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We thank the reviewers for their detailed suggestions and comments on the manuscript. We have 

re-written the manuscript, added substantial new analysis, and included extensive new 

comparisons against independent observations based upon the reviewer suggestions. Below, we 

have replied to each review and have detailed the corresponding edits that we have made to the 

manuscript. We have listed out the reviewer comments in italic font and the replies in regular 

font. 

 

RC1: Referee #1 

The authors have developed a geostatistical inverse method to interpret satellite observations of 

carbon dioxide (CO2) collected by the NASA Orbiting Carbon Observatory collected during 

2016. As far as this reviewer can see the study is scientifically sound but describes only an 

incremental improvement to the method and does not lead to any new scientific insight. 

 

We have re-written most of the manuscript, overhauled the inverse modeling setup, and added 

substantial new analysis to improve the novelty and scientific messaging. Specifically, in the 

revised manuscript, we have added the following new analyses: 

• We compare the environmental relationships that we infer from OCO-2 against the 

relationships that we infer from 15 terrestrial biosphere models (TBMs) from the recent 

TRENDY model comparison project (Sect. 3.3). 

• We evaluate when and where TBMs agree and disagree on these relationships and what 

factors might be driving these disagreements among TBMs (Sect. 3.1). 

• We have expanded the analysis from one year to four years. 

• We have added a synthetic data analysis to better explore what factors limit our ability to 

infer these environmental relationships using current satellite observations from OCO-2 

(Sect. 3.1). 
• We have added extensive evaluation against ground-based CO2 observations (the 

Supplemental Sect. S4, Figs. S2-S8, and Tables S2-S3). 
 

The environmental drivers for ecosystems located at mid/high and tropical ecosystems 

are unsurprising. Perhaps that’s the point. I wasn’t sure. PAR is by definition photosynthetic 

active radiation so its ability to describe large-scale CO2 fluxes isn’t anything new, particularly 

over one year that is dominated by the seasonal cycle. Any insights from using the diffuse and 

direct components of PAR? Similarly, temperature and precipitation roles in the tropics are 

nothing new. However, I am surprised that precipitation is such a useful driver over the tropics 

where complex basin-scale hydrologic controls are at play. In other words, where it rains is not 

necessary where the water ends up. 

 

We agree that these environmental drivers are unsurprising. In the revised manuscript, we have 

added analysis comparing the relationships that we infer from OCO-2 observations against those 

inferred from 15 TBMs (Sect. 3.3). Existing terrestrial biosphere models (TBMs) disagree on the 

relationships between these environmental drivers and CO2 fluxes; TBMs show a large range of 

relationships, and for some variables like precipitation, TBMs often disagree on the sign of that 

relationship. We feel that this new comparison with process-based models provides better depth 

and novelty to the manuscript. 

 



2 
 

It is true that where it rains is not necessarily where water ends up, particularly at fine spatial 

scales like the scale of a stream catchment. In this study, we model fluxes at a much broader 

spatial resolution that reflects the resolution of the GEOS-Chem model (4 degrees latitude by 5 

degrees longitude). At that broad scale, patterns in spatially-averaged precipitation are more 

strongly correlated with surface soil moisture than at finer spatial scales. Note that we ran several 

test simulations where we offered up both precipitation and soil moisture as auxiliary variables in 

the inverse model, but the model selection framework only chose one of the two (precipitation); 

those two predictor variables were highly colinear or correlated, indicating that the inverse model 

did not have the power to distinguish between the two. Furthermore, precipitation was included 

as a standardized input variable in the TRENDY model inter-comparison, so we wanted to at 

least offer up precipitation as a candidate auxiliary variable in the analysis of OCO-2 and the 

TRENDY models. 

 

The authors have gone some way to ‘fess up that the geostatistical inverse method uses prior 

information for which I commend them. It might not be defined in the same way as the classical 

Bayesian approach but nonetheless it uses prior information. Otherwise, inferring fluxes for 10ˆ6 

grid boxes using 10ˆ5 measurements is an ill-posed problem. The method uses environment 

driver data with uncertainties that are difficult to quantify (see comment below about estimated 

posterior uncertainties). 

 

A geostatistical inverse model certainly does use prior information. That information is just in a 

different form than other types of Bayesian inverse modeling. 

 

It would be useful to reiterate to the reader the benefit of the geostatistical inverse 

method over more traditional methods. Certainly, it provides an alternative perspective 

but I have seen no evidence to suggest it is better or worse. 

 

In the revised manuscript, we have added substantial new analysis to better highlight new 

insights facilitated by this approach. This new analysis includes a comparison of the 

environmental relationships that we infer from OCO-2 against those inferred from 15 state-of-

the-art TBMs (Sect. 3.3). Existing studies have used this geostatistical approach to compare the 

environmental relationships in different TBMs (e.g., Huntzinger et al. 2011) and to compare with 

the relationships inferred from in situ atmospheric observations (e.g., Fang and Michalak, 2015). 

In the revised study, we build upon that existing body of work by comparing the relationships 

inferred from OCO-2 across the globe with those inferred from TBMs. 

 

Line 216: This reader is surprised that OCO-2 data are not sensitive to biomass burning 

emissions, particularly during the El Nino period. The manuscript would benefit from having 

more explanation on this point. 

