
high

:::::::::::
temperatures

::
in

:::
the

::::::
tropics

:::::
often

::::::
exceed

:::
the

:::::::
optimal

::::::::::
temperature

::
for

:::::::::::::
photosynthesis

:::::::::::::::::::::::
(e.g., Baldocchi et al., 2017),

::::::
which

::::::
reduces

::::::
carbon

::::::
uptake

:::::::::::::::::::::::::::::
(e.g., Doughty and Goulden, 2008)

:
.
:::::::::::
Furthermore,

:::::::
negative

::::::::::
coefficients

:::
for

:::::::::::
precipitation

:::::::
indicate that an increase in precipitation is associated with an increase560

in carbon uptake, which is in line with current knowledge that water availability facilitates photosynthesis
:::::
across

::::::::
seasonal

::
to

:::::
annual

::::::::
temporal

::::::
scales, especially in arid or semi-arid regions . In addition, a negative β value for scaled temperature (the

Supplement Sect. S2) indicates that an increase in air temperature is associated with a reduction in carbon uptake. Specifically,

high temperatures in the tropics often exceed the optimal temperature for photosynthesis (e. g. , Baldocchi et al., 2017), which

can suppress GPP (e.g., Doughty and Golden, 2008). Overall, a combined set of air temperature and precipitation adeptly565

describes CO
:::::::
semiarid

::::::
regions

:::::::::::::::::::::::::::::::::
(e.g., Gatti et al., 2014; Jung et al., 2017)

:
.

::
In

:::::::
addition

::
to

:::
this

:::::::::
regression

:::::::
analysis,

:::
we

:::
use

::
a

::::
GIM

::
to

:::::::
estimate

:::
the

:::::::::
stochastic

:::::::::
component

::
of

:::
the

:::::
fluxes

:::
(ζ,

:::
Eq.

::
1)

::
–
:::::::
patterns

::
in

:::
the

:::::
fluxes

::::
that

:::
are

::::::
implied

:::
by

:::
the

::::::
OCO-2

:::::::::::
observations

:::
but

:::
do

:::
not

:::::
match

::::
any

:::::::
existing

::::::::::::
environmental

:::::
driver

:::::::
dataset.

::
To

::::
this

:::
end,

::::
Fig.

:
5
::::::
shows

:::
the

:::::
mean

::::::::::
contribution

::
of

::::
each

::::::::::::
environmental

:::::
driver

:::::::
variable

:::
and

:::
the

:::::::::
stochastic

:::::::::
component

::
to

:::
the

::::
GIM

::::::
across

::::
years

:::::
2015

:
–
:::::
2018

:::::
using

:::::::::
MERRA-2

:::
for

:::
the

::::::::::::
environmental

:::::
driver

::::::::
datasets.

:::
The

:::::::::
magnitude

::
of

:::
the

:::::::::
stochastic

:::::::::
component

::
in

::::
this570

:::
plot

::
is

:::::
small

::::::
relative

::
to
:::

the
:::::::::::

contribution
::
of

:::::::
different

::::::::::::
environmental

::::::::
variables

::::
and

::::::
relative

::
to

:::
the

::::::::::
contribution

:::
of

::::::::::::
anthropogenic
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::::::
sources.

::::::::::::
Furthermore,

:::
the

::::::::
stochastic

::::::::::
component

:::::::
contains

::::
very

:::::::
diffuse

::::::
spatial

:::::::
patterns,

::::
and

::::
these

:::::
very

:::::
broad

:::::::
patterns

::
do

::::
not

:::::
imply

:::
any

:::::
clear

:::::::::
deficiency

::
in

:::
the

:::::
other

::::::::::
components

::
of

::::
the

:::::
GIM.

:::
For

::::::::
example,

:::
the

:::::::::
regression

::::::::::
component

::
of

:::
the

:::::
GIM

:::::
(Xβ̂)

:::::::
accounts

:::
for

::::::
89.6%

::
of

:::
the

:::::::
variance

::
in
:::
the

:::::::::
estimated

:::::
fluxes,

::::
and

:::
the

::::::::
stochastic

::::::::::
component

:::::::::
conversely

:::::::
accounts

:::
for

::::
only

::::::
10.4%

::
of

:::
the

:::
flux

::::::::
variance.

:::::::::::
Furthermore,

:::
the

:::::::::
regression

::::::::::
component,

:::::
when

::::::
passed

:::::::
through

:::
the

:::::::::::
GEOS-Chem

::::::
model,

:::::::
matches

:::::::
OCO-2575

::::::::::
observations

::::::
nearly

::
as

::::
well

::
as

:::
the

::::
full

:::::::
posterior

::::
flux

:::::::
estimate

::::::
(Figs.

::
S2

::::
and

:::::
S13).

::::
This

:::::
result

:::::
shows

::::
that

:
a
:::::::

limited
::::::
number

:::
of

:::::::::::
environmental

::::::
driver

:::::::
datasets

:::
can

::::::
adeptly

:::::::::
reproduce

:::::
broad

:::::::
patterns

::
in

:::
CO2 flux variability in tropical grasslands, rendering it

a net source in year 2016.
:::::
fluxes

:::::
across

::::::::::
continental

:::
and

::::::
global

::::::
spatial

:::::
scales

:::
but

::::::::
reinforces

:::
the

::::::::::
conclusion

:::
that

::::::
current

:::::::
OCO-2

::::::::::
observations

:::
are

:::
not

::::::::
sufficient

::
to

::::::::::
disentangle

::::
more

::::::::
complex

::::::::::::
environmental

:::::::::::
relationships.

3.2 Estimated biospheric flux totals for different global regions580

We estimate a global terrestrial biospheric CO2 budget of -1.73 ± 0.53 GtC (Uncertainties listed are the 95% confidence

interval. The Supplement Sect. S5 provides detail on the posterior uncertainty estimate for biospheric fluxes. ). Among the

seven biomes, middle to high latitudes (primarily temperate, boreal and tundra biomes) act as a significant carbon sink; tropical

biomes are a net source; desert and shrubland regions play a small, neutral role (Table 2). Note that we subtract flux patterns

that map onto fossil fuels (Xβ, Fig. 5d) from the posterior flux estimate (s, Fig. 2c) to obtain an estimate for biospheric fluxes585

(including terrestrial NEE and biomass burningfluxes). We estimate a β value of 1.09 ± 0.05 (95% confidence interval) for the

fossil fuel emissions from ODIAC2016
::
In

::
all

:::
of

:::
the

:::::::::
simulations

:::::
using

:::::::
OCO-2

:::::::::::
observations,

:::
we

:::::::
estimate

::
a
::::::
scaling

:::::
factor

::::
(β)

::
for

:::::::::::::
anthropogenic,

:::::::
biomass

:::::::
burning,

:::
and

:::::
ocean

::::::
fluxes

::
of

::::
near

:::
one, indicating that the overall global magnitude of ODIAC2016

is consistent with OCO-2 observations. We therefore assume that ODIAC2016 is a reasonable global estimate for fossil fuel

emissions.
::::
these

::::::
source

:::::
types

:::::
have

:
a
:::::::::
magnitude

::::
that

::
is
:::::::

broadly
:::::::::
consistent

::::
with

:::::::::::
atmospheric

:::::::::::
observations.

