
Response to Editor: 

Dear editor, 

We really appreciate the efforts you made for improving the quality of our manuscript and your patience 
for giving us enough time to revise our manuscript during this extremely hard time. We tried our best 
to revise our manuscript according to the comments from two anonymous reviewers. The following 
major changes were made in our revised paper: 

1. We found some mistakes in our program for mapping the MODIS classification system to CLM PFTs, 
which will lead to missing or double counting some PFT categories during the mapping process. 
Therefore, we corrected the program and re-ran all experiments. In addition, we used the IGBP 
classification scheme this time instead of using the Leaf Area Index Classification Scheme in MCD12C1 
product as the original classification scheme for mapping considering the more detailed descriptions of 
legends in IGBP scheme. Some conclusions were also corrected based on the new results. 

2. We added one more experiment named S5 to illustrate the contribution of LAI on trends of BVOC 
emission. In S5, we used the annually updated LAIv and the fixed meteorological inputs and PFT dataset 
for the year 2001. The analysis for S5 was already added into the revised paper. 

3. We further compared our results with other studies to discuss the uncertainties of our estimation. We 
downloaded some long-term BVOC estimations from ECCAD database (https://eccad.aeris-data.fr) and 
compared them with our results to analyses the potential reason that results in the discrepancies between 
our results and other estimations. In addition, we collected the flux measurements from some recent 
studies (Bai et al., 2015;Bai et al., 2016;Bai et al., 2017) to validate our model and discuss the 
uncertainties induced by emission factor. Corresponding content has been added into the revised paper. 

4. We removed the Section 3.5 in the previous version paper about “Comparison of BVOC emission 
with Anthropogenic Emission China”. Considering the uncertainties behind our estimations, we decided 
to concentrate on BVOC emission estimation and discuss more about uncertainties instead of extending 
to discuss anthropogenic emissions. Some lengthy and less informative paragraphs are also removed in 
the revised paper. 

The point-by-point responses to two reviewers’ comments are given below. 

 

Response to Referee #1  

General comments: This paper presented the MEGAN-simulated biogenic volatile organic compound 
(BVOC) emissions in China and analysed the modelled contributions from changes in land cover and 
climate to the BVOC emissions. The modelled variations in isoprene emissions were further linked to 
the HCHO vertical column. The paper is well-written and has delivered the message about the potential 
importance of land cover changes in BVOC emissions in China. 

Response: Thank you so much for your comments, and we really appreciate it. In the revised paper, we 



did the following measurements to address your concerns as well as the other reviewer’s concerns: 

1. We found some mistakes in our program for mapping the MODIS classification system to CLM PFTs, 
which will lead to missing or double counting some PFT categories during the mapping process. 
Therefore, we corrected the program and re-ran all experiments. In addition, we used the IGBP 
classification scheme this time instead of using the Leaf Area Index Classification Scheme in MCD12C1 
product as the original classification scheme for mapping considering the more detailed descriptions of 
legends in IGBP scheme. Some conclusions were also corrected based on the new results. 

2. We added one more experiment named S5 to illustrate the contribution of LAI on trends of BVOC 
emission. In S5, we used the annually updated LAIv and the fixed meteorological inputs and PFT dataset 
for the year 2001. The analysis for S5 was already added into the revised paper. 

3. We further compared our results with other studies to discuss the uncertainties of our estimation. We 
downloaded some long-term BVOC estimations from ECCAD database (https://eccad.aeris-data.fr) and 
compared them with our results to analyses the potential reason that results in the discrepancies between 
our results and other estimations. In addition, we collected the flux measurements from some recent 
studies (Bai et al., 2015;Bai et al., 2016;Bai et al., 2017) to validate our model and discuss the 
uncertainties induced by emission factor. Corresponding content has been added into the revised paper. 

4. We removed the Section 3.5 in the previous version paper about “Comparison of BVOC emission 
with Anthropogenic Emission China”. Considering the uncertainties behind our estimations, we decided 
to concentrate on BVOC emission estimation and discuss more about uncertainties instead of extending 
to discuss anthropogenic emissions. Some lengthy and less informative paragraphs are also removed in 
the revised paper. 

 

The current format of the manuscript has been much focused on analysing the patterns simulated from 
the four different scenarios, but rather limited in understanding the uncertainties (e.g., uncertainties from 
satellite products or assigned emission factor or missing PFT) associated with the model simulation. 

Response: Thank you so much for your comments. We double-checked the program for mapping the 
MODIS PFT to CLM PFT classification, and we found some mistakes in the program that led to missing 
or double counting some PFTs during the mapping process. Therefore, we corrected the program and 
re-ran the all experiments. In addition, we used the IGBP classification scheme this time instead of using 
the Leaf Area Index Classification Scheme in MCD12C1 product as the original classification scheme 
for mapping considering the more detailed descriptions of legends in IGBP scheme. So, we redesigned 
the mapping method. 

The mapping method is in two steps. As presented in Table R1, we firstly mapped the IGBP 
classification to eight main vegetation categories: needleleaf evergreen forests, broadleaf evergreen 
forests, needleleaf deciduous forests, broadleaf deciduous forests, mixed forests, shrub, grass and crop 
according to the description of the legends. Then, eight main categories were mapped to the 



classification of CLM/MEGAN for boreal, temperate and boreal climatic zones using the definition 
from Bonan et al. (2002). The climatic criteria for mapping is presented in Table R2, and the climatic 
information for mapping was from the climatology of the ERA Interim during 2001-2016 (Berrisford 
et al., 2011). The final special distribution of the percentages of PFTs is presented in Figure R1. The 
emission factors in this study are coming from the PFT-level emission factors presented in Table 2 of 
Guenther et al. (2012). The corresponding description is added at P4, L9 in the revised paper as: 

“The PFT was used to determine the canopy structure and standard emission factors in MEGAN 
(Guenther et al., 2012). We adopted the default emission factors for PFTs described in Table 2 in 
Guenther et al. (2012). The PFT dataset in this study is obtained from the MODIS MCD12C1 land cover 
product (https://lpdaac.usgs.gov/products/mcd12c1v006/, Friedl and Sulla-Menashe, 2015). MODIS 
IGBP classification were mapped to the PFT classification of MEGAN or the Community Land Model 
(CLM) (Lawrence et al., 2011) based on the description of the legends in the user guide (Sulla-Menashe 
and Friedl, 2018) and the climatic criteria described in Bonan et al. (2002). The spatial distribution of 
percentage of PFTs in model grids is presented in Figure 1. According to the description of the legends, 
we firstly mapped the IGBP classification to eight main vegetation categories: 1) needleleaf evergreen 
forests, 2) broadleaf evergreen forests, 3) needleleaf deciduous forests, 4) broadleaf deciduous forests, 
5) mixed forests, 6) shrub, 7) grass and 8) crop. The mapping method is described in Table S1 in the 
supplement. Eight main categories then were mapped to the classification of MEGAN/CLM for boreal, 
temperate and boreal climatic zones using the definition in Bonan et al. (2002). Table S2 in the 
supplement presents the climatic criteria for mapping, and the climatic information for mapping was 
from the ERA Interim climatology (https://www.ecmwf.int/en/forecasts/datasets/reanalysis-
datasets/era-interim, Berrisford et al., 2011) Reanalysis dataset over 2001-2016.” 

Table R1. Look-up table for mapping the IGBP classification scheme to eight main vegetations 
categories. 

Name Value Description Percentages of Main 
Category 

Needleleaf 
Evergreen Forest 

1 Dominated by evergreen conifer trees 
(canopy >2m).  

100% Needleleaf 
Evergreen Tree Forest 

Broadleaf Evergreen 
Forest 

2 Dominated by evergreen broadleaf 
and palmate trees (canopy >2m). 

100% Broadleaf Evergreen 
Tree Forest 

Needleleaf 
Deciduous Forest 

3 Dominated by deciduous needleleaf 
(larch) trees (canopy >2m). 

100% Needleleaf 
Deciduous Tree Forest 

Broadleaf 
Deciduous Forest 

4 Dominated by deciduous broadleaf 
trees (canopy >2m). 

100% Broadleaf 
Deciduous Tree Forest 

Mixed Forests 5 Dominated by neither deciduous nor 
evergreen (40-60% of each) tree type 

100% Mixed Forests 



(canopy >2m). 

Closed Shrublands 6 Dominated by woody perennials (1-
2m height) >60% cover. 

100% Shrub 

Open Shrublands 7 Dominated by woody perennials (1-
2m height) 10-60% cover. 

60% Shrub 

40% Grass 

Woody Savannas 8 Tree cover 30-60% (canopy >2m). 60% Mixed Forest 

20% Shrub 

20% Grass 

Savannas 9 Tree cover 10-30% (canopy >2m). 30% Mixed Forest 

35% Shrub 

35% Grass 

Grasslands 10 Dominated by herbaceous annuals 
(<2m). 

100% Grass 

Permanent Wetlands 11 Permanently inundated lands with 30-
60% water cover and >10% vegetated 
cover. 

40% Grass 

Croplands 12 At least 60% of area is cultivated 
cropland. 

100% Crop 

Urban and Built-up 
Lands 

13 At least 30% impervious surface area 
including building materials, asphalt, 
and vehicles. 

None 

Cropland/Natural 
Vegetation Mosaics 

14 Mosaics of small-scale cultivation 40-
60% with natural tree, shrub, or 
herbaceous vegetation. 

60% Crop 

20% Shrub 

20% Grass 

Permanent Snow and 
Ice 

15 At least 60% of area is covered by 
snow and ice for at least 10 months of 
the year. 

None 

Barren 16 At least 60% of area is non-vegetated 
barren (sand, rock, soil) areas with 
less than 10% vegetation. 

None 

 



Table R2. The climatic criteria for mapping main vegetation categories to CLM PFTs a. 

Main Categories Mapping Condition Percentages of CLM PFTs 

NET Tc >-19 °C and GDD > 1200 100% NET Temperate 

Tc£-19 °C or GDD  £ 1200 100% NET Boreal 

BET Tc >15.5 °C 100% BET Tropical 

Tc£15.5 °C 100% BET Temperate 

NDT None 100% NDT 

BDT Tc >15.5 °C 100% BDT Tropical 

-15.5 °C <Tc£15.5 °C or GDD>1200 100% BDT Temperate 

Tc£-15.5 °C or GDD £ 1200 100% BDT Boreal 

Mixed Forest Tc >15.5 °C 50% BET Tropical 

50% BDT Tropical 

-15.5 °C<Tc£15.5 °C and 
GDD>1200 

33.33% NET Temperate 

33.33% BET Temperate 

33.33% BDT Temperate 

Tc£-15.5 °C or GDD £ 1200 33.33% NDT 

33.33% NET Boreal 

33.33% BDT Boreal 

Shrub Tc >-19 °C and GDD > 1200 100% BDS Temperate 

Tc£-19 °C or GDD £ 1200 100% BDS Boreal 

Grass GDD<1000 100% C3 Arctic 

GDD>1000 and (Tc £ 22°C or 
Pmon£25 mm) 

100% C3 

GDD>1000 and Tc > 22°C and 
Pmon >25 mm 

100% C4 

Crop None 100% Crop 

a NET, Needleleaf Evergreen Trees; BET, Broadleaf Evergreen Trees; NDT, Needleleaf Evergreen 
Trees; BDT, Broadleaf Deciduous Trees; Tc, Temperature in the coldest month; GDD, growing-degree 
days above 5°C; Pmon, monthly precipitation.  



 
Figure R1. The percentage of different PFTs for the year 2016. 

 

Then when the authors linked their simulated isoprene emission with the HCHO vertical column, the 
disagreement of these two has been mainly attributed to the AVOC, but I would think there could be 
also contributions from the uncertainties in the simulated BVOCs. From the maps with simulated 
BVOCs, I am a bit surprised to see that the north part of China with high LAI showed very low simulated 
emissions, especially monoterpene. Could this be linked to the misclassification of forest type? 

Response: Thank you so much for comments. Firstly, we have added one more section to discuss the 
uncertainties by comparing our results with the flux measurements and other estimations from previous 
studies. Secondly, we updated the figure by presenting the annual averaged LAIv instead of growing 
season LAIv (May-Sep). As shown in the Figure R2, the annual averaged LAIv is not as high as the 
growing season averaged LAIv in northeast China. In addition, we also mapped the IGBP classification 
to PFTs with the new rules we designed and the distribution of different PFTs has been given in Figure 
R1. The main reason why the BVOC emission in northeastern China is low is the impact of local climate 
in this region. In the revised paper, we added northeastern China as one of the sub-regions for analyzing. 
As shown in Table 3 in the revised paper, the simulated growing season averaged temperature is about 
13.74 °C in northeastern China, which is much lower than other regions, e.g. the simulated growing 
season averaged temperature is about 20.78 °C in the Qinling mountains. As shown in Figure R1, the 
tree cover fraction is not low in northeastern China, however, the unfavorable meteorological conditions 
lead to the low emission in this region. 



 
Figure R2. Comparison of estimated isoprene annual emission with the satellite derived tropospheric HCHO 

vertical column concentration by OMI during 2005-2016. (a), (b) and (c) illustrate the spatial distributions of 

annual mean LAI, isoprene emission and HCHO vertical columns (VC) by OMI respectively. (d) presents the 



spatial distribution of the correlation coefficient between summertime isoprene emission and HCHO VC. (e) and 

(f) shows the increasing trend of isoprene and HCHO VC during 2005-2016. 

 

Then in the east and/or at least North China Plain area, there is wide distribution of crops. Are crops 
specifically considered in MEGAN?  

Response: Yeah, as shown in Figure R1, there is wide distribution of crops in North China Plain. The 
crops are considered as only one kind of PFT in the MEGAN, therefore, emission factors for all species 
of crops are same in our simulation. 

 

In general, a map showing the spatial distribution of PFTs could be very useful for readers.  

Response: Thank you so much for your comments. The spatial distribution of different PFTs has been 
given in Figure R1. 

 

I also think it is crucial to compare the modelled emissions with a few sites’ measurement data to 
illustrate the performance of the model before digging into analysing the changes of the emission 
patterns at the national scale and further linking to the HCHO column data. 

Response: Thank you so much for your precious time and your comments. We collected the flux 
measurements in China from some recent studies (Bai et al., 2015;Bai et al., 2016;Bai et al., 2017) and 
use them to validate and analyze the uncertainties of our estimation. The details about the flux 
measurements has been given in Table R3. In addition, we also compared our results with other similar 
studies to discuss the source of uncertainties in this study. The discussion about the uncertainties in this 
study has been added at P11, L11 in the revised paper as: 

“The comparison of isoprene and monoterpenes emission estimations between our estimations and 
previous studies is presented in Table 5. The estimations of isoprene emission range from 4.65 Tg to 
33.21 Tg, and the estimations of monoterpenes emission range from 3.16 Tg to 5.6 Tg in China. Multiple 
factors including emission factor, algorithm, meteorological and land cover inputs can lead to the 
discrepancy of these estimations. We listed the inputs of these estimations in Table 6 to fully understand 
the discrepancies between our results and other estimations.  

The setting of inputs in this study is relatively close to the study by Stavrakou et al. (2014) and CAMS-
GLOB-BIO biogenic emission inventories (https://eccad3.sedoo.fr/#CAMS-GLOB-BIO) that adopted 
the method described by Sindelarova et al. (2014). However, the estimation of isoprene emission in this 
study is about 86.6%-122.3% higher than their estimations, and the estimation of monoterpene emission 
is about 23.5% and 31.3% higher than that from CAMS-GLOB-BIO v3.1 and v1.1, respectively. We 
further compared our results with two versions of CAMS-GLOB-BIO inventories. Figure 10 and Figure 
11 present the trends of isoprene emission and monoterpenes emission respectively from S1 and S3 in 
this study, CAMS-GLOB-BIO inventory v 1.1 and v 3.1 during 2001-2016. As shown in Figure 10 and 



Figure 11, S3 shows similar spatial patterns and magnitude of changing trend of isoprene and 
monoterpenes emission with CAMS-GLOB-BIO v 1.1 and CAMS-GLOB-BIO v3.1, e.g. three datasets 
all showed a strong increasing trend in Yunnan province, and S1 shows much more stronger changing 
trends comparing with other three datasets with annually updated LAI and PFT datasets. The 
meteorological inputs for CAMS-GLOB-BIO v1.1 and v3.1 are ERA-Interim and ERA-5 reanalysis 
data, respectively, and the WRF model used in this study was also driven by ERA-Interim reanalysis 
data. Therefore, the four datasets have the similar source of meteorological inputs. In addition, these 
estimations all adopted the same PFT level emission factors from Guenther et al. (2012). Therefore, the 
potential reason for the differences of isoprene and monoterpenes emission among the datasets in Figure 
10 and Figure 11 is the discrepancies of PFT and LAI inputs. CAMS-GLOB-BIO also adopted the 
annually updated LAI inputs developed by Yuan et al. (2011) based on MODIS MOD15A v5 LAI 
product, but the two versions of CAMS-GLOB-BIO inventory didn’t show a same level strong 
increasing trend with S1. The increasing trend of LAI in China is agreed by multiple LAI products but 
with different rates (Piao et al., 2015; Chen et al., 2020). In this study, we adopted the latest MODIS 
LAI product of version 6, and a strong increasing trend of LAI in China has been found by using this 
product (Chen et al., 2019). Therefore, an increasing trend of BVOC emission induced by LAI should 
be seen in the estimation with annually updated LAI inputs, but the magnitude of this trend is also 
affected by the magnitude of changing trend of LAI products. The PFT map used in this study is coming 
from MODIS land cover product, which is a mesoscale satellite product with the highest resolution of 
500m. Besides the product itself, the method for converting the original land cover classification system 
to PFT classification system is also important. Hartley et al. (2017) illustrated that the cross-walking 
table for converting land cover class maps to PFT fractional maps can lead to 20%-90% uncertainties 
for gross primary production estimation in land surface model by using different vegetation fractions 
for mixed pixels, and the BVOC emission estimation has the same issue. In this study, we assumed that 
the pixels that were assigned as vegetation is 100% covered by that kind of vegetation (Table S3 in the 
supplement). Therefore, it will lead to the overestimation of vegetation cover rate for mixed pixels, 
which can lead to higher BVOC emission. 