 

We have overhauled the inverse modeling setup to include more prior information on biomass 

burning (from GFED) and ocean fluxes (Sect. 2.4). We have also added a new discussion in the 

results (Sect. 2.4) and SI (the Supplemental Sect. S2) describing the contribution of biomass 

burning fluxes relative to other types of fluxes. In these sections, we also discuss why biomass 

burning fluxes are challenging to uniquely identify and constrain in an inverse model. 

Specifically, the atmospheric signal from biomass burning (as estimated by GFED) is small (0.19 
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ppm) relative to anthropogenic emissions (2.7 ppm) and model-data errors specified in the 

inverse model (standard deviation of 0.29 ppm to 4.8 ppm). 

 

Why are correlations higher when environmental drivers are passed through the atmospheric 

model. Figure 3 doesn’t cut it - the color scale is almost binary as currently defined. Using the 

square of the correlation might be a better way to illustrate these calculations. 

 

We have substantially changed this analysis in the revised manuscript and have instead included 

a synthetic data study to explore what factors limit our ability to infer these environmental 

relationships using observations from OCO-2. We agree that Fig. 3 in the original manuscript 

was confusing and have re-designed this analysis to more clearly communicate the message we 

intended to communicate. We have cut Figure 3 and have replaced it with new results from the 

synthetic data study (Sect. 3.1 and Fig. 2 in the revised manuscript). 

 

Line 263: widespread and prolonged drought conditions, together with large-scale 

land-use change, is a more accurate description of what’s going on over these regions. 

 

Noted. We have edited Sect. 3.3 in the revised manuscript accordingly. 

 

Paragraph 298: comparison of the reported work and other groups is weak. Not many 

people have used v9 of OCO-2 data so I think it would be useful for the readership to provide a 

more detailed assessment of results compared with past estimates using v7 data. The comparison 

between the model and independent measurements is minimal (in supplementary information). 

The uncertainties associated with the posterior estimates are unrealistically small. The classical 

Bayesian inversion as typically employed underestimates posterior uncertainties so certainly the 

uncertainties estimates reported with the geostatistical method are grossly underestimated. This 

reviewer is left wondering why this might be so and how a possible explanatory imbalance 

between prior and observation uncertainties would influence model selection and the analysis 

that follows. 

 

We have added substantial comparisons against independent measurements in the revised 

manuscript, including comparisons with observations from twenty regular aircraft sites (the 

Supplemental Sect. S4; Figs. S3-S6), the Atmospheric Tomography Mission (ATom) (Fig. S7), 

and 18 sites from the Total Carbon Column Observing Network (TCCON) (Fig. S8). Note that, 

in the revised manuscript, we have used version 9 for the analysis because version 7 observations 

are now several years outdated and contain much larger observational errors.  

 

We have also compared our results against the most recent provisional results from the inverse 

modeling inter-comparison (MIP) project that uses version 9 of OCO-2 retrievals (refer to the 

figure below). We find that our flux estimate is usually close to the ensemble mean of the v9 

MIP and is always within one standard deviation of the MIP estimates. Note that the results 

shown below from the v9 MIP are from the MIP website 

(https://www.esrl.noaa.gov/gmd/ccgg/OCO2_v9mip/) and are provisional results that have not 

yet been finalized.  
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Figure R1. Comparison of biospheric flux estimates by TransCom region from this study (red) 

and the v9 MIP (blue). Error bars in the MIP results indicate one standard deviation of flux 

estimates across the ensemble. Our best estimate is usually close to the mean of the v9 MIP study 

and is always within one standard deviation of the MIP results. Furthermore, the GIM estimate 

does not show any consistent bias relative to the MIP ensemble mean. 

 

 

 

We have also overhauled the inverse modeling setup and have set improved values for the 

covariance matrices in the inverse model (R and Q) (Sect. 2.5 and the Supplemental Sect. S1). 

For example, the model-data mismatch errors are now based upon the reported errors in the 10-

second average OCO-2 data product. We have further estimated the relationships between CO2 

fluxes and environmental driver datasets using two different meteorological products (MERRA-2 

and CRUJRA) to explore the sensitivity of these results to the choice of meteorology used for the 

driver datasets. We believe that this revision has yielded better uncertainty estimates in the 

revised manuscript. 

 

Sure, the tropical flux estimates are important to discuss. However, are the reviewers are in a 

position to dismiss the results over tropical North Africa without further explanation. Why did 

they find themselves in terms of environmental drivers? Surely, their results over tropical Africa 

aren’t exclusively determined by measurements collected over tropical Africa? Do they find that 

seasonal differences in measurement over tropical Africa lead to a bias in the flux? Answers to 

these questions would represent a useful contribution to the field. 
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There is almost nothing in the manuscript about the large differences between other 

geographical areas where we would expect much better agreement, e.g temperature North 

America, Europe, Eurasian temperate. Without a more comprehensive evaluation of the fluxes it 

is difficult to know whether the method is at fault or the data they have used. This manuscript 

would benefit greatly from a better evaluation of the posterior fluxes. 

 

We agree that comparing our results using version 9 of the observations against studies that used 

version 7 is not necessarily a fair comparison; there are large differences between v7 and v9 of 

the OCO-2 observations, and differences between existing studies using version 7 and our results 

using version 9 could reflect differences in the observations as much as differences in inverse 

modeling methodology. When we compare the GIM flux estimate against provisional results 

from the most recent MIP, we find much better agreement between our results and the MIP; our 

estimate is always within one standard deviation of the MIP ensemble mean. 

