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Abstract. Satellite observations reveal that China has been leading the global greening trend in the past two decades. We assessed 

the impact of land cover change on total BVOC emission during 2001-2016 and found that the land cover change from 2001 to 

2016 can lead to a significant increasing trend of 0.50% y-1 of total BVOC emission in China. Main BVOC classes of isoprene, 15 
monoterpene and sesquiterpene all had increasing trends of 0.64, 0.44 and 0.39 % y-1. The BVOC emission level in 2016 can be 

11.7% higher than that in 2001 because of higher tree cover fraction and vegetation biomass. Considerable heterogeneity was found 

on regional scales, and the BVOC emission level during 2013-2016 would be 8.6%~19.3% higher than that during 2001-2004 in 

the regions including 1) northeastern China, 2) Beijing and its surrounding areas, 3) the Qinling Mountains, 4) Yunnan province, 

5) Guangxi-Guangdong provinces and 6) Hainan island because of land cover change. The comparison among different scenarios 20 
showed that vegetation changes resulting from land cover management is the main driver of BVOC emission change in China. 

Climate variability without considering land cover changes contributed significantly to interannual variations but not the long-term 

trend. In the standard scenario, that considers both land cover change and climate variability, a statistic significant increasing trend 

still can be found in the regions including Beijing and its surrounding areas, Yunnan provinces and Hainan island, and BVOC 

emission total amount in these regions during 2013-2016 is 11.0%-17.2% higher that during 2001-2004. We compared the long-25 
term HCHO vertical columns (VC) from the satellite-based Ozone Monitoring Instrument (OMI) with the estimation of isoprene 

emission in summer. The results showed statistically significant positive correlation coefficients over the regions with high 

vegetation cover fractions. In addition, the isoprene emission and HCHO VC both showed statistically significant increasing trends 

in the south of China where these two variables have high positive correlation coefficients. This result supports our estimation of 

the variability and trends of BVOC emission in China. The continued increase of BVOC will enhance the importance of considering 30 
BVOC when making policies for controlling ozone pollution in China along with ongoing efforts to reduce anthropogenic 

emissions. 

1 Introduction 

Biogenic Volatile Organic Compounds (BVOCs) play an important role for air quality and the climate system 

due to their large emission amount and reactivity (Guenther et al., 1995; Guenther, 2006). BVOCs are 35 

important precursors of ozone and secondary organic aerosols (SOAs) (Kavouras et al., 1998; Claeys et al., 

2004), therefore, it is important to understand the variability of BVOC emission and its impact on air quality 

and the climate system. The emission of BVOC is controlled by multiple environmental factors like 
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temperature, radiation, CO2 concentration and other stresses, therefore it is affected by climate changes 

(Guenther et al., 1995; Arneth et al., 2007; Penuelas and Staudt, 2010). Besides the climatic factors, the land 

cover change also plays a key role in the variability of BVOC emission (Stavrakou et al., 2014; Unger, 2013; 

Chen et al., 2018). For instance, the global cropland expansion has been estimated to dominate the reduction 

of isoprene, the dominant BVOC species, in last century (Lathière et al., 2010; Unger, 2013) although there 5 

are large uncertainties associated with these estimates. 

China has been greening in recent decades (Piao et al., 2015). A recent study points out that China accounts 

for 25% of the net increase of global leaf area during 2000-2017 (Chen et al., 2019). The increase of forest 

area plays a dominant role in greening in China with multiple programs to maintain and expand forests 

(Zhang et al., 2016; Bryan et al., 2018; Chen et al., 2019). The enhancement of vegetation cover rate and 10 

biomass can lead to the increase of BVOC emission and induce changes on local air quality and the climate 

system. Previous studies have investigated the long-term emission trend of dominant BVOC species like 

isoprene in China (Fu and Liao, 2012; Li and Xie, 2014; Stavrakou et al., 2014; Chen et al., 2019). Li and 

Xie (2014) estimated the historical BVOC emissions during 1981-2003 in China using the national forest 

inventory records and reported that the BVOC emission increased at a rate of 1.27% y-1. Another estimation 15 

by Stavrakou et al. (2014) showed an upward trend of 0.42% y-1 of isoprene emission in China during 1979-

2005 driven by the increasing temperature and solar radiation, moreover, the upward trend of isoprene 

emission reached 0.7% y-1 when considering the replacement of cropland with forest. A recent study by Chen 

et al. (2018) concluded that the global isoprene emission decreased by 1.5% because of the tree cover change 

during 2000-2015, but in China, the isoprene emitted by broadleaf trees and non-trees increased by 3.6% and 20 

5.4%, respectively. However, these studies have limitations in representing annual changes of vegetation, 

e.g., Li and Xie (2014) used fixed LAI input of year 2003 over the whole study period of 1981-2003. 

Considering the significant land cover change and greening trend in China, it is necessary to thoroughly 

investigate the impact of intense reforestation on BVOC emission in China. In this study, we used the latest 

annually continuous land cover products Version 6 by the MODerate-resolution Imaging Spectroradiometer 25 

(MODIS) sensors as well as the Model of Emissions of Gases and Aerosols from Nature (MEGAN, Guenther 

et al. 2012) model to investigate BVOC emission in China from 2001 to 2016. By annually updating the 

vegetation information of MODIS observations, we could accurately estimate interannual variability of 

BVOC emission to assess the impact of greening trend on BVOC in China during 2001-2016. 

A long-term in-situ observation of BVOC is not available in China currently to investigate interannual 30 

variability of BVOC emission, however, satellite formaldehyde (HCHO) observations provide an opportunity 

to validate the interannual variability of isoprene, the dominant compound among BVOC species that 

accounts for almost half of total BVOC emission in China (Li et al., 2013). Since HCHO is an important 
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proxy of isoprene in forest regions with no significant anthropogenic impact, satellite HCHO columns are 

widely used to derive isoprene emission at regional to global scales (Palmer et al., 2003; Marais et al., 2012; 

Stavrakou et al., 2015; Kaiser et al. 2018). Zhu et al. (2017b) reported an increasing trend of HCHO vertical 

columns (VC) detected by the Ozone Monitoring Instrument (OMI) driven by increasing cover rate of the 

forest in the northwestern United States. Stavrakou et al. (2018) also used the long-term HCHO VC to 5 

investigate the annual variability of BVOC induced by climate variability. Here we used the long-term OMI 

2005-2016 record to estimate the interannual isoprene variability in China. 

2 Data and Method 

2.1 MEGAN Model 

MEGAN (Guenther et al., 2006; Guenther et al., 2012) is the most widely used model for calculating BVOC 10 

emission from regional to global scales (Müller et al., 2008; Li et al., 2013; Sindelarova et al., 2014; Messina 

et al. 2016; Chen et al., 2018; Bauwens et al. 2018). The offline version of the MEGAN v2.1 (Guenther et 

al., 2012) model, available at https://bai.ess.uci.edu/megan, was used to estimate the BVOC emission in 

China from 2001 to 2016. MEGAN v2.1 calculates emissions for 19 major compound categories uses the 

fundamental algorithm: 15 

 

where Fi, ei and gi represent the emission amount, the standard emissions factor, and emission activity factor 

of chemical species i. The standard emission factor in this study is based on the plant functional type (PFT) 

distribution from the Community Land Model 4.0 (Lawrence et al., 2011). The emission activity factor gi 

accounts for the impact of multiple environmental factors and can be written as: 20 

 

where gp,i, gT,i gA,i gSM,i and gC,i represent the activity factors for light, temperature, leaf age, soil moisture and CO2 

inhibition impact. The Cce (=0.57) is a factor to set the gi equal to 1 at standard conditions (Guenther et al., 

2006). The LAI is the leaf area index, and it is used to define the amount of foliage and the leaf age response 

function as described in Guenther et al. (2012). The light and temperature response algorithms in MEGAN 25 

v2.1 are from Guenther et al. (1991, 1993, 2012), which described enzymatic activities controlled by 

temperature and light conditions. The CO2 inhibition algorithm is from Heald et al. (2009), and only the 

estimation of isoprene emission considers the impacts of soil moisture and CO2 concentration. The detailed 

descriptions of these algorithms can be found in Guenther et al. (2012) and Sakulyanontvittaya et al. (2008). 
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2.2 Land Cover Datasets. 