:::::::::::
Specifically,

:::
the590

::::::::
estimated

::::::
scaling

:::::
factor

::::::::
estimated

::::::
ranges

:::::
from

::::
0.97

::
to

::::
1.05,

:::::::::
depending

:::::
upon

:::
the

::::
year

:::
and

::::::::::
simulation.

:::::
Note,

:::::::
however,

::::
that

:::
we

:::::::
estimate

:
a
:::::
single

:::::::
scaling

:::::
factor

:::
for

::
all

::
of

:::::
these

::::::
source

::::
types

:::::::::
combined

:::
and

:::
are

::::::
unable

::
to

::::::::::
confidently

:::::::
constrain

::::::::
separate

::::::
scaling

:::::
factors

:::
for

::::
each

:::::::
source,

:
a
:::::
topic

::::::::
discussed

::
in

::::::
greater

:::::
detail

::
in

:::
the

:::::::::::
Supplemental

:::::
Sect.

:::
S2.

These flux totals are
::::
Note

::::
that

:::
the

::::::::
inferences

::::::::
described

::::
here

:::
are

::::
also broadly consistent with a recent MIP of different inverse

models that assimilate OCO-2 observations(Crowell et al. , 2019). The inverse modeling teams that participated in the MIP595

employed different transport models, inverse modeling approaches, and prior flux assumptions. The total global terrestrial

biospheric flux, averaged across all models, was -1.4 ± 0.7 GtC for the year of 2016. The MIP fluxes assimilate v7 of land

nadir-mode XCO2 retrievals; unlike this study in which we use v9 of land nadir- and glint-mode retrievals. In spite of this

difference, the averaged global flux from the MIP study and the estimate reported here are very similar.

In order to provide an additional comparison with the MIP results, we group the estimated fluxes into TRANSCOM land600

regions (Gurney et al., 2002)
::::::::::
independent,

:::::::::::
ground-based

:::::::::::
atmospheric

::::::::::
observations. We split the classic TRANSCOM regions at

the Equator to avoid regions that encompass parts of both the northern and southern hemisphere, as in Crowell et al (2019). In

most of the regions,
:::
We

:::::::::
specifically

::::::
model

::::::::::
atmospheric

::::
CO2:::::

using
:::::
fluxes

::::::::
estimated

:::::
from

:::
the

::::
GIM

:::
and

::::::::
compare

::::::
against

::::::
regular

::::::
aircraft

:::::::::::
observations,

::::::::
campaign

::::
data

::::
from

:::
the

:::::::::::
Atmospheric

::::::::::
Tomography

:::::::
Mission

::::::::::::::::::::::
(ATom; Wofsy et al., 2018)

:
,
:::
and

:::::::::::
observations

::::
from

::::
Total

:::::::
Carbon

:::::::
Column

::::::::
Observing

::::::::
Network

::::::::::::::::::::::::
(TCCON; Wunch et al., 2011)

:
.
::
In

::::
most

:::::::::
instances,

:::
the

:::::
model

:::::
result

:::::::
matches

:::
the605

::::::::::
observations

::
to

::::::
within

:::
the

:::::
errors

:::::::
specified

::
in
:::
the

:::::::
inverse

:::::
model

::::
(i.e.,

::
to

::::::
within

:::
the

:::::
errors

::::::::
specified

::
in

:::
the

::
R

:::::::::
covariance

:::::::
matrix),
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:::
and

:::
the

::::::::::
model-data

:::::::::::
comparisons

::
do

::::
not

::::::
exhibit

:::
any

:::::::
obvious

::::::::
seasonal

::::::
biases.

:::::::::::
Furthermore,

:::
we

::::
also

::::::
model

::::::
XCO2 :::::

using
:::
the

::::::
outputs

::
of

:::
the

:::::::::
regression

:::::::
analysis

::::::
(Xβ̂),

:::
and

:::::
these

:::::::
outputs

:::
also

:::::
show

:::::
good

:::::::::
agreement

::::
with

:::::::
OCO-2

::::::::::
observations

:::::
(Fig.

:::::
S13).

:::
The

::::::::::::
Supplemental

::::
Sect.

:::
S4,

:::::
Figs.

:::::::
S2-S13,

:::
and

::::::
Tables

:::::
S2-S3

:::::::
describe

:::::
these

::::::::::
comparisons

::
in
::::::
greater

::::::
detail.

3.3
::::::::::
Comparison

::::::::
between

:::::::::
inferences

::::
from

:::::::
OCO-2

::::
and

::::::
TBMs610

:::
The

::::::::::::
environmental

:::::::::::
relationships

::::
(i.e.,

::::::::::
coefficients)

::::::::
estimated

:::
for

:::
the

:::::
TBMs

:::::
show

:
a
:::::::::
substantial

:::::
range

:::::
(Figs.

::
3

:::
and

:::
4);

:::
this

::::::
spread

::::::::
highlights

:::::::::::
uncertainties

::
in

::::::::::::
state-of-the-art

::::::
TBMs

::::
and

:::::::
indicates

::::
that

:::::
there

::
is

::
an

::::::::::
opportunity

::
to

::::
help

::::::
inform

:::::
these

:::::::::::
relationships

::::
using

:::::::::::
atmospheric

::::
CO2:::::::::::

observations.
:::
On

:::
one

:::::
hand,

:::
we

:::
are

::::
only

::::
able

::
to

::::
infer

::
a
::::::
limited

:::::::
number

::
of

::::::::::::
environmental

:::::::::::
relationships

::::
using

:::::::
current

:::::::::::
observations

::::
from

:::::::
OCO-2,

::::
and

::::
this

:::
fact

::::::
limits

:::
the

::::::
extent

::
to

::::::
which

:::
we

:::
can

::::::
inform

::::::
TBM

:::::::::::
development

:::::
using

:::::::
available

::::::::::
space-based

:::::
CO2 :::::::::::

observations.
:::
On

:::
the

::::
other

:::::
hand,

:::
we

:::
can

::::
infer

:::::::::::
relationships

::::
with

::::::
several

::::
key

::::::::::::
environmental

::::::
drivers615

::::
(e.g.,

::::
Fig.

::
3),

::::
and

:::::
TBMs

:::::::
disagree

:::
on

:::::::::::
relationships

::::
with

::::
even

::::
these

::::
key

::::::
drivers.

::::
This

:::::
result

::::
thus

::::::::
indicates

::::
both

:::
the

:::::::::
limitations

::
of

:::
this

:::::::
analysis

:::
but

::::
also

::
its

::::::::
strengths.