The emission factor is also an important source of uncertainties, and it decided the spatial patterns of 
emission rates together with the PFT distribution. In order to understand the role of emission factor, the 
flux measurements of isoprene and monoterpenes from the campaigns conducted during 2010 to 2016 
in China (Bai et al., 2015; Bai et al., 2016; Bai et al., 2017) were collected and compared with model 
results in this study. The details of these campaigns are provided in Table 7, and the emission factors 
that were retrieved from the observations are also listed for these sites. Most samples were collected 
during the daytime every 3 hours according to the descriptions of the measurements (Bai et al., 2015;Bai 
et al., 2016;Bai et al., 2017), therefore, we averaged the model results during 8:00 A.M. to 20 A.M in 
local time with a three hours interval for comparison. As shown in the (a) and (b) of Figure 12, the 
modeled fluxes of isoprene and monoterpenes with the default emission factors in this study didn’t 
capture the variability of the observations. The ME, MB and RMSE are 1.60, 1.59 and 2.31 mg m-2 h-
1 for isoprene and 0.21, -0.003 and 0.32 mg m-2 h-1 for monoterpenes. When we adopted the emission 



factor retrieved from observations (Bai et al., 2015;Bai et al., 2016;Bai et al., 2017), the simulated 
isoprene and monoterpenes fluxes showed relatively good consistence with the observations by using 
the same activity factor from this study (g in equation (1)) as shown in (c) and (b) of Figure 12. The ME, 
MB and RMSE are 0.44, 0.41 and 0.57 mg m-2 h-1 for isoprene and 0.32, 0.14 and 0.49 mg m-2 h-1 
for monoterpenes after adopting the observation-based emission factors, and the statistic parameters for 
isoprene simulation are largely improved. Although the MB and ME of monoterpenes simulation are 
increased, but the simulated monoterpenes flux showed better agreement with observations (Figure 12). 
Therefore, it is clear that our calculation of activity factors is in a reasonable range, but the emission 
factor is the main source of uncertainties. The PFT level emission factors used in this study from 
Guenther et al. (2012) represents the globally averaged emission factor for PFTs, and it is relatively 
easy to use the them with the satellite PFT products. Therefore, the most studies listed in Table 6 adopted 
the PFT/landuse level emission factors. Our validation showed that the accurate emission factor based 
on observations could largely improve the performance of MEGAN model, but it also requires abundant 
efforts to conduct measurements. However, the measurements listed in Table 7 are still very limited for 
describing the spatial discrepancies of ecosystems in China, so we still used the default emission factors 
in MEGAN model. The estimations by Li et al. (2013, 2020) used the species level emission factors and 
Vegetation Atlas of China for 2007 to describe the spatial distribution of BVOC emission potentials, 
and they concluded the reason why their estimations were far higher than other studies is the high 
emission factors they adopted. Therefore, the same validations by using canopy-scale BVOC flux 
measurements are also needed for these studies to validate and constrain the emission factors they used. 

Meteorological input is also a source of uncertainties for BVOC emission estimation. As shown in 
Figure 12, the modeled isoprene and monoterpenes fluxes are still generally higher than observations 
when observation-based emission factors were used. One potential reason for this phenomenon is the 
overestimation of temperature and radiation as described in Section 2.3. The sensitivity tests by Wang 
et al. (2011) showed that the about 1.89 °C discrepancy of temperature can result in -19.2 to 23.2% 
change of isoprene emission and -16.2 to 18.5% change of monoterpenes emission for Pearl River Delta 
region during July, where is also a hotspot for BVOC emission in this study. They also found that 115.8 
W m-2 discrepancy of DSW can result in -31.4 to 36.2% change of isoprene emission and -14.3 to 16.8% 
change of monoterpenes emission for the same region. The BVOC emission in this study might be 
overestimated because of the overestimated temperature and DSW in meteorological inputs. However, 
inaccurate emission factors could lead to over 100% uncertainties, which is more significant than the 
uncertainties induced by meteorological inputs.” 

Table R3. Detailed descriptions of the flux measurements used in this study and corresponding campaigns. 

Reference Site Location 
Sample Collection 

Time 

Ecosystem 

Type 

Isoprene 

Emission Factor 

(mg m-2 h-1) 

Monoterpenes 

Emission Factor 

(mg m-2 h-1) 



Bai et al. (2015) 
Changbai Mountain 

(42°24′ N, 128°6′) 

28 June -9 July 2010; 

19 July -30 July 2010; 

12 Aug.- 25 Aug. 2010; 

19 June - 30 June 

2011; 

10 July -16 July 2011; 

22 July - 29 July 2011; 

5 Sep. - 8 Sep. 2011. 

Mixed forest 4.3 0.32 

Bai et al. (2016) 

An Ji, Zhejiang 

(30°40′15′′ N, 

119°40′15′′) 

7 July-13 July 2012; 

20 Aug.-26 Aug. 2012; 

25 Sep.-1 Oct. 2012; 

28 Oct.- 5 Nov. 2012. 

Moso bamboo 

forest 
3.3 0.008 

Bai et al. (2017) 

Taihe, Jiangxi 

(26°44′48′′ N, 

115°04′13′′) 

22 May -28 May 2013; 

29 June - 6 July 2013; 

6 Aug. -13 Aug. 2013; 

7 Sep. -11 Sep. 2013; 

18 Jan. -19 Jan. 2014; 

23 July - 27 July 2014; 

2 Nov. - 7 Nov. 2015; 

31 Dec. 2015 -4 Jan. 

2016. 

Subtropical 

Pinus forest 
0.71 1.65 

 

Specific comments:  

P2 L5-6, please indicate at which spatial scale we can see cropland dominates the reduction of isoprene.  

Response: Thank you for your comments. We have revised this sentence as: 

“For instance, the global cropland expansion has been estimated to dominate the reduction of isoprene, 
the dominant BVOC species, in last century (Lathière et al., 2010; Unger, 2013) although there are large 
uncertainties associated with these estimates.” 

 



P2 L10, the authors mentioned that the greening in China has been linked to “maintain and expand 
forests”. Did they change plant species when expanding forest? And can you see this level of land use 
change in the MODIS PFT product?  

Response: Thank you for your comments. Currently, it is not possible to distinguish the specific species 
of trees using MODIS since the spatial resolution of MODIS sensor is not high enough to do so. So, we 
can’t see the species-level change through the MODIS PFTs. Our estimation is mainly based on the PFT 
level change. 

 

P3 L2, suggest to delete “accurately”. You have not evaluated the modelled BVOC against the 
measurements.  

Response: Thank you so much for your advice, and the word “accurately” has been deleted in the 
revised paper. 

 

P4L2-4, here you might need to specify where these emission factors are from? How much of these 
emission factors covered the measurements from China? I did a quick google search and could already 
see some measurement data available for different ecosystems in China. 
https://www.sciencedirect.com/science/article/pii/S1352231017302947 
https://www.sciencedirect.com/science/article/pii/S1352231015305173 
https://www.sciencedirect.com/science/article/pii/S0269749119346081?via%3Dihub  

Response: Thank you so much for your comments. The emission factors in this study are the default 
values of the MEGAN 2.1 provided by Guenther et al. 2012. Since we didn’t have an ability to 
distinguish the species of the trees using the MODIS images, we didn’t consider using the species-based 
emission factors. It is true that this will induce the uncertainty of emission amount, and we have added 
some discussion for this in the revised paper. As mentioned above, we used the flux measurements of 
BVOC from some recent studies to validate our model and discuss the uncertainties induced by emission 
factors. The performance of model can be improved by updating the emission factors according to our 
results. When we adopted the emission factor retrieved from observations (Bai et al., 2015; Bai et al., 
2016;Bai et al., 2017), the simulated isoprene and monoterpenes fluxes showed relatively good 
consistence with the observations by using the same activity factors from this study shown in (c) and 
(b) in Figure R3. However, these studies only covered very limited numbers of ecosystems in China. 
Since our work is focusing on the impact of land cover change and vegetation biomass change on BVOC 
emission, so using the default emission factor is also able to discuss the change of BVOC induced by 
vegetation development. 



 

Figure R3. Validation of the model with flux measurements in China. (a) and (b) show the performance of the 

MEGAN model with the default emission factors. (c) and (d) show the performance of the MEGAN model with 

the emission factors derived from observations. 

 

P4 L8, “The Cce(=0.57) is a factor to xx” what does this mean? 

Response: As described by Guenther et al. (2006), the Cce is a parameter in MEGAN model that sets 
the emission factor to unity at the standard conditions. It has no physical meaning and was used to 
normalize the emission factors. 

 

P4 L9, how can LAI define leaf age in MEGAN? 

Response: Thank you so much for your comments. The leaf-age factor,gage, in MEGAN is described in 
detail in Guenther et al. (2006). For the evergreen canopies, gage is constant. For the deciduous canopies, 
the leaves are divided into four stages of new leaf, growing leaf, mature leaf and old leaf since the 
emission capacity of leaf is diverse with leaf age(Guenther et al., 1991;Monson et al., 1994;Guenther et 
al., 2006). According to Guenther et al. (2006), the gage is defined as: 

𝛾"#$ = 𝐹'$(𝐴'$( + 𝐹#+,𝐴#+, + 𝐹-".𝐴-". + 𝐹,/0𝐴,/0 



where Anew, Agro, Amat and Aold are the relative emission rates for new, growing, mature and old foliages. 
Fnew, Fgro, Fmat and Fold are the fractions of different sorts of leaves and are defined by the change of LAI 
between the current time step (LAIc) and the previous time step (LAIp). Fnew=0, Fgro=0.1, Fmat=0.8 and 
Fold=0.1 when LAIc equals LAIp. When LAIp> LAIc, the fractions in different stages are as: 

⎩
⎨

⎧
𝐹'$( = 0
𝐹#+, = 0

𝐹,/0 = [(𝐿𝐴𝐼𝑝 − 𝐿𝐴𝐼𝑐)/𝐿𝐴𝐼𝑝]
𝐹,/0 = 1 − 𝐹,/0

 

In the cases of LAIp<LAIc, the fractions are calculated as: 

⎩
⎨

⎧
𝐹'$( = 1 − (𝐿𝐴𝐼𝑝 𝐿𝐴𝐼𝑐⁄ )
𝐹#+, = 1 − 𝐹'$( − 𝐹-".
𝐹-". = 𝐿𝐴𝐼𝑝/𝐿𝐴𝐼𝑐

𝐹,/0 = 0

 

. 

P4 L13, Is soil moisture used as inputs for model? If so, please clarify. 

Response: Thanks for your comments. The soil moisture is simulated by the WRF model and will be 
considered in the calculation. We have followed your comments and clarify this part in the revised paper 
in P4, L20: 

“The hourly meteorological fields including temperature, downward shortwave radiation (DSW), wind 
speed, surface pressure, precipitation and water vapor mixing ratio were provided by the Weather 
Research and Forecast (WRF) Model V3.9 (Skamarock et al., 2008) simulations.” 

 

P4 L17-18, LAI is a ‘modelled’ product from other satellite products and potentially has large 
uncertainty in itself. I wonder if the LAI has been filtered by the quality flags before using as inputs for 
MEGAN and how the model deals with the LAI gap if there is no data for many 8-days?  

Response: Thank you so much for your comments. We used all available values in MODIS LAI 
products, and we didn’t use the quality filter at the first place to ensure the model can be driven by 
continued LAI field. The model didn’t have ability to deal with the LAI gap, but this problem can be 
solved by using some interpolation technics when preparing the inputs. In this study, we didn’t use 
interpolation method to fill the gaps to avoid introducing artificial uncertainties especially for trend 
analysis. 

 

P4 L21-23, Could you list what PFTs you have in your simulations (or showing a map), and also how 
MODIS PFTs were reclassified to the CLM group? I think this information is important for readers to 
understand the spatial pattern.  



Response: Thank you so much for your comments. We already provided the method we adopted to 
reclassify the MODIS IGBP classification to the CLM group in the revised paper. The spatial 
distribution of different PFTs has been given in Figure R1. 

 

P7 L18-19, the reasons why the simulated MT is so much lower than the previous estimations needs to 
dig in-depth. Like I mentioned early, could it be linked to the misclassification of PFTs or very different 
emission factors assigned? In Table 3, the modelled isoprene is very low than Li et al., 2013, can the 
authors describe a bit about why?  

Response: Thank so much for your comments. As mentioned above, we re-mapped the IGBP 
classification to PFTs with the new rules we designed and the distribution of different PFTs has been 
given in Figure R1. Currently, our estimation of 33.99 Tg is relatively moderate comparing to other 
studies (Table R4). In addition, the studies by Li et al. (2013, 2020) showed the highest amounts of 
isoprene and monoterpenes emissions comparing to other studies. Therefore, in the revised paper, we 
listed the inputs of different studies to analyze the potential reasons for the discrepancies among these 
studies. As shown in Table R5, the estimations by Li et al. (2013, 2020) used the species level emission 
factors and Vegetation Atlas of China for 2007 to describe the spatial distribution of BVOC emission 
potentials, which is quite different from other studies adopting the PFT-level emission factors and 
satellite PFT products. They themselves concluded the reason why their estimations were far higher 
than other studies was because of the high emission factors they adopted. Therefore, the same 
validations by using canopy-scale BVOC flux measurements are also needed for these studies to validate 
and constrain the emission factors they used. 

Table R4. Comparison of isoprene and monoterpene emissions (Tg) in China with previous studies. 

Data Source Isoprene Monoterpene Study period Method or Model 

This study 15.94 (±1.12) 3.99 (±0.17) 2001-2016 MEGAN 

Stavrakou et al. 

(2014) 
7.17 (±0.30) - 2007-2012 

MEGAN-

MOHYCAN 

Li et al. (2013) 23.4 5.6 2003 MEGAN 

Li et al. (2020) 33.21 6.35 2008-2018 MEGAN 

CAMS-GLOB-BIO 

v1.1 
7.67 3.04 2001-2016 MEGEN 



(Sindelarova et al., 

2014) 

CAMS-GLOB-BIO 

v3.1 

(Sindelarova et al., 

2014) 

8.54 3.23 2001-2016 MEGAN 

Fu and Liao (2012) 10.87 3.21 2001-2006 
GEOS-Chem-

MEGAN 

Tie et al. (2006) 7.7 3.16 2004 
Guenther et al. 

(1993) 

Klinger et al. (2002) 4.65 3.97 2000 
Guenther et al. 

(1995) 

Guenther et al. 

(1995) 
17 4.87 1990 

Guenther et al. 

(1995) 

 

Table R5. Comparison of inputs for BVOC estimation with previous studies. 

Reference 
Emission Factor 

Type 

Emission Factor 

Reference 
PFT/Land use LAI/Biomass Meteorology Model/Algorithms 

This study 
PFT level 

emission factors 

Guenther et al. 

(2012) 

MODIS 

MCD12C1 v6 

MODIS 

MCD15A2H v5 
WRF Model v3.9 MEGANv2.1 

Stavrakou et al. 

(2014) 

PFT level 

emission factors 

Guenther et al. 

(2006) 

Ramankutty and 

Foley (1999) 

MODIS 

MOD15A2 v5 

ERA-Interim 

Dataset 

MEGAN-

MOHYCAN 

Li et al. (2013) 

Vegetation 

genera/species level 

emission factors 

Li et al. (2013) 
Vegetation Atlas 

of China for year 2007 

MEGAN database 

for 2003 
MM5 Model v3.7 MEGAN 

Li et al. (2020) 

Vegetation 

genera/species level 

emission factors 

Li et al. (2013) 
Vegetation Atlas 

of China for year 2007 

Estimations based 

on surveys and 

statistics 

WRF Model v3.8 MEGAN 

CAMS-GLOB-

BIO v1.1 

(Sindelarova et 

al., 2014) 

PFT level 

emission factors 

Guenther et al. 