The land cover parameters for driving MEGAN including LAI, PFT and vegetation cover fraction (VCF) 

were provided by satellite datasets. The MODIS MOD15A2H for 2001 

(https://lpdaac.usgs.gov/products/mod15a2hv006/, Myneni et al., 2015a) and MCD15A2H for 2002-2016 

LAI (https://lpdaac.usgs.gov/products/mcd15a2hv006/, Myneni et al., 2015b) datasets were used in this study. 5 

The parameter LAIv in MEGAN is calculated as: 

 

where VCF is provided by MODIS MOD44B datasets (https://lpdaac.usgs.gov/products/mod44bv006/, 

Dimiceli et al., 2015).  

The PFT was used to determine the canopy structure and standard emission factors in MEGAN (Guenther et 10 

al., 2012). We adopted the default emission factors for PFTs described in Table 2 in Guenther et al. (2012). 

The PFT dataset in this study is obtained from the MODIS MCD12C1 land cover product 

(https://lpdaac.usgs.gov/products/mcd12c1v006/, Friedl and Sulla-Menashe, 2015). MODIS IGBP 

classification were mapped to the PFT classification of MEGAN or the Community Land Model (CLM) 

(Lawrence et al., 2011) based on the description of the legends in the user guide (Sulla-Menashe and Friedl, 15 

2018) and the climatic criteria described in Bonan et al. (2002). The spatial distribution of percentage of PFTs 

in model grids is presented in Figure 1. According to the description of the legends, we firstly mapped the 

IGBP classification to eight main vegetation categories: 1) needleleaf evergreen forests, 2) broadleaf 

evergreen forests, 3) needleleaf deciduous forests, 4) broadleaf deciduous forests, 5) mixed forests, 6) shrub, 

7) grass and 8) crop. The mapping method is described in Table S1 in the supplement. Eight main categories 20 

then were mapped to the classification of MEGAN/CLM for boreal, temperate and boreal climatic zones 

using the definition in Bonan et al. (2002). Table S2 in the supplement presents the climatic criteria for 

mapping, and the climatic information for mapping was from the ERA Interim climatology 

(https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim, Berrisford et al., 2011) 

Reanalysis dataset over 2001-2016. 25 
2.3 Meteorological Datasets 

The hourly meteorological fields including temperature, downward shortwave radiation (DSW), wind speed, 

surface pressure, precipitation and water vapor mixing ratio were provided by the Weather Research and 

Forecast (WRF) Model V3.9 (Skamarock et al., 2008) simulations. The model was driven by ERA-Interim 

reanalysis data (Berrisford et al., 2011) with 27 km horizontal spatial resolution and 39 vertical layers. The 30 

physical schemes were presented in supplemental Table S3. 
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Since light and temperature conditions are the main environmental drivers of BVOC emission (Guenther et 

al., 1993; Sakulyanontvittaya et al., 2008), we assessed the reliability of the WRF simulated DSW and 2-

meter temperature (T2) using in-situ observations from 98 radiation observation sites and 697 meteorology 

observation sites in China. The in-situ observations are from the National Meteorological Information Center 

(http://data.cma.cn/). We converted the hourly model outputs and daily observations to monthly averaged 5 

values from 2001 to 2016 for comparison. For DSW, the average mean bias (MB), mean error (ME) and root 

mean square error (RMSE) are 40.37 (± 20.81), 43.55 (± 17.52) and 49.79 (± 17.70) W m-2 for 98 studied 

sites. The overestimation of DSW simulation is a common issue in multiple simulation studies and may be 

induced by the lack of physical processes for aerosol radiation effect (Wang et al., 2011; Situ et al., 2013; 

Wang et al., 2018). For T2, the average MB, ME and RMSE are -1.19 (± 2.87), 2.40 (± 2.14) and 2.65 (± 10 

2.11) °C among 697 sites over China. We also compared the monthly anomalies of DSW and T2 from the 

model simulation and observation to validate the interannual variability of meteorological fields simulated 

by WRF. As shown in Figure 2, the results indicate that the model accurately reproduced the interannual 

variability of DSW and T2, and the correlation coefficients of DSW and T2 anomaly between the simulation 

and observation reached 0.77 and 0.88, respectively. The trends of growing season averaged T2 and DSW 15 

from model results as well as in-situ measurements are presented in Figure 3. The model and the in-situ 

measurements show similar patterns of T2. For instance, the model and observations both show an increasing 

trend in regions like the Tibetan Plateau and southern China as well as a decreasing trend in eastern and 

northeastern China. For DSW, the model presented a dimming trend in northeastern and eastern China and a 

brightening trend in southeastern and central China, and the limited number of radiation observation sites 20 

show a similar pattern of trend with model results. In general, the WRF simulation successfully captured the 

long-term meteorological variabilities and is reasonable to use for estimating the impact of climatic 

variability on BVOC emission in China for this study. 

2.4 Satellite Formaldehyde (HCHO) Observations 

The satellite HCHO VC used in this study is from the Belgian Institute for Space Aeronomy (BIRA-IASB) 25 

and was retrieved using the differential optical absorption spectroscopy (DOAS) algorithm (De Smedt et al., 

2012; De Smedt et al., 2015). We used the monthly Level-3 HCHO VC product with 0.25° ´ 0.25° spatial 

resolution, and the rows affected by the row anomaly since June 2007 have been filtered in this product (De 

Smedt et al., 2015; Jin and Holloway, 2015). Since the OMI instrument is temporally stable (Dobber et al., 

2008; De Smedt et al., 2015), the OMI HCHO VC product is suitable for long-term analysis (Jin and 30 

Holloway, 2015) and was used to primarily validate our estimation of isoprene emission variability. The 

major sources of tropospheric HCHO are biogenic VOC, anthropogenic VOC and open fires (Zhu et al., 
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2017a). Since biogenic isoprene is the dominant source of HCHO over forests in summertime (Palmer et al., 

2003), we used HCHO as the proxy of isoprene to validate the interannual variability of isoprene estimates. 

2.5 Scenarios and Analysis Method 

We designed five scenarios (S1-S5) to investigate the impact of land cover change and climatic conditions 

on BVOC emission. The configurations of the five scenarios are shown in Table 1: 5 

1) S1 was considered as the standard or “full” scenario with both annually updated land cover parameters 

(LAIv and PFT) and meteorological conditions. 

2) S2 used the fixed meteorological conditions of the year 2001 and annually updated land cover parameters 

to investigate solely the impact of the ecosystem and land cover variability on BVOC emission.  

3) S3 and S4 adopted the land cover conditions of the year 2001 and 2016 respectively with annually updated 10 

meteorological fields to characterize the effect of climate variability on BVOC emission and compare the 

difference in BVOC emission induced by vegetation change in China between 2001 and 2016. 

4) In S5, meteorological conditions as well as PFT input is fixed, and LAIv input is annually updated to 

investigate the contribution of LAI trend to BVOC emission trend. 

The climatic variability can affect the growth of vegetation and then affect LAI values (Piao et al., 2015). In 15 

this study, the interaction between climate and ecosystem is not considered in the offline MEGAN model, 

which means the meteorological conditions, e.g. precipitation, will not affect the LAI values. Therefore, the 

indirect impact of meteorological conditions on BVOC emission through affecting biomass and phenology 

was not considered in this study. 