:::::::::::
Specifically,

::::
Figs.

::
3
:::
and

::
4
:::::::::
graphically

::::::::
displays

::::
these

::::::
results

::::
from

:::
the

:::::::::
regression

:::::::
analysis

::
–

::
the

::::::::::
coefficients

::::::::
estimated

:::::
using

::::::
OCO-2

:::::::::::
observations

::::::::
compared

::
to

:::::
those

::::::::
estimated

::::
from

:::
the

:::::::::
TRENDY

:::::::
models.

:::
The

::::::::::
coefficients

::::
from

:::
the

::::::
OCO-2

:::::::
analysis

:::
are

::::::
almost

::::::
always

::::::
within

:::
the

:::::
range

::
of

:::::
those

::::::::
estimated

:::::
using

:::
the

::::::::
ensemble

::
of

::::::
TBMs.

:::::
With

:::
that

:::::
said,

::
the

::::::::::
coefficients

::::::::
estimated

:::
for

:::::
many

::
of the fluxes estimated using the GIM are very

:::::
TBMs

:::
are

:::
far

::::
from

:::
the

:::::
value

::::::::
estimated

:::::
using620

::::::
OCO-2,

::::::::
implying

::::
that

::::::::::
observations

:::::
from

::::::
OCO-2

::::
can

::
be

::::
used

::
to
::::::
inform

:::
the

:::::::::::
relationships

::::::
within

::::::::
numerous

:::::::::
individual

:::::::
models.

::::
Note

:::
that

:::
in

::::
Figs.

::
3

:::
and

::
4,

:::
the

:::::
x-axis

::
is
:::::::
ordered

:::::
based

:::::
upon

:::
the

::::::::::::
environmental

:::::
driver

:::::::
variables

::::
that

:::
are

:::::::
selected

:::::
using

:::::::
OCO-2,

:::
and

:::
we

::::
show

:::
the

::::::::
estimated

::::::::::
coefficients

:::
for

::::::
TBMs

::
in

:::::
which

:::
the

:::::
listed

::::::::::::
environmental

:::::
driver

:::::::
variable

::
is

:::
also

::::::
chosen

:::::
using

::::::
model

::::::::
selection.

:::::::::::
Furthermore,

::
the

::::::::::
coefficients

::::::
shown

::
for

:::
the

::::::
TBMs

::
in

::::
Figs.

::
3
:::
and

::
4

:::
are

::::::::
calculated

:::::
using

::::::::::::
environmental

:::::
driver

:::::::
datasets

::::
from

:::::::::
CRUJRA.

:::
Fig.

::::
S14

:::::::
displays

:::
the

::::::
results

:::
for

:::
the

::::::
TBMs

:::::
using

::::::::::::
environmental

:::::
driver

::::
data

::::
from

::::::::::
MERRA-2,

::::
and

:::
the

::::::
results625

::::
look similar to those reported in the MIP

::::
using

:::::::::
CRUJRA.

:

:::
We

:::::::::
specifically

::::
find

::::
large

::::::::::
differences

:::::::
between

:::
the

:::::::
analysis

:::::
using

::::::
OCO-2

:::
and

:::
the

::::::
TBMs

:::
for

:::::::::::
relationships

::::
with

:::::::::::
precipitation.

:::
The

:::::::::::
relationships

::::::::
between

:::::::::::
precipitation

:::
are

::::::::
arguably

:::::
more

::::::::
uncertain

::::::
within

::::
the

::::::
TBMs

::::
than

:::
the

:::::::::::
relationships

:::::
with

:::::
other

:::::::::::
environmental

::::::::
variables

:
(Fig. 6) ; however, the fluxes estimated here are significantly different in a limited number of regions

(e. g. , tropical Australia and northern tropical Africa), a possible reflection of differences between the v9 and v7
::
3a)

::::
and

:::
are630

::::
more

::::::::
uncertain

::
in

:::::::
tropical

::::::
biomes

::::
than

::::::::
temperate

:::::
ones.

:::
This

:::::::::
statement

:
is
::::::::::
particularly

:::::::
apparent

:::::
when

:::
we

:::::::
examine

:::
the

:::::::::
coefficient

::
of

:::::::
variation

:::
for

::::
each

::::::::::
relationship

::::
(Fig.

::::
3b).

:::
The

:::::::::
coefficient

::
of

::::::::
variation

::
is

:
a
:::::::
measure

::
of

:::
the

::::::::::
uncertainty

::::::
relative

::
to

:::
the

:::::::::
magnitude

::
of

:::
the

:::::
mean,

::::
and

:::
Fig.

:::
3b

:::::
shows

::::
the

:::::::
standard

::::::::
deviation

::
in

:::
the

::::::::::
coefficients

::::
from

:::
the

:::
15

::::::
TBMs

::::::
divided

:::
by

:::
the

:::::
mean

:::::::::
coefficient

::::
from

:::
the

::::::::
ensemble

::
of

::::::
TBMs.

:::
In

:::::::
addition,

:::
the

::::::
TBMs

:::
are

::::::
evenly

::::
split

::
on

:::::::
whether

:::
the

::::::::::
relationship

::::
with

:::::::::::
precipitation

::
is

:::::::
positive

::
or

:::::::
negative

::::::
across

:::::::
tropical

:::::::
biomes,

:::
and

::::
our

:::::::
analysis

:::::
using

:
OCO-2 retrievals (O’Dell et al., 2018; Miller et al., 2019). For635

example, we estimate a smaller CO
::::::::::
observations

:::::
agrees

::::
with

:::::::
models

:::
that

:::::::
estimate

::
a
:::::::
negative

::::::::::
relationship

::::
(i.e.,

:::::::::::
precipitation

::
is

::::::::
associated

::::
with

::::::
greater

:::
CO2 source for northern tropical Africa relative to the MIP study. However, previous studies (e.g., Wang

et al., 2019) indicated that existing satellite-based estimates of
::::::
uptake).

:::::
There

::
is
::::::::::

substantial
:::::::::::
disagreement

:::
on

:::
the

:::::::::
magnitude

::
of

:::
this

:::::::::::
relationship,

::::
even

::::::
among

::::::
models

::::
that

::::
yield

::
a
:::::::
negative

::::::::::
relationship;

:::
the

::::::::
estimate

:::::
using

::::::
OCO-2

:::::::::::
observations

::::
falls

::
in

:::
the

::::::::
mid-range

::
of

:::::
these

::::::
TBMs

::
for

::::
both

:::::::
tropical

:::::::
biomes.640
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::::
More

:::::::
broadly,

:::
the

::::::
TBMs

:::::::
simulate

::::
very

::::::::
different

:::::
water

::::::
cycling

:::::::
through

::::
each

:::::::::
ecosystem,

::
in
:::::
spite

::
of

:::
the

:::
fact

::::
that

::::
each

::::::
model

:::
uses

::::
the

::::
same

:::::::::::
precipitation

::::::
inputs

:::::
from

::::::::
CRUJRA.