(2012) 

16 plant functional 

types consistent with 

the Community Land 

Model  

MODIS 

MOD15A2 v5 

ERA-Interim 

Dataset 
MEGAN 



 

CAMS-GLOB-

BIO v3.1 

(Sindelarova et 

al., 2014) 

PFT level 

emission factors 

Guenther et al. 

(2012) 

16 plant functional 

types consistent with 

the Community Land 

Model  

MODIS 

MOD15A2 v5 
ERA-5 Dataset MEGAN 

Fu and Liao 

(2012) 

PFT level 

emission factors 

Guenther et al. 

(1995) 

Lathière et al. 

(2006) 

Levis et al. (2003) 

Bai et al. (2006) 

MODIS 

MCD12Q1 v5 

MODIS 

MOD15A2 v5 

GEOS-4 

Meteorology 

GEOS-Chem-

MEGAN 

Tie et al. (2006) 
Landuse level 

emission factors 

Landuse-based 

emission rates 

USGS 1km land 

use data 
/ WRF model 

Guenther et al. 

(1993) 

Klinger et al. 

(2002) 

Vegetation 

genera/species level 

emission factors 

Klinger et al. 

(2002) 

Province-level 

Forest Inventory 
/ 

Monthly 

meteorology database 

by (Leemans and 

Cramer, 1991) 

Guenther et al. 

(1995) 

Guenther et al. 

(1995) 

PFT level 

emission factors 

Guenther et al. 

(1995) 

Grided Global 

Ecosystem Types 

Estimations from 

NPP 

Monthly 

meteorology database 

by (Leemans and 

Cramer, 1991) 

Guenther et al. 

(1995) 

 

P9 L23, might need to add one or two sentences in the method section why p > 0.9 is statistically 
significant. I did not get it here.  

Response: Thank you so much for comments. The probability we used here is defined as:  

probability = 1 – p,  

where p is the 2-sided p value after MK test (https://mailman.ucar.edu/pipermail/ncl-talk/2015-
May/002594.html). Since this may confuse the readers, we adopted the original 2-sided p value from 
MK tests in the revised paper. 

 

P12 L11-12, “The lack of long-term in-situ observations of BVOC in China...” I think this might be the 
case for most of countries where we don’t have dataset being representative at the whole country level, 



but I think the authors should definitely compare the modelled with in-situ data for a few representative 
sites to evaluate the model performance. In China, there are some sites where you can find the 
ecosystem-level BVOC measurement data for comparison, like some links I provided in the previous 
comments.  

Response: Thank you so much for comments. Luckily, some flux measurements were conducted in 
China and published in recent years. We collected theses flux measurements from some recent studies 
(Bai et al., 2015;Bai et al., 2016;Bai et al., 2017) and use them to validate and analyze the uncertainties 
of our estimation. The details about the flux measurements has been given in Table R3. 

According to our validation, the performance of model can be improved by updating the emission 
factors. When we adopted the emission factor retrieved from observations (Bai et al., 2015; Bai et al., 
2016;Bai et al., 2017), the simulated isoprene and monoterpenes fluxes showed relatively good 
consistence with the observations by using the same activity factors from this study shown in (c) and 
(b) in Figure R3. This indicates that emission factors are an important source of uncertainties in this 
study, on the other hand, it also demonstrates our calculation of activity factor in the model is in a 
relatively reasonable range. However, these studies only covered very limited numbers of ecosystems 
in China. Our work is focusing on the impact of land cover change and vegetation biomass change on 
BVOC emission. The increasing trend of tree cover fraction will increase the BVOC emission with the 
reasonable activity factors, and the role of emission factors is to decide how strong the trend can be. So, 
using the default emission factor is also able to discuss the change of BVOC induced by vegetation 
development. 

 

P12 L12-18, this part should be in the method section.  

Response: Thanks for your comments. This part has been introduced in the Section 2.4, so we removed 
the repeated information here and rephrased this paragraph as: 

“The OMI HCHO VC product from 2005-2016 developed by BIRA-IASB (De Smedt et al., 2015) was 
used in this study. The interannual variability of isoprene emission estimated in this study was evaluated 
by comparing the isoprene emission with the summer (June-August) averaged HCHO VC.” 

 

P13 L5, “. . . are marked with black dots” it is difficult to see these dots though.  

Response: Thanks for your comments. As shown in Figure R2, we used relatively sparser and more 
conspicuous dots to illustrate the grids that passed the t test in the revised paper.  

 

Conclusion, it is rather lengthy at this moment and includes large section of discussion as well. Please 
make it more concise.  

Response: Thanks for your comments. We have removed some lengthy paragraphs in the revised paper, 



and we were more focused on discussing the detail of methods and uncertainties. 

 

Response to Referee #2  

The study by Wang and co-workers investigates the impact of satellite-based land use changes on 
biogenic VOC emissions in China over 16 years (2001-2016). They report positive emission trends of 
1-1.5% per year over the whole country, which are attributed, for a major part, to changes in vegetation. 
The strongest BVOC trends are reported in Qianling mountains and in south China, where the BVOC 
emissions increased by more than ∼60% in 2016 relative to 2001. Further comparison of BVOC 
interannual variability with HCHO columns from the OMI instrument over the studied period in 
summertime exhibited positive temporal correlation over forested regions. This study addresses an 
interesting subject for Atmospheric Chemistry and Physics journal. However, there are weaknesses and 
limitations in the present study, which raise doubts regarding the validity of the conclusions. 
Furthermore, the presentation is often difficult to follow, mostly due to insufficient mastery of the 
English language. To my view, the manuscript will need a major revision before it becomes suitable for 
publication. My main concerns are listed below: 

Response: Thank you so much for your precious time and we really appreciate your comments. We 
have tried to address your concerns by taking the following measures: 

1. We found some mistakes in our program for mapping the MODIS classification system to CLM PFTs, 
which will lead to missing or double counting some PFT categories during the mapping process. 
Therefore, we corrected the program and re-ran the all experiments. In addition, we used the IGBP 
classification scheme this time instead of using the Leaf Area Index Classification Scheme in MCD12C1 
product as the original classification scheme for mapping considering the more detailed descriptions of 
legends in IGBP scheme. Some conclusions were also corrected based on the new results. 

2. We added one more experiment named S5 to illustrate the contribution of LAI on trends of BVOC 
emission. In S5, we used the annually updated LAIv and the fixed meteorological inputs and PFT dataset 
for the year 2001. The analysis for S5 has been added into the revised paper. 

3. We further compared our results with other studies to discuss the uncertainties of our estimation. We 
downloaded some long-term BVOC estimations from ECCAD database (https://eccad.aeris-data.fr) and 
compared them with our results to analyses the potential reason that results in the discrepancies between 
our results and other estimations. In addition, we collected the flux measurements from some recent 
studies (Bai et al., 2015;Bai et al., 2016;Bai et al., 2017) to validate our model and discuss the 
uncertainties induced by emission factor. Corresponding content has been added into the revised paper. 

4. We removed the Section 3.5 in the previous version paper about “Comparison of BVOC emission 
with Anthropogenic Emission China”. Considering the uncertainties behind our estimations, we decided 
to concentrate on BVOC emission estimation and discuss more about uncertainties instead of extending 
to discuss anthropogenic emissions. Some lengthy and less informative paragraphs are also removed in 



the revised paper. 

 

(i) Important input datasets required for calculating BVOC emissions using MEGAN model (e.g. PFTs) 
are not shown. Annual maps of the MODIS PFTs and LAI should be provided, as well as their trends. 
Without such information, it is impossible to assess the driving factors for the changes and therefore for 
the validity of the claims. Furthermore, it is not clearly mentioned whether a unique emission factor per 
PFT has been used (Table 2 of Guenther et al. 2012) or if a map of standard emission factors has been 
used. 

Response: Thank you so much for your comments. The spatial distribution of different PFTs has been 
shown in Figure R1, which is also provided in the revised paper. Besides the spatial distribution of PFTs, 
the trend of main PFTs and LAIv are also provided here (Figure R4) as well as in the revised paper.  

The method for converting MODIS classification system to CLM PFTs is added at P4, L8 as: 

“The PFT was used to determine the canopy structure and standard emission factors in MEGAN 
(Guenther et al., 2012). We adopted the default emission factors for PFTs described in Table 2 in 
Guenther et al. (2012). The PFT data source in this study is obtained from the MODIS MCD12C1 land 
cover product (https://lpdaac.usgs.gov/products/mcd12c1v006/, Friedl and Sulla-Menashe, 2015). 
MODIS IGBP classification were mapped to the PFT classification of MEGAN or the Community Land 
Model (CLM) (Lawrence et al., 2011) based on the description of the legends in the user guide (Sulla-
Menashe and Friedl, 2018) and the climatic criteria described in Bonan et al. (2002). The spatial 
distribution of percentage of PFTs in model grids is presented in Figure 1. According to the description 
of the legends, we firstly mapped the IGBP classification to eight main vegetation categories: 1) 
needleleaf evergreen forests, 2) broadleaf evergreen forests, 3) needleleaf deciduous forests, 4) 
broadleaf deciduous forests, 5) mixed forests, 6) shrub, 7) grass and 8) crop. The mapping method is 
described in Table S1 in the supplement. Eight main categories then were mapped to the classification 
of MEGAN/CLM for boreal, temperate and boreal climatic zones using the definition by Bonan et al. 
(2002). Table S2 in the supplement presents the climatic criteria for mapping, and the climatic 
information for mapping was from the climatology of the ERA Interim 
(https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim, Berrisford et al., 2011) 
Reanalysis dataset over 2001-2016.”



 

Figure R4. Spatial distribution of BVOC emission in 2001 (b) and the changing trends of annual emission rate (S1, 

S2 and S5), cover fractions of main PFTs and LAIv. 

 

(ii) I have my doubts regarding the almost negligible isoprene trends due to meteorology suggested by 
Figure 3 (simulations S3 and S4). The scale in this figure does not allow to see any changes elsewhere 
than in the Tibetan Plateau. Elsewhere, the color (grey) corresponds to no value. In order to explain the 
emission trend in S3 and S4, trends of the main drivers of the BVOC emission trends, namely, air 
temperature, solar radiation and leaf area index should be analysed. In addition, the simulated trend in 
surface temperature and radiation should be compared to the corresponding trends of the in situ 



temperature and solar radiation data used for the evaluation of the WRF model simulation in Section 
2.3. 

Response: Thank you so much for your comments. We have adopted your suggestions and took some 
measures to improve the way to convey information. As shown in Figure R5, we changed the way we 
presented the spatial patterns of trends, and we used the black dots to mark the regions with statistically 
significant trends and keep the non-significant trends for other the regions. For the meteorological 
drivers, we also gave the trends of growing season 2-meter temperature (T2) and downward shortwave 
radiation (DSW) (Figure R6). Furthermore, the details of land cover changes, LAI and meteorological 
conditions were also presented and analyzed for the regional analysis. 

We also added the following description in P5, L12: 

“The trends of growing season averaged T2 and DSW from model results as well as in-situ 
measurements are presented in Figure 3. The model and the in-situ measurements show similar patterns 
for T2. For instance, the model and observations both show an increasing trend in regions like the 
Tibetan Plateau, southern China and a decreasing trend in eastern and northeastern China. For DSW, the 
model presented a dimming trend in northeastern and eastern China and a brightening trend in 
southeastern and central China, and the limited number of radiation observation sites show a similar 
pattern of trend with model results. In general, the WRF simulation successfully captured the long-term 
meteorological variabilities and is reasonable to use for estimating the impact of climatic variability on 
BVOC emission in China for this study.” 



 

Figure R5. The horizontal distributions of isoprene, monoterpenes, sesquiterpenes and total BVOCs emissions of 

China in 2001 are showed in figure (a), (g), (m) and (s), respectively. The rest columns of figures present the 

changing trend of isoprene (b-f), monoterpenes (h-l), sesquiterpenes (n-r) and total BVOCs (t-x) in S1, S2, S3, S4 

and S5, respectively. The Mann-Kendall test were used to mark the grids where the p is smaller than 0.1. 



 
Figure R6. The trend of growing season averaged 2-meter temperature (T2) and downward shortwave radiation 

(DSW). (a) and (b) are for in-situ T2 and DSW, respectively, and the sites with statistically significant trend are 

marked by black circles. (c) and (d) are for the WRF simulated T2 and DSW, respectively, and the regions with 

statistically significant trend are illustrated by shadow.  

 

(iii) There is not convincing evidence for the very low monoterpene emission derived in this study 
compared to previous work (Table 3). The invoked reasons, e.g. interannual variations, horizontal 
resolution, etc. (page 7, lines 81-20) are not convincing. The reasons of the discrepancy should be 
investigated through detailed comparisons e.g. with the MEGAN inventory and similar studies e.g. 
Sindelarova et al. (2014). These datasets are accessible via the ECCAD database (https://eccad.aeris-
data.fr). 

Response: Thank you so much for your comments. After re-runing our experiments, our estimation of 
monoterpenes emission is about 3.99 Tg, which is close to or even higher than other studies. In addition, 
we have compared our results with the CAMS-GLOB-BIO inventories of BVOC emission from 
ECCAD database as shown in Figure R7 and Figure R8, and we concluded that the discrepancy between 
our estimation with CAMS-GLOB-BIO inventories is the PFT and LAI inputs. The meteorological 



inputs for CAMS-GLOB-BIO v1.1 and v3.1 are ERA-Interim and ERA-5 reanalysis data, respectively, 
and the WRF model used in this study was also driven by ERA-Interim reanalysis data. Therefore, the 
four datasets have the similar source of meteorological inputs. In addition, these estimations all adopted 
the same PFT level emission factors from Guenther et al. (2012). Therefore, the potential reason for the 
differences between our estimation and CAMS-GLOB-BIO inventories is the discrepancies of PFT and 
LAI inputs. The following discussion have been added in P11, L16: 

“The setting of inputs in this study is relatively close to the study by Stavrakou et al. (2014) and CAMS-
GLOB-BIO biogenic emission inventories (https://eccad3.sedoo.fr/#CAMS-GLOB-BIO) that adopted 
the method described by Sindelarova et al. (2014). However, the estimation of isoprene emission in this 
study is about 86.6%-122.3% higher than their estimations, and the estimation of monoterpene emission 
is about 23.5% and 31.3% higher than that from CAMS-GLOB-BIO v3.1 and v1.1, respectively. We 
further compared our results with two versions of CAMS-GLOB-BIO inventories. Figure 10 and Figure 
11 present the trends of isoprene emission and monoterpenes emission respectively from S1 and S3 in 
this study, CAMS-GLOB-BIO inventory v 1.1 and v 3.1 during 2001-2016. As shown in Figure 10 and 
Figure 11, S3 shows similar spatial patterns and magnitude of changing trend of isoprene and 
monoterpenes emission with CAMS-GLOB-BIO v 1.1 and CAMS-GLOB-BIO v3.1, e.g. three datasets 
all showed a strong increasing trend in Yunnan province, and S1 shows much more stronger changing 
trends comparing with other three datasets with annually updated LAI and PFT datasets. The 
meteorological inputs for CAMS-GLOB-BIO v1.1 and v3.1 are ERA-Interim and ERA-5 reanalysis 
data, respectively, and the WRF model used in this study was also driven by ERA-Interim reanalysis 
data. Therefore, the four datasets have the similar source of meteorological inputs. In addition, these 
estimations all adopted the same PFT level emission factors from Guenther et al. (2012). Therefore, the 
potential reason for the differences of isoprene and monoterpenes emission among the datasets in Figure 
10 and Figure 11 is the discrepancies of PFT and LAI inputs. CAMS-GLOB-BIO also adopted the 
annually updated LAI inputs developed by Yuan et al. (2011) based on MODIS MOD15A v5 LAI 
product, but the two versions of CAMS-GLOB-BIO inventory didn’t show a same level strong 
increasing trend with S1. The increasing trend of LAI in China is agreed by multiple LAI products but 
with different rates (Piao et al., 2015;Chen et al., 2020). In this study, we adopted the latest MODIS LAI 
product of version 6, and a strong increasing trend of LAI in China has been found by using this product 
(Chen et al., 2019). Therefore, an increasing trend of BVOC emission induced by LAI should be seen 
in the estimation with annually updated LAI inputs, but the magnitude of this trend is also affected by 
the magnitude of changing trend of LAI products. The PFT map used in this study is coming from 
MODIS land cover product, which is a mesoscale satellite product with the highest resolution of 500m. 
Besides the product itself, the method for converting the original land cover classification system to 
PFT classification system is also important. Hartley et al. (2017) illustrated that the cross-walking table 
for converting land cover class maps to PFT fractional maps can lead to 20%-90% uncertainties for 
gross primary production estimation in land surface model by using different vegetation fractions for 
mixed pixels, and the BVOC emission estimation has the same issue. In this study, we assumed that the 
pixels that were assigned as vegetation is 100% covered by that kind of vegetation (Table S2 in the 



supplement). Therefore, it will lead to the overestimation of vegetation cover rate for mixed pixels, 
which can lead to higher BVOC emission. ” 

 

Figure R7. Comparison of the trend of isoprene emission between this study (S1) and other estimations during 

2001-2016. (a) and (b) is for S1 and S3 respectively in this study, and (c) and (d) are for CAMS-GLOB-BIO v 1.1 

and CAM-GLOB-BIO v3.1, respectively. 