The chemical species emissions estimated by MEGAN were grouped into four major categories including 20 

isoprene, monoterpene, sesquiterpene and other VOCs since the terpenoids account for the majority of total 

BVOC emission and have known impacts on atmospheric oxidants and SOA (Wang et al., 2011). The trend 

analysis in this study was done following the Theil-Sen trend estimation method and the results were tested 

by the Mann-Kendall non-parametric trend test (MK test). The trend analysis and the MK tests in this study 

were implemented using the trend_manken (https://www.ncl.ucar.edu/Document/Functions/Built-25 

in/trend_manken.shtml) function of the NCAR Command Language (NCL, https://www.ncl.ucar.edu/). 

3 Results and Discussion 

3.1 The Variability of BVOC Emission in China During 2001-2016 

As shown in Table 2, the average annual emission during 2001-2016 of isoprene, monoterpene, sesquiterpene 

and other VOCs estimated from S1 are 15.94 (±1.12), 3.99 (±0.17), 0.50 (±0.03) and 13.84 (±0.78) Tg, 30 

respectively. Isoprene is the dominant species and accounts for about half of the total BVOC emission in 



 7 

China. As shown in Figure 4, the estimated BVOC emission in S2 has a statistically significant increasing 

trend without considering the annual variability of meteorological conditions. The increasing rates of 

isoprene, monoterpenes, sesquiterpenes and total BVOC emission in S2 scenarios are 0.64, 0.44, 0.39 and 

0.50 % y-1, respectively. The S1 scenario considers the impact of annual meteorological variability as well as 

the surface vegetation change, and the BVOC emission in S1 is in an upward trend but didn’t pass the 5 

significance test of p < 0.1. There’s no a significant trend of BVOC emission for both S3 and S4, with fixed 

landcover and annually updated meteorological conditions, demonstrates that meteorology was not the direct 

driver of BVOC emission trend in China during this period. Climatic conditions could affect the BVOC 

emission indirectly by affecting the growth of vegetation and controlling BVOC emission (Peñuelas et al., 

2009), which is not considered in the model used in this study. The estimated total BVOC emission in S5 10 

also has a statistically significant increasing trend of 0.26% y-1 (p<0.05) without considering the annual 

variability of meteorological conditions, which is purely caused by the increase of LAI during 2001-2016. 

The surface vegetation change had a significant influence on BVOC emissions in China during 2001-2016 

according to our estimation. In S2, the interannual variability of total BVOC emission is primarily determined 

by the surface vegetation change resulting in a nearly linear increasing trend of BVOC emission. The average 15 

annual emission of total BVOC during the later eight years (2009-2016) is 3.9% (1.29 Tg) higher than that 

during 2001-2008 in S2, and the average annual emissions of isoprene, monoterpene and sesquiterpene 

during the later eight years are by 5.0% (0.75 Tg), 3.5% (0.13 Tg) and 3.1% (0.02 Tg) higher than those 

during the previous eight years, respectively. The comparison of S3 and S4 results further demonstrate the 

importance of vegetation development on BVOC emission considering the interannual variability of 20 

meteorological conditions. S3 and S4 adopted the same annually updated meteorological field but the fixed 

land cover information of the year 2001 and 2016, respectively. The fluctuation of meteorological factors 

leads to an interannual variability of BVOC emission in S3 and S4, but the increase of vegetation cover rate 

in 2016 results in BVOC emissions that are much higher than that in 2001. As presented in Table 2, the 

average total BVOC emissions are 31.77 (±1.54) and 35.48 (±1.76) Tg in S3 and S4, respectively, and the 25 

total BVOC emission in S4 is by 11.7% (3.71 Tg) higher than that in S3. The emissions of isoprene, 

monoterpene and sesquiterpene with the land cover information of the year 2016 are by 14.1% (2.07 Tg), 

9.0% (0.34 Tg) and 8.5% (0.04 Tg) higher than those estimated based on the year 2001, respectively. 

3.2 The Regional Variability of BVOC Emission in China 

The hotspots of BVOC emission are mainly located in the northeast, central and south of China where the 30 

forest is widely distributed and the climate is warm and favorable for emitting BVOC as shown in Figure 5. 

The Changbai Mountains, the Qinling Mountains, the southeast and southwest China forest regions, southeast 

Tibet, Hainan and Taiwan islands are the regions with highest BVOC emission in 2001. The spatial patterns 
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of statistically significant (p < 0.1) changing trends in S1-S5 are also presented for individual categories in 

Figure 5. The spatial distributions of trends of different species in S2 all shows a national wide significantly 

increasing trend since the vegetation development is the main driver of the increasing trend of BVOC 

emission (c, i, o and u in Figure 5). In the full scenario of S1, the area with statistically significant trend is 

less than that in S2 considering the impact of meteorological variability. S5 also shows a national wide 5 

significantly increasing trend of BVOC emission but with smaller rates comparing to S2 (f, l, r and x in Figure 

5). While a positive increasing trend induced by meteorology is also found in Tibet, western Sichuan and 

southeastern Yunnan province in S3 and S4, which is induced by the warming climate and stronger downward 

shortwave radiation as presented in Figure 3. 

The spatial patterns of changing trends of total BVOC emission and landcover parameters are presented in 10 

Figure 6. The cover fraction of broadleaf trees shows a strong increasing trend in regions including 

northeastern, central and southern China, meanwhile, the grass and crop cover faction show a decreasing 

trend in the same regions. The crop cover rates also show an increasing trend by replacing the grass there in 

northeastern China, Shanxi, Gansu and Xinjiang Provinces. Besides the change of PFTs, a national wide 

increasing trend of LAIv was also found for most regions in China. 15 

In order to understand the regional discrepancies of changing trend of BVOC emission and its drivers, we 

chose six interest regions to further analyze. As shown in (a) of Figure 6, six regions includes 1) northeastern 

China (orange frame in Figure 6a, 45.5-54N, 118-130E), 2) Beijing and its surrounding areas (black frame 

in Figure 6a, 39-42.5N, 114-120E), 3) Qinling Mountains (red frame in Figure 6a, 30-34N, 105.5-112E), 4) 

Yunnan Province (blue frame in Figure 6a, 21-27N, 97.5-106E), 5) Guangxi-Guangdong provinces (purple 20 

frame in Figure 6a, 21-25N, 106-117E) and 6) Hainan island (green frame in Figure 6a, 17.5-20.5N, 108-

112E). The annual changes of vegetation conditions (PFTs and LAIv), the annual emission flux and growing 

season averaged temperature and DSW are presented in Figure 7 and Figure 8, and the averaged values and 

trends of above variables are listed in Table 3 and Table 4. In general, six regions all show that the woody 

vegetations replaced the herbaceous vegetations with a significantly increasing trend of annual LAIv. Since 25 

the broadleaf trees tend to have a higher emission potential than grass or crop (Guenther et al., 2012), the 

transformation of land cover from grass or crop to broadleaf tree is expected to enhance the emission of 

BVOC by increasing the landscape average emission factor. As shown in Table 3 and Table 4, the broadleaf 

tree cover fraction increased in a rate of 0.15~0.32 % y-1, and the grass cover fraction decreased in a rate of 

0.11~0.37% y-1 among the six regions during 2001-2016. Except for the northeastern China we defined, other 30 

five regions all show a decreasing trend of 0.04~0.26% y-1 for the crop cover faction. As a result, the total 

tree cover fraction during the last four years (2013-2016) is 11.0, 82.5, 6.1, 5.7, 5.9 and 8.0 % higher than 

that during first four years (2001-2004) for northeastern China, Beijing and its surrounding areas, Qinling 
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Mountains, Yunnan Province, Guangxi-Guangdong provinces and Hainan Island, respectively, and the LAIv 

for these regions also increased by 14.8 ~ 26.4 %. Correspondingly, the annual BVOC emission flux in six 

regions all show a significantly increasing trend without considering the variability of meteorology in S2. 

