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Abstract. Satellite observations reveal that China has been leading the global greening trend in the past two decades. We assessed
the impact of land cover change as well as climate variability on total BVOC emission in China during 2001-2016. We found the
greening trend in China is leading a national scale increase of BVOC emission. The BVOC emission level in 2016 can be 11.7%
higher than that in 2001 because of higher tree cover fraction and vegetation biomass. In the regional scale, and the BVOC emission
level during 2013-2016 could be 8.6%~19.3% higher than that during 2001-2004 in the hotspots including 1) northeastern China,
2) Beijing and its surrounding areas, 3) the Qinling Mountains, 4) Yunnan province, 5) Guangxi-Guangdong provinces and 6)
Hainan island because of the land cover change without considering the impact of climate variability. The comparison among
different scenarios showed that vegetation changes resulting from land cover management is the main driver of BVOC emission
change in China. Climate variability contributed significantly to interannual variations but not much to the changing trend during
the study period. In the standard scenario, that considers both land cover change and climate variability, a statistic significant
increasing trend still can be found in the regions including Beijing and its surroundings, Yunnan provinces and Hainan island, and
BVOC emission total amount in these regions during 2013-2016 is 11.0%-17.2% higher that during 2001-2004. We compared the
long-term HCHO vertical columns (VC) from the satellite-based Ozone Monitoring Instrument (OMI) with the estimation of
isoprene emission in summer. The results showed statistically significant positive correlation coefficients over the regions with
high vegetation cover fractions. In addition, the isoprene emission and HCHO VC both showed statistically significant increasing
trends in the south of China where these two variables have high positive correlation coefficients. This result may support our
estimation of the variability and trends of BVOC emission in this region, however, the comparison still has large uncertainties
since the absence of chemical and physical processes. Our results suggest that the continued increase of BVOC will enhance the
importance of considering BVOC when making policies for controlling ozone pollution in China along with ongoing efforts to

increase the forest cover fraction.

1 Introduction

Biogenic Volatile Organic Compounds (BVOCs) play an important role for air quality and the climate system
due to their large emission amount and reactivity (Guenther et al., 1995; Guenther, 2006). BVOCs are
important precursors of ozone and secondary organic aerosols (SOAs) (Kavouras et al., 1998; Claeys et al.,

2004), therefore, it is important to understand the variability of BVOC emission and its impact on air quality
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and the climate system. The emission of BVOC is controlled by multiple environmental factors like
temperature, radiation, CO2 concentration and other stresses, therefore it is affected by climate changes
(Guenther et al., 1995; Arneth et al., 2007; Penuelas and Staudt, 2010). Besides the climatic factors, the land
cover change also plays a key role in the variability of BVOC emission (Stavrakou et al., 2014; Unger, 2013;
Chen et al., 2018). For instance, the global cropland expansion has been estimated to dominate the reduction
of isoprene, the dominant BVOC species, in last century (Lathiére et al., 2010; Unger, 2013) although there
are large uncertainties associated with these estimates.

China has been greening in recent decades (Piao et al., 2015). A recent study points out that China accounts
for 25% of the net increase of global leaf area during 2000-2017 (Chen et al., 2019). The increase of forest
area plays a dominant role in greening in China with multiple programs to maintain and expand forests
(Zhang et al., 2016; Bryan et al., 2018; Chen et al., 2019). The enhancement of vegetation cover rate and
biomass can lead to the increase of BVOC emission and induce changes on local air quality and the climate
system. Previous studies have investigated the long-term emission trend of dominant BVOC species like
isoprene in China (Fu and Liao, 2012; Li and Xie, 2014; Stavrakou et al., 2014; Chen et al., 2019). Li and
Xie (2014) estimated the historical BVOC emissions during 1981-2003 in China using the national forest
inventory records and reported that the BVOC emission increased at a rate of 1.27% y-!. Another estimation
by Stavrakou et al. (2014) showed an upward trend of 0.42% y! of isoprene emission in China during 1979-
2005 driven by the increasing temperature and solar radiation, moreover, the upward trend of isoprene
emission reached 0.7% y! when considering the replacement of cropland with forest. A recent study by Chen
et al. (2018) concluded that the global isoprene emission decreased by 1.5% because of the tree cover change
during 2000-2015, but in China, the isoprene emitted by broadleaf trees and non-trees increased by 3.6% and
5.4%, respectively. However, these studies have limitations in representing annual changes of vegetation,
e.g., Liand Xie (2014) used fixed LAI input of year 2003 over the whole study period of 1981-2003.
Considering the significant land cover change and greening trend in China, it is necessary to thoroughly
investigate the impact of intense reforestation on BVOC emission in China. In this study, we used the latest
annually continuous land cover products Version 6 by the MODerate-resolution Imaging Spectroradiometer
(MODIS) sensors as well as the Model of Emissions of Gases and Aerosols from Nature (MEGAN, Guenther
et al. 2012) model to investigate BVOC emission in China from 2001 to 2016. By annually updating the
vegetation information of MODIS observations, we could accurately estimate interannual variability of
BVOC emission to assess the impact of greening trend on BVOC in China during 2001-2016.

A long-term in-situ observation of BVOC is not available in China currently to investigate interannual
variability of BVOC emission, however, satellite formaldehyde (HCHO) observations provide an opportunity

to validate the interannual variability of isoprene, the dominant compound among BVOC species that
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accounts for almost half of total BVOC emission in China (Li et al., 2013). Since HCHO 1is an important
proxy of isoprene in forest regions with no significant anthropogenic impact, satellite HCHO columns are
widely used to derive isoprene emission at regional to global scales (Palmer et al., 2003; Marais et al., 2012;
Stavrakou et al. 2009; Stavrakou et al., 2015; Kaiser et al. 2018). Zhu et al. (2017b) reported an increasing
trend of HCHO vertical columns (VC) detected by the Ozone Monitoring Instrument (OMI) driven by
increasing cover rate of local forest in the northwestern United States. Stavrakou et al. (2018) also used the
long-term HCHO VC to investigate the annual variability of BVOC induced by climate variability. Here we
used the long-term OMI 2005-2016 record to evaluate the interannual isoprene variability we estimated in

China.

2 Data and Method
2.1 MEGAN Model
MEGAN (Guenther et al., 2006; Guenther et al., 2012) is the most widely used model for calculating BVOC
emission from regional to global scales (Miiller et al., 2008; Li et al., 2013; Sindelarova et al., 2014; Chen et
al., 2018; Bauwens et al. 2018; Messina et al. 2016). The offline version of the MEGAN v2.1 (Guenther et
al., 2012) model, available at https://bai.ess.uci.edu/megan, was used to estimate the BVOC emission in

China from 2001 to 2016. MEGAN v2.1 calculates emissions for 19 major compound categories uses the

fundamental algorithm:

Fi = gvi (1)

where Fi, €i and yi represent the emission amount, the standard emissions factor, and emission activity factor
of chemical species i. The standard emission factor in this study is based on the plant functional type (PFT)
distribution from the Community Land Model 4.0 (Lawrence et al., 2011). The emission activity factor yi

accounts for the impact of multiple environmental factors and can be written as:

Vi = CcgLAlyp,iYTiYaiVsm,iYc,i (2)

where yp,i, YT.i YA, YsMm,i and yc,i represent the activity factors for light, temperature, leaf age, soil moisture and
COz inhibition impact. The Cce (=0.57) is a factor to set the yi equal to 1 at standard conditions (Guenther et
al., 2006). The LAI is the leaf area index, and it is used to define the amount of foliage and the leaf age
response function as described in Guenther et al. (2012). The light and temperature response algorithms in
MEGAN v2.1 are from Guenther et al. (1991, 1993, 2012), which described enzymatic activities controlled
by temperature and light conditions. The COz inhibition algorithm is from Heald et al. (2009), and only the



10

15

20

25

30

estimation of isoprene emission considers the impacts of soil moisture and CO:2 concentration. The detailed
descriptions of these algorithms can be found in Guenther et al. (2012) and Sakulyanontvittaya et al. (2008).
2.2 Land Cover Datasets.