 



 
Figure R8. Comparison of the trend of monoterpenes emission between this study (S1) and other estimations 

during 2001-2016. (a) and (b) is for S1 and S3, respectively, in this study, and (c) and (d) are for CAMS-GLOB-

BIO v 1.1 and CAM-GLOB-BIO v3.1, respectively. 

 

(iv) The strong trends inferred over the Qinling mountains and over Southern China need further 
discussion. Can you put compare this result to past studies? What is the respective roles played by LAI 
and PFT cover trends? 

Response: Thank you for your comments. As mentioned above, we compared our results with the 
CAMS-GLB-BIO inventories. As shown in Figure 5 above, an increasing trend of isoprene emission 
can be found in CAMS-GLOB-BIO v 1.1 inventory but with relative low magnitude comparing with 
our estimation. For further discuss the trends of BVOC emission in these regions, we listed the change 
of annual emission amount in S1, S2 and S5 scenarios, cover fractions of main PFTs, LAIv, growing 
season temperature and DSW in these regions in Table 3 and Table 4 in the revised paper. In addition, 
we also added one more experiment named S5 with annually updated LAIv inputs and fixed the 
meteorological conditions as well as PFT input to investigate the contribution of LAI trend on BVOC 
emission trend. The results of S5 has been added into the revised paper. 

 

Specific comments/Language corrections 



p.2, l.3-7: The sentence is too long, considering splitting into two and rephrasing. 

Response: Thank you for your comments. This sentence has been re-written as: 

“Besides the climatic factors, the land cover change also plays a key role in the variability of BVOC 
emission (Stavrakou et al., 2014; Unger, 2013; Chen et al., 2018). For instance, cropland expansion has 
been estimated to dominate the reduction of isoprene, the dominant BVOC species, in last century 
(Lathière et al., 2010; Unger, 2013) although there are large uncertainties associated with these 
estimates.” 

 

p.2, l.5: add space between ’2014’ and ’Chen’ 

Response: Thank you. We have followed your advice. 

 

p.2, l.12: ’a corresponding impact’, replace by ’changes’ 

Response: Thank you. We have followed your advice. 

 

p.3, l.10: remove ’observed’ 

Response: Thank you. We have followed your comments. 

p.3, l.10: ’regional ecosystem isoprene emission’, change to ’isoprene emission at regional to global 
scales’ 

Response: Thank you. We have followed your advice. 

 

p.3, l.11: ’reported the’, change to ’reported an’ 

Response: Thank you. We have followed your advice. 

 

p.3, l.12: read ’detected by the Ozone’ 

Response: Thank you. We have followed your advice. 

 

p.3, l.14-15: rephrases as follows: ’Here we used the long-term OMI 2005-2016 record to estimate the 
interannual isoprene variability in China’ 

Response: Thank you. We have followed your advice. 

 

p.3, l.19: add reference Guenther et al.(2012) 



Response: Thank you. We have followed your advice. 

 

p.3, l.20: add more references, e.g. Bauwens et al.(2018) and Messina et al.(2016) 

Response: Thank you. We have added these references. 

 

p.3, l.23: read ’uses the fundamental’ 

Response: Thank you. We have followed your advice. 

 

p.4, l.1: read ’the standard emissions factor, and the emission activity factor for the 

chemical species i’ 

Response: Thank you. We have followed your advice. 

 

p.4, l.3: ’(PFT) distribution from the Community Land...’ 

Response: Thank you. We have followed your advice. 

 

p.4, l.5: replace ’expresses it as’ by ‘can be written as’ 

Response: Thank you. We have followed your advice. 

p.4, l.8: ’equal to 1 at standard conditions (Guenther et al. (2006)’ 

Response: Thank you. We have followed your advice. 

 

p.4, l.9: please specify the source of the LAI dataset 

Response: Thank you. We have added the link of website of MODIS LAI products 
(https://lpdaac.usgs.gov/products/mcd15a2hv006/) in this sentence. 

 

p.4, l.9: replace ’and the leaf age in MEGAN’ by a new sentence: ’It is used to define the leaf age 
response function as described in Guenther et al.(2012).’ 

Response: Thank you. We have followed your advice. 

 

p.4, l.10: the test should read ’Guenther et al. (1991, 1993, 2012)’ 



Response: Thank you. We have followed your advice. 

 

p.4, l.14: remove ’factor’ 

Response: Thank you. We have followed your advice. 

 

p.4, l.18: ’adopted’, change to ’used’ 

Response: Thank you so much. We have followed your advice. 

 

p.4, l.18: ’in this study’, missing reference for the LAI datasets used 
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Abstract. Satellite observations reveal that China has been leading the global greening trend in the past two decades. We assessed 

the impact of land cover change on total BVOC emission in China during 2001-2016 and found that the land cover change from 

2001 to 2016 can lead to a significant increasing trend of 0.50% y-1.09% yr-1 with increases of 1.35, 1.25 and 1.43 % yr-1 for total 15 

BVOC emission in China. Main BVOC classes of isoprene, monoterpenesmonoterpene and sesquiterpene all had increasing trends 

of 0.64, 0.44 and sesquiterpenes, respectively. Comparison of0.39 % y-1. The BVOC emission level in 2016 can be 11.7% higher 

than that in 2001 because of higher tree cover fraction and vegetation biomass. Considerable heterogeneity was found on regional 

scales, and the BVOC emission level during 2013-2016 would be 8.6%~19.3% higher than that during 2001-2004 in the regions 

including 1) northeastern China, 2) Beijing and its surrounding areas, 3) the Qinling Mountains, 4) Yunnan province, 5) Guangxi-20 

Guangdong provinces and 6) Hainan island because of land cover change. The comparison among different scenarios showed that 

vegetation change changes resulting from land cover management is the main driver of BVOC emission change in China. 

Considerable heterogeneity was observed on regional scales, with the highest increasing trends of BVOC emission found in the 

Qinling Mountains and in the south of China. The BVOC emission for the year 2016 Climate variability contributed significantly 

to interannual variations but not the long-term trend. In the standard scenario, that considers both land cover change and climate 25 

variability, a statistic significant increasing trend still can be found in the regions including Beijing and its surroundings, Yunnan 

provinces and Hainan island, and BVOC emission total amount in these two regions was enhanced by 61.89 and 67.64% compared 

toduring 2013-2016 is 11.0%-17.2% higher that ofduring 2001, respectively-2004. We compared the long-term HCHO vertical 

columns (VC) from the satellite-based Ozone Monitoring Instrument (OMI) with the estimation of isoprene emission in summer. 

The results showed statistically significant positive correlation coefficients over the regions with high vegetation cover fractions. 30 

In addition, the isoprene emission and HCHO VC both showed statistically significant increasing trends in the south of China 

where these two variables have high positive correlation coefficients. This result supports our estimation of the variability and 

trends of BVOC emission in China. Although anthropogenic sources comprise ~63% NMVOC emissions in China, theThe 

continued increase of BVOC will enhance the importance of considering BVOC when making policies for controlling ozone 

pollution in China along with ongoing efforts to reduce anthropogenic emissions. 35 
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1 Introduction 

Biogenic Volatile Organic Compounds (BVOCs) play an important role for air quality and the climate system 

due to their large emission amount and reactivity (Guenther et al., 1995; Guenther, 2006). BVOCs are 

important precursors of ozone and secondary organic aerosols (SOAs) (Kavouras et al., 1998; Claeys et al., 

2004), therefore, it is important to understand the variability of BVOC emission and its impact on air quality 5 

and the climate system. The emission of BVOC is controlled by multiple environmental factors like 

temperature, radiation, CO2 concentration of CO2 and other stresses, andtherefore it is affected by climate 

changes (Guenther et al., 1995; Arneth et al., 2007; Penuelas and Staudt, 2010). Besides the climatic factors, 

the land cover change also plays a key role in the variability of BVOC emission (Stavrakou et al., 2014; 

Unger, 2014;2013; Chen et al., 2018), e.g.,). For instance, the global cropland expansion has been estimated 10 

to dominate the reduction of isoprene, the dominant BVOC species, in last century (Lathière et al., 2010; 

Unger, 2013) although there are large uncertainties associated with these estimates. 

China has been greening in recent decades (Piao et al., 2015). A recent study points out that China accounts 

for 25% of the net increase of global leaf area during 2000-2017 (Chen et al., 2019). The increase of forest 

area plays a dominant role in greening in China with multiple programs to maintain and expand forests 15 

(Zhang et al., 2016; Bryan et al., 2018; Chen et al., 2019). The enhancement of vegetation cover rate and 

biomass can lead to the increase of BVOC emission in China and induce a corresponding impactchanges on 

local air quality and the climate system. Previous studies have investigated the long-term emission trend of 

dominant BVOC species like isoprene in China (Fu and Liao, 2012; Li and Xie, 2014; Stavrakou et al., 2014; 

Chen et al., 2019). Li and Xie (2014) estimated the historical BVOC emissions during 1981-2003 in China 20 

using the national forest inventory records and reported that the BVOC emission increased at a rate of 1.27% 

yry-1. Another estimation by Stavrakou et al. (2014) showed an upward trend of 0.42% yry-1 of isoprene 

emission in China during 1979-2005 driven by the increasing temperature and solar radiation, moreover, the 

upward trend of isoprene emission reached 0.7% yry-1 when considering the replacement of cropland with 

forest. A recent study by Chen et al. (2018) concluded that the global isoprene emission decreased by 1.5% 25 

because of the tree cover change during 2000-2015, but in China, the isoprene emitted by broadleaf trees and 

non-trees increased by 3.6% and 5.4%, respectively. However, these studies have limitations in representing 

annual changes of vegetation, e.g., Li and Xie (2014) used fixed LAI input of year 2003 over the whole study 

period of 1981-2003. 

Considering the significant land cover change and greening trend in China, it is necessary to thoroughly 30 

investigate the impact of intense reforestation on BVOC emission in China. In this study, we used the latest 

annually continuous land cover products Version 6 by the MODerate-resolution Imaging Spectroradiometer 

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1, Superscript

Formatted: Font color: Text 1

Formatted: Font color: Text 1, Superscript

Formatted: Font color: Text 1

Formatted: Font color: Text 1, Superscript

Formatted: Font color: Text 1



 

 3

(MODIS) sensors as well as the Model of Emissions of Gases and Aerosols from Nature (MEGAN, Guenther 

et al. 2012) model to investigate BVOC emission in China from 2001 to 2016. By annually updating the 

vegetation information of MODIS observations, we could accurately estimate interannual variability of 

BVOC emission to assess the impact of greening trend on BVOC in China during 2001-2016. 

There are noA long-term in-situ observation of BVOC is not available in China currently to validate our 5 

estimation ofinvestigate interannual variability of BVOC emission, however, satellite formaldehyde (HCHO) 

observations provide an opportunity to validate the interannual variability of isoprene, the dominant 

compound among BVOC species that accounts for almost half of total BVOC emission in China (Li et al., 

2013). Since HCHO is an important proxy of isoprene in forest regions with no significant anthropogenic 

impact, satellite observed HCHO columns are widely used to derive regional ecosystem isoprene emission 10 

at regional to global scales (Palmer et al., 2003; Marais et al., 2012; Stavrakou et al., 2015; Kaiser et al. 

2018). Zhu et al. (2017b) reported thean increasing trend of HCHO vertical columns (VC) detected by the 

Ozone Monitoring Instrument (OMI) driven by increasing cover rate of local forest in the northwestern 

US.United States. Stavrakou et al. (2018) also used the long-term HCHO VC to investigate the annual 

variability of BVOC induced by climate variability. We haveHere we used the long-term HCHO record from 15 

OMI 2005-2016 by OMIrecord to assess our estimation of annualestimate the interannual isoprene variability 

in China. 

2 Data and Method 

2.1 MEGAN Model 

MEGAN (Guenther et al., 2006; Guenther et al., 2012) is the most widely used model for calculating BVOC 20 

emission from regional to global scales (Müller et al., 2008; Li et al., 2013; Sindelarova et al., 2014; Chen et 

al., 2018).; Bauwens et al. 2018; Messina et al. 2016). The offline version of the MEGAN v2.1 (Guenther et 

al., 2012) model, available at https://bai.ess.uci.edu/megan, was used to estimate the BVOC emission in 

China from 2001 to 2016. MEGAN v2.1 calculates emissions for 19 major compound categories usinguses 

the fundamental algorithm: 25 

 

where Fi, εi and γi represent the emission amount, the standard emissionemissions factor, and emission 

activity factor of chemical species i. The standard emission factor in this study is based on the plant functional 

type (PFT) distribution, and the PFT scheme in MEGAN v2.1 is the scheme adopted in from the Community 
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Land Model 4.0 (Lawrence et al., 2011). The emission activity factor γi accounts for the impact of multiple 

environmental factors and expresses itcan be written as: 

 

where γp,i, γT,i γA,i γSM,i and γC,i represent the activity factors for light, temperature, leaf age, soil moisture and 

CO2 inhibition impact. The Cce (=0.57) is a factor to set the γi equal to 1 at the standard conditions. (Guenther 5 

et al., 2006). The LAI is the leaf area index, and definesit is used to define the amount of foliage and the leaf 

age response function as described in MEGAN.Guenther et al. (2012). The light and temperature response 

algorithms in MEGAN v2.1 are from Guenther et al. (1991), Guenther et al. (, 1993) and Guenther et al. (, 

2012), which described enzymatic activities controlled by temperature and light conditions. The CO2 

inhibition algorithm is from Heald et al. (2009), and only the estimation of isoprene emission considers the 10 

impacts of soil moisture and CO2 concentration. The detailed descriptions of these factor algorithms can be 

found in Guenther et al. (2012) and Sakulyanontvittaya et al. (2008). 

2.2 Land Cover Datasets. 

The land cover parameters for driving MEGAN including LAI, PFT and vegetation cover fraction (VCF) 

were provided by satellite datasets. The MODIS MOD15A2H for 2001 15 

(https://lpdaac.usgs.gov/products/mod15a2hv006/, Myneni et al., 2015a) and MCD15A2H for 2002-2016 

LAI (https://lpdaac.usgs.gov/products/mcd15a2hv006/, Myneni et al., 2015b) datasets were adoptedused in 

this study. The parameter LAIv in MEGAN is calculated as: 

 

where VCF is provided by MODIS MOD44B datasets. (https://lpdaac.usgs.gov/products/mod44bv006/, 20 

Dimiceli et al., 2015).  

The PFT was used to determine the canopy structure and standard emission factors in MEGAN (Guenther et 

al., 2012). The PFT data We adopted the default emission factors for PFTs described in Table 2 in Guenther 

et al. (2012). The PFT dataset in this study is obtained from the MODIS MCD12C1 land cover product, 

(https://lpdaac.usgs.gov/products/mcd12c1v006/, Friedl and Sulla-Menashe, 2015). MODIS IGBP 25 

classification were mapped to the PFT classification were converted to of MEGAN PFT classification or the 

Community Land Model (CLM) (Lawrence et al., 2011) based on the description of the legends in the user 

guide (Sulla-Menashe and Friedl, 2018) and the climatic criteria described byin Bonan Gordon et al. (2002)). 

The spatial distribution of percentage of PFTs in model grids is presented in Figure 1. According to the 

description of the legends, we firstly mapped the IGBP classification to eight main vegetation categories: 1) 30 

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font: Times New Roman, Font color: Text

1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font: 12 pt, Not Bold, Font color: Text

1



 

 5

needleleaf evergreen forests, 2) broadleaf evergreen forests, 3) needleleaf deciduous forests, 4) broadleaf 

deciduous forests, 5) mixed forests, 6) shrub, 7) grass and 8) crop. The mapping method is described in Table 

S1 in the supplement. Eight main categories then were mapped to the classification of MEGAN/CLM for 

boreal, temperate and boreal climatic zones using the definition in Bonan et al. (2002). Table S2 in the 

supplement presents the climatic criteria for mapping, and the climatic information for mapping was from 5 

the ERA Interim climatology of ERA-interim dataset 

((https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim, Berrisford et al., 2011) 

duringReanalysis dataset over 2001-2016. We adopted the default emission factors of different PFTs 

described in Guenther et al. (2012). 