The mean annual BVOC emission flux for the last four years (2013-2016) is 8.6%~9.8% higher than that for 

the first four years (2001-2004) in the regions defined above except for Beijing and its surrounding areas, 5 

where the change of the annual BVOC emission flux reached 19.3% with the tree cover fraction increased 

by 82.5%. If we only consider the contribution of LAI change, as described in the scenario S5, above sub-

regions except for Guangxi-Guangdong provinces still show a statistically significant increasing trend of 

BVOC emission without considering the variability of meteorology, and the contributions of the LAIv change 

to BVOC emission increasing trend is about 25%-66% in these regions. 10 

The changing trend of the annual BVOC emission flux is different in S1 when the impact of meteorological 

variability is taken into account. The simulated T2 and DSW during the growing season do not show a 

significantly trend in most regions we chose. As shown in Figure 7 and Figure 8, the variabilities of the 

temperature and DSW during the growing season controlled the variability of BVOC flux in S1. When the 

meteorological variability is considered, there are still three regions we defined above that show a 15 

significantly increasing trend of BVOC emission: 1) Beijing and its surrounding areas, 2) Guangxi-

Guangdong Provinces and 3) Hainan island. In Beijing and its soundings, the changing trend of the annual 

BVOC emission flux is 0.04 and 0.03 g m-1 y-1 in S2 and S1, respectively, and the mean annual BVOC emission 

flux in last four years (2013-2016) still shows a large increase of 16.6% comparing that in first four years 

(2001-2004) in this region. A significantly increasing trend of temperature of 0.03 °C y-1 were found in 20 

southwestern China region, therefore, the increasing trend of the annual BVOC emission flux is 0.1 g m-1 y-1 

in S1, which is higher than that in S2 of 0.04 g m-1 y-1. The BVOC flux in last four years is about 17.2% higher 

than that in first four years in southwestern China. In Hainan island, the changing trend of the annual BVOC 

emission flux is 0.13 and 0.12 g m-1 y-1 in S2 and S1, respectively, and the annual BVOC emission flux in last 

four years is 11.0% higher than that in first four years. 25 

The estimated increase of BVOC in the regions as the Qinling Mountains are expected to affect regional air 

quality. For the Qinling Mountains and surrounding areas, as estimated by Li et al. (2018) using the WRF-

chem model, the average contribution of BVOC to O3 could reach 16.8 ppb for the daily peak concentration 

and 8.2 ppb for the 24h concentration in the urban region of Xi’an, one of the biggest cities near the Qinling 

Mountains suffering from poor air quality in recent years (Yang et al., 2019). Since BVOC plays an important 30 

role in local air quality, the change of BVOC emission may have an even greater effect on the local ozone 

pollution. For instance, the simulation study by Li et al. (2018) also found that the urban region of Xi’an is 
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VOC-limited because of the abundant NOx emission there. Therefore, the increase of BVOC emission in the 

Qinling Mountains would further favor the formation of O3 in the urban region of Xi’an. 

For Guangxi-Guangdong Provinces, Situ et al. (2013) reported that BVOC emission could contribute an 

average 7.9 ppb surface peak O3 concentration for the urban area in the Pearl River Delta region in Guangdong 

Province, and the contribution from BVOC even reached 24.8 ppb over PRD in November.  5 

3.3 Comparison of Estimates of Isoprene Emission and Satellite Derived Formaldehyde Column Concentration 

The OMI HCHO VC product from 2005-2016 developed by BIRA-IASB (De Smedt et al., 2015) was used 

in this study. The interannual variability of isoprene emission estimated in this study was evaluated by 

comparing the isoprene emission with the summer (June-August) averaged HCHO VC. 

The annually averaged LAI during 2005-2016 presented in Figure 9 indicates the spatial distribution of 10 

vegetation in China. However, the spatial pattern of estimated isoprene emission (Figure 9b) differs from the 

spatial distribution of vegetation because of the variability of emission potentials among different PFTs in 

the MEGAN model as well as the climatic conditions. The spatial pattern of average summertime HCHO VC 

observed by the OMI sensor during 2005-2016 is also presented in Figure 9c. The highest summer HCHO 

concentrations in the US are mainly distributed in rural forest regions dominated by biogenic emission 15 

(Palmer et al., 2003), while the highest summer HCHO concentrations in China are mainly distributed in 

developed regions like North China Plain where HCHO concentration is dominated by anthropogenic sources 

(Smedt et al., 2010). There is a moderate HCHO VC of about 6-10 ´1015 molec cm-2 in the vegetation 

dominated regions of China. 

The grid level correlation coefficients between the average summer HCHO VC and isoprene emission 20 

estimated in our study are shown in Figure 9d, and the grids with statistically significant correlations (p < 

0.1, N=12) grids are marked with black dots. A correlation is found in the northeast, central and south of 

China where there are relatively high vegetation cover rates and low anthropogenic influence. In contrast, 

there’s almost no statistically significant correlation in the high HCHO VC regions like the North China Plain 

which is dominated by anthropogenic emissions. However, the distribution of statistically significant positive 25 

correlated points is not completely consistent with the vegetation distribution indicated by LAI due to the 

absence of consideration of physical and chemical processes, including transportation, diffusion, and 

chemical reactions. The grids with significant correlation are mostly distrusted in or near rural regions with 

high vegetation biomass indicating that our estimations can represent the annual variation of isoprene 

emission. 30 

The increasing trends of isoprene and HCHO VC during 2005-2016 are presented in (e) and (f) of Figure 9, 

and the statistically significant (p < 0.1) grids are marked with black dots. The increasing trend pattern of 

isoprene emission during 2005-2016 is basically consistent with that during 2001-2016, which has been 
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described in the Section 3.2, and it is clear that southern China is the region with the strongest positive trend. 

For HCHO, developed regions such as the North China Plain have an increasing trend because of the increase 

of human activities (Smedt et al., 2010), there is also an obvious increasing trend of HCHO VC in the 

developed Yunnan and Guangxi provinces in the south of China. Moreover, these regions, especially Guangxi 

province also show a statistically significant positive correlation between isoprene emission and HCHO VC 5 

as presented in Figure 9d. This indicates that biogenic emissions might be the main driver of the increased 

HCHO in Guangxi province. 

3.4 Comparison with other studies and uncertainties discussion 

The comparison of isoprene and monoterpenes emission estimations between our estimations and previous 

studies is presented in Table 5. The estimations of isoprene emission range from 4.65 Tg to 33.21 Tg, and 10 

the estimations of monoterpenes emission range from 3.16 Tg to 5.6 Tg in China. Multiple factors including 

emission factor, meteorological and land cover inputs can lead to the discrepancy of these estimations. We 

listed the inputs of these estimations in Table 6 to fully understand the discrepancies between our results and 

other estimations.  

The setting of inputs in this study is relatively close to the study by Stavrakou et al. (2014) and CAMS-15 

GLOB-BIO biogenic emission inventories (https://eccad3.sedoo.fr/#CAMS-GLOB-BIO) that adopted the 

method described by Sindelarova et al. (2014). However, the estimation of isoprene emission in this study is 

about 86.6%-122.3% higher than their estimations, and the estimation of monoterpene emission is about 23.5% 

and 31.3% higher than that from CAMS-GLOB-BIO v3.1 and v1.1, respectively. We further compared our 

results with two versions of CAMS-GLOB-BIO inventories. Figure 10 and Figure 11 present the trends of 20 

isoprene emission and monoterpenes emission respectively from S1 and S3 in this study, CAMS-GLOB-BIO 

inventory v 1.1 and v 3.1 during 2001-2016. As shown in Figure 10 and Figure 11, S3 shows similar spatial 

patterns and magnitude of changing trend of isoprene and monoterpenes emission with CAMS-GLOB-BIO 

v 1.1 and CAMS-GLOB-BIO v3.1, e.g. three datasets all showed a strong increasing trend in Yunnan 

province, and S1 shows much more stronger changing trends comparing with other three datasets with 25 

annually updated LAI and PFT datasets. The meteorological inputs for CAMS-GLOB-BIO v1.1 and v3.1 are 

ERA-Interim and ERA-5 reanalysis data, respectively, and the WRF model used in this study was also driven 

by ERA-Interim reanalysis data. Therefore, the four datasets have the similar source of meteorological inputs. 