::::::
These

:::::::
broader

:::::::::
differences

:::
in

:::::
water

::::::
cycling

::::::
within

:::
the

::::::
TBMs

:::::
may

::::
help

::::::
explain

:::
the

::::
large

:::::::::::
uncertainties

::
in

:::
the

::::::::::
relationships

:::::::
between

:
CO2 fluxes for this region may be too high. OCO-2 collects far more

observations across northern Africa during the dry season than the wet season due to persistent cloudiness in
:::
and

:::::::::::
precipitation,

:::
and

::::::::
highlights

:::
an

::::::::
important

::::::
source

::
of

::::::::::
uncertainty

:::::
within

:::::
these

:::::::
models.

::::::::::
Specifically,

:::
we

::::
find

:::
that

::::::::
estimated

::::::::::::::::
evapotranspiration645

::::
(ET)

:::::
across

:
the wet season, and

:::::
TBMs

::::::
differs

::
by

::::::
almost

::
a
:::::
factor

:::
of

::::
three

::::::
among

:::::::
models

::
in

:::::
some

:::::::
seasons

:::
and

:::::::
biomes,

::::
and

:::::
annual

:::
ET

::::::
ranges

::::
from

::::
375

:
mm

::
to

::::
700 mm

::::
over

:::::
North

::::::::::
Hemispheric

:::::::
tropical

:::::::::
grasslands

::::
(Fig.

:::
6a),

::::
and

::::
from

::::
530 mm

::
to

:::::
1010

mm
::::
over

:::::
North

:::::::::::
Hemispheric

:::::::
tropical

::::::
forests

::::
(Fig.

::::
6b).

:::::
These

:::::
large

::::::::::
differences

::
in

:::
ET

::::::::
estimates

::::::::
reinforce

:::
the

::::
very

::::::::
different

::::::::
responses

::
of

:::::::
tropical

:::::::::
ecosystems

::
in

:::::
these

::::::
models

:::::
(both

::::::
tropical

::::::
forests

::::
and

::::::
tropical

::::::::::
grasslands)

::
to

::::::::::
precipitation

::::::
inputs.

:

::::::
Indeed, existing studies have postulated that this difference in data availability may be to blame for a high bias in

::::::::
indicated650

::::
large

:::::::::::
uncertainties

::
in

:::
the

::::::::
responses

::
of

:::::::
tropical

:::::
forests

:::
to

::::
water

::::::::::
availability

::::::::::::::::::::::::::::
(e.g., Restrepo-Coupe et al., 2016)

:::
and

:::::
have

::::::
offered

::::::
several

:::::::
possible

:::::::::::
explanations.

:::
Soil

::::::
depths

:::
and

:::::::
rooting

:::::::::
distribution

:::
are

::::::::::
particularly

::::::::::
challenging

::
to

:::::
model

::
in

:::::::
tropical

::::::::::
ecosystems,

:::::::
yielding

::::::::::
uncertainties

:::
in

:::
the

::::::::::
relationship

:::::::
between

::::::
water

:::::::::
availability

::::
and CO2 fluxes estimated from OCO-2 (Crowell et al.

2019; Wang et al. 2019).
:::::::::::::::::::::::::::::::::::
(e.g., Baker et al., 2008; Poulter et al., 2009)

:
.
:::
For

::::::::
example,

:::::::::::::::::
Poulter et al. (2009)

::::::
argued

:::
that

:::::::
current

:::::
TBMs

::::
tend

::
to

::::::::::::
underestimate

:::
soil

::::::
depths

::
in

:::::::
tropical

::::::
forests,

::::::
which

:::
are

::::::
critical

::
to

::::::::
guarantee

::::
soil

:::::
water

:::::
access

::::
and

::
to

:::::::::
accurately655

:::::::
simulate

:::::::::
dry-season

:::::::::::::
photosynthesis

::
in

::::::
TBMs.

::::
The

::::::::
treatment

:::
of

::::::::
irrigation

:::
and

:::::
other

::::
land

:::::::::::
management

::::::::
practices

::::
also

::::::
differs

:::::
among

:::::::
models

::::
and

::::::
creates

::::::
further

::::::::::
uncertainty

::::::::::::::::::::::::::::::::::::
(e.g., Le Quéré et al., 2018; Pan et al., 2020).

:::
To

::::::::::
complicate

:::::::
matters,

:::
the

::::
role

::
of

::::::::::
precipitation

:::
in

::::::
carbon

::::::::
dynamics

:::
can

::::
vary

:::::::::
depending

:::
on

::::::
broader

:::::::::::::
environmental

::::::::
conditions

::::
and

:::
the

::::
time

:::::
scales

::::::::::
considered

:::::::::::::::::::::::
(e.g., Baldocchi et al., 2017).

::::
For

:::::::
example,

::::::
excess

:::::::::::
precipitation

::
is

:::::::::
associated

::::
with

::::::
limited

::::
light

::::::::::
availability

::
in

::::::
regions

::::
like

:::
the

:::::
humid

::::::
tropics

:::
and

::::
can

::::
raise

:::
the

:::::
water

::::
table

:::
to

:
a
::::
level

::::
that

::::::
inhibits

::::::::::
respiration.

::::
With

::::
that

::::
said,

:::::::::
short-term

::::
rain

:::::
events

::::
have

:::::
been660

:::::
shown

::
to

:::::
boost

:::::::::
respiration

:::::::::::::::::::
(e.g., Baldocchi, 2008).

:

The fluxes estimated here are also broadly consistent with aircraft-based in situ CO2 observations, a topic discussed in the

Supplement Sect. S7.

3.3 Estimated posterior uncertainties

The posterior uncertainties for individual biomes range from 0.25 to 0.76 GtC yr−1. Estimated fluxes for tropical forests665

have higher uncertainties than any other biome (0.76 GtC yr−1), likely a consequence of poor observational coverage due to

persistent cloudiness. By contrast, a large number of good-quality
::::
Like

:::::::::::
precipitation,

:::::::::::
relationships

::::
with

::::
PAR

:::
are

::::
also

::::::
highly

:::::::
uncertain

:::
in

:::
the

::::::::::
simulations

:::::
using

::::::
TBMs.

:::::
Most

::::::
models

:::::
yield

:::::::::::
relationships

::::
with

:::
the

:::::
same

:::::
sign,

:::
but

:::::
those

:::::::::::
relationships

::::
vary

:::::
widely

:::
in

:::::::::
magnitude.

:::
By

:::::::
contrast,

::::::
results

:::::
using

:
OCO-2 retrievals provides robust constraints over temperate forests, yielding

a small posterior uncertainty (0.27 GtC yr−1) in the estimated flux
::::::::::
observations

:::
are

::::
very

::::::
similar

::
to
:::
the

:::::::::
ensemble

::::
mean

:::
of

:::
the670

::::::
TBMs.