2.3 Meteorological Datasets 10 

The hourly meteorological fields including temperature, downward shortwave radiation (DSW), wind speed, 

surface pressure, precipitation and water vapor mixing ratio were provided by the Weather Research and 

Forecast (WRF) Model V3.9 (Skamarock et al., 2008) simulations. The meteorological simulation ismodel 

was driven by ERA-Interim reanalysis data (Berrisford et al., 2011) with 27 km horizontal spatial resolution 

and 39 vertical layers. The physical schemes were presented in supplemental Table S1S3. 15 

Since light and temperature conditions are the main environmental drivers of BVOC emission (Guenther et 

al., 1993; Sakulyanontvittaya et al., 2008), we assessed the reliability of the WRF simulated downward 

shortwave radiation (DSW) and 2-meter temperature (T2) using the in-situ observations from 98 radiation 

observation sites and 697 meteorology observation sites in China. The in-situ observations used in this study 

are from the National Meteorological Information Center (http://data.cma.cn/). We converted the hourly 20 

model outputs and daily observations to monthly averageaveraged values from 2001 to 2016 for comparison. 

For DSW, the average mean bias (MB), mean error (ME) and root mean square error (RMSE) are 40.37 (± 

20.81), 43.55 (± 17.52) and 49.79 (± 17.70) W m-2 amongfor 98 studied sites, and the. The overestimation of 

DSW simulation is a common issue in multiple simulation studies and may be induced by the lack of physical 

processes for aerosol radiation affect and cloud simulationeffect (Wang et al., 2011; Situ et al., 2013; Wang 25 

et al., 2018). For T2, the average MB, ME and RMSE are -1.19 (± 2.87), 2.40 (± 2.14) and 2.65 (± 2.11) °C 

among 697 sites over China. We also compared the monthly anomalies of DSW and T2 from the model 

simulation and observation to validate the interannual variability of meteorological fields simulated by WRF. 

As shown in Figure 2, the results indicate that the model accurately reproduced the interannual variability of 

DSW and T2, and the correlation coefficients of DSW and T2 anomaly between the simulation and 30 

observation reached 0.77 and 0.88, respectively. OurThe trends of growing season averaged T2 and DSW 

from model results as well as in-situ measurements are presented in Figure 3. The model and the in-situ 
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measurements show similar patterns of T2. For instance, the model and observations both show an increasing 

trend in regions like the Tibetan Plateau and southern China as well as a decreasing trend in eastern and 

northeastern China. For DSW, the model presented a dimming trend in northeastern and eastern China and a 

brightening trend in southeastern and central China, and the limited number of radiation observation sites 

show a similar pattern of trend with model results. In general, the WRF simulation successfully captured the 5 

long-term meteorological variabilities and is reasonable to use for estimating the impact of climatic 

variability on BVOC emission in China for this study. 

2.4 Satellite Formaldehyde Observation(HCHO) Observations 

The satellite HCHO VC used in this study is from the Belgian Institute for Space Aeronomy (BIRA-IASB) 

and iswas retrieved using the differential optical absorption spectroscopy (DOAS) algorithm (De Smedt et 10 

al., 2012; De Smedt et al., 2015). The detailed description of the BIRA-IASB OMI HCHO product can be 

found in De Smedt et al. (2015), and weWe used the monthly Level-3 HCHO VC product with 0.25° × 0.25° 

spatial resolution., and the rows affected by the row anomaly since June 2007 have been filtered in this 

product (De Smedt et al., 2015; Jin and Holloway, 2015). Since the OMI instrument is temporally stable 

(Dobber et al., 2008; De Smedt et al., 2015), the OMI HCHO VC product is suitable for long-term analysis 15 

(Jin and Holloway, 2015) and was used to primarily validate our estimation of isoprene emission variability. 

The major sources of tropospheric HCHO are biogenic VOC, anthropogenic sourceVOC and open fires (Zhu 

et al., 2017a). Since biogenic isoprene is the dominant source of HCHO in the forest regions without obvious 

anthropogenic impactover forests in summertime (Palmer et al., 2003), we used HCHO as the proxy of 

isoprene to validate the interannual variability of isoprene estimates. 20 

2.5 Scenarios and Analysis Method 

We designed fourfive scenarios (S1-S4S5) to investigate the impact of land cover change and climatic 

conditions on BVOC emission. The configurations of the fourfive scenarios are shown in Table 1, and: 

1) S1 was considered as the standard or “full” scenario with both annually updated land cover parameters 

(LAIv and PFT) and meteorological conditions. 25 

2) S2 used the fixed meteorological conditions of the year 2001 and annually updated land cover parameters 

to investigate solely the impact of the ecosystem and land cover variability on BVOC emission.  

3) S3 and S4 adopted the land cover conditions of the year 2001 and 2016 respectively with annually updated 

meteorological fields to characterize the effect of climate variability on BVOC emission and compare the 

difference in BVOC emission induced by vegetation change in China between 2001 toand 2016. 30 
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4) In S5, meteorological conditions as well as PFT input is fixed, and LAIv input is annually updated to 

investigate the contribution of LAI trend to BVOC emission trend. 

The climatic variability can affect the growth of vegetation and then affect LAI values (Piao et al., 2015). In 

this study, the interaction between climate and ecosystem is not considered in the offline MEGAN model, 

which means the meteorological conditions, e.g. precipitation, will not affect the LAI values. The LAI input 5 

for MEGAN model in this study was obtained from the remote sensed LAI products. Therefore, when the 

time of the meteorological condition is inconsistent with that of the LAI input, the indirect impact of 

meteorological conditions on BVOC emission through affecting biomass and phenology were neglected. We 

used the experiments with the inconsistent LAI and meteorological conditions to investigate the direct effect 

of climatic variability on BVOC emissionwas not considered in this study. 10 

The chemical species emissions estimated by MEGAN were grouped into four major categories including 

isoprene, monoterpene, sesquiterpene and other VOCs since the terpenoids account for the majority of total 

BVOC emission and have known impacts on atmospheric oxidants and SOA (Wang et al., 2011). The trend 

analysis in this study was done following the Theil-Sen trend estimation method and the results were tested 

by the Mann-Kendall non-parametric trend test, (MK test). The trend analysis and the corresponding 15 

resultsMK tests in this study were calculatedimplemented using the trend_manken 

(https://www.ncl.ucar.edu/Document/Functions/Built-in/trend_manken.shtml) function of the NCAR 

Command Language (NCL, https://www.ncl.ucar.edu/). 

3 Results and Discussion 

3.1 The Variability of BVOC Emission in China During 2001-2016 20 

As shown in Table 2, the average annual emission during 2001-2016 of isoprene, monoterpene, sesquiterpene 

and other VOCs estimated from S1 are 7.56 (±0.74), 15.94 (±1.37 (±0.12), 3.99 (±0.17), 0.50 (±0.16 

(±0.0203) and 6.7313.84 (±0.4678) Tg, respectively. Isoprene is the dominant species and accounts for about 

half of the total BVOC emission in China. S1 is As shown in Figure 4, the standard scenario that includes 

both annually updated meteorological fields and vegetation conditions. In comparison with previous studies 25 

(Table 3), our estimation of isoprene emission is very close to the results by Stavrakou et al. (2014) and Tie 

et al. (2006) while our estimation of monoterpene emission is considerably (57 to 72%) lower than other 

estimations. Multiple factors including interannual variations, horizontal resolution, meteorological and land 

cover inputs can lead to the discrepancy of these estimations. 

The total estimated BVOC emission in S2 has a statistically significant increasing trend with rates of 1.09 30 

and 1.19% yr-1 for the S1 and without considering the annual variability of meteorological conditions. The 
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increasing rates of isoprene, monoterpenes, sesquiterpenes and total BVOC emission in S2 scenarios (d in 

Figure 2),are 0.64, 0.44, 0.39 and 0.50 % y-1, respectively. The increasing rate of isoprene, monoterpene and 

sesquiterpene are 1.35, 1.25 and 1.43% yr-1 respectively for the S1 scenario. In comparison, the increasing 

rates of these species in the S2 scenario are higher than those in the S1 scenario with 1.58, 1.51 and 1.61 % 

yr-1 for isoprene, monoterpene and sesquiterpene despite the direct impact of meteorological conditions. 5 

Although theThe S1 scenario considers the impact of annual meteorological variability, as well as the surface 

vegetation change, and the BVOC emission in S1 is still in a significantan upward trend driven by the 

increasing forest area and leaf mass. The lack ofbut didn’t pass the significance test of p < 0.1. There’s no a 

significant trend of BVOC emission for both S3 and S4, with fixed landcover and annually updated 

meteorological conditions, demonstrates that meteorology was not an importantthe direct driver of BVOC 10 

emission changetrend in China during this period. Climatic conditions could affect the BVOC emission 

indirectly by affecting the growth of vegetation and controlling BVOC emission (Peñuelas et al., 2009), 

which is not considered in the model used in this study. Therefore, our results only represent the direct impact 

of meteorological conditions on BVOC emissionThe estimated total BVOC emission in S5 also has a 

statistically significant increasing trend of 0.26% y-1 (p<0.05) without considering the annual variability of 15 

meteorological conditions, which is purely caused by the increase of LAI during 2001-2016. 

3.2 The Impact of Land Cover Changes and Meteorological Variability 

The surface vegetation change had a significant influence on BVOC emissions in China during 2001-2016. 

according to our estimation. In S2, the interannual variability of total BVOC emission is primarily determined 

by the surface vegetation change resulting in a nearly linear increasing trend of BVOC emission. The average 20 

annual emission of total BVOC during the later eight years (2009-2016) is 8.503.9% (1.29 Tg) higher than 

that during the previous eight years (2001-2008). The in S2, and the average annual emissions of isoprene, 

monoterpene and sesquiterpene during the previous eight years are 11.3% (by 5.0.79% (0.75 Tg), 11.93.5% 

(0.1513 Tg) and 11.53.1% (0.02 Tg) higher than those during next eight years, respectively. The comparison 

of S3 and S4 results further demonstrate the importance of vegetation development on BVOC emission 25 

considering the interannual variability of meteorological conditions. S3 and S4 adopted the same annually 

updated meteorological field but the fixed land cover information of the year 2001 and 2016, respectively. 

The fluctuation of meteorological factors leads to an interannual fluctuationvariability of BVOC emission in 

S3 and S4, but the increase of vegetation cover rate in 2016 results in BVOC emissions that are much higher 

than that in 2001 under the same meteorological conditions. As presented in Table 2, the average total BVOC 30 

emissions are 14.2 (±0.7031.77 (±1.54) and 17.6 (±0.8935.48 (±1.76) Tg in S3 and S4, respectively, and the 

total BVOC emission in S4 is 23.5by 11.7% (3.3571 Tg) higher than that in S3. The emissions of isoprene, 
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monoterpene and sesquiterpene with the land cover information of the year 2016 are 29.9by 14.1% (2.0007 

Tg), 27.49.0% (0.34 Tg) and 26.78.5% (0.04 Tg) higher than those estimated based on the land cover 

information of the year 2001, respectively. 

The comparison among different scenarios indicates that the land cover change has comparative impact on 

annual BVOC variability with the meteorological fluctuation. The coefficient of variance (CV) of total 5 

BVOC emission in S3 and S4 is about 5% during 2001-2016, which is due to the interannual meteorological 

variability. Furthermore, as shown in Figure 2, the largest discrepancy in total BVOC emission in S3 and S4 

appears between the year 2014 and 2016, with the total BVOC emission in the year 2016 being 21.1 % and 

22.5 % higher than that of the year 2014 in S3 and S4, respectively. In general, the interannual variability of 

meteorological conditions leads to ~20% difference in BVOC emission during our study period. In contrast, 10 

the CV of total BVOC in S2 is 5.74%, which is close to that of 5% in S3 and S4, showing that interannual 

variability is dominated by meteorology even though the trend is dominated by landcover. Moreover, the 

largest discrepancy of total BVOC in S2 (23.9%) occurred between the year 2002 and 2016 and is very close 

to that estimated solely for meteorological conditions. However, as mentioned above, the comparison here 

only considered the direct impact of meteorological conditions, and the meteorological conditions also can 15 

affect the growing process and phenology which can influence BVOC emission indirectly (Peñuelas et al., 

2009). Considering the direct and indirect impact of climatic conditions as well as land cover change, the CV 

of total BVOC in the “full” scenario S1 is 8.15%, which is higher than the other scenarios. The highest and 

lowest total BVOC emission in S1 are in year 2016 and 2010, respectively, with 2016 being 34.60% (5.00 

Tg) higher than 2010. These results show that both landcover and meteorology can individually contribute 20 

~20%, and together over 30%, to the estimated annual variability in China BVOC emissions within this 16-

year time period. 

3.32 The Regional Variability of BVOC Emission in China 

The hotspots of BVOC emission are mainly located in the northeast, central and south of China where the 

forest is widely distributed and the climate is warm and favorable for emitting BVOC as shown in Figure 5. 25 

The Changbai Mountains, the Qinling Mountains, the southeast and southwest China forest regions, southeast 

Tibet, Hainan and Taiwan islands are the regions with highest BVOC emission in 2001, which is broadly 

consistent with the previous estimations (Tie et al., 2006; Li et al., 2013). 

. The spatial distributionspatterns of statistically significant (p> < 0.91) changing trends in S1-S4S5 are also 

presented for individual categories in Figure 5. In general, theThe spatial distributions of trends of different 30 

species in S1 and S2 are highly consistent all shows a national wide significantly increasing trend since the 

vegetation development is the main driver of the increasing trend of BVOC emission. A strong positive trend 
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is found (c, i, o and u in Figure 5). In the full scenario of S1, the Qinling Mountains, southern China 

(Guangdong and Guangxi provinces) and southwestern China (Yunnan province), on the other hand, the 

strong negativearea with statistically significant trend is found at the boundary of Jiangxi and Hunan 

provinces.less than that in S2 considering the impact of meteorological variability. S5 also shows a national 

wide significantly increasing trend of BVOC emission but with smaller rates comparing to S2 (f, l, r and x in 5 

Figure 5). While a positive increasing trend induced by meteorology is also found in Tibet, western Sichuan 

and southeastern Yunnan province in S3 and S4, and it is clear that most of the trend hotspots in S2 do not 

overlap with those in S3 and S4, which further indicates that the vegetation development is the main driver 

of BVOC increasing trend in S1, the “full” scenario, rather than meteorological conditions.which is induced 

by the warming climate and stronger downward shortwave radiation as presented in Figure 3. 10 

We chose three main The spatial patterns of changing trends of total BVOC emission and landcover 

parameters are presented in Figure 6. The cover fraction of broadleaf trees shows a strong increasing trend 

in regions to including northeastern, central and southern China, meanwhile, the grass and crop cover faction 

show a decreasing trend in the same regions. The crop cover rates also show an increasing trend in 

northeastern China, Shan Xi, Gansu and Xinjiang Provinces by replacing the grass there. Besides the change 15 

of PFTs, a national wide increasing trend of LAIv was also found for most regions in China. 