In addition, these estimations all adopted the same PFT level emission factors from Guenther et al. (2012). 

Therefore, the potential reason for the differences of isoprene and monoterpenes emission among the datasets 30 

in Figure 10 and Figure 11 is the discrepancies of PFT and LAI inputs. CAMS-GLOB-BIO also adopted the 

annually updated LAI inputs developed by Yuan et al. (2011) based on MODIS MOD15A v5 LAI product, 

but the two versions of CAMS-GLOB-BIO inventory didn’t show a same level strong increasing trend with 
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S1. The increasing trend of LAI in China is agreed by multiple LAI products but with different rates (Piao et 

al., 2015; Chen et al., 2020). In this study, we adopted the latest MODIS LAI product of version 6, and a 

strong increasing trend of LAI in China has been found by using this product (Chen et al., 2019). Therefore, 

an increasing trend of BVOC emission induced by LAI should be seen in the estimation with annually 

updated LAI inputs, but the magnitude of this trend is also affected by the magnitude of changing trend of 5 

LAI products. The PFT map used in this study is coming from MODIS land cover product, which is a 

mesoscale satellite product with the highest resolution of 500m. Besides the quality of the product, the 

method for converting the original land cover classification system to PFT classification system is also 

important. Hartley et al. (2017) illustrated that the cross-walking table for converting land cover class maps 

to PFT fractional maps can lead to 20%-90% uncertainties for gross primary production estimation in land 10 

surface model by using different vegetation fractions for mixed pixels, and the BVOC emission estimation 

has the same issue. In this study, we assumed that the pixels that were assigned as vegetation is 100% covered 

by that kind of vegetation (Table S1 in the supplement). Therefore, it will lead to an overestimation of 

vegetation cover rate for mixed pixels, which can lead to higher BVOC emission. 

The emission factor is also an important source of uncertainties, and it decided the spatial patterns of emission 15 

rates together with the PFT distribution. In order to understand the role of emission factor, the flux 

measurements of isoprene and monoterpenes from the campaigns conducted during 2010 to 2016 in China 

(Bai et al., 2015; Bai et al., 2016; Bai et al., 2017) were collected and compared with model results in this 

study. The details of these campaigns are provided in Table 7, and the emission factors that were retrieved 

from the observations are also listed for these sites. Most samples were collected during the daytime every 3 20 

hours according to the descriptions of the measurements (Bai et al., 2015;Bai et al., 2016;Bai et al., 2017), 

therefore, we averaged the model results during 8:00 A.M. to 20 A.M in local time with a three hours interval 

for comparison. As shown in the (a) and (b) of Figure 12, the modeled fluxes of isoprene and monoterpenes 

with the default emission factors in this study didn’t capture the variability of the observations. The ME, MB 

and RMSE are 1.60, 1.59 and 2.31 mg m-2 h-1 for isoprene and 0.21, -0.003 and 0.32 mg m-2 h-1 for monoterpenes. 25 

When we adopted the emission factor retrieved from observations (Bai et al., 2015;Bai et al., 2016;Bai et al., 

2017), the simulated isoprene and monoterpenes fluxes showed relatively good consistence with the 

observations by using the same activity factor from the model (g in equation (1)) as shown in (c) and (b) of 

Figure 12. The ME, MB and RMSE are 0.44, 0.41 and 0.57 mg m-2 h-1 for isoprene and 0.32, 0.14 and 0.49 

mg m-2 h-1 for monoterpenes after adopting the observation-based emission factors, and the statistic parameters 30 

for isoprene simulation are largely improved. Although the MB and ME of monoterpenes simulation are 

increased, but the simulated monoterpenes flux show better agreement with observations (Figure 12). 

Therefore, it is clear that our calculation of activity factors is in a reasonable range, but the emission factor 
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is the main source of uncertainties. The PFT level emission factors used in this study from Guenther et al. 

(2012) represents the globally averaged emission factor for PFTs, and it is relatively easy to use them with 

the satellite PFT products. Therefore, the most studies listed in Table 6 adopted the PFT/landuse level 

emission factors. Our validation showed that the accurate emission factor based on observations could largely 

improve the performance of the MEGAN model, but it also requires abundant efforts to conduct 5 

measurements. However, the measurements listed in Table 7 are still very limited for describing the spatial 

discrepancies of ecosystems in China, so we still used the default emission factors in MEGAN model for our 

national scale estimation. The estimations by Li et al. (2013, 2020) used the species level emission factors 

and Vegetation Atlas of China for 2007 to describe the spatial distribution of BVOC emission potentials, and 

they concluded the reason why their estimations were far higher than other studies is the high emission factors 10 

they adopted. Therefore, the same validations by using canopy-scale BVOC flux measurements are also 

needed for these studies to validate and constrain the emission factors they used. 

Meteorological input is also a source of uncertainties for BVOC emission estimation. As shown in Figure 12, 

the modeled isoprene and monoterpenes fluxes are still generally higher than observations when observation-

based emission factors were used. One potential reason for this phenomenon is the overestimation of 15 

temperature and radiation as described in Section 2.3. The sensitivity tests by Wang et al. (2011) showed that 

the about 1.89 °C discrepancy of temperature can result in -19.2 to 23.2% change of isoprene emission and -

16.2 to 18.5% change of monoterpenes emission for Pearl River Delta region in July, where is also a hotspot 

for BVOC emission in this study. They also found that 115.8 W m-2 discrepancy of DSW can result in -31.4 

to 36.2% change of isoprene emission and -14.3 to 16.8% change of monoterpenes emission for the same 20 

region. The BVOC emission in this study might be overestimated because of the overestimated temperature 

and DSW in meteorological inputs. However, inaccurate emission factors could lead to over 100% 

uncertainties, which is more significant than the uncertainties induced by meteorological inputs. 

4. Conclusion 

Satellite observations have shown that China has led the global greening trend in recent decades (Chen et al., 25 

2019). In this study, we investigated the impact of this greening trend on BVOC emission in China from 

2001 to 2016. We used long-term satellite vegetation products as inputs in the MEGAN. According to the 

model estimations, the vegetation development can lead to a significant increasing trend of 0.50% y-1 of total 

BVOC emission in China from 2001 to 2016, and main BVOC classes of isoprene, monoterpene and 

sesquiterpene all had increasing trends of 0.64, 0.44 and 0.39 % y-1. The BVOC emission level in 2016 can 30 

be 11.7% higher than that in 2001 because of higher tree cover fraction and biomass. The comparison among 

different scenarios showed that vegetation changes resulting from land cover management is the main driver 
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of BVOC emission change in China. Climate variability contributed significantly to interannual variations 

but not the long-term trend 

On regional scales, there are strong increasing trends in 1) northeastern China, 2) Beijing and its surrounding 

areas, 3) the Qinling Mountains, 4) Yunnan province, 5) Guangdong-Guangxi provinces and 6) Hainan island. 

A strong increasing trend of broadleaf tree cover fractions and LAIv were found in these regions. The mean 5 

total tree cover fraction during the last four years (2013-2016) is 5.7-82.5 % higher than that of the first four 

years (2001-2004) for these regions, and the LAIv during 2013-2016 increased by 14.8 ~ 26.4 % comparing 

to that during 2001-2004 in these regions. Consequently, the average BVOC emission flux for the last four 

years (2013-2016) is 8.6%~19.3% higher than that for the first four years (2001-2004) in the sub-regions we 

defined driven by the same meteorological inputs. In the standard scenario of S1, a statistic significant 10 

increasing trend still could be found in the sub-regions including Beijing and its surroundings, Yunnan 

province and Hainan island considering the climate variability. 