::::
This

:::::
result

::
is

::::::::::
particularly

:::::::::
interesting

:::::
given

::::
that

:::
the

:::::::::
individual

:::::
TBMs

:::
do

:::
not

:::::
show

:::::::::
consensus

::::
with

::::
one

:::::::
another.

::::
The

:::::::::
differences

::::::
among

:::
the

::::::
TBMs

:::::
likely

:::::
stem

:::::
from

:::
the

::::
fact

:::
that

:::::
these

::::::
TBMs

::::::
exhibit

::::::
widely

:::::::
varying

::::::::
seasonal

::::::
cycles

:::
and

:::::
peak

:::::::
growing

:::::
season

::::::
uptake

::::::
across

::::::::::
extratropical

:::::::
biomes.

::::
For

:::::::
example,

::
in
:::::::::

temperate
::::::
forests

::::
(e.g.,

::::
Fig.

:::::
S17),

:::
the

:::::::::
maximum

:::::::
monthly

:::::
carbon

::::::
uptake

::::::
differs

:::
by

:
a
:::::
factor

:::
of

::::
eight

::::::
among

:::
the

:::::::
TBMs,

:::
and

::
a

::::::
handful

:::
of

:::::
TBMs

::::::::
estimate

:
a
::::
very

::::::::
different

:::::::
seasonal

:::::
cycle

:::
than

:::
the

::::
bulk

:::
of

:::
the

:::::
TBMs

::::
with

:::::::::
maximum

::::::
uptake

:::::
during

:::
the

::::::
middle

::
of
:::
the

::::::::
growing

:::::
season.675
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It is important to note that the posterior uncertainties calculated in most classical Bayesian or geostatistical inverse models

account for many but not all possible sources of uncertainty. For example, the posterior uncertainties presented here account

for the sparsity of
:
In

:::::::
contrast

:::
to the

::::::::
discussion

::
of

:::::::::::
precipitation

::::
and

:::::
PAR,

:::::::
existing

::::::
TBMs

::::
yield

::::::
much

:::::
better

:::::::::
agreement

:::
on

::
the

:::::::::::
relationships

::::::::
between

::::
CO2 :::

and
::::::
scaled

::::::::::
temperature

::::
(Fig.

:::
3).

::
In

:::::::
tropical

:::::::
biomes,

::::::
nearly

::
all

::::::
TBMs

:::::
agree

::
on

:::
the

::::
sign

:::
of

:::
the

::::::::::
relationship,

:::
and

:::
the

::::::::
estimates

:::::
using

:
OCO-2

::::::::::
observations

::::
are

:::::
within

:::
the

:::::
range

:::
of

::::
those

:::::::::
estimated

::::
using

:::::::
TBMs.

:::::::::::
Interestingly,680

::
the

::::::::::
uncertainty

:::::::
bounds

::
on

::::
the

::::::::::
coefficients

:::::::
estimate

:::::
using

:::::::
OCO-2

:::
are

:::
not

::::
that

:::::
much

:::::::
smaller

::::
than

:::
the

:::::
range

:::
of

::::::::::
coefficients

::::
from

:::
the

::::::::
ensemble

:::
of

::::::
TBMs,

::::
both

:::
for

:::::::
tropical

:::::::::
grasslands

:::
and

:::::::::
especially

:::
for

:::::::
tropical

::::::
forests.

:::::
This

:::::
result

:::::
points

:::
to

::::::::
relatively

::::
good

:::::::::
consensus

::
in

:::::::
modeled

:::::::::::
relationships

::::
with

::::::::::
temperature

:::
for

:::::::
tropical

::::::::
grasslands

::::
and

::::::
forests

:
–
::::
both

:::::
using

::::::
TBMs

:::
and

:::::::
OCO-2

observations, random observational or atmospheric transport errors, and uncertainties due to uncertain drift coefficients (β)

(.
:::::::::
However,

:
it
::::

also
::::::::

indicates
::::

that
:::::::::::
atmospheric

::::::::::
observations

:::::
from

:::::::
OCO-2

:::::::::
potentially

::::
have

::::
less

::::::::::
opportunity

:::
to

::::::
inform

:::::
these685

::::::::::
relationships

::::
than

:::
for

:::::::::::
precipitation

::
or

::::
PAR

:::::
where

::::::
TBMs

::
do

::::
not

::::
show

:::::::::
consensus.

:

:::
The

:::::::::::
comparisons

:::::::::
described

:::::
above

::::
are

::::::
largely

:::::
from

::::::
biomes

::::::::
centered

::
in
::::

the
::::::
tropics

::::
and

:::::::::::
mid-latitudes

::::
and

:::::::
include

::::
few

::::::::::
comparisons

:::
for

::::
high

:::::::
latitude

::::::
biomes

:
(e.g., Kitanidis and Vomvoris, 1983; Michalak et al., 2004). However, these calculations

do not fully account for bias-type errors: regional- or continental-scale biases in the OCO-2 observations, biases in modeled

atmospheric convection (e. g. , Basu et al. , 2018; Schuh et al., 2019), or biases in modeled interhemispheric transport, among690

other possible biases. Most classical Bayesian and geostatistical inverse models assume that the observational or model errors

are Gaussian with a mean of zero (e. g. , Kitanidis and Vomvoris. 1983; Michalak et al. , 2004; Tarantola, 2005) , making it

challenging to account for the types of biases listed above. As a result, the posterior uncertainties estimated in this study are

typically smaller than
:::
the

:::::
boreal

:::::
forest

:::
or

:::::
tundra

::::::::
biomes).

:::
For

::::::::
example,

:::
we

:::
do

:::
not

:::::
select

::::
any

::::::::::::
environmental

:::::
driver

::::::::
variables

::
for

:
the range of flux estimates produced from the recent MIP study (Fig. 6; Crowell et al., 2019).

:::::
tundra

:::::
biome

:::::
using

:::::::
OCO-2695

:::
and

::::
only

:::::
select

::::
PAR

::
in
::::::
boreal

::::::
forests.

:::::::
OCO-2

::::::::::
observations

:::
are

::::::
sparse

:::::
across

:::::
high

:::::::
latitudes

::::
both

:::
due

:::
to

:::
the

:::
lack

:::
of

:::::::
sunlight

::
in

:::::
winter

::::
and

:::
due

::
to

:::::::
frequent

:::::
cloud

:::::
cover

::
in

:::::
many

::::
high

::::::
latitude

:::::::
regions.

:::
We

::::
also

::::
only

:::::
select

:::::
PAR

::
in

:::::
boreal

::::::
forests

::
in

::::::::::
simulations

::::
using

::::
two

::
of

:::
the

:::
15

::::::
TBMs.