In order to understand the regional discrepancies of changing trend of BVOC emission and its drivers, we 

chose six interest regions to further analyze the hotspots of changing BVOC trend driving by the vegetation 

change, as shown in Figure 3r:. As shown in (a) of Figure 6, six regions includes 1) northeastern China 

(orange frame in Figure 6a, 45.5-54N, 118-130E), 2) Beijing and its surrounding areas (black frame in Figure 20 

6a, 39-42.5N, 114-120E), 3) Qinling Mountains (red frame in Figure 6a, 30-35N, 10434N, 105.5-112E), the 

boundary region of Jiangxi and Hunan provinces (24.5-29N, 112-115E) and southern China, mainly4) 

Yunnan Province (blue frame in Figure 6a, 21-27N, 97.5-106E), 5) Guangxi and -Guangdong provinces (21-

24.5N, purple frame in Figure 6a, 21-25N, 106-117E).) and 6) Hainan island (green frame in Figure 6a, 17.5-

20.5N, 108-112E). The annual changes of vegetation conditions (PFTPFTs and LAI) and LAIv), the annual 25 

emission rate in these three regionsflux and growing season averaged temperature and DSW are presented in 

Figure 7 and Figure 8, and the averaged values and trends of above variables are listed in Table 3 and Table 

4. In general, six regions all show that the woody vegetations replaced the herbaceous vegetations with a 

significantly increasing trend of annual LAIv. Since the broadleaf trees tend to have a higher emission 

potential than grass or crop (Guenther et al., 2012), the transformation of land cover from grass or crop to 30 

broadleaf tree is expected to enhance the emission of BVOC by increasing the landscape average emission 

factor. . The (a), (b) and (c) in Figure 4 illustrate the vegetation and BVOC emission change in Qinling 
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Mountains, southern China and the boundary of Jiangxi and Hunan provinces, respectivelyAs shown in Table 

3 and Table 4, the broadleaf tree cover fraction increased in a rate of 0.15~0.32 % y-1, and the grass cover 

fraction decreased in a rate of 0.11~0.37% y-1 among the six regions during 2001-2016. Except for the 

northeastern China we defined, other five regions all show a decreasing trend of 0.04~0.26% y-1 for the crop 

cover faction. As a result, the total tree cover fraction during the last four years (2013-2016) is 11.0, 82.5, 5 

6.1, 5.7, 5.9 and 8.0 % higher than that during first four years (2001-2004) for northeastern China, Beijing 

and its surroundings, Qinling Mountains, Yunnan Province, Guangxi-Guangdong provinces and Hainan 

Island, respectively, and the LAIv for these regions also increased by 14.8 ~ 26.4 %. Correspondingly, the 

annual BVOC emission flux in six regions all show a significantly increasing trend without considering the 

variability of meteorology in S2. The mean annual BVOC emission flux for the last four years (2013-2016) 10 

is 8.6%~9.8% higher than that for the first four years (2001-2004) in the regions defined above except for 

Beijing and its surrounding areas, where the change of the annual BVOC emission flux reached 19.3% with 

the tree cover fraction increased by 82.5%. If we only consider the contribution of LAI change, as described 

in the scenario S5, above sub-regions except for Guangxi-Guangdong provinces still show a statistically 

significant increasing trend of BVOC emission without considering the variability of meteorology, and the 15 

contributions of the LAIv change to BVOC emission increasing trend is about 25%-66% in these regions. 

As shown in Figure 3, the Qinling Mountains and southern China are the regions with high BVOC emission 

as well as a significant increasing trend of BVOC emission. The mean emission flux in the Qinling Mountains 

of approximately 3.91 g m-2 yr-1 in 2001 increased by 61.9 and 40.4 % to 6.33 and 5.49 g m-2 yr-1 in S1 

and S2 in 2016, respectively. Southern China also shows a strong enhancement of BVOC emission. The 20 

mean emission rate is about 4.11 g m-2 yr-1 in 2001 and increased by 67.6 and 47.4 % to 6.89 and 6.06 g m-

2 yr-1 in S1 and S2 respectively in 2016. Interestingly, the vegetation change patterns are notably different 

in the two regions. We grouped the PFTs used to estimate BVOC emission into three main categories, 

broadleaf tree, needleleaf tree and other vegetations. As shown in Figure 4a, the total vegetation cover 

fraction increased by 0.105, from 0.578 in 2001 to 0.683 in 2016, in the Qinling Mountains region. All three 25 

of the PFTs categories contributed to the increasing vegetation cover trend in the Qinling Mountains from 

2001 to 2016 including 0.207 to 0.262 (0.055 increase) for broadleaf trees, 0.004 to 0.007 (0.003 increase) 

for needleleaf trees and 0.366 to 0.414 (.048 increase) for other vegetation. The percent contribution of each 

PFT category to the total vegetation cover fraction increase was about 52% for broadleaf trees, 3% for 

needleleaf trees and 45% for other vegetation. In contrast, there is only a small (0.017) change in total 30 

vegetation cover fraction in Southern China where the total vegetation cover fraction increased from 0.225 

in 2001 to 0.242 in 2016. The major vegetation change in this region, as shown in Figure 4b, is the 
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deforestation that leads to the decrease of broadleaf forest and the increase of other vegetation, primarily 

cropland, from 2001 to 2005 followed by the decline in other vegetation since 2006 along with the increase 

in broadleaf tree cover fraction since 2007. The cover fractions of broadleaf tree, needleleaf tree and other 

vegetation in southern China changed from 0.127, 0.0001 and 0.097 in 2001 to 0.179, 0.0002 and 0.0626 in 

2016, respectively. As a result, the 0.0522 broadleaf tree cover fraction plus the small 0.0001 needleleaf tree 5 

cover fraction increase was partially offset by the 0.0353 vegetation cover fraction decrease of other 

vegetationThe changing trend of the annual BVOC emission flux is different in S1 when the impact of 

meteorological variability is taken into account. The simulated T2 and DSW during the growing season do 

not show a significantly trend in most regions we chose. As shown in Figure 7 and Figure 8, the variabilities 

of the temperature and DSW during the growing season controlled the variability of BVOC flux in S1. When 10 

the meteorological variability is considered, there are still three regions we defined above that show a 

significantly increasing trend of BVOC emission: 1) Beijing and its surrounding areas, 2) Guangxi-

Guangdong Provinces and 3) Hainan island. In Beijing and its soundings, the changing trend of the annual 

BVOC emission flux is 0.04 and 0.03 g m-1 y-1 in S2 and S1, respectively, and the mean annual BVOC 

emission flux in last four years still shows a large increase of 16.6% comparing that in first four years in this 15 

region. A significantly increasing trend of temperature of 0.03 °C y-1 were found in southwestern China 

region, therefore, the increasing trend of the annual BVOC emission flux is 0.1 g m-1 y-1 in S1, which is 

higher than that in S2 of 0.04 g m-1 y-1. The BVOC flux in last four years is about 17.2% higher than that in 

first four years in southwestern China. In Hainan island, the changing trend of the annual BVOC emission 

flux is 0.13 and 0.12 g m-1 y-1 in S2 and S1, respectively, and the annual BVOC emission flux in last four 20 

years is 11.0% higher than that in first four years. 

BVOC emission shows a statistically significant negative trend at the boundary region of Hunan and Jiangxi 

province in (Figure 3). As shown in Figure 4c, there was a BVOC emission decreasing trend from 2001 to 

2010 and an increasing trend from 2011 to 2016 as a result of changes in the broadleaf tree cover fraction. 

As mentioned above, broadleaf tree has a relatively higher BVOC emission potential compared to other PFTs, 25 

therefore, the change of broadleaf tree cover rate induced by anthropogenic activities is expected to affect 

local BVOC emission as shown in Figure 4. Compared to the lowest point of 0.177 in 2010, the cover fraction 

of broadleaf tree in this region recovers to 0.21 in 2016, which is still lower than the 2001 value of 0.224. In 

S2, the average emission rate of BVOC in this region in 2016 is 5.32 g m-2 yr-1 and is 2.91% lower than that 

in 2001 of 5.48 g m-2 yr-1. The lowest average emission rate during the study period appears in 2010 because 30 

of the lowest cover fraction of broadleaf trees. However, in S1 with the impact of meteorological variability, 

the average emission rate in 2016 is 5.89 g m-2 yr-1. This is 7.48% higher than the average emission rate in 
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2001 of 5.48 g m-2 yr-1, but the lowest average emission rate of 4.49 g m-2 yr-1 is still in 2010. In general, 

it is clear that land cover change is a dominate factor impacting the interannual variability of BVOC emission 

on a decadal scale in regions undergoing rapid landcover change as has been suggested by previous studies 

(Unger, 2014; Chen et al., 2018). 

The estimated increase of BVOC in the regions like the Qinling Mountains and southern China are expected 5 

to affect regional air quality. For the Qinling Mountains and surrounding areas, as estimated by Li et al. 

(2018) using the WRF-chem model, the average contribution of BVOC to O3 could reach 16.8 ppb for the 

daily peak concentration and 8.2 ppb for the 24h concentration in the urban region of Xi’an, one of the biggest 

cities near the Qinling Mountains suffering from poor air quality in recent years (Yang et al., 2019).  

For southern ChinaGuangxi-Guangdong Provinces, Situ et al. (2013) reported that BVOC emission could 10 

contribute an average 7.9 ppb surface peak O3 concentration for the urban area in the Pearl River Delta region, 

and the contribution from BVOC even reached 24.8 ppb over PRD in November. Since BVOC plays an 

important role in local air quality, the change of BVOC emission may have an even greater effect on the local 

ozone pollution. For instance, the simulation study by Li et al. (2018) also found that the urban region of 

Xi’an is VOC-limited because of the abundant NOx emission there. Therefore, the increase of BVOC 15 

emission in the Qinling Mountains would further favor the formation of O3 in the urban region of Xi’an. 

3.43 Comparison of Estimates of Isoprene Emission and Satellite Derived Formaldehyde Column Concentration 

The lack of long-term in-situ observations of BVOC in China makes it difficult to validate the variability and 

trend estimation of BVOC emission in this study. However, since biogenic isoprene is the dominant precursor 

of formaldehyde in rural regions with minimal anthropogenic influence (Palmer et al., 2003), remotely sensed 20 

HCHO observation can used as a proxy of isoprene emission to assess the interannual variability of isoprene 

emission. The OMI HCHO VC product from 2005-2016 developed by BIRA-IASB (De Smedt et al., 2015) 

was used in this study, and we compared . The interannual variability of isoprene emission estimated in this 

study was evaluated by comparing the isoprene emission with the summer (June-August) averageaveraged 

HCHO VC records with the summer-average isoprene emission estimated in our study to evaluate our 25 

estimation of interannual variability of isoprene emission. 

The average growing seasonannually averaged LAI during 2005-2016 presented in Figure 9a indicates the 

spatial distribution of vegetation in China. However, the spatial pattern of estimated isoprene emission 

(Figure 9b) differs from the spatial distribution of vegetation because of the variability of emission potentials 

among different PFTs in the MEGAN model as well as the climatic conditions. The spatial pattern of average 30 

summertime HCHO VC observed by the OMI sensor during 2005-2016 is also presented in Figure 9c. The 

highest summer HCHO concentrations in the US are mainly distributed in rural forest regions dominated by 
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biogenic emission (Palmer et al., 2003), while the highest summer HCHO concentrations in China are mainly 

distributed in developed regions like North China Plain where HCHO concentration is dominated by 

anthropogenic sources. (Smedt et al., 2010). There is a moderate HCHO VC of about 6-10 ×1015 molec cm-

2 in the vegetation dominated regions of China. 

The grid level correlation coefficients between the average summer HCHO VC and isoprene emission 5 

estimated in our study are shown in Figure 9d, and the grids with statistically significant correlations (p> < 

0.91, N=12) grids are marked with black dots. A positive correlation can beis found in the northeast, central 

and south of China where there are relatively high vegetation cover rates and low anthropogenic influence. 

In contrast, there’s almost no statistically significant correlation in the high HCHO VC regions like the North 

China Plain which is dominated by anthropogenic emissions. In addition, there is also no significant 10 

correlations between isoprene emission and HCHO VC in regions like the Pearl River Delta where HCHO 

concentration is controlled by both biogenic and anthropogenic sources. However, the distribution of 

statistically significant positive correlated points is not completely consistent with the vegetation distribution 

indicated by LAI because ofdue to the absence of consideration of physical and chemical processes, including 

transportation, diffusion, and chemical reactions. The grids with significant correlation are mostly distrusted 15 

in or near rural regions with high vegetation biomass indicating that our estimations can represent the annual 

variation of isoprene emission. 

The increasing trends of isoprene and HCHO VC during 2005-2016 are presented in (e) and (f) of Figure 9, 

and the statistically significant (p> < 0.91) grids are marked with black dots. The increasing trend pattern of 

isoprene emission during 2005-2016 is basically consistent with that during 2001-2016, which has been 20 

described in the previous sectionSection 3.2, and it is clear that central and southern China areis the 

regionsregion with the greatest increasingstrongest positive trend (> 0.06 g m-2 yr-1).. For HCHO, developed 

regions such as the North China Plain have an increasing trend because of the increase of human activities 

(Smedt et al., 2010), there is also an obvious increasing trend of HCHO VC in the developed Yunnan and 

Guangxi provinces in the south of China. Moreover, these regions, especially Guangxi province also show a 25 

statistically significant positive correlation between isoprene emission and HCHO VC as presented in Figure 

9d. This indicates that biogenic emissions might be the main driver of the increased HCHO in Guangxi 

province. 

3.54 Comparison of BVOC Emission with Anthropogenic Emissionother studies and uncertainties discussion 

The comparison of isoprene and monoterpenes emission estimations between our estimations and previous 30 

studies is presented in Table 5. The estimations of isoprene emission range from 4.65 Tg to 33.21 Tg, and 
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the estimations of monoterpenes emission range from 3.16 Tg to 5.6 Tg in China. Multiple factors including 

emission factor, meteorological and land cover inputs can lead to the discrepancy of these estimations. We 

listed the inputs of these estimations in Table 6 to fully understand the discrepancies between our results and 

other estimations.  

China has initiated a series of pollution control policies in recent years (Zheng et al., 2018; Ma et al., 2019) 5 

and achieved success in controlling some air pollutants, especially PM2.5 (Ma et al., 2019; Yu et al., 2019; 

Xu et al., 2019). However, the ozone pollution is still severe in China especially the mega-city areas (Li et 

al., 2019; Xu et al., 2019). It is widely known that NOx and VOC are the precursors of ground level ozone 

pollution (Seinfeld and Pandis, 2012). NOx emission in China increased from 2010 to 2012 and then declined 

rapidly since 2013 because of the emission control policies, and the national-level NOx emission is about 10 

22.50 Tg in 2016 and is ~15 % lower than that in 2010 (Zheng et al., 2018). On the other hand, as shown in 

Figure 6, the average anthropogenic volatile organic compounds (AVOC) emission during 2010-2016 was 

about 27.9 Tg in China (Zheng et al., 2018), which is ~70% higher than the average emission of BVOC 

during the same period investigated by this study. It is clear that the anthropogenic source currently dominates 

non-methane volatile organic compound (NMVOC) emissions in China. In addition, the spatial distribution 15 

of remotely sensed HCHO VC (Figure 5) also indicates the dominant role of anthropogenic NMVOC 

emission. 

The urban areas in China are generally in the VOC-limited condition and decreasing/increasing local 

NOx/VOC emission would correspondingly promote the formation of ozone (Tang et al., 2010; Li et al., 

2018; Li et al., 2019). Both AVOC and BVOC show the increasing trend since 2010, as shown in Figure 6, 20 

with an increase of 9.7% for AVOC and 34.6% for BVOC from 2010 to 2016, respectively. Combined with 

the decreasing trend of NOx emission, the overall changes of precursors are expected to make it more difficult 

to control ozone pollution. In addition, there are multiple studies pointing out the interactions between 

anthropogenic emission and biogenic emission on ozone pollution in mega cities including Beijing (Pang et 

al., 2009;Shao et al., 2009), Shanghai (Geng et al., 2011), Guangzhou (Situ et al., 2013) and Xi’an (Li et al., 25 

2018). The current trends in biogenic as well as anthropogenic emissions suggest that biogenic emissions 

will play an even more important role in future air pollution in China. 

The setting of inputs in this study is relatively close to the study by Stavrakou et al. (2014) and CAMS-

GLOB-BIO biogenic emission inventories (https://eccad3.sedoo.fr/#CAMS-GLOB-BIO) that adopted the 

method described by Sindelarova et al. (2014). However, the estimation of isoprene emission in this study is 30 

about 86.6%-122.3% higher than their estimations, and the estimation of monoterpene emission is about 

23.5% and 31.3% higher than that from CAMS-GLOB-BIO v3.1 and v1.1, respectively. We further 

Formatted: Font: Times, 12 pt, Font color: Text 1

Formatted: Font: Times, 12 pt, Font color: Text 1



 

 16 

compared our results with two versions of CAMS-GLOB-BIO inventories. Figure 10 and Figure 11 present 

the trends of isoprene emission and monoterpenes emission respectively from S1 and S3 in this study, CAMS-

GLOB-BIO inventory v 1.1 and v 3.1 during 2001-2016. As shown in Figure 10 and Figure 11, S3 shows 

similar spatial patterns and magnitude of changing trend of isoprene and monoterpenes emission with CAMS-

GLOB-BIO v 1.1 and CAMS-GLOB-BIO v3.1, e.g. three datasets all showed a strong increasing trend in 5 

Yunnan province, and S1 shows much more stronger changing trends comparing with other three datasets 

with annually updated LAI and PFT datasets. The meteorological inputs for CAMS-GLOB-BIO v1.1 and 

v3.1 are ERA-Interim and ERA-5 reanalysis data, respectively, and the WRF model used in this study was 

also driven by ERA-Interim reanalysis data. Therefore, the four datasets have the similar source of 

meteorological inputs. In addition, these estimations all adopted the same PFT level emission factors from 10 

Guenther et al. (2012). Therefore, the potential reason for the differences of isoprene and monoterpenes 

emission among the datasets in Figure 10 and Figure 11 is the discrepancies of PFT and LAI inputs. CAMS-

GLOB-BIO also adopted the annually updated LAI inputs developed by Yuan et al. (2011) based on MODIS 

MOD15A v5 LAI product, but the two versions of CAMS-GLOB-BIO inventory didn’t show a same level 

strong increasing trend with S1. The increasing trend of LAI in China is agreed by multiple LAI products but 15 

with different rates (Piao et al., 2015; Chen et al., 2020). In this study, we adopted the latest MODIS LAI 

product of version 6, and a strong increasing trend of LAI in China has been found by using this product 

(Chen et al., 2019). Therefore, an increasing trend of BVOC emission induced by LAI should be seen in the 

estimation with annually updated LAI inputs, but the magnitude of this trend is also affected by the magnitude 

of changing trend of LAI products. The PFT map used in this study is coming from MODIS land cover 20 

product, which is a mesoscale satellite product with the highest resolution of 500m. Besides the quality of 

the product, the method for converting the original land cover classification system to PFT classification 

system is also important. Hartley et al. (2017) illustrated that the cross-walking table for converting land 

cover class maps to PFT fractional maps can lead to 20%-90% uncertainties for gross primary production 

estimation in land surface model by using different vegetation fractions for mixed pixels, and the BVOC 25 

emission estimation has the same issue. In this study, we assumed that the pixels that were assigned as 

vegetation is 100% covered by that kind of vegetation (Table S1 in the supplement). Therefore, it will lead 

to an overestimation of vegetation cover rate for mixed pixels, which can lead to higher BVOC emission. 