The land cover parameters for driving MEGAN including LAI, PFT and vegetation cover fraction (VCF)
were provided by satellite datasets. The MODIS MODI15A2H for 2001
(https://Ipdaac.usgs.gov/products/mod15a2hv006/, Myneni et al., 2015a) and MCD15A2H for 2002-2016
LAI (https:/Ipdaac.usgs.gov/products/med15a2hv006/, Myneni et al., 2015b) datasets were used in this

study. The parameter LAIv in MEGAN is calculated as:

Lam = ZAL (3)
V=VCF

where VCF is provided by MODIS MOD44B datasets (https:/Ipdaac.usgs.gov/products/mod44bv006/,
Dimiceli et al., 2015).

The PFT was used to determine the canopy structure and standard emission factors in MEGAN (Guenther et
al., 2012). We adopted the default emission factors for PFTs described in Guenther et al. (2012), which have
been presented in the Table S3 in the supplement. The PFT dataset in this study is obtained from the MODIS
MCD12C1 land cover product (https://Ipdaac.usgs.gov/products/med12c1v006/, Friedl and Sulla-Menashe,
2015). MODIS IGBP classification were mapped to the PFT classification of MEGAN or the Community
Land Model (CLM) (Lawrence et al., 2011) based on the description of the legends in the user guide (Sulla-

Menashe and Friedl, 2018) and the climatic criteria described in Bonan et al. (2002). The spatial distribution
of percentage of PFTs in model grids is presented in Figure 1. According to the description of the legends,
we firstly mapped the IGBP classification to eight main vegetation categories: 1) needleleaf evergreen forests,
2) broadleaf evergreen forests, 3) needleleaf deciduous forests, 4) broadleaf deciduous forests, 5) mixed
forests, 6) shrub, 7) grass and 8) crop. The mapping method is described in Table S1 in the supplement. Eight
main categories then were mapped to the classification of MEGAN/CLM for boreal, temperate and boreal
climatic zones using the definition in Bonan et al. (2002). Table S2 in the supplement presents the climatic
criteria for mapping, and the climatic information for mapping was from the ERA Interim climatology

(https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim, Berrisford et al., 2011)

Reanalysis dataset over 2001-2016.

2.3 Meteorological Datasets

The hourly meteorological fields including temperature, downward shortwave radiation (DSW), wind speed,
surface pressure, precipitation and water vapor mixing ratio were provided by the Weather Research and
Forecast (WRF) Model V3.9 (Skamarock et al., 2008) simulations. The model was driven by ERA-Interim
reanalysis data (Berrisford et al., 2011) with 27 km horizontal spatial resolution and 39 vertical layers. The

physical schemes were presented in supplemental Table S4.
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Since light and temperature conditions are the main environmental drivers of BVOC emission (Guenther et
al., 1993; Sakulyanontvittaya et al., 2008), we assessed the reliability of the WRF simulated DSW and 2-
meter temperature (T2) using in-situ observations from 98 radiation observation sites and 697 meteorology
observation sites in China. The in-situ observations are from the National Meteorological Information Center
(http://data.cma.cn/). We converted the hourly model outputs and daily observations to monthly averaged
values from 2001 to 2016 for comparison. For DSW, the average mean bias (MB), mean error (ME) and root
mean square error (RMSE) are 40.37 (+ 20.81), 43.55 (+ 17.52) and 49.79 (£ 17.70) W m for 98 studied
sites. The overestimation of DSW simulation is a common issue in multiple simulation studies and may be
induced by the lack of physical processes for aerosol radiation effect (Wang et al., 2011; Situ et al., 2013;
Wang et al., 2018) and misrepresentation of the radiative effect of the sub-grid scale cumulus cloud (Ruiz-
Arias et al., 2016). For T2, the average MB, ME and RMSE are -1.19 (£ 2.87), 2.40 (£ 2.14) and 2.65 (£
2.11) °C among 697 sites over China. The regional scale validation was also conducted in five main regions
(Figure S1) by comparing the averaged values of the observation and the simulation among the sites in the
regions we defined, and the results (Figure S2 and Figure S3) and statistical parameters (Table S5 and Table
S6) can be found in the supplement.

We also compared the monthly anomalies of DSW and T2 from the model simulation and observation to
validate the interannual variability of meteorological fields simulated by WRF. As shown in Figure 2, the
results indicate that the model accurately reproduced the interannual variability of DSW and T2, and the
correlation coefficients of DSW and T2 anomaly between the simulation and observation reached 0.77 and
0.88, respectively. The trends of growing season averaged T2 and DSW from model results as well as in-situ
measurements are presented in Figure 3. The model and the in-situ measurements show similar patterns of
T2. For instance, the model and observations both show an increasing trend in regions like the Tibetan Plateau
and southern China as well as a decreasing trend in eastern and northeastern China. For DSW, the model
presented a dimming trend in northeastern and eastern China and a brightening trend in southeastern and
central China, and the limited number of radiation observation sites show a similar pattern of trend with
model results. In general, the WRF simulation successfully captured the long-term meteorological
variabilities and is reasonable to use for estimating the impact of climatic variability on BVOC emission in

China for this study.

2.4 Satellite Formaldehyde (HCHQO) Observations

The satellite HCHO VC used in this study is from the Belgian Institute for Space Aeronomy (BIRA-IASB)
and was retrieved using the differential optical absorption spectroscopy (DOAS) algorithm (De Smedt et al.,
2012; De Smedt et al., 2015). We used the monthly Level-3 HCHO VC product with 0.25° x 0.25° spatial
resolution, and the rows affected by the row anomaly since June 2007 have been filtered in this product (De
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Smedt et al., 2015; Jin and Holloway, 2015). Since the OMI instrument is temporally stable (Dobber et al.,
2008; De Smedt et al., 2015), the OMI HCHO VC product is suitable for long-term analysis (Jin and
Holloway, 2015) and was used to primarily validate our estimation of isoprene emission variability. The
major sources of tropospheric HCHO are biogenic VOC, anthropogenic VOC and open fires (Zhu et al.,
2017a). Since biogenic isoprene is the dominant source of HCHO over forests in summertime (Palmer et al.,

2003), we used HCHO as the proxy of isoprene to validate the interannual variability of isoprene estimates.

2.5 Scenarios and Analysis Method

We designed five scenarios (S1-S5) to investigate the impact of land cover change and climatic conditions
on BVOC emission. The configurations of the five scenarios are shown in Table 1:

1) S1 was considered as the standard or full scenario;

2) S2 was used to investigate the impact of the ecosystem and land cover variability on BVOC emission;

3) S3 and S4 characterize the effect of climate variability and compare the difference of BVOC emission
induced by vegetation change between 2001 and 2016;

4) S5 investigate the contribution of LAI trend to BVOC emission trend solely.