::::
This

:::::
result

::::
also

::::::
reflects

:::
the

::::::
limited

::::::::::
availability

::
of

::::::
OCO-2

:::::::::::
observations

::::
over

::::
high

:::::::
latitude

:::::::
regions;

::
for

:::
the

::::::::
analysis

::::
here,

:::
we

::::::
create

:::::::
synthetic

:::::::
OCO-2

:::::::::::
observations

:::::
using

::::
each

:::::
TBM

::::
and

:::::
apply

:::::
model

::::::::
selection

::
to

:::::
each

::
of

:::::
these

:::::::
synthetic

:::::::
OCO-2

:::::::
datasets.

::::::
Hence,

:::
the

:::::::
sparsity

:::
of

::::::
OCO-2

:::::::::::
observations

:::
not

::::
only

::::::
affects

:::
the

::::::
model

:::::::
selection

::::::
results

:::::
using

::::
real700

::::::
OCO-2

::::::::::
observations

::::
but

:::
also

::::::
affects

:::
the

:::::::
analysis

::::::
shown

::
in

::::
Figs.

::
3
:::
and

::
4
:::::
using

:::
the

::::::
TBMs.

:::
The

::::
fact

:::
that

:::::
PAR

::
is

:::::::
selected

::
for

:::
so

:::
few

::::::
TBMs

:
is
:::
not

::
a
::::::::
reflection

::
on

:::
the

:::::::::
important

:::
role

::
of

:::::
PAR

:::::
across

:::
the

::::::
boreal

:::::
forest

::
in

:::::
many

::::::
TBMs.

::::
Note

::::
that

:::
the

:::::::
analysis

::::::::
described

:::::
above

::
is
::::::

based
::::
upon

:::
the

:::::
mean

:::::::::::
relationships

::::
that

:::
we

::::
infer

:::
for

:::::
years

:::::::::::
2015–2018.

:::
We

::::
also

:::::::
explored

::::
how

::::
these

:::::::::::
relationships

::
in

:::
the

::::::
models

::::
vary

::::::
during

::
El

:::
Ni

:
ñ

:
o

:::::::::::
(2015–2016)

:::
and

::::::
non-El

::
Ni

:
ñ
:
o
:::::
years

:::::::::::
(2017–2018)

::::
(Fig.

:::
4).

:::
The

:::::::::::
relationships

:::
that

:::
we

:::::::
estimate

:::
do

:::
not

::::::::::::
fundamentally

::::::
change

::::::::
between

::
El

::
Ni

:
ñ
:
o
::::
and

::::::
non-El

::
Ni

:
ñ
:
o
:::::
years

:::
and

:::::::
neither

::::
does

:::
the705

:::::
spread

::::::
among

::::
the

:::::::
models.

::::
This

:::::
result

::::::::
indicates

:::
two

:::::::::::
conclusions:

:::
(1)

:::::
there

::
is

:::
not

::
a
::::::::::
fundamental

:::::
shift

::
in

:::::
these

:::::::::::
relationships

:::::::
between

::
El

:::
Ni

:
ñ
:
o
::::::

versus
:::::::

non-El
::
Ni

:
ñ
:
o
::::::

years,
::::::::::
suggesting

:::
that

::
it
:::

is
:::
not

:::
the

:::::::
change

::
in
:::::::::::::

environmental
:::::::::::
relationships

:::
but

::::
the

::::::
change

::
in

::::::::::::
environmental

::::::::
variables

::::::::::
themselves

:::
that

::::::::
correlate

::::
with

:::
the

:::::::
change

::
in

::::
flux

:::::::::
estimates;

:::
and

:::
(2)

::::
the

::::::::::
uncertainties

:::
in

::
the

::::::::::::
relationships,

::
as

::::::::
estimated

::
by

:::
the

::::::
TBMs,

:::
are

:::
not

::::::
higher

::
in

::
El

:::
Ni

:
ñ

:
o

:::::
versus

::::::
non-El

:::
Ni

:
ñ

:
o

:::::
years.

::::
With

::::
that

::::
said,

:::
the

:::::::::
magnitude

::
of

:::
the

::::::::
estimated

::::::::
coefficient

::::
does

:::::::
change

:
in
:::::
some

::::::
models

:::::::
between

:::
El

::
Ni

:
ñ
:
o
:::
and

::::::
non-El

::
Ni

:
ñ
:
o
::::::
years;

::
the

:::::::
changes

::
in

:::
the

::::::::::
coefficients710
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::
are

::::::::
generally

::::
less

::::
than

::::
50%

::
in

::::
most

:::::::
models,

:::
and

:::
the

:::::::
models

::
do

:::
not

:::::
show

:
a
:::::::::
consistent

:::::::
direction

::
of

::::::
change

::::::::
between

::
El

::
Ni

:
ñ
:
o
::::
and

:::::
non-El

:::
Ni

:
ñ
:
o
:::::
years.

:

4. Conclusions

4 Conclusions

In this study, we adapt the geostatistical approach to inverse modeling for global satellite observations of
:::
use

::::
four

::::
years

:::
of715

::::::::::
observations

::::
from

:::::::
OCO-2

:::
and

::
a
::::::::
top-down

::::::::
statistical

:::::::::
framework

::
to
:::::::
evaluate

:::
the

:::::::::::
relationships

:::::::
between

:::::::
patterns

::
in
:::::::::::
atmospheric

CO2 , and evaluate the extent to which we can use these observations to make connections between
::::::::::
observations

::::
and

:::::::
patterns

::
in

:::::::::::
environmental

::::::
driver

::::::
datasets

::::
that

:::
are

:::::::::
commonly

::::
used

::
in

::::::::
modeling

:::
the

:::::
global

::::::
carbon

:::::
cycle.

:::
We

:::
are

::::
able

::
to

:::::::
quantify

::
a

::::::
limited

::::::
number

::
of

:::::
these

::::::::::::
environmental

:::::::::::
relationships

:::::
using

::::::::::
observations

:::::
from

::::::
OCO-2.

:::
In

::::
spite

::
of

:::::
these

:::::::::
limitations,

:::
we

:::
are

::::
still

::::
able

::
to

::::::
identify

:::::::::::
relationships

::::
with

::
a
:::::
small

::::::
number

:::
of

::::::
salient

::::::::::::
environmental

::::::
drivers

:::::::
datasets,

::::
and

::::::::::::
state-of-the-art

::::::
TBMs

:::
do

:::
not

:::::
show720

::::::::
consensus

:::
on

::::
some

:::
of

::::
these

::::
key

:::::::::::
relationships,

::::::::
indicating

:::
an

::::::::::
opportunity

::
to

::::::
inform

:::::
these

::::::::::
relationships

:::::
using

:::::::::::
atmospheric CO2

fluxes and environmental drivers. We find that A simple combination of environmental drivers can adeptly describe patterns in

CO2 fluxes across different biomes of the globe, as seen through observations from the
::::::::::
observations.