 

In the revised manuscript, we also evaluate our inverse modeling results using numerous ground-

based datasets (the Supplemental Sect. S4, Figs. S2-S8, and Tables S2-S3). We feel that these 

new model-data comparisons provide a much-improved evaluation of the posterior fluxes.  

 

 

Line 59: it would be fairer that Chevallier 2018 argues not suggests. 

 

We have edited this line accordingly. 

 

For context, it would be useful for the reader to understand that 2016 was an El Nino 

Year. 

 

We include four years of observations in the revised manuscript (instead of the one year in the 

original manuscript). We also point out in Sect. 3.3 that 2015-2016 are El Nino years. 

 

Line 91: how did the authors decide that four months was a sufficient spin-up period? 

 

We have clarified this point in the revised manuscript (the Supplemental Sect. S1). We used this 

setup for the model spin-up because it is the same setup used in Miller et al. (2018). We first 

created an initial condition for 1 Sept., 2012 based on NOAA’s Carbon Tracker (CT) product, 

and used CO2 fluxes from CT to run GEOS-Chem forward for two years until 1 Sept., 2014 

when the inverse modeling begins; we ran the CT fluxes through GEOS-Chem for two years to 

make sure the CO2 mixing ratios are consistent with the GEOS-Chem model grid, and therefore 

to minimize potential spin-up artifacts due to model transport. We then run the inverse model 

starting from 1 Sept., 2014, but we consider the result from 2014 as part of an initial model spin-

up period and do not use it for analysis.  
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SC1: Brad Weir 

 

In this work, the authors use a geostatistical inverse modelling approach to infer surface fluxes 

from observations of column CO2 by the Orbiting Carbon Observatory 2 (OCO-2). Using these 

estimates, the authors make claims about the environmental drivers of the spatiotemporal 

variability of surface fluxes. However, their evaluation against independent data (sometimes 

coarsely defined as "validation") is not sufficient to support these claims. 

 

We have added extensive evaluation against ground-based observations, including from 20 

regular aircraft sites (the Supplemental Sect. S4; Figs. S3-S6), the Atmospheric Tomography 

Mission (ATom) (Fig. S7), and 18 sites from the Total Carbon Column Observing Network 

(TCCON) (Fig. S8). We find that model-data biases are small across most of the globe (except at 

sites near urban regions) and that the standard deviation of the model-data residuals is within the 

uncertainties specified in the inverse model (i.e., is within the model-data mismatch specified 

within the covariance matrix). The Supplemental Sect. S4 of the revised manuscript includes a 

detailed discussion of these model-data comparisons. 

 

We have also compared our flux estimate against provisional results from the most recent OCO-

2model inter-comparison (MIP) project, and our flux estimate is typically close to the ensemble 

mean and always within one standard deviation of the mean (refer to Fig. R1 above).  

 

Inferring surface carbon fluxes from observations of atmospheric CO2 is an inherently 

ill-defined problem. Its solution, in any form, requires a number of assumptions that are often 

poorly constrained by existing scientific knowledge. The authors do a commendable job of 

explaining that despite erroneous claims in the existing literature to the contrary, geostatistical 

inverse models do in fact use prior information, just in a different form than more common 

approaches. What the authors fail to do is support that their surface flux estimates are fit for the 

scientific purpose at hand. Typically, this is accomplished through comparisons to other 

independent data products. While pedantic, it seems more and more necessary that we remind 

ourselves that inferred surface fluxes fall into the prediction step of the Scientific Method. 

Between that and the analysis step, is the all important testing step. The testing step cannot be 

shortcut – it is the only thing separating science from plausible guesswork.  

 

In order to make claims about the spatiotemporal variability of surface fluxes, the authors must 

first evaluate the fidelity of their surface fluxes’ spatiotemporal variability. While this reviewer 

admits that there is no ideal method of evaluating global surface fluxes of CO2 on horizontal 

scales greater than a few tens of kilometers, a greater effort must be made to demonstrate the 

product is appropriate for the analysis in the text. In particular, the only evaluation of their 

surface fluxes is that of long-term time mean regional budgets (Figure 6) and simulated CO2 at 

just a handful of aircraft profiling sites (Figures S5 and S6). If one is to make claims about 

seasonal cycles, for example, then the seasonal cycle of the inferred fluxes must be evaluated as 

well. Given the assumptions necessary to make these inferences, it is entirely possible that their 

long-term time mean budgets are reasonable and their seasonal cycles are not. This is especially 

important given the documented impact (Basu et al., 2013, ACP; Crowell et al., 2019) that very 

small seasonal and regional biases from satellite retrievals can have on inferred fluxes. Unless 

the authors are able to demonstrate the skill of their product in reproducing variations over the 
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same spatiotemporal scales as the scientific analysis, this review does not see how their claims 

can be supported. 

 

Thank you for the suggestions. We have greatly expanded the model-data evaluation in the 

manuscript (the Supplemental Sect. S4; Figs. S2-S8; and Tables S2-S3). In the original 

manuscript, we compared against a handful of aircraft sites, as the reviewer points out. In the 

revised manuscript, we compare against numerous additional aircraft sites, as well as 

comparisons against TCCON, and comparisons against campaign data from ATom.  