The climatic variability can affect the growth of vegetation and then affect LAI values (Piao et al., 2015). In
this study, the interaction between climate and ecosystem is not considered in the offline MEGAN model,
which means that the meteorological conditions, e.g. precipitation, will not affect the LAI values as well as
phenology of vegetations.

The chemical species emissions estimated by MEGAN were grouped into four major categories including
isoprene, monoterpene, sesquiterpene and other VOCs since the terpenoids account for the majority of total
BVOC emission and have known impacts on atmospheric oxidants and SOA (Wang et al., 2011). The trend
analysis in this study was done following the Theil-Sen trend estimation method and the results were tested
by the Mann-Kendall non-parametric trend test (MK test) (Gilbert, 1987). The trend analysis and the MK
tests in this study were implemented using the trend_manken
(https://www.ncl.ucar.edu/Document/Functions/Built-in/trend manken.shtml) function of the NCAR
Command Language (NCL, https://www.ncl.ucar.edu/).

3 Results and Discussion
3.1 The Variability of BVOC Emission in China During 2001-2016
As shown in Table 2, the average annual emission during 2001-2016 of isoprene, monoterpene, sesquiterpene

and other VOCs estimated from S1 are 15.94 (+1.12), 3.99 (+0.17), 0.50 (£0.03) and 13.84 (+0.78) Tg,

respectively. Isoprene is the dominant species and accounts for about half of the total BVOC emission in
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China. As shown in Figure 4, the estimated BVOC emission in S2 has a statistically significant increasing
trend without considering the annual variability of meteorological conditions. The increasing rates of
isoprene, monoterpenes, sesquiterpenes and total BVOC emission in S2 scenarios are 0.64, 0.44, 0.39 and
0.50 % y!, respectively. The S1 scenario considers the impact of annual meteorological variability as well
as the surface vegetation change, and the BVOC emission in S1 is in an upward trend but did not pass the
significance test of p < 0.1. There’s no significant trend of BVOC emission for both S3 and S4, with fixed
landcover and annually updated meteorological conditions, demonstrates that meteorology was not the direct
driver of BVOC emission trend in China during this period. Climatic conditions could affect the BVOC
emission indirectly by affecting the growth of vegetation and controlling BVOC emission (Pefuelas et al.,
2009), which is not considered in the model used in this study. The estimated total BVOC emission in S5
also has a statistically significant increasing trend of 0.26% y' (p<0.05) without considering the annual
variability of meteorological conditions, which is purely caused by the increase of LAI during 2001-2016.

The surface vegetation change had a significant influence on BVOC emissions in China during 2001-2016
according to our estimation. In S2, the interannual variability of total BVOC emission is primarily determined
by the surface vegetation change resulting in a nearly linear increasing trend of BVOC emission. The average
annual emission of total BVOC during 2009-2016 is 3.9% (1.29 Tg) higher than that during 2001-2008 in
S2, and the average annual emissions of isoprene, monoterpene and sesquiterpene during the previous eight
years are by 5.0% (0.75 Tg), 3.5% (0.13 Tg) and 3.1% (0.02 Tg) higher than those during next eight years,
respectively. The comparison of S3 and S4 results further demonstrates the importance of vegetation
development on BVOC emission considering the interannual variability of meteorological conditions. S3 and
S4 adopted the same annually updated meteorological field but the fixed land cover information of the year
2001 and 2016, respectively. The fluctuation of meteorological factors leads to an interannual variability of
BVOC emission in S3 and S4, but the increase of vegetation cover rate in 2016 results in BVOC emissions
that are much higher than that in 2001. As presented in Table 2, the average total BVOC emissions are 31.77
(x1.54) and 35.48 (£1.76) Tg in S3 and S4, respectively, and the total BVOC emission in S4 is by 11.7%
(3.71 Tg) higher than that in S3. The emissions of isoprene, monoterpene and sesquiterpene with the land
cover information of the year 2016 are by 14.1% (2.07 Tg), 9.0% (0.34 Tg) and 8.5% (0.04 Tg) higher than

those estimated based on the land cover information of the year 2001, respectively.

3.2 The Regional Variability of BVOC Emission in China

The hotspots of BVOC emission are mainly located in the northeast, central and south of China where the
forest is widely distributed and the climate is warm and favorable for emitting BVOC as shown in Figure 5.
The Changbai Mountains, the Qinling Mountains, the southeast and southwest China forest regions, southeast

Tibet, Hainan and Taiwan islands are the regions with highest BVOC emission in 2001. The spatial patterns
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of statistically significant (p < 0.1) changing trends in S1-S5 are also presented for individual categories in
Figure 5. The spatial distributions of trends of different species in S2 all shows a nationwide significantly
increasing trend since the vegetation development is the main driver of the increasing trend of BVOC
emission (c, i, 0 and u in Figure 5). In the full scenario of S1, the area with statistically significant trend is
less than that in S2 considering the impact of meteorological variability. S5 also shows a nationwide
significantly increasing trend of BVOC emission but with smaller rates comparing to S2 (f, I, r and x in Figure
5). While a positive increasing trend induced by meteorology is also found in Tibet, western Sichuan and
southeastern Yunnan province in S3 and S4, which is induced by the warming climate and stronger DSW as
presented in Figure 3.

The spatial patterns of changing trends of total BVOC emission and landcover parameters are presented in
Figure 6. The cover fraction of broadleaf trees shows a strong increasing trend in the regions including
northeastern, central and southern China. Meanwhile, the grass and crop cover fractions show a decreasing
trend in these regions. The crop cover rate also shows an increasing trend in northeastern China, Shan Xi,
Gansu and Xinjiang Provinces by replacing the grass there. Besides the change of PFTs, a nationwide
increasing trend of LAIv was also found for most regions in China.

In order to understand the regional discrepancies of changing trend of BVOC emission and its drivers, we
chose six regions of interest to further analyze. As shown in (a) of Figure 6, the six regions includes 1)
northeastern China (orange frame in Figure 6a, 45.5-54N, 118-130E), 2) Beijing and its surrounding areas
(black frame in Figure 6a, 39-42.5N, 114-120E), 3) Qinling Mountains (red frame in Figure 6a, 30-34N,
105.5-112E), 4) Yunnan Province (blue frame in Figure 6a, 21-27N, 97.5-106E), 5) Guangxi-Guangdong
provinces (purple frame in Figure 6a, 21-25N, 106-117E) and 6) Hainan island (green frame in Figure 6a,
17.5-20.5N, 108-112E). The annual changes of vegetation conditions (PFTs and LAIv), the annual emission
flux and growing season averaged temperature and DSW are presented in Figure 7 and Figure 8, and the
averaged values and trends of above variables are listed in Table 3 and Table 4. In general, six regions all
show that the woody vegetations replaced the herbaceous vegetations with a significantly increasing trend of
annual LAIv. Since the broadleaf trees tend to have a higher emission potential than grass or crop (Guenther
et al., 2012), the transformation of land cover from grass or crop to broadleaf tree is expected to enhance the
emission of BVOC by increasing the landscape average emission factor. As shown in Table 3 and Table 4,
the broadleaf tree cover fraction increased at a rate of 0.15~0.32 % y*!, and the grass cover fraction decreased
at a rate of 0.11~0.37% y"' among the six regions during 2001-2016. Except for northeastern China we
defined, other five regions all show a decreasing trend of 0.04~0.26% y-! for the crop cover fraction. As a
result, the total tree cover fraction during the last four years (2013-2016) is 11.0, 82.5,6.1, 5.7, 5.9 and 8.0 %
higher than that during first four years (2001-2004) for northeastern China, Beijing and its surroundings,
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Qinling Mountains, Yunnan Province, Guangxi-Guangdong provinces and Hainan Island, respectively, and
the LAIv for these regions also increased by 14.8 ~ 26.4 %. Correspondingly, the annual BVOC emission
flux in six regions all show a significantly increasing trend without considering the variability of meteorology
in S2. The mean annual BVOC emission flux for the last four years (2013-2016) is 8.6%~9.8% higher than
that for the first four years (2001-2004) in the regions defined above except for Beijing and its surrounding
areas, where the change of the annual BVOC emission flux reached 19.3% with the tree cover fraction
increased by 82.5%. If we only consider the contribution of LAI change, as described in the scenario S5,
above sub-regions except for Guangxi-Guangdong provinces still show a statistically significant increasing
trend of BVOC emission without considering the variability of meteorology, and the contributions of the
LAIv change to BVOC emission increasing trend is about 25%-66% in these regions.