We used the long-term record of satellite HCHO VC from the OMI sensor to assess our estimation of isoprene 

emission in China during 2005-2016. The results indicated statistically significant positive correlation 

coefficients between the isoprene emission estimate and satellite HCHO VC in summer over the regions with 15 

high vegetation cover fraction including the northeast, central and southern China. In addition, isoprene 

emission and HCHO VC both had a statistically significant increasing trend in the south of China, mainly 

Guangxi Province, where there was a statistically significant positive correlation supporting the estimated 

variability of BVOC emission in China. 

We conclude that uncertainties of this study mainly come from the emission factor, PFT and LAI inputs 20 

through comparing our results with other studies and flux measurements during 2010-2016 in China. The 

validation with flux measurements suggested that using the observation-based emission factor could largely 

improve the performance of model, but it also requires more much more efforts. The increase of BVOC 

reported by this study is expected to lead to a more complex situation for making the policies for controlling 

ozone pollution in China. The recent pollution control policies in China have effectively initiated the control 25 

of PM2.5 pollution, but the ozone pollution is still severe especially in urban areas. 
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Table 1. Description of different scenarios used to estimate the BVOC emission. 

 Land Cover LAI Meteorological conditions 

S1 Annually updated Annually updated Annually updated 

S2 Annually updated Annually updated Year 2001 

S3 Year 2001 Year 2001 Annually updated 

S4 Year 2016 Year 2016 Annually updated 

S5 Year 2001 Annually updated Year 2001 

Table 2. The mean annual China emission (Tg) of different species during 2001 to 2016. The scenarios S1 to S5 are described in Table 1. 

 S1 S2 S3 S4 S5 

Isoprene 15.94 (±1.12) 15.40 (±0.66) 14.63 (±0.76) 16.70 (±0.89) 15.29 (±0.54) 

Monoterpenes 3.99 (±0.17) 3.91 (±0.10) 3.78 (±0.12) 4.12 (±0.14) 3.9 (±0.08) 

Sesquiterpenes 0.50 (±0.03) 0.48 (±0.02) 0.47 (±0.02) 0.51 (±0.03) 0.48 (±0.02) 

Other VOCs 13.84 (±0.78) 13.95 (±0.34) 12.89 (±0.66) 14.15 (±0.73) 13.95 (±0.34) 

Total BVOCs 34.27 (±2.06) 33.74 (±1.10) 31.77 (±1.54) 35.48 (±1.76) 33.63 (±0.95) 

 

 
Table 3. The change and trend of annual emission flux (S1, S2 and S5), cover fractions of main PFTs, LAIv, growing season temperature 5 
and DSW in northeastern China, Beijing and its surrounding areas and the Qinling Mountains.  

Northeastern China 

 
BVOC 

Emission 
(S2, g m-2) 

BVOC 
Emission 
(S1, g m-2) 

BVOC 
Emission 
(S5, g m-2) 

LAIv 
(m-2 
m-2) 

BLT 
Cover 

Fraction 

NLT 
Cover 

Fraction 
(%) 

Shrub 
Cover 

Fraction 
(%) 

Grass 
Cover 

Fraction 
(%) 

Crop 
Cover 

Fraction 
(%) 

2-m 
Temp 
(°C) 

DSW (W 
m-2) 

Average 
3.37 

(±0.13) 

3.04 

(±0.36) 

3.25 

(±0.06) 

1.45 

(±0.1) 

21.37 

(±1.56) 

13.56 

(±0.12) 

5.97 

(±0.16) 

30.86 

(±1.8) 

25.85 

(±0.3) 

13.74 

(±0.67) 

224.5 

(±6.08) 

Average 
(2001-
2004) 

3.21 

(±0.05) 

2.9 

(±0.32) 

3.19 

(±0.06) 

1.34 

(±0.05) 

19.37 

(±0.51) 

13.57 

(±0.04) 

6.06 

(±0.15) 

33.1 

(±0.61) 

25.71 

(±0.21) 

13.89 

(±0.41) 

227.54 

(±5.22) 

Average 
(2013-
2016) 

3.52 

(±0.06) 

3.07 

(±0.36) 

3.3 

(±0.05) 

1.55 

(±0.12) 

23.1 

(±0.04) 

13.45 

(±0.13) 

5.87 

(±0.04) 

28.7 

(±0.18) 

26.22 

(±0.25) 

13.42 

(±0.59) 

218.39 

(±4.74) 

Trend 0.02***a 0.01 0.01** 0.02** 0.31*** -0.01 -0.03** -0.37*** 0.06*** -0.03 -0.73** 

Beijing & its surrounding areas 
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BVOC 

Emission 
(S2, g m-2) 

BVOC 
Emission 
(S1, g m-2) 

BVOC 
Emission 
(S5, g m-2) 

LAIv 
(m-2 
m-2) 

BLT 
Cover 

Fraction 

NLT 
Cover 

Fraction 
(%) 

Shrub 
Cover 

Fraction 
(%) 

Grass 
Cover 

Fraction 
(%) 

Crop 
Cover 

Fraction 
(%) 

2-m 
Temp 
(°C) 

DSW (W 
m-2) 

Average 
2.94 

(±0.21) 

2.58 

(±0.25) 

2.76 

(±0.08) 

1.24 

(±0.1) 

4.96 

(±1.17) 

0.61 

(±0.25) 

2.74 

(±0.63) 

58.18 

(±1.58) 

27.48 

(±1.33) 

17.68 

(±0.65) 

251.09 

(±3.22) 

Average 
(2001-
2004) 

2.7 

(±0.14) 

2.41 

(±0.09) 

2.67 

(±0.12) 

1.13 

(±0.11) 

3.83 

(±0.16) 

0.35 

(±0.03) 

1.99 

(±0.11) 

58.73 

(±0.07) 

29.44 

(±0.33) 

17.87 

(±0.6) 

250.47 

(±4.56) 

Average 
(2013-
2016) 

3.22 

(±0.08) 

2.81 

(±0.29) 

2.81 

(±0.04) 

1.3 

(±0.08) 

6.66 

(±0.44) 

0.97 

(±0.14) 

3.6 

(±0.27) 

55.84 

(±1.26) 

26.51 

(±0.41) 

17.52 

(±0.75) 

250.42 

(±1.95) 

Trend 0.04*** 0.03* 0.01** 0.01* 0.23*** 0.04*** 0.13*** -0.18* -0.26*** -0.03 0.02 

Qinling Mountains 

 
BVOC 

Emission 
(S2, g m-2) 

BVOC 
Emission 
(S1, g m-2) 

BVOC 
Emission 
(S5, g m-2) 

LAIv 
(m-2 
m-2) 

BLT 
Cover 

Fraction 

NLT 
Cover 

Fraction 
(%) 

Shrub 
Cover 

Fraction 
(%) 

Grass 
Cover 

Fraction 
(%) 

Crop 
Cover 

Fraction 
(%) 

2-m 
Temp 
(°C) 

DSW (W 
m-2) 

Average 
9.25 

(±0.38) 

9.29 

(±0.93) 

9.10 

(±0.28) 

1.8 

(±0.19) 

44.08 

(±1.52) 

12.25 

(±0.17) 

14.05 

(±0.64) 

14.67 

(±0.67) 

12.15 

(±0.25) 

20.78 

(±0.58) 

219.93 

(±9.01) 

Average 
(2001-
2004) 

8.84 

(±0.25) 

8.91 

(±0.38) 

8.85 

(±0.25) 

1.59 

(±0.17) 

42.18 

(±0.32) 

12.48 

(±0.11) 

14.84 

(±0.29) 

15.51 

(±0.26) 

12.31 

(±0.32) 

20.83 

(±0.25) 

220.28 

(±9.41) 

Average 
(2013-
2016) 

9.71 

(±0.22) 

9.75 

(±1.64) 

9.39 

(±0.22) 

2.01 

(±0.12) 

45.91 

(±0.27) 

12.07 

(±0.03) 

13.26 

(±0.14) 

13.84 

(±0.16) 

11.95 

(±0.10) 

20.75 

(±0.91) 

221.26 

(±12.30) 

Trend 0.06*** 0.07 0.04** 0.03*** 0.32*** -0.03*** -0.13*** -0.14*** -0.04** -0.01 -0.11 

a: p<0.1; **: p<0.05; ***: p<0.01; 

 

Table 4. The change and trend of annual emission flux (S1, S2 and S5), cover fractions of main PFTs, LAIv, growing season temperature 
and DSW in Yunnan province, Guangxi-Guangdong provinces and Hainan island. 