:

:::
We

::::::::::
subsequently

::::::::
compare

::::::::
inferences

:::::
using

:
OCO-2 satellite; PAR is an adept predictor of fluxes across mid-to-high latitudes,

whereas a combination of daily air temperature and daily precipitation shows strong explanatory power across tropical biomes;725

A larger number of environmental drivers is not selected because many drivers are correlated or colinear when passed through

an atmospheric model and averaged across a total atmospheric column. This high collinearity, not errors in the
::::::
against

::::::::
inferences

:::::
from

::
15

:::::::::::::
state-of-the-art

::::::
TBMs

:::
that

:::::
have

:::::
model

:::::::
outputs

:::::::
available

:::
for

:::
the

:::::
same

:::
set

::
of

::::::
years.

:::
For

:::
the

:::::
broad

:::::::
regions

:::
and

::::::::
timespan

:::::::
explored

::
in

:::
this

:::::
study,

:::
we

::::
find

:::::::
negative

::::::::::
relationships

::::::::
between

::::::
patterns

::
in
:
OCO-2 retrievals or atmospheric model,

appears to be a limiting factor in using satellite observations to connect
::::::::::
observations

::::
and

:::::::
patterns

::
in

:::::::::::
precipitation;

::::
this

:::::
result730

:::::
agrees

::::
with

::::
half

::
of

:::
the

:::::::
TBMs,

:::::
which

:::
do

:::
not

:::::
show

:::::::::
consensus

::
on

:::::::::::
relationships

::::
with

:::::::::::
precipitation.

:::
By

::::::::
contrast,

::::::
TBMs

::::::
exhibit

::::
much

:::::::
greater

::::
skill

::
in

:::::::::
describing

:::::::::::
relationships

::::
with

::::::
scaled

:::::::::::
temperature,

::
as

:::::::
implied

:::
by

:::
the

::::::::
relatively

:::::
good

:::::::::
agreement

::::::
among

::::::
TBMs.

::
In

::::
fact,

::
the

:::::::::::
uncertainties

::
in

:::
the

::::::::::
temperature

::::::::::
relationship

:::::
across

:::::::
tropical

::::::
biomes,

:::
as

::::::::
estimated

::::
using

:::::::
OCO-2

:::::::::::
observations,

:
is
::::::
nearly

::
as

::::
large

:::
as

:::
the

:::::
range

::
of

::::::::
estimates

::::
using

:::::::
TBMs.

::::
More

::::::::
broadly,

::::::::::::
state-of-the-art

::::::
TBMs

::::::::
disagree

::
on

::::
the

::::::::::
contribution

:::
of

::::::::
individual

:::::::
biomes

::
to
::::

the
:::::
global

:::::::
carbon

:::::::
balance,

::
a735

::::
result

::::::::::
highlighted

:::
in

::::::
several

:::::::
studies

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Poulter et al., 2014; Sitch et al., 2015; Ahlström et al., 2015; Piao et al., 2020).

:::
In

::::
order

:::
to

::::::
reduce

:::::
these

::::::::::::
uncertainties,

::::::::
scientists

::::
will

::::::
likely

:::::
need

::
to

:::::::::
reconcile

::::::::::
differences

::
in

::::
the

::::::::::::
environmental

:::::::::
processes

:::
that

:::::
drive

:::::
these

:
CO2 fluxes with environmental drivers; We estimate a global terrestrial biospheric budget of -1.73 ±

0.53 GtC in year 2016, in close agreement with recent inverse modeling studies that use
:::
flux

:::::::::
estimates.

:::::::
Existing

:::::::
studies

::::
have

::::
used

:::
in

::::
situ

:::::::::::
atmospheric

:::::::::::
observations

:::
to

::::
help

::::::::
quantify

::::
and

::::::::
evaluate

:::::
these

::::::::::::
relationships

::::::
across

:::
the

:::::::::::
extratropics740

:::::::::::::::::::::::::::::::::::::::
(e.g., Fang and Michalak, 2015; Hu et al., 2019).

::::::::
However,

::::
this

::::
task

::
is
:::::
much

:::::
more

::::::::::
challenging

::::::
across

:::::::
regions

::
of

::::
the

:::::
globe

::::
with

:::::
sparse

::
in

::::
situ

:::::::::::
observations,

::::::::
including

::::
most

::
of

:::
the

:::::::
tropics.

::
In

::::
spite

:::
of

:::
the

:::::::::
limitations

::::::::
described

::
in

:::
this

::::::
study,

:::
the

::::::
advent

::
of

23



:::::::::::
satellite-based

:::::
CO2 ::::::::::

observations
::::
like

:::::
those

::::
from OCO-2 retrievals as observational constraints .

:::::::
provide

:
a
::::
new

::::::::::
opportunity

::
to

:::::::
constrain

:::::
these

::::::::::::
environmental

:::::::::::
relationships

:::
and

:::::::
thereby

::::::
provide

::::::
unique

::::::::::
atmospheric

:::::::::
constraints

:::
on

:::
the

:::::
global

::::::
carbon

::::::
cycle.
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Figure 1. The seven biome-based regions aggregated from a world biome map in Olson et al. (2001).
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(a) Correlations (r) among several environmental 
driver variables (X) for the temperate forest biome
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(b) Correlation among several environmental 
driver variables in h(X)
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Figure 2.
::::::::
Correlation

:::::::::
coefficients

:::
(r)

:::::::
between

:::::::::::
environmental

::::::
drivers

::::
over

::::::::
temperate

:::::
forests

::::::
biome

::
in

::::
year

::::
2017

::
in
:::
X

:::::
(panel

::
a)
::::

and

::::
h(X)

:::::
(panel

:::
b).

:::
We

:::
find

:::
that

:::
the

:::::::::
correlation

::::::
between

:::::::::::
environmental

::::::
drivers

:::
(X)

:::
are

:::::::
generally

:::
low

:::
(a),

::::
e.g.,

::::
PAR

:::
and

:::::
scaled

::::::::::
temperature,

:::::::::
precipitation

:::
and

::::::
specific

::::::::
humidity;

::::::
however,

:::::
when

::::
these

:::::::::::
environmental

:::::
drivers

:::
are

:::::
passed

::::::
through

:::
the

:::::::
transport

:::::
model

:::
h()

:::
and

:::::::::
interpolated

:
to
:::
the

::::::::
locations

::
of

::::::
OCO-2

::::::::::
observations,

::
the

:::::::::
correlation

::::::
between

::::
these

::::::
drivers

::::::
become

::::
much

::::::
stronger

:::
(b),

::::::::
indicating

::::
high

:::::::::
collinearity.
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Figure 3.
::::::::
Estimated

::::::::
coefficients

:::
(β)

::::
from

:::
the

::::::::
TRENDY

:::::
models

:::::
(blue),

::::
from

:::
the

:::::::
ensemble

:::::
mean

::
of

::
the

::::::::
TRENDY

::::::
models

::::::
(black),

:::
and

::::
from

::
the

:::::::
analysis

::::
using

::::::
OCO-2

::::
(red).

::::
Each

::::
blue

::
or

:::
red

:::
dot

:::::::
indicates

::
the

:::::
mean

::::
value

:::::
across

::
all

::::
four

::::
years

::
of

:::
the

::::
study

::::::
period.