The changing trend of the annual BVOC emission flux is different in S1 when the impact of meteorological
variability is taken into account. The simulated T2 and DSW during the growing season do not show a
significant trend in most regions we chose. As shown in Figure 7 and Figure 8, the variabilities of the
temperature and DSW during the growing season controlled the variability of BVOC flux in S1. When the
meteorological variability is considered, there are still three regions we defined above that show a
significantly increasing trend of BVOC emission: 1) Beijing and its surrounding areas, 2) Guangxi-
Guangdong Provinces and 3) Hainan island. In Beijing and its soundings, the changing trend of the annual
BVOC emission flux is 0.03 g m™! y! in S1, and the mean annual BVOC emission flux in last four years still
shows a large increase of 16.6% compared to that in first four years in this region. A significantly increasing
trend of temperature of 0.03 °C y*! were found in southwestern China region, therefore, the increasing trend
of the annual BVOC emission flux is 0.1 gm™' y! in S1, which is higher than that in S2 0f 0.04 g m™' y*!. The
BVOC flux in last four years is about 17.2% higher than that in first four years in southwestern China. In
Hainan island, the changing trend of the annual BVOC emission flux is 0.12 g m'! y*! in S1, and the annual
BVOC emission flux in last four years is 11.0% higher than that in first four years.

The estimated increase of BVOC in the regions like the Qinling Mountains and southern China are expected
to affect regional air quality. For the Qinling Mountains and surrounding areas, as estimated by Li et al.
(2018) using the WRF-chem model, the average contribution of BVOC to O3 could reach 16.8 ppb for the
daily peak concentration and 8.2 ppb for the 24h concentration in the urban region of Xi’an, one of the biggest
cities near the Qinling Mountains suffering from poor air quality in recent years (Yang et al., 2019). For
Guangxi-Guangdong Provinces, Situ et al. (2013) reported that BVOC emission could contribute an average
7.9 ppb surface peak O3 concentration for the urban area in the Pearl River Delta region, and the contribution
from BVOC even reached 24.8 ppb over PRD in November. Since BVOC plays an important role in local

air quality, the change of BVOC emission may have an even greater effect on the local ozone pollution. For
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instance, the simulation study by Li et al. (2018) also found that the urban region of Xi’an is VOC-limited
because of the abundant NOx emission there. Therefore, the increase of BVOC emission in the Qinling

Mountains would further favor the formation of O3 in the urban region of Xi’an.

3.3 Comparison of Estimates of Isoprene Emission and Satellite Derived Formaldehyde Column Concentration

The OMI HCHO VC product from 2005-2016 developed by BIRA-IASB (De Smedt et al., 2015) was used
in this study. The interannual variability of isoprene emission estimated in this study was evaluated by
comparing the summer (June-August) averaged isoprene emission with the summer averaged HCHO VC.
The annually averaged LAI during 2005-2016 presented in Figure 9 indicates the spatial distribution of
vegetation in China. However, the spatial pattern of estimated isoprene emission (Figure 9b) differs from the
spatial distribution of vegetation because of the variability of emission potentials among different PFTs in
the MEGAN model as well as the climatic conditions. The spatial pattern of average summertime HCHO VC
observed by the OMI sensor during 2005-2016 is also presented in Figure 9c. The highest summer HCHO
concentrations in the US are mainly distributed in rural forest regions dominated by biogenic emission
(Palmer et al., 2003), while the highest summer HCHO concentrations in China are mainly distributed in
developed regions like North China Plain where HCHO concentration is dominated by anthropogenic sources
(Smedt et al., 2010). There is a moderate HCHO VC of about 6-10 x10'> molec cm™ in the vegetation
dominated regions of China.

The grid level correlation coefficients between the average summer HCHO VC and isoprene emission
estimated in our study are shown in Figure 9d, and the grids with statistically significant correlations (p <
0.1, N=12) grids are marked with black dots. A correlation is found in the northeast, central and south of
China where there are relatively high vegetation cover rates and low anthropogenic influence. In contrast,
there’s almost no statistically significant correlation in the high HCHO VC regions like the North China Plain
which is dominated by anthropogenic emissions. However, the distribution of statistically significant positive
correlated points is not completely consistent with the vegetation distribution indicated by LAI due to the
absence of consideration of physical and chemical processes, including transportation, diffusion, and
chemical reactions. The grids with significant correlation are mostly distrusted in or near rural regions with
high vegetation biomass indicating that our estimations can represent the annual variation of isoprene
emission.

The increasing trends of isoprene and HCHO VC during 2005-2016 are presented in (e) and (f) of Figure 9,
and the statistically significant (p < 0.1) grids are marked with black dots. The increasing trend pattern of
isoprene emission during 2005-2016 is basically consistent with that during 2001-2016, which has been
described in the Section 3.2, and it is clear that southern China is the region with the strongest positive trend.
For HCHO, developed regions such as the North China Plain have an increasing trend because of the increase
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of human activities (Smedt et al., 2010), there is also an obvious increasing trend of HCHO VC at Yunnan
and Guangxi provinces in the south of China. Moreover, these regions, especially Guangxi province also
show a statistically significant positive correlation between isoprene emission and HCHO VC as presented
in Figure 9d. This implies that biogenic emissions might be the main driver of the increased HCHO in
Guangxi province, however, the absence of the physical and chemical processes like transport led to a large
uncertainty to this conclusion. Here we conducted a primary comparison between HCHO VC and isoprene
emission, and a more thorough study by using chemical transport model may help to further explain the

relationship between the variability of HCHO VC and the isoprene emission in the future.

3.4 Comparison with other studies and uncertainties discussion

The comparison of isoprene and monoterpenes emission estimations between our estimations and previous
studies is presented in Table 5. The estimations of isoprene emission range from 4.65 Tg to 33.21 Tg, and
the estimations of monoterpenes emission range from 3.16 Tg to 5.6 Tg in China. Multiple factors including
emission factor, meteorological and land cover inputs can lead to the discrepancy of these estimations. We
listed the inputs of these estimations in Table 6 to fully understand the discrepancies between our results and
other estimations.