Yunnan provincc 

 
BVOC 

Emission 
(S2, g m-2) 

BVOC 
Emission 
(S1, g m-2) 

BVOC 
Emission 
(S5, g m-2) 

LAIv 
(m-2 m-

2) 

BLT 
Cover 

Fraction 
(%) 

NLT 
Cover 

Fraction 
(%) 

Shrub 
Cover 

Fraction 
(%) 

Grass 
Cover 

Fraction 
(%) 

Crop 
Cover 

Fraction 
(%) 

2-m 
Temp 
(°C) 

DSW 
(W m-2) 

Average 
6.79 

(±0.26) 

7.28 

(±0.54) 

6.67 

(±0.21) 

2.23 

(±0.17) 

32.7 

(±0.83) 

14.92 

(±0.32) 

17.25 

(±0.12) 

21.83 

(±0.52) 

9.86 

(±0.71) 

18.54 

(±0.31) 

224.71 

(±5.64) 
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Average 
(2001-
2004) 

6.53 

(±0.28) 

6.76 

(±0.45) 

6.57 

(±0.30) 

2.02 

(±0.19) 

32.1 

(±0.19) 

14.51 

(±0.04) 

17.22 

(±0.14) 

22.45 

(±0.20) 

10.34 

(±0.53) 

18.35 

(±0.30) 

219.18 

(±6.70) 

Average 
(2013-
2016) 

7.09 

(±0.09) 

7.92 

(±0.35) 

6.94 

(±0.04) 

2.4 

(±0.02) 

33.93 

(±0.58) 

15.33 

(±0.1) 

17.2 

(±0.17) 

21.12 

(±0.30) 

8.92 

(±0.25) 

18.7 

(±0.47) 

227.49 

(±2.65) 

Trend 0.04***a 0.1*** 0.02** 0.03*** 0.15*** 0.07*** 0 -0.11*** -0.17*** 0.03** 0.42 

Guangxi-Guangdong provinces 

 
BVOC 

Emission 
(S2, g m-2) 

BVOC 
Emission 
(S1, g m-2) 

BVOC 
Emission 
(S5, g m-2) 

LAIv 
(m-2 m-

2) 

BLT 
Cover 

Fraction 
(%) 

NLT 
Cover 

Fraction 
(%) 

Shrub 
Cover 

Fraction 
(%) 

Grass 
Cover 

Fraction 
(%) 

Crop 
Cover 

Fraction 
(%) 

2-m 
Temp 
(°C) 

DSW 
(W m-2) 

Average 
15.53 

(±0.79) 

16.23 

(±1.59) 

15.57 

(±0.67) 

2.24 

(±0.22) 

32.92 

(±1.6) 

9.08 

(±0.27) 

19.13 

(±0.38) 

20.47 

(±0.60) 

9.89 

(±0.70) 

26.32 

(±0.67) 

258.72 

(±7.32) 

Average 
(2001-
2004) 

15.06 

(±1.09) 

15.84 

(±1.70) 

15.23 

(±1.23) 

2.1 

(±0.35) 

32.2 

(±0.57) 

9.3 

(±0.02) 

19.41 

(±0.04) 

21.02 

(±0.03) 

9.89 

(±0.57) 

26.36 

(±0.25) 

258.74 

(±9.25) 

Average 
(2013-
2016) 

16.36 

(±0.37) 

17.03 

(±1.99) 

15.92 

(±0.29) 

2.44 

(±0.09) 

35.24 

(±0.88) 

8.69 

(±0.19) 

18.57 

(±0.31) 

19.62 

(±0.32) 

9.03 

(±0.16) 

26.31 

(±0.99) 

256.36 

(±4.26) 

Trend 0.13*** 0.14 0.05 0.03** 0.32*** -0.05*** -0.06*** -0.12*** -0.14** 0.02 -0.24 

Hainan Island 

 
BVOC 

Emission 
(S2, g m-2) 

BVOC 
Emission 
(S1, g m-2) 

BVOC 
Emission 
(S5, g m-2) 

LAIv 
(m-2 m-

2) 

BLT 
Cover 

Fraction 
(%) 

NLT 
Cover 

Fraction 
(%) 

Shrub 
Cover 

Fraction 
(%) 

Grass 
Cover 

Fraction 
(%) 

Crop 
Cover 

Fraction 
(%) 

2-m 
Temp 
(°C) 

DSW 
(W m-2) 

Average 
17.79 

(±0.73) 

17.98 

(±1.40) 

17.57 

(±0.51) 

2.43 

(±0.20) 

39.44 

(±1.46) 
0 

17.41 

(±0.14) 

22.2 

(±1.12) 

8.67 

(±0.56) 

27.3 

(±0.47) 

257.51 

(±4.55) 

Average 
(2001-
2004) 

17.16 

(±0.72) 

17.51 

(±1.04) 

17.27 

(±0.80) 

2.3 

(±0.26) 

38.07 

(±0.52) 
0 

17.46 

(±0.18) 

23.63 

(±0.04) 

8.79 

(±0.33) 

27.38 

(±0.22) 

259.79 

(±7.28) 

Average 
(2013-
2016) 

18.68 

(±0.27) 

19.44 

(±1.89) 

18.07 

(±0.24) 

2.64 

(±0.14) 

41.11 

(±0.23) 
0 

17.31 

(±0.08) 

20.9 

(±0.28) 

8.14 

(±0.07) 

27.41 

(±0.78) 

258.39 

(±3.95) 

Trend 0.13*** 0.12* 0.06** 0.03* 0.27*** 0 -0.02 -0.22*** -0.07** 0 -0.13 

a: p<0.1; **: p<0.05; ***: p<0.01; 
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Table 5. Comparison of isoprene and monoterpene emissions (Tg) in China with previous studies.  

Data Source Isoprene Monoterpene Study period Method or Model 

This study 15.94 (±1.12) 3.99 (±0.17) 2001-2016 MEGAN 

Stavrakou et al. (2014) 7.17 (±0.30) - 2007-2012 MEGAN-MOHYCAN 

Li et al. (2013) 23.4 5.6 2003 MEGAN 

Li et al. (2020) 33.21 6.35 2008-2018 MEGAN 

CAMS-GLOB-BIO v1.1 

(Sindelarova et al., 2014) 
7.67 3.04 2001-2016 MEGEN 

CAMS-GLOB-BIO v3.1 

(Sindelarova et al., 2014) 
8.54 3.23 2001-2016 MEGAN 

Fu and Liao (2012) 10.87 3.21 2001-2006 GEOS-Chem-MEGAN 

Tie et al. (2006) 7.7 3.16 2004 Guenther et al. (1993) 

Klinger et al. (2002) 4.65 3.97 2000 Guenther et al. (1995) 

Guenther et al. (1995) 17 4.87 1990 Guenther et al. (1995) 

 

 

Table 6. Comparison of inputs for BVOC estimation with previous studies. 5 

Reference 
Emission Factor 

Type 

Emission Factor 

Reference 
PFT/Land use LAI/Biomass Meteorology Model/Algorithms 

This study 
PFT level 

emission factors 

Guenther et al. 

(2012) 

MODIS 

MCD12C1 v6 

MODIS 

MCD15A2H v5 
WRF Model v3.9 MEGANv2.1 

Stavrakou et al. 