::::
Gray

::::
bars

::::::
indicate

::
the

:::
full

:::::
range

::
of

::::::::::
uncertainties

::
in

::
the

::::::::::
coefficients.

::
To

:::::::
construct

:::::
these

:::
gray

::::
bars,

:::
we

:::::::
calculate

:::
the

::::::::::
uncertainties

::
in

::
the

:::::::::
coefficients

::::::::
estimated

::
for

::::
each

::::::::
individual

::::
TBM

:::
(or

:::
for

:::
the

:::
real

::::::
OCO-2

::::
data)

:::::
using

:::
Eq.

::
4.

::::
They

::::
gray

:::
bars

:::::::::
encapsulate

:::
all

::
of

:::
the

::::::::
uncertainty

::::::
bounds

::::
from

:::
all

::
of

::::
these

:::::::
individual

:::::
model

::::::::::
calculations.

::::::::::
Furthermore,

:::
the

::::::
analysis

::
of

::::::
OCO-2

::::::
includes

:::::::::
simulations

::::
using

:::::::::
MERRA-2

:::::::::
meteorology

::::
with

:
a
::::::

simple

::::::::
formulation

::
of
:::
Ψ

:::
(red

::::::
square),

:::::
using

:::::::
CRUJRA

::::::::::
meteorology

:::
and

:
a
:::::
simple

:::::::::
formulation

::
of
::
Ψ
::::

(red
::::
dot),

:::
and

::::
using

:::::::::
MERRA-2

:::
and

:
a
:::::::
complex

::::::::
formulation

::
of
::
Ψ

::::
(the

::::
same

:::
used

::
in
:::
the

::::
GIM,

:::
red

:::::::
triangle).

:::
The

:::::::::
coefficients

::::
from

::
the

::::::
analysis

:::::
using

:::::
OCO-2

::::
(red)

:::
are

::::::
broadly

:::::
within

::
the

:::::
range

:
of
:::

the
:::::::
estimates

::
in
:::::
TBMs

::::::
(blue).

::
We

::::::
further

:::::::
calculate

::
the

::::::::
coefficient

::
of
:::::::
variation

::::
(CV)

::
of
:::::::::
coefficients

:::
for

:::
each

:::::::::::
environmental

::::::
drivers

:::::
within

::
the

:::::
TBMs

:::
(b),

:::
and

:::
we

:::
find

:::
that

:::
the

:::::
largest

:::
CV

:::
are

::::
from

::
the

:::::::::
coefficients

:::
for

::::::::::
precipitation.35
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Figure 4.
:::
This

:::::
figure

:
is
::::::
similar

::
to

:::
Fig.

::
3
:::
but

:::::
shows

:::::
results

:::
for

:::::::
individual

:::::
years.

:::::
There

:::
are

::
no

::::::::
noticeable

:::::
shifts

::
in

::
the

::::::::
coefficient

::::::::
estimates

::::::
between

::
El

::::
Niño

:::::
(2015

:
–
:::::

2016;
:::::
panels

::::
a-b)

:::
and

:::::
non-El

::::
Niño

:::::
years

:::::
(2017

:
–
:::::
2018;

:::::
panels

:::
c-d)

::::
from

:::
the

::::::
analysis

:::::
using

::::::
OCO-2

::::
(red).

:::::
Some

:::::::
individual

:::::
TBMs

:::::
show

::::::::
differences

::
of

::
up

::
to

::::
50%

::
in

::
the

::::::::
estimated

::::::::
coefficient

:::::
among

:::::
years,

:::::
though

::::
many

::::::::
individual

:::::
TBMs

::
do

::::
not.
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Figure 5.
::
The

::::::::::
contribution

::
of

:::::::
different

:::::::::::
environmental

::::
driver

:::::::
datasets

::
to

:::
the

:::
flux

:::::::
estimate

::::
from

::
the

:::::
GIM.

:::::
Panel

::
(a)

:::::::
displays

::
the

::::::::
four-year

::::
mean

:::
flux

:::::::
estimate

:::::::
(including

::::
both

:::
the

::::::::
regression

:::
and

:::::::
stochastic

:::::::::
components

::
of
:::
the

:::
flux

:::::::
estimate;

::::
units

::
of

:::::
µmol

:::
m−2

::::
s−1)

:::
and

:::::
panel

::
(b)

:::
the

:::::::::
contribution

::::
from

:::::::::::
anthropogenic,

:::::::
biomass

::::::
burning,

:::
and

:::::
ocean

:::::
fluxes.

:::::::::::
Contributions

::::
from

:::::::
different

::::::::::
environmental

::::::
drivers,

::::::::
including

:::::
scaled

:::::::::
temperature

:::
(c),

:::::::::
precipitation

:::
(d),

:::
and

::::
PAR

:::
(e),

::::::
describe

::::
most

::
of
::::::::::::
spatiotemporal

:::::::
variability

::
in
::::::::
terrestrial

::::::::
biospheric

:::
CO2::::::

fluxes,
::::::
whereas

:::
the

:::::::
stochastic

:::::::::
components

:::
(ζ),

:::::
panel

::
f)

:::
only

::::::
account

:::
for

:
a
:::::
small

:::::
portion

::
of

::::
flux

::::::::
variability.

::::
Note

:::
that

:::
the

:::::
inverse

:::::::
modeling

::::::
results

:::::
shown

::
in

:::
this

::::
figure

:::
use

:::::::::::
environmental

:::::
driver

:::
data

::::
from

:::::::::
MERRA-2.

::::
Also

:::
note

:::
the

::::
color

::::
bars

:::
used

::
in
:::::
panels

:::::
(a-b),

:::::
panels

::::
(c-e),

:::
and

:::::
panel

::
(f)

:::
are

:::::::
different.

::::
White

:::::
colors

::
in

:::::
panels

::::
(c-e)

:::::::
indicates

:::
that

:::
not

::
all

:::::::::::
environmental

:::::
drivers

:::
are

::::::
selected

::
in

::
all

::::::
biomes.
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Figure 6.
:::::::

Four-year
:::::::
averaged

:::::::::::::
evapotranspiration

::::
(ET)

::::::::
estimates

::::
from

:
a
::::
suite

::
of

::
15

:::::
TBMs

:::::
(blue)

:::
and

::::
from

:::
the

::::::::
ensemble

::::
mean

::::::
(black),

:::
for

::::
North

::::::::::
Hemispheric

::::::
tropical

::::::::
grasslands

:::
(a)

:::
and

::
for

:::::
North

::::::::::
Hemispheric

::::::
tropical

:::::
forests

:::
(b).

::::::
Annual

:::
ET

::::
show

::::
large

:::::::::
differences

::
in

::::::::
magnitude

::::
across

:::
the

:::::
TBMs

:::
for

:::
both

::::::
tropical

::::::
biomes.
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