The setting of inputs in this study is relatively close to the study by Stavrakou et al. (2014) and CAMS-
GLOB-BIO biogenic emission inventories (https://eccad3.sedoo.ft/#CAMS-GLOB-BIO) that adopted the
method described by Sindelarova et al. (2014). However, the estimation of isoprene emission in this study is
about 86.6%-122.3% higher than their estimations, and the estimation of monoterpene emission is about
23.5% and 31.3% higher than that from CAMS-GLOB-BIO v3.1 and vl.1, respectively. We further
compared our results with two versions of CAMS-GLOB-BIO inventories. Figure 10 and Figure 11 present
the trends of isoprene emission and monoterpenes emission respectively from S1 and S3 in this study, CAMS-
GLOB-BIO inventory v 1.1 and v 3.1 during 2001-2016. As shown in Figure 10 and Figure 11, S3 shows
similar spatial patterns and magnitude of changing trend of isoprene and monoterpenes emissions with
CAMS-GLOB-BIO v 1.1 and CAMS-GLOB-BIO v3.1, e.g. three datasets all showed a strong increasing
trend in Yunnan province, and S1 shows much more stronger changing trends comparing with other three
datasets with annually updated LAI and PFT datasets. The meteorological inputs for CAMS-GLOB-BIO
v1.1 and v3.1 are ERA-Interim and ERA-5 reanalysis data, respectively, and the WRF model used in this
study was also driven by ERA-Interim reanalysis data. Therefore, the four datasets have the similar source
of meteorological inputs. In addition, these estimations all adopted the same PFT level emission factors from
Guenther et al. (2012). Therefore, the potential reason for the differences of isoprene and monoterpenes
emission among the datasets in Figure 10 and Figure 11 is the discrepancies of PFT and LAI inputs. CAMS-
GLOB-BIO also adopted the annually updated LAI inputs developed by Yuan et al. (2011) based on MODIS
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MOD15A v5 LAI product, but the two versions of CAMS-GLOB-BIO inventory did not show a same level
strong increasing trend with S1. The increasing trend of LAI in China is agreed by multiple LAI products but
with different rates (Piao et al., 2015; Chen et al., 2020). In this study, we adopted the latest MODIS LAI
product of version 6, and a strong increasing trend of LAI in China has been found by using this product
(Chen et al., 2019). Therefore, an increasing trend of BVOC emission induced by LAI should be seen in the
estimation with annually updated LAI inputs, but the magnitude of this trend is also affected by the magnitude
of changing trend of LAI products. The PFT map used in this study is coming from MODIS land cover
product, which is a mesoscale satellite product with the highest resolution of 500m. Besides the quality of
the product, the method for converting the original land cover classification system to PFT classification
system is also important. Hartley et al. (2017) illustrated that the cross-walking table for converting land
cover class maps to PFT fractional maps can lead to 20%-90% uncertainties for gross primary production
estimation in land surface model by using different vegetation fractions for mixed pixels, and the BVOC
emission estimation has the same issue. In this study, we assumed that the pixels that were assigned as
vegetation is 100% covered by that kind of vegetation (Table S1 in the supplement). Therefore, it will lead
to an overestimation of vegetation cover rate for mixed pixels, which can lead to higher BVOC emission.

The emission factor is also an important source of uncertainties, and it decided the spatial patterns of emission
rates together with the PFT distribution. In order to understand the role of emission factor, the flux
measurements of isoprene and monoterpenes from the campaigns conducted during 2010 to 2016 in China
(Bai et al., 2015; Bai et al., 2016; Bai et al., 2017) were collected and compared with model results in this
study. The details of these campaigns are provided in Table 7, and the emission factors that were retrieved
from the observations are also listed for these sites. Most samples were collected during the daytime every 3
hours according to the descriptions of the measurements (Bai et al., 2015;Bai et al., 2016;Bai et al., 2017),
therefore, we averaged the model results during 8:00 A.M. to 20 A.M in local time with a three-hour interval
for comparison. As shown in the (a) and (b) of Figure 12, the modeled fluxes of isoprene and monoterpenes
with the default emission factors in this study did not capture the variability of the observations. The ME,
MB and RMSE are 1.60, 1.59 and 2.31 mg m™ h! for isoprene and 0.21, -0.003 and 0.32 mg m™ h*! for
monoterpenes. When we adopted the emission factors retrieved from observations (Bai et al., 2015;Bai et al.,
2016;Bai et al., 2017), the simulated isoprene and monoterpenes fluxes showed relatively good consistence
with the observations by using the same activity factor from the model (y in equation (1)) as shown in (c) and
(b) of Figure 12. The ME, MB and RMSE are 0.44, 0.41 and 0.57 mg m2 h'! for isoprene and 0.32, 0.14 and
0.49 mg m h'! for monoterpenes after adopting the observation-based emission factors, and the statistic
parameters for isoprene simulation are largely improved. Although the MB and ME of monoterpenes

simulation are increased, but the simulated monoterpenes flux show better agreement with observations
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(Figure 12). Therefore, it is clear that our calculation of activity factors is in a reasonable range, but the
emission factor is the main source of uncertainties. The PFT level emission factors used in this study from
Guenther et al. (2012) represents the globally averaged emission factor for PFTs, and it is relatively easy to
use them with the satellite PFT products. Therefore, the most studies listed in Table 6 adopted the
PFT/landuse level emission factors. Our validation showed that the accurate emission factor based on
observations could largely improve the performance of the MEGAN model, but it also requires abundant
efforts to conduct measurements. However, the measurements listed in Table 7 are still very limited for
describing the spatial discrepancies of ecosystems in China, so we still used the default emission factors in
MEGAN model for our national scale estimation. The estimations by Li et al. (2013, 2020) used the species
level emission factors and Vegetation Atlas of China for 2007 to describe the spatial distribution of BVOC
emission potentials, and they concluded the reason why their estimations were far higher than other studies
is the high emission factors they adopted. Therefore, the same validations by using canopy-scale BVOC flux
measurements are also needed for these studies to validate and constrain the emission factors they used.

Meteorological input is also a source of uncertainties for BVOC emission estimation. As shown in Figure 12,
the modeled isoprene and monoterpenes fluxes are still generally higher than observations when observation-
based emission factors were used. One potential reason for this phenomenon is the overestimation of
temperature and radiation as described in Section 2.3. The sensitivity tests by Wang et al. (2011) showed that
the about 1.89 °C discrepancy of temperature can result in -19.2 to 23.2% change of isoprene emission and -
16.2 to 18.5% change of monoterpenes emission for Pearl River Delta region in July, where is also a hotspot
for BVOC emission in this study. They also found that 115.8 W m2 discrepancy of DSW can result in -31.4
to 36.2% change of isoprene emission and -14.3 to 16.8% change of monoterpenes emission for the same
region. The BVOC emission in this study might be overestimated because of the overestimated temperature
and DSW in meteorological inputs. However, inaccurate emission factors could lead to over 100%

uncertainties, which is more significant than the uncertainties induced by meteorological inputs.

4, Conclusion

Satellite observations have shown that China has led the global greening trend in recent decades (Chen et al.,
2019). In this study, we investigated the impact of this greening trend on BVOC emission in China from
2001 to 2016. We used long-term satellite vegetation products as inputs in the MEGAN. According to the
estimation of model, we found the greening trend of China is leading a national scale increase of BVOC
emission. The BVOC emission level in 2016 can be 11.7% higher than that in 2001 because of higher tree
cover fraction and biomass. The comparison among different scenarios showed that vegetation changes

resulting from land cover management is the main driver of BVOC emission change in China. Climate
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variability contributed significantly to interannual variations but not much to the long-term trend during the
study period.