 

 

 

RC2: Julia Marshall 

At first glance it seems that the results of this study make sense, and are consistent with our 

general understanding of what drives carbon fluxes, with uptake at higher latitudes being mostly 

radiation-limited while in the tropics there are more complex temperature-precipitation 

interactions. So far, so good. The paper is well written and clearly structured, making it easy to 

read. To the careful reader it soon becomes clear that something is going wrong, however, and 

the limited "validation" and comparison to other results from the literature are insufficient to 

explain these problems away. While the geostatistical approach is com mendable in that it 

allows more flexibility in the structure of the prior fluxes, such that perhaps unexpected signals 

may emerge, it also seems to allow for rather unphysical results, as in this case. Given the fact 

that the ocean fluxes (a net sink of more than 2 PgC/year) were rejected by the Bayesian 

Information Criterion (BIC) while the net land fluxes are more or less consistent with other 

studies, it seems impossible that the global atmospheric growth rate can be matched. It just does 

not add up. 

 

We estimated ocean fluxes alongside terrestrial fluxes in the inverse model in the original 

manuscript but did a poor job of communicating those results. In the revised manuscript, we 

have not only improved the discussion of ocean fluxes but have also overhauled the inverse 

modeling setup to include more detailed prior information for ocean fluxes. In the revised 

manuscript, we use prior information for ocean fluxes from the NASA Estimating the Circulation 

and Climate of the Ocean (ECCO) Darwin flux product. In our original setup, prior ocean fluxes 

from Takahashi were not selected using the BIC, and the inverse model instead defaulted to a 

non-informative prior over the ocean. In the revised setup, we have grouped together ECCO-

Darwin, anthropogenic emissions (from ODIAC), and biomass burning emissions (from GFED) 

into a single column in the auxiliary variable matrix (X). ECCO-Darwin, when included as a 

separate column of X is not selected, but a column of X that includes all of these prior emissions 

estimates together is selected. 

 

We describe this updated setup in Sect. 2.4 and the Supplemental Sect. S2 of the revised 

manuscript and show ocean fluxes alongside terrestrial fluxes in the inverse modeling results in 

Fig. 3. 

 

This should be obvious when performing validation, but the very little testing of the 

posterior fluxes, limited to a handful of aircraft measurements far from coasts on a 

scatter plot averaged (monthly?) by height, hidden in the supplement, makes it hard 
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to tell. The paper states that aircraft profiles near coasts were not used because the 

coarse model resolution made it hard to represent these data well, but I wonder if the 

complete absence of ocean fluxes may have also played a role here? 

Since none of the in-situ sites were used for constraining the fluxes (which seems 

an odd choice, even if only for comparison’s sake), it would be instructive to plot the 

concentrations resulting from the posterior fluxes at a few sites to see if the curves 

drift apart over the year as a result of the missing sink. While this might not look too 

bad in a simulation of only one year, this would soon result in wildly divergent curves. 

But perhaps over a longer simulation the BIC would then choose to select the ocean 

fluxes. Still, the decision to blindly allow the model to return what we know is incorrect 

makes it hard to trust the interpretation of the results. Perhaps Takahashi was not the 

best ocean prior in this case, especially for an El Niño year, and this played a role: this 

could be an area for more analysis. 

 

In the revised manuscript, we include prior information on ocean fluxes from NASA’s ECCO-

Darwin product instead of from Takahashi. Recent inverse modeling studies using OCO-2 (e.g., 

Liu et al. 2020) have used the ECCO-Darwin product in place of Takahashi. Existing studies 

have also shown that ECCO-Darwin exhibits broad consistency with surface ocean pCO2 

observations (e.g., Carroll et al., 2020), and the global ocean sink from ECCO-Darwin shows 

better agreement with the Global Carbon Project (GCP; Friedlingstein et al., 2019) than from 

Takahashi. We have also added extensive additional model-data comparisons using numerous 

ground-based datasets. These datasets include 20 regular aircraft sites (the Supplemental Sect. 

S4; Figs. S3-S6), the Atmospheric Tomography Mission (ATom) (Fig. S7), and 18 sites from the 

Total Carbon Column Observing Network (TCCON) (Fig. S8). We have further evaluated our 

flux estimate against provisional results from the most recent OCO-2 model-intercomparison 

(MIP) (shown in Fig. R1 above). 

 

The comparison to other model output was largely limited to the OCO-2 model intercomparison 

study of Crowell et al. (2019), without following the considerable effort they put into validation 

or consideration of in-situ measurements. Looking at TCCON sites is an obvious choice, as is the 

extension to additional aircraft measurements, such as AToM, which are available for at least a 

couple months of 2016. But comparing your (unclosed) budget to the land biosphere budget of 

other (mass-conserving) studies is intrinsically misleading. (I am not as surprised that BIC did 

not pick out the GFED emissions, as these are a few orders of magnitude smaller and are easily 

swallowed up in the biosphere signal.) 

 

We have included model-data comparisons against both TCCON and ATom in the revised 

manuscript (the Supplemental Sect. S4 and Figs. S7-S8). 

 

We have also overhauled the inverse modeling setup, and we have reformulated the X matrix in 

the inverse model in a way that ensures the inclusion of more detailed prior information on 

biomass burning fluxes (We specifically do so by grouping GFED in the same column of X with 

anthropogenic emissions and ocean fluxes.) 

 

L10 & L204-205: While the difference in wording is subtle, I think the abstract overstates what 

the meteorological variables explain. Do they really describe 90% of the 
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variability in the fluxes (as seen through OCO-2 observations)? This sort of implies 

that OCO-2 can "see" fluxes, which isn’t true of course. The latter explanation that the 

deterministic model accounts for XX% of the variance in the estimated fluxes seems 

more accurate. As you’re only treating fluxes on a daily time scale, you’re definitely not 

describing 90% of the variability in the fluxes themselves. 