The emission factor is also an important source of uncertainties, and it decided the spatial patterns of emission 

rates together with the PFT distribution. In order to understand the role of emission factor, the flux 30 

measurements of isoprene and monoterpenes from the campaigns conducted during 2010 to 2016 in China 

(Bai et al., 2015; Bai et al., 2016; Bai et al., 2017) were collected and compared with model results in this 
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study. The details of these campaigns are provided in Table 7, and the emission factors that were retrieved 

from the observations are also listed for these sites. Most samples were collected during the daytime every 3 

hours according to the descriptions of the measurements (Bai et al., 2015;Bai et al., 2016;Bai et al., 2017), 

therefore, we averaged the model results during 8:00 A.M. to 20 A.M in local time with a three hours interval 

for comparison. As shown in the (a) and (b) of Figure 12, the modeled fluxes of isoprene and monoterpenes 5 

with the default emission factors in this study didn’t capture the variability of the observations. The ME, MB 

and RMSE are 1.60, 1.59 and 2.31 mg m-2 h-1 for isoprene and 0.21, -0.003 and 0.32 mg m-2 h-1 for 

monoterpenes. When we adopted the emission factor retrieved from observations (Bai et al., 2015;Bai et al., 

2016;Bai et al., 2017), the simulated isoprene and monoterpenes fluxes showed relatively good consistence 

with the observations by using the same activity factor from the model (γ in equation (1)) as shown in (c) and 10 

(b) of Figure 12. The ME, MB and RMSE are 0.44, 0.41 and 0.57 mg m-2 h-1 for isoprene and 0.32, 0.14 and 

0.49 mg m-2 h-1 for monoterpenes after adopting the observation-based emission factors, and the statistic 

parameters for isoprene simulation are largely improved. Although the MB and ME of monoterpenes 

simulation are increased, but the simulated monoterpenes flux show better agreement with observations 

(Figure 12). Therefore, it is clear that our calculation of activity factors is in a reasonable range, but the 15 

emission factor is the main source of uncertainties. The PFT level emission factors used in this study from 

Guenther et al. (2012) represents the globally averaged emission factor for PFTs, and it is relatively easy to 

use them with the satellite PFT products. Therefore, the most studies listed in Table 6 adopted the 

PFT/landuse level emission factors. Our validation showed that the accurate emission factor based on 

observations could largely improve the performance of the MEGAN model, but it also requires abundant 20 

efforts to conduct measurements. However, the measurements listed in Table 7 are still very limited for 

describing the spatial discrepancies of ecosystems in China, so we still used the default emission factors in 

MEGAN model for our national scale estimation. The estimations by Li et al. (2013, 2020) used the species 

level emission factors and Vegetation Atlas of China for 2007 to describe the spatial distribution of BVOC 

emission potentials, and they concluded the reason why their estimations were far higher than other studies 25 

is the high emission factors they adopted. Therefore, the same validations by using canopy-scale BVOC flux 

measurements are also needed for these studies to validate and constrain the emission factors they used. 

Meteorological input is also a source of uncertainties for BVOC emission estimation. As shown in Figure 12, 

the modeled isoprene and monoterpenes fluxes are still generally higher than observations when observation-

based emission factors were used. One potential reason for this phenomenon is the overestimation of 30 

temperature and radiation as described in Section 2.3. The sensitivity tests by Wang et al. (2011) showed that 

the about 1.89 °C discrepancy of temperature can result in -19.2 to 23.2% change of isoprene emission and -
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16.2 to 18.5% change of monoterpenes emission for Pearl River Delta region in July, where is also a hotspot 

for BVOC emission in this study. They also found that 115.8 W m-2 discrepancy of DSW can result in -31.4 

to 36.2% change of isoprene emission and -14.3 to 16.8% change of monoterpenes emission for the same 

region. The BVOC emission in this study might be overestimated because of the overestimated temperature 

and DSW in meteorological inputs. However, inaccurate emission factors could lead to over 100% 5 

uncertainties, which is more significant than the uncertainties induced by meteorological inputs. 

4. Conclusion 

Satellite observations have shown that China has led the global greening trend in recent decades (Chen et al., 

2019). In this study, we investigated the impact of this greening trend on BVOC emission in China 

duringfrom 2001 to 2016. We used the long-term satellite vegetation products as inputs forin the MEGAN 10 

model. According to the model estimations, the total BVOC emission in China had vegetation development 

can lead to a significant increasing trend of 0.50% y-1.09% yr-1 during of total BVOC emission in China 

from 2001- to 2016, and main BVOC classes of isoprene, monoterpene and sesquiterpene all had increasing 

trends of 1.35 % yr-1, 1.25 % yr-10.64, 0.44 and 1.43 % yr-1.0.39 % y-1. The BVOC emission level in 2016 

can be 11.7% higher than that in 2001 because of higher tree cover fraction and biomass. The comparison 15 

among different scenarios showed that vegetation changes resulting from land cover management is the main 

driver of BVOC emission change in China. Climate variability contributed significantly to interannual 

variations but not the long-term trend.  

On regional scales, there are strong increasing trends in 1) northeastern China, 2) Beijing and its surrounding 

areas, 3) the Qinling Mountains, southern China (4) Yunnan province, 5) Guangdong and -Guangxi 20 

provinces) and southwestern China, while a 6) Hainan island. A strong negative trend wasincreasing trend of 

broadleaf tree cover fractions and LAIv were found at in these regions. The mean total tree cover fraction 

during the boundary of Jiangxi and Hunan provinces.last four years (2013-2016) is 5.7-82.5 % higher than 

that of the first four years (2001-2004) for these regions, and the LAIv during 2013-2016 increased by 14.8 

~ 26.4 % comparing to that during 2001-2004 in these regions. Consequently, the average BVOC emission 25 

flux for the last four years (2013-2016) is 8.6%~19.3% higher than that for the first four years (2001-2004) 

in the sub-regions we defined driven by the same meteorological inputs. In the standard scenario, that 

considers both land cover and climate, the BVOC emission of year 2016 is 61.89% and 67.64% higher than 

that in 2001 in the Qinling Mountains and southern China, respectively; furthermore, the land cover change 

alone of S1, a statistic significant increasing trend still could lead to 40.40% and 47.44% increase of BVOC 30 

emission in the Qinling Mountains and southern China, respectively. Moreover, the vegetation change 
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patterns are differentbe found in the two regions. In the Qinling Mountains, the total vegetation cover rate 

obviously increased from 0.578 in 2001 to 0.683 in 2016, and all three main PFT categories, i.e. broadleaf 

trees, needleleaf trees and other vegetations, increased during 2001-2016. sub-regions including Beijing and 

its surroundings, Yunnan province and Hainan island considering the climate variability. 

In contrast there the total vegetation cover fraction only increased from 0.225 in 2001 to 0.242 in 2016 5 

southern China, but this was due to the replacement of low BVOC emission potential PFTs, crops or grass, 

with forests that have much higher emission potential. There is also a significantly negative trend at the 

boundary region of Hunan and Jiangxi provinces (Figure 3) induced by deforestation during 2001-2010. 

However, the BVOC emission there has been in a increasing trend since 2011 with the recovery of the 

broadleaf tree forest. 10 

We used the long-term record of satellite HCHO VC from the OMI sensor to assesassess our estimation of 

isoprene emission in China during 2005-2016. The results indicated statistically significant positive 

correlation coefficients between the isoprene emission estimate and satellite HCHO VC in summer over the 

regions with high vegetation cover fraction including the northeast, central and southern China. In addition, 

isoprene emission and HCHO VC both had a statistically significant increasing trend in the south of China, 15 

mainly Guangxi Province, where there was a statistically significant positive correlation supporting the 

estimated variability of BVOC emission in China. 

We conclude that uncertainties of this study mainly come from the emission factor, PFT and LAI inputs 

through comparing our results with other studies and flux measurements during 2010-2016 in China. The 

validation with flux measurements suggested that using the observation-based emission factor could largely 20 

improve the performance of model, but it also requires more much more efforts. The increase of BVOC 

reported by this study is expected to lead to a more complex situation for making the policies for controlling 

ozone pollution in China. The recent pollution control policies in China have effectively initiated the control 

of PM2.5 pollution, but the ozone pollution is still severe especially in urban areas (Ma et al., 2019; Yu et 

al., 2019; Xu et al., 2019; Li et al., 2019). Although anthropogenic emission is still the dominant source of 25 

NMVOC in China and is ~70 % higher than the average biogenic emission in China, the BVOC still makes 

an important contribution to ozone pollution in mega cities including Beijing (Pang et al., 2009;Shao et al., 

2009), Shang Hai (Geng et al., 2011), Guang Zhou (Situ et al., 2013) and Xi’an (Li et al., 2018) and may 

further increase in importance considering the continuing greening trend over China in the future. 
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Table 1. Description of different scenarios used to estimate the BVOC emission. 

 Land Cover LAI  Meteorological conditions 

S1 Annually updated Annually updated Annually updated 

S2 Annually updated Annually updated Year 2001 

S3 Year 2001 Year 2001 Annually updated 

S4 Year 2016 Year 2016 Annually updated 

S5 Year 2001 Annually updated Year 2001 

Table 2. The mean annual China emission (Tg) of different species during 2001 to 2016. The scenarios S1 to S4S5 are described in 
Table 1. 

 S1 S2 S3 S4 S5 

Isoprene 15.94 (±1.12) 
7.5615.40 

(±0.7466) 

7.4014.63 

(±0.5676) 

6.6816.70 

(±0.3289) 

8.6815.29 

(±0.4554) 

Monoterpenes 
1.373.99 

(±0.1217) 

1.353.91 

(±0.10) 

1.243.78 

(±0.0312) 

1.584.12 

(±0.0514) 

3.9 (±0.08) 

Sesquiterpenes 0.50 (±0.03) 
0.1648 

(±0.02) 

0.1647 

(±0.0102) 

0.1551 

(±0.0103) 

0.1948 

(±0.0102) 

Other VOCs 
6.7313.84 

(±0.4678) 

6.9413.95 

(±0.2434) 

6.1612.89 

(±0.3666) 

7.14.15 

(±0.4073) 

13.95 (±0.34) 

Total BVOCs 34.27 (±2.06) 
15.8233.74 

(±1.2910) 

15.85 

(±0.9131.77 

(±1.54) 

14.23 

(±0.7035.48 

(±1.76) 

17.5933.63 

(±0.8995) 

 

 5 
Table 3. Comparison of isopreneThe change and monoterpene emissions (Tg)trend of annual emission flux (S1, S2 and S5), cover 
fractions of main PFTs, LAIv, growing season temperature and DSW in northeastern China with previous estimations, Beijing and 
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its surrounding areas and the Qinling Mountains.  

ReferenceNortheastern China 
Isoprene Monoterpen

e 

Study period Method or Model 

 

BVOC 
Emissio
n (S2, g 

m-2) 

BVOC 
Emissio
n (S1, g 

m-2) 

BVOC 
Emissio
n (S5, g 

m-2) 

LAIv (m -2 m-2) 
BLT 

Cover 
Fraction 

NLT 
Cover 
Fractio
n (%) 

Shrub 
Cover 

Fraction 
(%)  

Grass 
Cover 
Fractio
n (%)  

Crop 
Cover 
Fractio
n (%)  

2-m 
Temp 
(°C) 

DSW 
(W m-

2) 

This 
studyAverage 

7.56 
3.37 

(±0.7413
) 

3.04 

(±0.36) 

3.25 

(±0.06) 

1.37 45 

(±0.121) 

2001-
201621.3

7 

(±1.56) 

MEGA
N 13.56 

(±0.12) 

5.97 

(±0.16) 

30.86 

(±1.8) 

25.85 

(±0.3) 

13.74 

(±0.67
) 

224.5 

(±6.08) 

Stavrakou et 
al. 

(2014)Averag
e (2001-2004) 

7.17 
3.21 

(±0.3005
) 

-2.9 

(±0.32) 

2007-
20123.1

9 

(±0.06) 

MEGAN-
MOHYCAN1.3

4 

(±0.05) 

19.37 

(±0.51) 

13.57 

(±0.04) 

6.06 

(±0.15) 

33.1 

(±0.61) 

25.71 

(±0.21) 

13.89 

(±0.41
) 

227.54 

(±5.22) 

Average 
(2013-2016) 

3.52 

(±0.06) 

3.07 

(±0.36) 

3.3 

(±0.05) 

1.55 

(±0.12) 

23.1 

(±0.04) 

13.45 

(±0.13) 

5.87 

(±0.04) 

28.7 

(±0.18) 

26.22 

(±0.25) 

13.42 

(±0.59
) 

218.39 

(±4.74) 

Trend 0.02***a  0.01 0.01**  0.02**  0.31***  -0.01 -0.03**  -0.37***  0.06***  -0.03 -0.73**  

Beijing & its surrounding areas 

 

BVOC 
Emissio
n (S2, g 

m-2) 

BVOC 
Emissio
n (S1, g 

m-2) 

BVOC 
Emissio
n (S5, g 

m-2) 

LAIv (m -2 m-2) 
BLT 

Cover 
Fraction 

NLT 
Cover 
Fractio
n (%) 

Shrub 
Cover 

Fraction 
(%)  

Grass 
Cover 
Fractio
n (%)  

Crop 
Cover 
Fractio
n (%)  

2-m 
Temp 
(°C) 

DSW 
(W m-

2) 

Average 
2.94 

(±0.21) 

2.58 

(±0.25) 

2.76 

(±0.08) 

1.24 

(±0.1) 

4.96 

(±1.17) 

0.61 

(±0.25) 

2.74 

(±0.63) 

58.18 

(±1.58) 

27.48 

(±1.33) 

17.68 

(±0.65
) 

251.09 

(±3.22) 

Average 
(2001-2004) 

2.7 

(±0.14) 

2.41 

(±0.09) 

2.67 

(±0.12) 

1.13 

(±0.11) 

3.83 

(±0.16) 

0.35 

(±0.03) 

1.99 

(±0.11) 

58.73 

(±0.07) 

29.44 

(±0.33) 

17.87 

(±0.6) 

250.47 

(±4.56) 

Average 
(2013-2016) 

3.22 

(±0.08) 

2.81 

(±0.29) 

2.81 

(±0.04) 

1.3 

(±0.08) 

6.66 

(±0.44) 

0.97 

(±0.14) 

3.6 

(±0.27) 

55.84 

(±1.26) 

26.51 

(±0.41) 

17.52 

(±0.75
) 

250.42 

(±1.95) 

Trend 0.04***  0.03* 0.01**  0.01* 0.23***  0.04***  0.13***  -0.18* -0.26***  -0.03 0.02 

Qinling Mountains 
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BVOC 
Emissio
n (S2, g 

m-2) 

BVOC 
Emissio
n (S1, g 

m-2) 

BVOC 
Emissio
n (S5, g 

m-2) 

LAIv (m -2 m-2) 
BLT 

Cover 
Fraction 

NLT 
Cover 
Fractio
n (%) 

Shrub 
Cover 

Fraction 
(%)  

Grass 
Cover 
Fractio
n (%)  

Crop 
Cover 
Fractio
n (%)  

2-m 
Temp 
(°C) 

DSW 
(W m-

2) 

Average 
9.25 

(±0.38) 

9.29 

(±0.93) 

9.10 

(±0.28) 

1.8 

(±0.19) 

44.08 

(±1.52) 

12.25 

(±0.17) 

14.05 

(±0.64) 

14.67 

(±0.67) 

12.15 

(±0.25) 

20.78 

(±0.58
) 

219.93 

(±9.01) 

Average 
(2001-2004) 

8.84 

(±0.25) 

8.91 

(±0.38) 

8.85 

(±0.25) 

1.59 

(±0.17) 

42.18 

(±0.32) 

12.48 

(±0.11) 

14.84 

(±0.29) 

15.51 

(±0.26) 

12.31 

(±0.32) 

20.83 

(±0.25
) 

220.28 

(±9.41) 

Li et 
al.Average 
(2013-2016) 

20.79.71 

(±0.22) 

4.9.75 

(±1.64) 

20039.3
9 

(±0.22) 

MEGAN2.01 

(±0.12) 

45.91 

(±0.27) 

12.07 

(±0.03) 

13.26 

(±0.14) 

13.84 

(±0.16) 

11.95 

(±0.10) 

20.75 

(±0.91
) 

221.26 

(±12.30
) 

Trend 0.06***  0.07 0.04**  0.03***  0.32***  -0.03***  -0.13***  -0.14***  -0.04**  -0.01 -0.11 

a: p<0.1; **: p<0.05; ***: p<0.01; 

 

Table 4. The change and trend of annual emission flux (S1, S2 and S5), cover fractions of main PFTs, LAIv, growing season 
temperature and DSW in Yunnan province, Guangxi-Guangdong provinces and Hainan island. 