On regional scales, there are strong increasing trends in 1) northeastern China, 2) Beijing and its surrounding
areas, 3) the Qinling Mountains, 4) Yunnan province, 5) Guangdong-Guangxi provinces and 6) Hainan
island. A strong increasing trend of broadleaf tree cover fractions and LAIv were found in these regions. The
mean total tree cover fraction during the last four years (2013-2016) is 5.7-82.5 % higher than that of the first
four years (2001-2004) for these regions, and the LAlv during 2013-2016 increased by 14.8 ~ 26.4 %
comparing to that during 2001-2004 in these regions. Consequently, the average BVOC emission flux for the
last four years (2013-2016) is 8.6%~19.3% higher than that for the first four years (2001-2004) in the sub-
regions we defined driven by the same meteorological inputs. In the standard scenario of S1, a statistic
significant increasing trend still could be found in the sub-regions including Beijing and its surroundings,
Yunnan province and Hainan island when the climate variability was considered.

We used the long-term record of satellite HCHO VC from the OMI sensor to assess our estimation of isoprene
emission in China during 2005-2016. The results indicated statistically significant positive correlation
coefficients between the isoprene emission estimate and satellite HCHO VC in summer over the regions with
high vegetation cover fraction including the northeast, central and southern China. In addition, isoprene
emission and HCHO VC both had a statistically significant increasing trend in the south of China, mainly
Guangxi Province, where there was a statistically significant positive correlation supporting the estimated
variability of BVOC emission in China. However, the absence of the physical and chemical processes, e.g.
transport, led to a large uncertainty to this conclusion, and a more thorough study by using chemical transport
model may help to further explain the relationship between the variability of HCHO VC and the isoprene
emission.

We conclude that uncertainties of this study mainly come from the emission factor, PFT and LAI inputs
through comparing our results with other studies and flux measurements during 2010-2016 in China. The
validation with flux measurements suggested that using the observation-based emission factor could largely
improve the performance of model, but it also requires more much more efforts. Our results suggest that the
continued increase of BVOC will enhance the importance of considering BVOC when making policies for

controlling ozone pollution in China along with ongoing efforts to increase the cover fraction of forest.
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Table 1. Description of different scenarios used to estimate the BVOC emission.

Land Cover LAIv Meteorological conditions
S1 Annually updated Annually updated Annually updated
S2 Annually updated Annually updated Year 2001
S3 Year 2001 Year 2001 Annually updated
S4 Year 2016 Year 2016 Annually updated
S5 Year 2001 Annually updated Year 2001

Iable 2. The mean annual emission (Tg) of different species in China during 2001 to 2016. The scenarios S1 to S5 are described in Table
S1 S2 S3 S4 S5

Isoprene 15.94 (+1.12) 15.40 (+0.66) 14.63 (+0.76) 16.70 (+0.89) 15.29 (+0.54)
Monoterpenes 3.99 (£0.17) 3.91 (+0.10) 3.78 (£0.12) 4.12 (+0.14) 3.9 (£0.08)
Sesquiterpenes 0.50 (£0.03) 0.48 (£0.02) 0.47 (£0.02) 0.51 (£0.03) 0.48 (£0.02)
Other VOCs 13.84 (+0.78) 13.95 (+0.34) 12.89 (+0.66) 14.15 (£0.73) 13.95 (+0.34)
Total BVOCs 34.27 (£2.06) 33.74 (£1.10) 31.77 (£1.54) 35.48 (+1.76) 33.63 (+0.95)

Table 3. The change and trend of annual emission flux (S1, S2 and S5), cover fractions of main PFTs, LAlv, growing season temperature
and DSW in northeastern China, Beijing and its surrounding areas and the Qinling Mountains.

Northeastern China

BLT NLT Shrub Grass Crop
E?n\i/scs)i%n E?n\i/scs)if):n EIan\i/sgi(;n IEQ'Q’ Cover Cover Cover Cover Cover 'I'Zerrr? DSW (W
(S2, gm?) (1, gm?) (S5, gm?) m?) Fraction Fraction Fraction Fraction Fraction (oc)p m-?)
9 9 9 (%) (%) (%) (%) (%)
3.37 3.04 3.25 1.45 21.37 13.56 5.97 30.86 25.85 13.74 224.5
Average
(£0.13) (£0.36) (£0.06) (£0.1) (£1.56) (£0.12) (£0.16) (£1.8) (£0.3) (£0.67) (£6.08)
Average 3.21 2.9 3.19 1.34 19.37 13.57 6.06 33.1 25.71 13.89 227.54
(2001-
2004) (£0.05) (£0.32) (+0.06) (£0.05) (+0.51) (+0.04) (+0.15) (+0.61) (+0.21) (£0.41) (£5.22)
Average 3.52 3.07 33 1.55 23.1 13.45 5.87 28.7 26.22 13.42 218.39
(2013-
2016) (+0.06) (0.36) (+0.05) (20.12) | (0.04) (20.13) (£0.04) (£0.18) (£0.25) (£0.59) (+4.74)
Trend 0.02""a 0.01 0.01™ 0.02™ 0.31™ -0.01 -0.03" -0.37"" 0.06™" -0.03 -0.73™
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Beijing & its surrounding areas

BLT NLT Shrub Grass Crop
E?TI\I/SOSI% n Eﬁq\{gf; n EE”I\I/SCS)I((:) n IEQ'Q’ Cover Cover Cover Cover Cover T2e nT DSW (W
(S2,gm?) | (SLgm?) | (S5 gm?) m?) Fraction | Fraction Fraction Fraction Fraction (cc)p m-2)
9 9 9 (%) (%) (%) (%) (%)
2.94 2.58 2.76 1.24 4.96 0.61 2.74 58.18 27.48 17.68 251.09
Average
(£0.21) (20.25) (+0.08) (#0.1) (£1.17) (+0.25) (+0.63) (+1.58) (£1.33) (+0.65) (£3.22)
Average 2.7 241 2.67 113 3.83 0.35 1.99 58.73 29.44 17.87 250.47
(2001-
2004) (x0.14) (+0.09) (£0.12) (£0.11) (£0.16) (+0.03) (+0.11) (+0.07) (+0.33) (+0.6) (+4.56)
Average 3.22 2.81 2.81 13 6.66 0.97 3.6 55.84 26.51 17.52 250.42
(2013-

2016) (+0.08) (x0.29) (£0.04) (+0.08) (£0.44) (+0.14) (+0.27) (+1.26) (+0.41) (+0.75) (£1.95)
Trend 0.04™ 0.03" 0.01™ 0.01" 0.23™ 0.04™" 0.13"" -0.18" -0.26™ -0.03 0.02
Qinling Mountains