 

Thank you for this suggestion. We have revised the wording of the manuscript accordingly. 

 

Figure 3 and discussion around L235: This is actually quite interesting! I would be 

interested in seeing some more analysis of this point. It was also not entirely clear 

to me what was correlated (and how) in Figure 3. The meteorological variables have 

been "passed through an atmospheric [transport] model": were they then sampled 

as column-averaged variables, as OCO-2 views the atmosphere? Were the same 

averaging kernels applied? It also says that this is the correlation "within different 

global biomes". Were these columns averaged across space then, and the correlation 

taken in time? Or is this a spatial correlation coefficient between the column-averaged 

maps for a given time? I feel like there is an intriguing result here, but I don’t fully 

understand what you’ve done. 

 

We have added an entire section to the results and discussion to elaborate on this point (Sect. 

3.1). We have also revised the analysis described above and instead use synthetic data 

simulations to better communicate the overarching message of this discussion. 

 

L238 & 239: How can you be sure that this collinearity is playing a bigger role than 

retrieval or model errors? Would the latter two effects not also limit the model selection? 

 

We have added new synthetic data simulations to the manuscript (described in Sect. 3.1) to better 

explore these questions. In these synthetic simulations, we apply model selection to the original, 

gridded fluxes from several terrestrial biosphere models (TBMs). We then coarsen the grid of 

those models to match that of GEOS-Chem and re-apply model selection. In a third case study, 

we create synthetic OCO-2 observations using those TBMs and apply model selection again, and 

in the fourth case study, we add estimated model-data errors to those synthetic observations. The 

case studies make it easier to explore which factors limit our ability to infer relationships 

between CO2 fluxes and environmental driver variables using current satellite observations from 

OCO-2. 

 

L244 & L260: These statements seem to contradict each other. The first says that the negative 

beta values for PAR mean that an increase in PAR leads to a decrease in NEE and an increase 

in uptake. The latter says that the negative beta value for scaled temperature means that an 

increase in temperature leads to reduced uptake. How can these both be true? This is 

fundamental to the conclusions drawn. 

 

We have clarified this point in the revised manuscript (Sect. 3.2). An increase in PAR is 

associated with greater CO2 uptake by the biosphere (i.e., negative NEE). The scaled temperature 

function is an upside-down parabola, not a monotonically increasing function. At temperatures 

below 20 – 25 degrees Celsius, an increase in temperature is associated with negative change in 
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NEE in the inverse model. At temperatures above 20-25 degrees C, an increase in temperature is 

associated with a positive change in NEE. We also describe this scaled temperature function in 

detail in the Supplemental Sect. S3 and Fig. S1. 

 

L257-258: While cloudiness is correlated with clouds and rainfall, it’s also correlated 

with the presence or absence of satellite measurements. What impact might this have 

on your results? 

 

Data sparsity in cloudy regions is certainly an issue for satellite-based greenhouse gas sensors. 

This issue likely increases the uncertainty in our estimated coefficient for precipitation, 

particularly in wet climates like tropical forests. It may also be one factor in why we only 

selected a limited number of environmental driver datasets in many biomes. We point out and 

discuss this issue in Sect. 3.3 of the revised manuscript. 

 

L302: I’m actually surprised Australia matches as well as it does, as you’ve had to fold 

the Southern Ocean sink into the Southern Hemisphere land fluxes somehow. 

 

We did not do a good job of describing the treatment of ocean fluxes in the inverse model. We 

have both improved the description of ocean fluxes and have overhauled the inverse modeling 

setup to more explicitly include a prior ocean flux estimate within the inverse model. 

 

 

 

RC3: Abhishek Chatterjee 

 

This begs the question – is this study intended to demonstrate that the GIM approach has been 

successfully adapted to remote-sensing observations (i.e., a technical study) or is it intended to 

capture the connections between CO2 fluxes and environmental drivers (i.e., a scientific study)? 

Kindly see Major Comment #1. 

I believe the authors ideally wanted it to address a bit of both but unfortunately, in trying 

to address both, the authors end up addressing neither. I highly recommend that the authors take 

a step back and decide whether to focus on the inversion methodology and application to OCO-2 

retrievals OR highlight the scientific questions related to regional and seasonal environmental 

drivers, and then resubmit. In general, the manuscript is well-written and concise, but it falls 

short of a clear formulation in terms of scientific scope, depth and novelty. 

 

We have re-written the manuscript and focused on the second question described above (the 

connections between CO2 fluxes and environmental drivers). We have also de-emphasized the 

technical or methodological components. We hope that the revised manuscript has a much 

clearer formulation in terms of scope, depth, and novelty. 

 

Several other questions persist. These revolve around limited validation of the posterior 

flux estimates or posterior CO2 concentrations (see Major Comment #4). The choice of the 

model-data-mismatch variance (R) is inconsistent with real OCO-2 retrievals and needs 
justification in the main text (rather than bypassing it and relegating it to the Supplementary 
Section). R, along with the a priori flux covariance matrix Q, balances the relative weight of the 
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atmospheric data and the trend in estimating the fluxes. An inverse modeling study cannot gloss 
over these details (see Major Comment #6). 