(2014) 

PFT level 

emission factors 

Guenther et al. 

(2006) 

Ramankutty and 

Foley (1999) 

MODIS 

MOD15A2 v5 

ERA-Interim 

Dataset 

MEGAN-

MOHYCAN 

Li et al. (2013) 

Vegetation 

genera/species level 

emission factors 

Li et al. (2013) 
Vegetation Atlas 

of China for year 2007 

MEGAN database 

for 2003 
MM5 Model v3.7 MEGAN 
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Li et al. (2020) 

Vegetation 

genera/species level 

emission factors 

Li et al. (2013) 
Vegetation Atlas 

of China for year 2007 

Estimations based 

on surveys and 

statistics 

WRF Model v3.8 MEGAN 

CAMS-GLOB-

BIO v1.1 

(Sindelarova et al., 

2014) 

PFT level 

emission factors 

Guenther et al. 

(2012) 

16 plant functional 

types consistent with 

the Community Land 

Model  

 

MODIS 

MOD15A2 v5 

ERA-Interim 

Dataset 
MEGAN 

CAMS-GLOB-

BIO v3.1 

(Sindelarova et al., 

2014) 

PFT level 

emission factors 

Guenther et al. 

(2012) 

16 plant functional 

types consistent with 

the Community Land 

Model  

MODIS 

MOD15A2 v5 
ERA-5 Dataset MEGAN 

Fu and Liao 

(2012) 

PFT level 

emission factors 

Guenther et al. 

(1995) 

Lathière et al. 

(2006) 

Levis et al. (2003) 

Bai et al. (2006) 

MODIS 

MCD12Q1 v5 

MODIS 

MOD15A2 v5 

GEOS-4 

Meteorology 

GEOS-Chem-

MEGAN 

Tie et al. (2006) 
Landuse level 

emission factors 

Landuse-based 

emission rates 

USGS 1km land 

use data 
/ WRF model 

Guenther et al. 

(1993) 

Klinger et al. 

(2002) 

Vegetation 

genera/species level 

emission factors 

Klinger et al. 

(2002) 

Province-level 

Forest Inventory 
/ 

Monthly 

meteorology database 

by (Leemans and 

Cramer, 1991) 

Guenther et al. 

(1995) 

Guenther et al. 

(1995) 

PFT level 

emission factors 

Guenther et al. 

(1995) 

Grided Global 

Ecosystem Types 

Estimations from 

NPP 

Monthly 

meteorology database 

by (Leemans and 

Cramer, 1991) 

Guenther et al. 

(1995) 

 

Table 7. Detailed descriptions of the flux measurements used in this study and corresponding campaigns. 

Reference Site Location Sample Collection Periods 
Ecosystem 

Type 

Isoprene Emission 

Factor 

(mg m-2 h-1) 

Monoterpenes 

Emission Factor 

(mg m-2 h-1) 

Bai et al. (2015) Changbai Mountain 

(42°24′ N, 128°6′) 

28 June -9 July 2010; 
19 July -30 July 2010; 

12 Aug.- 25 Aug. 2010; 
19 June - 30 June 2011; 
10 July -16 July 2011; 
22 July - 29 July 2011; 
5 Sep. - 8 Sep. 2011. 

Mixed forest 4.3 0.32 

Bai et al. (2016) 
An Ji, Zhejiang 

(30°40′15′′ N, 119°40′15′′) 

7 July-13 July 2012; 

20 Aug.-26 Aug. 2012; 

25 Sep.-1 Oct. 2012; 

28 Oct.- 5 Nov. 2012. 

Moso bamboo 

forest 
3.3 0.008 
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Bai et al. (2017) 
Taihe, Jiangxi 

(26°44′48′′ N, 115°04′13′′) 

22 May -28 May 2013; 

29 June - 6 July 2013; 

6 Aug. -13 Aug. 2013; 

7 Sep. -11 Sep. 2013; 

18 Jan. -19 Jan. 2014; 

23 July - 27 July 2014; 

2 Nov. - 7 Nov. 2015; 

31 Dec. 2015 -4 Jan. 2016. 

Subtropical 

Pinus forest 
0.71 1.65 
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Figure 1. The cover factions of different PFTs for the year 2016. 

 

Figure 2. The comparison of monthly anomaly of downward shortwave (DSW) radiation (a) and 2-meter temperature (T2) (b) for model 5 
simulation and in-situ observation and the filled areas present the standard deviations among 98 sites for DSW and 697 sites for T2. 
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Figure 3. The trend of growing season averaged 2-meter temperature (T2) and downward shortwave radiation (DSW). (a) and (b) are 
for in-situ T2 and DSW, respectively, and the sites with statistically significant trend are marked by black circles. (c) and (d) are for the 
WRF simulated T2 and DSW, respectively, and the regions with statistically significant trend are illustrated by shadow.  
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Figure 4. Annual BVOC emissions in China during 2001 to 2016 for four scenarios (S1-S5) described in Table 1. The increasing trends 
and the probabilities (p) using the Mann-Kendall test are shown in the legend. 
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Figure 5. The horizontal distributions of isoprene, monoterpenes, sesquiterpenes and total BVOCs emissions of China in 2001 are showed 
in figure (a), (g), (m) and (s), respectively. The rest columns of figures present the changing trend of isoprene (b-f), monoterpenes (h-l), 
sesquiterpenes (n-r) and total BVOCs (t-x) in S1, S2, S3, S4 and S5, respectively. The Mann-Kendall test were used to mark the grids 
where the p is smaller than 0.1. 5 
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Figure 6. Spatial distribution of BVOC emission in 2001 (a) and the changing trends of annual emission flux (S1, S2 and S5), cover 
fractions of main PFTs and LAIv. The Mann-Kendall test were used to filter the grids where the p is greater than 0.1. 
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Figure 7. The annual changes of PFTs, the annual emission amount of BVOC and LAI in (a) northeastern China, (b) Beijing and its 
surroundings, and the (c) Qinling mountains. The solid, dashed and marked line represents the mean emission flux rate of total BVOC 
in S1, S2 and S5, respectively. 
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Figure 8. The annual changes of PFTs, the annual emission amount of BVOC and LAI in (a) southwestern China, (b) southern, and (c) 
Hainan island. The solid, dashed and marked line represents the mean emission flux rate of total BVOC in S1, S2 and S5, respectively. 
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Figure 9. Comparison of estimated isoprene annual emission with the satellite derived tropospheric HCHO vertical column concentration 
by OMI during 2005-2016. (a), (b) and (c) illustrate the spatial patterns of annual mean LAIv, isoprene emission and HCHO vertical 
columns (VC) by OMI respectively. (d) presents the spatial distribution of the correlation coefficient between summertime isoprene 
emission and HCHO VC. (e) and (f) shows the increasing trend of isoprene and HCHO VC during 2005-2016. 5 
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Figure 10. Comparison of the trend of isoprene emission between this study (S1) and other estimations during 2001-2016. (a) and (b) is 
for S1 and S3 respectively in this study, and (c) and (d) are for CAMS-GLOB-BIO v 1.1 and CAM-GLOB-BIO v3.1, respectively. The 
Mann-Kendall test were used to mark the grids where the p is smaller than 0.1. 

 5 
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Figure 11. Comparison of the trend of monoterpenes emission between this study (S1) and other estimations during 2001-2016. (a) and 
(b) is for S1 and S3, respectively, in this study, and (c) and (d) are for CAMS-GLOB-BIO v 1.1 and CAM-GLOB-BIO v3.1, respectively. 
The Mann-Kendall test were used to mark the grids where the p is smaller than 0.1. 

 5 
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Figure 12. Validation of the model with flux measurements in China. (a) and (b) show the performance of the MEGAN model with the 
default emission factors (N=19). (c) and (d) show the performance of the MEGAN model with the emission factors derived from 
observations (N=19). 