BLT NLT Shrub Grass Crop
BVOC BVOC BVOC LA!;/ Cover Cover Cover Cover Cover 2-m DSW (W
Emission Emission Emission (m X E N E N E N E N Temp 2
(S2, gm?) (S1, gm-?) (S5, g m2) m) Fraction raction raction raction raction C) m-2)
' ' ' (%) (%) (%) (%) (%)
9.25 9.29 9.10 1.8 44.08 12.25 14.05 14.67 12.15 20.78 219.93
Average
(+0.38) (£0.93) (+0.28) (+0.19) (x1.52) (x0.17) (+0.64) (+0.67) (+0.25) (+0.58) (£9.01)
Average 8.84 8.91 8.85 1.59 42.18 12.48 14.84 15.51 12.31 20.83 220.28
(2001-
2004) (£0.25) (+0.38) (£0.25) (£0.17) (£0.32) (£0.11) (£0.29) (+0.26) (£0.32) (+0.25) (+9.41)
Average 9.71 9.75 9.39 2.01 45.91 12.07 13.26 13.84 11.95 20.75 221.26
(2013-
2016) (£0.22) (+1.64) (x0.22) (x0.12) (x0.27) (+0.03) (x0.14) (+0.16) (+0.10) (x0.91) (¥12.30)
Trend 0.06™" 0.07 0.04™ 0.03"" 0.32" -0.03" -0.13™ -0.14™ -0.04™ -0.01 -0.11

a: *: p<0.1; **: p<0.05; ***: p<0.01;

Table 4. The change and trend of annual emission flux (S1, S2 and S5), cover fractions of main PFTs, LAlv, growing season temperature
and DSW in Yunnan province, Guangxi-Guangdong provinces and Hainan island.
Yunnan province

BLT NLT Shrub Grass Crop
B\./O.C B\(O.C B\./O.C L'_MV_ Cover Cover Cover Cover Cover 2-m DSW
Emission Emission Emission (m2m - - - - - Temp 2
(s2,gm?) | (S1,gm?) | (S5 gm? 2 Fraction Fraction Fraction Fraction Fraction ¢C) (Wm?)
’ ’ ' (%) (%) (%) (%) (%)
6.79 7.28 6.67 2.23 32.7 14.92 17.25 21.83 9.86 18.54 224.71
Average
(£0.26) (+0.54) (x0.21) (x0.17) (£0.83) (£0.32) (x0.12) (+0.52) (x0.71) (x0.31) | (£5.64)
Average 6.53 6.76 6.57 2.02 32.1 1451 17.22 22.45 10.34 18.35 219.18
(2001-
2004) (+0.28) (+0.45) (x0.30) (x0.19) (x0.19) (x0.04) (x0.14) (x0.20) (+0.53) (x0.30) | (%6.70)
Average 7.09 7.92 6.94 2.4 33.93 15.33 17.2 21.12 8.92 18.7 227.49
(2013-
2016) (£0.09) (+0.35) (x0.04) (x0.02) (£0.58) (x0.1) (x0.17) (+0.30) (£0.25) (x0.47) | (+2.65)
Trend 0.04™"a 0.1™ 0.02™ 0.03™ 0.15™ 0.07™ 0 -0.11™ -0.17 0.03™ 0.42

Guangxi-Guangdong provinces
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BLT NLT Shrub Grass Crop

Elrgn\i/scgign Eﬁq\{s?i(;n E?n\i/s(zi(():n (;'_oz‘lr;']_ Cover Cover Cover Cover Cover Tze-r'rr? DSW

2 2 2 2 Fraction | Fraction | Fraction | Fraction | Fraction . P (Wm?2)

15.53 16.23 15.57 2.24 32.92 9.08 19.13 20.47 9.89 26.32 258.72
Average

(0.79) (£1.59) (+0.67) (£0.22) (£1.6) (x0.27) (+0.38) (+0.60) (£0.70) (£0.67) | (x7.32)

Average 15.06 15.84 15.23 21 32.2 9.3 19.41 21.02 9.89 26.36 258.74
(2001-

2004) (+1.09) (£1.70) (#1.23) (+0.35) (x0.57) (x0.02) (+0.04) (+0.03) (£0.57) (£0.25) | (¢9.25)

Average 16.36 17.03 15.92 2.44 35.24 8.69 18.57 19.62 9.03 26.31 256.36
(2013-

2016) (£0.37) (£1.99) (x0.29) (+0.09) (+0.88) (+0.19) (x0.31) (x0.32) (+0.16) (£0.99) | (+4.26)
Trend 0.13™ 0.14 0.05 0.03" 0.32"™ -0.05™ -0.06™ -0.12™ -0.14" 0.02 -0.24
Hainan Island

BLT NLT Shrub Grass Crop
B\./O.C B\(O.C B\./O.C L'_MV_ Cover Cover Cover Cover Cover 2-m DSW
Emission Emission Emission (m2m - - - - - Temp 2
(S2,gm?) | (SLgm?) | (S5 gm?) 2 Fraction Fraction | Fraction | Fraction | Fraction ¢C) (Wm?)
' 9 9 (%) (%) (%) (%) (%)
17.79 17.98 17.57 2.43 39.44 17.41 2222 8.67 27.3 257.51
Average 0
(x0.73) (£1.40) (£0.51) (+0.20) (£1.46) (x0.14) (#1.12) (0.56) (£0.47) | (¢4.55)
Average 17.16 17.51 17.27 23 38.07 17.46 23.63 8.79 27.38 259.79
(2001- 0
2004) (0.72) (£1.04) (+0.80) (+0.26) (£0.52) (+0.18) (+0.04) (£0.33) (£0.22) | (+7.28)
Average 18.68 19.44 18.07 2.64 41.11 17.31 20.9 8.14 2741 258.39
(2013- 0
2016) (£0.27) (£1.89) (£0.24) (£0.14) (x0.23) (+0.08) (+0.28) (0.07) (£0.78) | (¥3.95)
Trend 0.13™ 0.12" 0.06™ 0.03" 0.27™ 0 -0.02 -0.22" -0.07" 0 -0.13
a: *: p<0.1; **: p<0.05; ***: p<0.01;
Table 5. Comparison of isoprene and monoterpene emissions (Tg) in China with previous studies.
Data Source Isoprene Monoterpene Study period Method or Model
This study 15.94 (x1.12) 3.99 (£0.17) 2001-2016 MEGAN
Stavrakou et al. (2014) 7.17 (£0.30) - 2007-2012 MEGAN-MOHYCAN
Lietal. (2013) 23.4 5.6 2003 MEGAN
Li et al. (2020) 33.21 6.35 2008-2018 MEGAN
CAMS-GLOB-BIO v1.1
7.67 3.04 2001-2016 MEGEN
(Sindelarova et al., 2014)
CAMS-GLOB-BIO v3.1
8.54 3.23 2001-2016 MEGAN