 

We have greatly expanded model evaluation and have overhauled the inverse modeling setup, 

including the model-data-mismatch variance. These points are discussed in greater detail below 

in reply to individual reviewer comments. 

 

Scope of the study – as mentioned earlier, the authors need to lay out a clear scope early on 

and remain consistent throughout. If the authors are interested in examining the relationship 

between carbon flux and environmental drivers, a one-year study is not justifiable. The 

authors need to examine the relationship over a number of years, make sure they are 

capturing the inter-annual variability in their flux estimates and then assess the relationship 

between drivers and fluxes. In addition, it is worth noting that the selected year is an El Niño 

year. On Page 3, Lines 86 – 88, the authors justify this decision by pointing out that the 

OCO-2 observations had 7-week gap in 2015- and 1.5-month gap in 2017. Remote sensing 

datasets, or rather any real observations, will always have data gaps! Simply discarding entire 

years’ worth of data for a 5-7-week gap is not a reasonable justification. On the other hand, if 

the authors want to highlight the development of a new inversion framework/methodology, 

then it may be out of scope for ACP, and may be better suited to a journal like GMD, where a lot 

of the mathematical nuances can be captured. Right now, a lot of the important mathematical 

details have been relegated to the supplemental material, including important discussions about 

the error covariance parameters and how they are derived. These details need to be included in 

the main text. 

 

We have re-written the manuscript to focus on the relationships between carbon fluxes and 

environmental drivers and have de-emphasized the inversion framework or methodology. We 

feel that these environmental relationships make for a more interesting scientific study than 

focusing on methodological questions, and we hope that this re-write has yielded a manuscript 

with a much clearer purpose and scope. As part of this revision, we have expanded the time 

period of the study from one year (2016) to four years (2015 - 2018). In addition, we have 

included extensive comparisons with terrestrial biosphere models (TBMs) to improve the depth 

and novelty of the analysis in the manuscript (Sects. 3.1 and 3.3). Specifically, in the revised 

manuscript, we compare the environmental relationships that we infer from OCO-2 with the 

environmental relationships that we infer from 15 state-of-the-art TBMs from the recent 

TRENDY model comparison project. 

 

Scientific novelty – The authors report that a combination of PAR, daily temperature and 

daily precipitation are the most adept at capturing the variability in the fluxes (PAR for midto-

high latitudes and a combination of daily temperature and precipitation for the tropical 

biomes). Neither of these findings are unique. The authors have correctly referred to a host of 

studies using GIM (e.g., Gourdji et al. 2008, Fang and Michalak, 2015, among others) or 

studies using OCO-2 data that have examined the response of the land carbon cycle during 

the 2015-2016 El Niño (e.g., Liu et al., 2017, Crowell et al., 2019). The BIC did its job and 

picked up the variables it was supposed to; hence, it is slightly unclear how this study adds 

new insights into our knowledge about carbon cycle science. In fact, by the authors own 

admission in Sections 3.1.1 and 3.1.2, almost all their findings are exactly the same as 
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reported in previous studies. These two sections almost read like a literature review rather 

than a results section with new and exciting science results. 

 

We have added substantial new analysis to the revised manuscript to improve the novelty and 

depth of the scientific results. Specifically, we not only infer environmental relationships using 

observations from OCO-2 but also compare those against the environmental relationships 

inferred from 15 TBMs for the same time period. Using OCO-2, we find stronger relationships 

between temperature and CO2 fluxes across tropical biomes compared to many TBMs, and we 

find that increases in precipitation across the tropics are associated with greater carbon uptake 

across seasonal time scales and biome-level spatial scales, a result that disagrees with about half 

of the TBMs that estimate the opposite relationship. Overall, there are large uncertainties in the 

environmental relationships within TBMs across all global biomes. The relationships with 

precipitation are most uncertain in these models while TBMs show greatest agreement on the 

relationships with temperature. This disagreement over the relationship with precipitation may be 

due, at least in part, to large disagreements over the fate of precipitation in these ecosystems; 

each the TRENDY models input the same precipitation estimate but yield evapotranspiration that 

differs by up to a factor of three among models, depending upon the season and biome. The 

revised manuscript highlights both the opportunities for informing TBM development using 

atmospheric observations but also the challenges of doing so using current satellite-based 

datasets of CO2. 

 

Selection of auxiliary variables and how they are being reported – what may add a new 

dimension, relative to already published studies, is reporting a table with all the 12 selected 

environmental drivers and including the estimated drift coefficients, coefficient of variation, 

annual average contribution to flux and the correlation coefficient between the selected 

auxiliary variables in the model of the trend. Actually, the annually averaged global 

contribution to flux can be reported in typical carbon flux units (like GtC/yr or PgC/yr). That 

would be novel information, especially if it were to be compared against estimates based on 

in situ data. Finally, just out of curiosity, why didn’t the authors select fPAR instead of PAR? 

Also, the authors argument for not including LAI or SIF because they are “remote sensing 

indices” (Page 5, Lines 144-146) is surprising. Almost all of the auxiliary variables listed on 

Lines 138-141 are derived from remote-sensing measurements. What if the authors were to 

include LAI? How would that change their selected model of the trend? 

 

We have greatly expanded the discussion of the auxiliary variables in the re-written manuscript. 

For example, we have included scatter plots showing the estimated coefficients for each year 

(Fig. 5), compared those coefficients against coefficients estimated from 15 TBMs (Fig. 4a), and 

showed the coefficient of variation (as suggested by the reviewer, Fig. 4b). All of the coefficients 

in the manuscript are listed in units of flux (µmol m-2 s-1), so we can better compare the 

coefficients among different auxiliary variables and different biomes. 

 

Note that in the revised manuscript, we have included PAR instead of fPAR. This was an 

oversight on our behalf. Furthermore, we decided not to include remote sensing indices in this 

manuscript because we wanted to focus on comparing the environmental processes in state-of-

the-art TBMs against the relationships that we infer from OCO-2. Some TBMs use remote 

sensing indices like SIF, but some do not. Hence, we felt that it was more appropriate to focus on 
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environmental processes instead of vegetation indices like SIF or LAI that may not be applicable 

to many of the TBMs compared in the manuscript. Hence, all of the auxiliary variables used in 

the revised manuscript are from meteorological reanalysis. We wanted to clearly focus the scope 

of this manuscript on environmental processes, but we think that an examination of remote 

sensing indices and global carbon fluxes would make for an interesting future study. 

 

More rigorous evaluation of posterior flux estimates and more importantly, posterior 

concentrations, against independent measurements – The biggest surprise of this study is that 

there are extremely limited evaluations presented against independent measurements (only 7 

aircraft sites!). Given the large number of available independent datasets (in situ such as surface 

flask sites, towers and aircraft, TCCON), the absence of a detailed evaluation is striking. 

Especially, from a seasoned inverse modeling team. Since the authors claim that they are 

estimating daily global CO2 fluxes at the GEOS-Chem grid scale (Page 3, Lines 72-73), there 

should be no reason for not evaluating against observations from dedicated aircraft campaigns 

such as ATom or ACT-America. In addition, it is also not clear why in Section S7, the authors 

allude to the results from Crowell et al. 2019. The authors have to back up their own biases and 

RMSD and explain those numbers and their significance, rather than pointing the reader to 

Crowell et al. 2019 for justification. 

 

We have greatly expanded model-data comparisons in the revised manuscript. In the new 

manuscript, we evaluate the model-data residuals both for the full posterior flux estimate and for 

the component of the fluxes that is described by the auxiliary variables. In addition, we compare 

against numerous independent datasets, including 20 regular aircraft sites (the Supplemental 

Sect. S4; Figs. S3-S6), the Atmospheric Tomography Mission (ATom) (Fig. S7), and 18 sites 

from the Total Carbon Column Observing Network (TCCON) (Fig. S8). We also provide model-

data evaluations for each year of the four-year study period to show that there is no trend in the 

model-data comparisons (Fig. S2). 

 

Comparison of findings against those derived from in situ data – The value of this study will 

be significantly enhanced, if the authors do the same analyses utilizing in situ data (such as 

NOAA obspack). Are the conclusions, especially in terms of the three significant drivers and 

their contribution to the carbon flux, consistent? It has been 12+ years since the Gourdji et al. 

2008 study attempted such an analysis – given the increase in the number of surface flask sites 

and improvements in atmospheric transport model, availability of auxiliary datasets, it will be 

worth revisiting this and comparing against the information reported here from OCO2 datasets. 

 

Several of the reviewers, including this reviewer, recommended defining a more targeted scope 

and more clearly defined aims in the manuscript, and we have tried to do so in the re-written 

manuscript. The focus of this manuscript is estimating the relationships between CO2 fluxes and 

environmental driver datasets using OCO-2 and comparing those inferences against the 

relationships estimated from 15 state-of-the-art TBMs. We agree that an in situ data study would 

be interesting, but we feel that this focus would be better left for a separate study in the interest 

of maintaining a targeted scope with clearly defined aims. Furthermore, the results and 

discussion section of the revised manuscript are heavily focused on the tropics, and the in-situ 

observation network is very sparse across the tropics; existing studies have raised questions 
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about the strength of the tropical flux constraint in in-situ inversions (e.g., Crowell et al. 2019; 

Piao et al. 2020).  

 

Error covariance parameters – Can the authors explain why they switched to a spherical 

covariance model instead of sticking with a simpler exponential covariance model? The 

authors argue that the shorter correlation length is due to higher density of observations 

relative to previous studies. Part of that is true. But I believe that the shorter correlation 

length in the residuals is more reflective of the model of the trend that has been fitted to large 

biome scales. The model of the trend is too complex for the biome scale; for the grid scale 

studies that the authors allude to, it made sense. Additionally, the authors persist with a 

model-data mismatch variance of 1.19 ppm2 based on a previous pseudo-data study. Why? I 

highly encourage the authors to use the reported XCO2 uncertainty for the OCO-2 soundings 

and then add reasonable representation of transport and representation errors to get ‘real’ 

MDM variances. This shouldn’t be a huge task given the involvement of core GEOS-Chem 

developers in this study. It wouldn’t be surprising if more reasonable R values lead to an 

increase in a posteriori uncertainties for their flux estimates (Page 11, Lines 324-325). 

 

We overhauled the inverse modeling setup in response to suggestions from reviewers and have 

changed the covariance matrix parameters in the inverse model as suggested by this reviewer. 