(Sindelarova et al., 2014)
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Fu and Liao (2012) 10.87 3.21 2001-2006 GEOS-Chem-MEGAN
Tie et al. (2006) 7.7 3.16 2004 Guenther et al. (1993)
Klinger et al. (2002) 4.65 3.97 2000 Guenther et al. (1995)
Guenther et al. (1995) 17 4.87 1990 Guenther et al. (1995)
Table 6. Comparison of inputs for BVOC estimation with previous studies.
Emission Factor Emission Factor
Reference PFT/Land use LAl/Biomass Meteorology Model/Algorithms
Type Reference
PFT level Guenther et al. MODIS MODIS
This study WRF Model v3.9 MEGANvV2.1
emission factors (2012) MCD12C1 v6 MCDI15A2H v5
Stavrakou et al. PFT level Guenther et al. Ramankutty and MODIS ERA-Interim MEGAN-
(2014) emission factors (2006) Foley (1999) MODI15A2 v5 Dataset MOHYCAN
Vegetation
Vegetation Atlas MEGAN database
Lietal. (2013) genera/species level Lietal. (2013) MMS Model v3.7 MEGAN
of China for year 2007 for 2003
emission factors
Vegetation Estimations based
Vegetation Atlas
Li etal. (2020) genera/species level Lietal. (2013) on surveys and WRF Model v3.8 MEGAN
of China for year 2007
emission factors statistics
16 plant functional
CAMS-GLOB-
types consistent with
BIO v1.1 PFT level Guenther et al. MODIS ERA-Interim
the Community Land MEGAN
(Sindelarova et al., emission factors (2012) MODI15A2 v5 Dataset
Model
2014)
CAMS-GLOB- 16 plant functional
BIO v3.1 PFT level Guenther et al. types consistent with MODIS
ERA-5 Dataset MEGAN
(Sindelarova et al., emission factors (2012) the Community Land MODI15A2 v5
2014) Model
Guenther et al.
(1995)
Fu and Liao PFT level Lathiére et al. MODIS MODIS GEOS-4 GEOS-Chem-
(2012) emission factors (2006) MCDI12Q1 v5 MODI15A2 v5 Meteorology MEGAN
Levis et al. (2003)
Bai et al. (2006)
Landuse level Landuse-based USGS 1km land Guenther et al.
Tie et al. (2006) / WRF model
emission factors emission rates use data (1993)
Monthly
Vegetation
Klinger et al. Klinger et al. Province-level meteorology database Guenther et al.
genera/species level /
(2002) (2002) Forest Inventory by (Leemans and (1995)

emission factors

Cramer, 1991)
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Monthly

Guenther et al. PFT level Guenther et al. Grided Global Estimations from meteorology database Guenther et al.
(1995) emission factors (1995) Ecosystem Types NPP by (Leemans and (1995)
Cramer, 1991)
Table 7. Detailed descriptions of the flux measurements used in this study and corresponding campaigns.
Isoprene Emission Monoterpenes
Ecosystem
Reference Site Location Sample Collection Periods Factor Emission Factor
Type
(mg m?2h) (mgm?h')
28 June -9 July 2010;
19 July -30 July 2010;
. . 12 Aug.- 25 Aug. 2010;
Bai et al. (2015) Changbai Mountain 19 June - 30 June 2011 Mixed forest 43 0.32
on onr 10 July -16 July 2011;
(42°24'N, 128°6") 22 July - 29 July 2011,
5 Sep. - 8 Sep. 2011.
7 July-13 July 2012;
An Ji, Zhejiang 20 Aug.-26 Aug. 2012; Moso bamboo
Bai et al. (2016) 33 0.008
(30°40"15" N, 119°40'15") 25 Sep.-1 Oct. 2012; forest
28 Oct.- 5 Nov. 2012.
22 May -28 May 2013;
29 June - 6 July 2013;
6 Aug. -13 Aug. 2013;
Taihe, Jiangxi 7 Sep. -11 Sep. 2013; Subtropical
Bai et al. (2017) 0.71 1.65

(26°44'48" N, 115°04'13")

18 Jan. -19 Jan. 2014;
23 July - 27 July 2014;

2 Nov. - 7 Nov. 2015;

31 Dec. 2015 -4 Jan. 2016.

Pinus forest
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(a) Needleaf evergreen temperate tree (b) Needleaf deciduous boreal tree (c) Needleaf evergreen boreal tree (d) Broadleaf evergreen tropical tree
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Figure 1. The cover factions of different PFTs for the year 2016.
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Figure 3. The trend of growing season averaged 2-meter temperature (T2) and downward shortwave radiation (DSW). (a) and (b) are
for in-situ T2 and DSW, respectively, and the sites with statistically significant trend are marked by black circles. (c) and (d) are for the
WREF simulated T2 and DSW, respectively, and the regions with statistically significant trend are illustrated by shadow.
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Figure 4. Annual BVOC emissions in China during 2001 to 2016 for five scenarios (S1-S5) described in Table 1. The increasing trends
and the probabilities (p) using the Mann-Kendall test are shown in the legend.
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Figure 5. The horizontal distributions of isoprene, monoterpenes, sesquiterpenes and total BVOCs emissions of China in 2001 are shown

in figure (a), (g), (m) and (s), respectively. The rest of the columns of figures present the changing trend of isoprene (b-f), monoterpenes

(h-1), sesquiterpenes (n-r) and total BVOCs (t-X) in S1, S2, S3, S4 and S5, respectively. The Mann-Kendall test was used to mark the grids
5  where the p is smaller than 0.1.
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Figure 6. Spatial distribution of BVOC emission in 2001 (a) and the changing trends of annual emission flux (S1, S2 and S5), cover
fractions of main PFTs and LAIv. The Mann-Kendall test was used to filter the grids where the p is greater than 0.1.
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Figure 7. The annual changes of PFTs, the annual emission amount of BVOC and LAI in (a) northeastern China, (b) Beijing and its
surroundings, and the (c) Qinling mountains. The solid, dashed and marked line represents the mean emission flux rate of total BVOC
in S1, S2 and S5, respectively.
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Figure 8. The annual changes of PFTs, the annual emission amount of BVOC and LAl in (a) southwestern China, (b) southern, and (c)
Hainan island. The solid, dashed and marked line represents the mean emission flux rate of total BVOC in S1, S2 and S5, respectively.
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Figure 9. Comparison of estimated isoprene annual emission with the satellite derived tropospheric HCHO vertical column concentration
by OMI during 2005-2016. (a), (b) and (c) illustrate the spatial patterns of annual mean LAlv, isoprene emission and HCHO vertical
columns (VC) by OMI respectively. (d) presents the spatial distribution of the correlation coefficient between summertime isoprene
emission and HCHO VC. (e) and (f) shows the increasing trend of isoprene and HCHO VC during 2005-2016.
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Figure 10. Comparison of the trend of isoprene emission between this study (S1) and other estimations during 2001-2016. (a) and (b) is
for S1 and S3 respectively in this study, and (c) and (d) are for CAMS-GLOB-BIO v 1.1 and CAM-GLOB-BIO v3.1, respectively. The
Mann-Kendall test was used to mark the grids where the p is smaller than 0.1.
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Figure 11. Comparison of the trend of monoterpenes emission between this study (S1) and other estimations during 2001-2016. (a) and
(b) is for S1 and S3, respectively, in this study, and (c) and (d) are for CAMS-GLOB-BIO v 1.1 and CAM-GLOB-BIO v3.1, respectively.
The Mann-Kendall test was used to mark the grids where the p is smaller than 0.1.
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Figure 12. Validation of the model with flux measurements in China. (a) and (b) show the performance of the MEGAN model with the
default emission factors (N=19). (c) and (d) show the performance of the MEGAN model with the emission factors derived from

observations (N=19).

36



	1 Introduction
	2 Data and Method
	2.1 MEGAN Model
	2.4 Satellite Formaldehyde (HCHO) Observations
	2.5 Scenarios and Analysis Method

	3 Results and Discussion
	3.1 The Variability of BVOC Emission in China During 2001-2016
	3.2 The Regional Variability of BVOC Emission in China
	3.3 Comparison of Estimates of Isoprene Emission and Satellite Derived Formaldehyde Column Concentration
	3.4 Comparison with other studies and uncertainties discussion

	4. Conclusion
	Author Contribution
	Data Availability
	Competing Interests
	Acknowledgements
	References