Specifically, we use estimated model-data mismatch errors from the 10-second OCO-2 data 

product (e.g., Crowell et al. 2019), described in Sects. 2.5 and the Supplemental Sect. S1. In 

addition, we use an exponential model for the Q covariance matrix. Note that a spherical is very 

similar to an exponential model, but a spherical model decays to zero, unlike an exponential 

model which decays to near-zero but never actually reaches zero (e.g., Kitanidis, 1997). A 

spherical model therefore yields covariance matrices that require substantially less computer 

memory, a particular benefit for large inverse problems (e.g., Miller et al. 2020). In this study, 

the components of Q are small enough such that we were able to use an exponential model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 
 

References: 

 

Carroll, D., Menemenlis, D., Adkins, J.F., Bowman, K.W., Brix, H., Dutkiewicz, S., Fenty, I., 

Gierach, M.M., Hill, C., Jahn, O. and Landschützer, P.: The ECCO‐Darwin Data‐Assimilative 

Global Ocean Biogeochemistry Model: Estimates of Seasonal to Multidecadal Surface Ocean 

pCO2 and Air‐Sea CO2 Flux. Journal of Advances in Modeling Earth Systems, 12(10), 

p.e2019MS001888. https://doi.org/10.1029/2019MS001888, 2020.  

 

Crowell, S., Baker, D., Schuh, A., Basu, S., Jacobson, A. R., Chevallier, F., Liu, J., Deng, F., 

Feng, L., McKain, K., Chatterjee, A., Miller, J. B., Stephens, B. B., Eldering, A., Crisp, D., 

Schimel, D., Nassar, R., O'Dell, C. W., Oda, T., Sweeney, C., Palmer, P. I., and Jones, D. B. A.: 

The 2015–2016 carbon cycle as seen from OCO-2 and the global in situ network, Atmos. Chem. 

Phys., 19, 9797–9831, https://doi.org/10.5194/acp-19-9797-2019, 2019. 

 

Fang, Y., and Michalak, A. M.: Atmospheric observations inform CO2 flux responses to 

enviroclimatic drivers. Global Biogeochemical Cycles, 29(5), 555-566. 

https://doi.org/10.1002/2014/GB005034, 2015. 

 

Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Hauck, J., Peters, G. P., Peters, 

W., Pongratz, J., Sitch, S., Le Quéré, C., Bakker, D. C. E., Canadell, J. G., Ciais, P., Jackson, R. 

B., Anthoni, P., Barbero, L., Bastos, A., Bastrikov, V., Becker, M., Bopp, L., Buitenhuis, E., 

Chandra, N., Chevallier, F., Chini, L. P., Currie, K. I., Feely, R. A., Gehlen, M., Gilfillan, D., 

Gkritzalis, T., Goll, D. S., Gruber, N., Gutekunst, S., Harris, I., Haverd, V., Houghton, R. A., 

Hurtt, G., Ilyina, T., Jain, A. K., Joetzjer, E., Kaplan, J. O., Kato, E., Klein Goldewijk, K., 

Korsbakken, J. I., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lienert, S., 

Lombardozzi, D., Marland, G., McGuire, P. C., Melton, J. R., Metzl, N., Munro, D. R., Nabel, J. 

E. M. S., Nakaoka, S.-I., Neill, C., Omar, A. M., Ono, T., Peregon, A., Pierrot, D., Poulter, B., 

Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Séférian, R., Schwinger, J., Smith, N., 

Tans, P. P., Tian, H., Tilbrook, B., Tubiello, F. N., van der Werf, G. R., Wiltshire, A. J., and 

Zaehle, S.: Global Carbon Budget 2019, Earth Syst. Sci. Data, 11, 1783–1838, 

https://doi.org/10.5194/essd-11-1783-2019, 2019. 

 

Huntzinger, D. N., Gourdji, S. M., Mueller, K. L., and Michalak, A. M.: A systematic approach 

for comparing modeled biospheric carbon fluxes across regional scales, Biogeosciences, 8, 

1579–1593, https://doi.org/10.5194/bg-8-1579-2011, 2011. 

 

Kitanidis, P.: Introduction to Geostatistics: Applications in Hydrogeology, Stanford-Cambridge 

program, Cambridge University Press, Cambridge, 1997. 

 

Liu, J., Baskaran, L., Bowman, K., Schimel, D., Bloom, A. A., Parazoo, N. C., Oda, T., Carroll, 

D., Menemenlis, D., Joiner, J., Commane, R., Daube, B., Gatii, L. V., McKain, K., Miller, J., 

Stephens, B. B., Sweeney, C., and Wofsy, S.: Carbon Monitoring System Flux Net Biosphere 

Exchange 2020 (CMS-Flux NBE 2020), Earth Syst. Sci. Data Discuss., 

https://doi.org/10.5194/essd-2020-123, in review, 2020. 

 

https://doi.org/10.1029/2019MS001888


16 
 

Miller, S. M., Michalak, A. M., Yadav, V., and Tadić, J. M.: Characterizing biospheric carbon 

balance using CO2 observations from the OCO-2 satellite, Atmos. Chem. Phys., 18, 6785–6799, 

https://doi.org/10.5194/acp-18-6785-2018, 2018. 

 

Miller, S. M. and Michalak, A. M.: The impact of improved satellite retrievals on estimates of 

biospheric carbon balance, Atmos. Chem. Phys., 20, 323–331, https://doi.org/10.5194/acp-20-

323-2020, 2020. 

 

Piao, S., Wang, X., Wang, K., Li, X., Bastos, A., Canadell, J. G., ... & Sitch, S.: Interannual 

variation of terrestrial carbon cycle: Issues and perspectives. Global Change Biology, 26(1), 300-

318, 2020. 

 

 