Yunnan provincc 

 
BVOC 

Emission 
(S2, g m-2) 

BVOC 
Emission 
(S1, g m-2) 

BVOC 
Emission 
(S5, g m-2) 

LAIv  
(m-2 m-

2) 

BLT 
Cover 

Fraction 
(%) 

NLT 
Cover 

Fraction 
(%) 

Shrub 
Cover 

Fraction 
(%) 

Grass 
Cover 

Fraction 
(%) 

Crop 
Cover 

Fraction 
(%) 

2-m 
Temp 
(°C) 

DSW 
(W m-2) 

Average 
6.79 

(±0.26) 

7.28 

(±0.54) 

6.67 

(±0.21) 

2.23 

(±0.17) 

32.7 

(±0.83) 

14.92 

(±0.32) 

17.25 

(±0.12) 

21.83 

(±0.52) 

9.86 

(±0.71) 

18.54 

(±0.31) 

224.71 

(±5.64) 

Average 
(2001-
2004) 

6.53 

(±0.28) 

6.76 

(±0.45) 

6.57 

(±0.30) 

2.02 

(±0.19) 

32.1 

(±0.19) 

14.51 

(±0.04) 

17.22 

(±0.14) 

22.45 

(±0.20) 

10.34 

(±0.53) 

18.35 

(±0.30) 

219.18 

(±6.70) 

Average 
(2013-
2016) 

7.09 

(±0.09) 

7.92 

(±0.35) 

6.94 

(±0.04) 

2.4 

(±0.02) 

33.93 

(±0.58) 

15.33 

(±0.1) 

17.2 

(±0.17) 

21.12 

(±0.30) 

8.92 

(±0.25) 

18.7 

(±0.47) 

227.49 

(±2.65) 

Trend 0.04***a  0.1***  0.02**  0.03***  0.15***  0.07***  0 -0.11***  -0.17***  0.03**  0.42 

Guangxi-Guangdong provinces 
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BVOC 

Emission 
(S2, g m-2) 

BVOC 
Emission 
(S1, g m-2) 

BVOC 
Emission 
(S5, g m-2) 

LAIv  
(m-2 m-

2) 

BLT 
Cover 

Fraction 
(%)  

NLT 
Cover 

Fraction 
(%)  

Shrub 
Cover 

Fraction 
(%)  

Grass 
Cover 

Fraction 
(%)  

Crop 
Cover 

Fraction 
(%)  

2-m 
Temp 
(°C) 

DSW 
(W m-2) 

Average 
15.53 

(±0.79) 

16.23 

(±1.59) 

15.57 

(±0.67) 

2.24 

(±0.22) 

32.92 

(±1.6) 

9.08 

(±0.27) 

19.13 

(±0.38) 

20.47 

(±0.60) 

9.89 

(±0.70) 

26.32 

(±0.67) 

258.72 

(±7.32) 

Average 
(2001-
2004) 

15.06 

(±1.09) 

15.84 

(±1.70) 

15.23 

(±1.23) 

2.1 

(±0.35) 

32.2 

(±0.57) 

9.3 

(±0.02) 

19.41 

(±0.04) 

21.02 

(±0.03) 

9.89 

(±0.57) 

26.36 

(±0.25) 

258.74 

(±9.25) 

Average 
(2013-
2016) 

16.36 

(±0.37) 

17.03 

(±1.99) 

15.92 

(±0.29) 

2.44 

(±0.09) 

35.24 

(±0.88) 

8.69 

(±0.19) 

18.57 

(±0.31) 

19.62 

(±0.32) 

9.03 

(±0.16) 

26.31 

(±0.99) 

256.36 

(±4.26) 

Trend 0.13***  0.14 0.05 0.03**  0.32***  -0.05***  -0.06***  -0.12***  -0.14**  0.02 -0.24 

Hainan Island 

 
BVOC 

Emission 
(S2, g m-2) 

BVOC 
Emission 
(S1, g m-2) 

BVOC 
Emission 
(S5, g m-2) 

LAIv  
(m-2 m-

2) 

BLT 
Cover 

Fraction 
(%) 

NLT 
Cover 

Fraction 
(%) 

Shrub 
Cover 

Fraction 
(%) 

Grass 
Cover 

Fraction 
(%) 

Crop 
Cover 

Fraction 
(%) 

2-m 
Temp 
(°C) 

DSW 
(W m-2) 

Average 
17.79 

(±0.73) 

17.98 

(±1.40) 

17.57 

(±0.51) 

2.43 

(±0.20) 

39.44 

(±1.46) 
0 

17.41 

(±0.14) 

22.2 

(±1.12) 

8.67 

(±0.56) 

27.3 

(±0.47) 

257.51 

(±4.55) 

Average 
(2001-
2004) 

17.16 

(±0.72) 

17.51 

(±1.04) 

17.27 

(±0.80) 

2.3 

(±0.26) 

38.07 

(±0.52) 
0 

17.46 

(±0.18) 

23.63 

(±0.04) 

8.79 

(±0.33) 

27.38 

(±0.22) 

259.79 

(±7.28) 

Average 
(2013-
2016) 

18.68 

(±0.27) 

19.44 

(±1.89) 

18.07 

(±0.24) 

2.64 

(±0.14) 

41.11 

(±0.23) 
0 

17.31 

(±0.08) 

20.9 

(±0.28) 

8.14 

(±0.07) 

27.41 

(±0.78) 

258.39 

(±3.95) 

Trend 0.13***  0.12* 0.06**  0.03* 0.27***  0 -0.02 -0.22***  -0.07**  0 -0.13 

a: p<0.1; **: p<0.05; ***: p<0.01; 

 

 
Table 5. Comparison of isoprene and monoterpene emissions (Tg) in China with previous studies.  
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Data Source Isoprene Monoterpene Study period Method or Model 

This study 15.94 (±1.12) 3.99 (±0.17) 2001-2016 MEGAN 

Stavrakou et al. (2014) 7.17 (±0.30) - 2007-2012 MEGAN-MOHYCAN 

Li et al. (2013) 23.4 5.6 2003 MEGAN 

Li et al. (2020) 33.21 6.35 2008-2018 MEGAN 

CAMS-GLOB-BIO v1.1 

(Sindelarova et al., 2014) 
7.67 3.04 2001-2016 MEGEN 

CAMS-GLOB-BIO v3.1 

(Sindelarova et al., 2014) 
8.54 3.23 2001-2016 MEGAN 

Fu and Liao (2012) 10.87 3.21 2001-2006 GEOS-Chem-MEGAN 

Tie et al. (2006) 7.7 3.16 2004 Guenther et al. (1993) 

Klinger et al. (2002) 4.65 3.97 2000 Guenther et al. (1995) 

Guenther et al. (1995) 17 4.87 1990 Guenther et al. (1995) 
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Table 6. Comparison of inputs for BVOC estimation with previous studies. 5 

Reference 
Emission Factor 

Type 

Emission Factor 

Reference 
PFT/Land use LAI/Biomass Meteorology Model/Algorithms 

This study 
PFT level 

emission factors 

Guenther et al. 

(2012) 

MODIS 

MCD12C1 v6 

MODIS 

MCD15A2H v5 
WRF Model v3.9 MEGANv2.1 

Stavrakou et al. 

(2014) 

PFT level 

emission factors 

Guenther et al. 

(2006) 

Ramankutty and 

Foley (1999) 

MODIS 

MOD15A2 v5 

ERA-Interim 

Dataset 

MEGAN-

MOHYCAN 

Li et al. (2013) 

Vegetation 

genera/species level 

emission factors 

Li et al. (2013) 
Vegetation Atlas 

of China for year 2007 

MEGAN database 

for 2003 
MM5 Model v3.7 MEGAN 

Li et al. (2020) 

Vegetation 

genera/species level 

emission factors 

Li et al. (2013) 
Vegetation Atlas 

of China for year 2007 

Estimations based 

on surveys and 

statistics 

WRF Model v3.8 MEGAN 

CAMS-GLOB-

BIO v1.1 

(Sindelarova et al., 

2014) 

PFT level 

emission factors 

Guenther et al. 

(2012) 

16 plant functional 

types consistent with 

the Community Land 

Model  

 

MODIS 

MOD15A2 v5 

ERA-Interim 

Dataset 
MEGAN 

CAMS-GLOB-

BIO v3.1 

(Sindelarova et al., 

2014) 

PFT level 

emission factors 

Guenther et al. 

(2012) 

16 plant functional 

types consistent with 

the Community Land 

Model  

MODIS 

MOD15A2 v5 
ERA-5 Dataset MEGAN 

Fu and Liao 

(2012) 

PFT level 

emission factors 

Guenther et al. 

(1995) 

Lathière et al. 

(2006) 

Levis et al. (2003) 

Bai et al. (2006) 

MODIS 

MCD12Q1 v5 

MODIS 

MOD15A2 v5 

GEOS-4 

Meteorology 

GEOS-Chem-

MEGAN 

Tie et al. (2006) 
Landuse level 

emission factors 

Landuse-based 

emission rates 

USGS 1km land 

use data 
/ WRF model 

Guenther et al. 

(1993) 

Klinger et al. 

(2002) 

Vegetation 

genera/species level 

emission factors 

Klinger et al. 

(2002) 

Province-level 

Forest Inventory 
/ 

Monthly 

meteorology database 

by (Leemans and 

Cramer, 1991) 

Guenther et al. 

(1995) 

Guenther et al. 

(1995) 

PFT level 

emission factors 

Guenther et al. 

(1995) 

Grided Global 

Ecosystem Types 

Estimations from 

NPP 

Monthly 

meteorology database 

Guenther et al. 

(1995) 
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by (Leemans and 

Cramer, 1991) 

 

Table 7. Detailed descriptions of the flux measurements used in this study and corresponding campaigns. 

Reference Site Location Sample Collection Periods 
Ecosystem 

Type 

Isoprene Emission 

Factor 

(mg m-2 h-1) 

Monoterpenes 

Emission Factor 

(mg m-2 h-1) 

Bai et al. (2015) Changbai Mountain 

(42°24′ N, 128°6′) 

28 June -9 July 2010; 
19 July -30 July 2010; 

12 Aug.- 25 Aug. 2010; 
19 June - 30 June 2011; 
10 July -16 July 2011; 
22 July - 29 July 2011; 
5 Sep. - 8 Sep. 2011. 

Mixed forest 4.3 0.32 

Bai et al. (2016) 
An Ji, Zhejiang 

(30°40′15′′ N, 119°40′15′′) 

7 July-13 July 2012; 

20 Aug.-26 Aug. 2012; 

25 Sep.-1 Oct. 2012; 

28 Oct.- 5 Nov. 2012. 

Moso bamboo 

forest 
3.3 0.008 

Bai et al. (2017) 
Taihe, Jiangxi 

(26°44′48′′ N, 115°04′13′′) 

22 May -28 May 2013; 

29 June - 6 July 2013; 

6 Aug. -13 Aug. 2013; 

7 Sep. -11 Sep. 2013; 

18 Jan. -19 Jan. 2014; 

23 July - 27 July 2014; 

2 Nov. - 7 Nov. 2015; 

31 Dec. 2015 -4 Jan. 2016. 

Subtropical 

Pinus forest 
0.71 1.65 
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Figure 1. The cover factions of different PFTs for the year 2016. 

 

Figure 2. The comparison of monthly anomaly of downward shortwave (DSW) radiation (a) and 2-meter temperature (T2) (b) for model 5 
simulation and in-situ observation and the filled areas present the standard deviations among 98 sites for DSW and 697 sites for T2. 
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Figure 3.. The trend of growing season averaged 2-meter temperature (T2) and downward shortwave radiation (DSW). (a) and (b) are 
for in-situ T2 and DSW, respectively, and the sites with statistically significant trend are marked by black circles. (c) and (d) are for the 
WRF simulated T2 and DSW, respectively, and the regions with statistically significant trend are illustrated by shadow.  
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Figure 4. Annual BVOC emissions in China during 2001 to 2016 for four scenarios (S1-S4S5) described in Table 1. The increasing trends 
and the probabilities (p) using the Mann-Kendall test are shown in the legend. 
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Figure 5. The horizontal distributions of isoprene, monoterpenes, sesquiterpenes and total BVOCs emissions of China in 2001 are showed 
in figure (a), (f), (kg), (m) and (ps), respectively. The rest columns of figures present the changing trend of isoprene (b-ef), monoterpenes 
(g-jh-l ), sesquiterpenes (l-on-r) and total BVOCs (q-t-x) in S1, S2, S3, S4 and S4S5, respectively. The Mann-Kendall test were used to 
filtermark  the grids where the p is lowersmaller than 0.91. 5 
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Figure 6.. Spatial distribution of BVOC emission in 2001 (a) and the changing trends of annual emission flux (S1, S2 and S5), cover 
fractions of main PFTs and LAIv. The Mann-Kendall test were used to filter the grids where the p is greater than 0.1. 
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Figure 7. The annual changes of PFTs, the annual emission rateamount of BVOC and LAI in (a) the Qinling Montains, (b) southern of 
northeastern China, (b) Beijing and its surroundings, and the (c) the Jiang Xi and Hu Nan province border.Qinling mountains. The solid 
and, dashed and marked line represents the mean emission flux rate of total BVOC in S1, S2 and S2S5, respectively. 

 5 
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Figure 8.. The annual changes of PFTs, the annual emission amount of BVOC and LAI in (a) southwestern China, (b) southern, and (c) 
Hainan island. The solid, dashed and marked line represents the mean emission flux rate of total BVOC in S1, S2 and S5, respectively. 
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Figure 9. Comparison of estimated isoprene annual emission with the satellite derived tropospheric HCHO vertical column concentration 
by OMI during 2005-2016. (a), (b) and (c) illustrate the spatial distributionspatterns of growing-seasonannual mean LAILAIv , isoprene 
emission and HCHO vertical columns (VC) by OMI respectively. (d) presents the spatial distribution of the correlation efficientcoefficient 
between summertime isoprene emission and HCHO VC. (e) and (f) shows the increasing trend of isoprene and HCHO VC during 2005-5 
2016. 
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Figure 10. Comparison of BVOCthe trend of isoprene emission with anthropogenic VOC (Zheng et al., 2018between this study (S1) and 
NOx emission in Chinaother estimations during 20102001-2016. The dashed lines represent the average emission of NOx(orange), AVOC 
(blue), BVOC(green) during 2010 to 2016,(a) and (b) is for S1 and S3 respectively. in this study, and (c) and (d) are for CAMS-GLOB-
BIO v 1.1 and CAM-GLOB-BIO v3.1, respectively. The Mann-Kendall test were used to mark the grids where the p is smaller than 0.1. 5 
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Figure 11. Comparison of the trend of monoterpenes emission between this study (S1) and other estimations during 2001-2016. (a) and 
(b) is for S1 and S3, respectively, in this study, and (c) and (d) are for CAMS-GLOB-BIO v 1.1 and CAM-GLOB-BIO v3.1, respectively. 
The Mann-Kendall test were used to mark the grids where the p is smaller than 0.1. 
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Figure 12. Validation of the model with flux measurements in China. (a) and (b) show the performance of the MEGAN model with the 
default emission factors (N=19). (c) and (d) show the performance of the MEGAN model with the emission factors derived from 
observations (N=19). 

Formatted: Font color: Text 1



Page 25: [1] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 25: [1] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 25: [1] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [2] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [2] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [2] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [2] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [3] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [3] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [4] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [4] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [5] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [5] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [6] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [6] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [7] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [7] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [8] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [8] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [9] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 



Page 27: [9] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [10] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [10] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [11] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [11] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [12] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [12] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [13] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [13] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [14] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [14] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [15] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [15] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [16] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [16] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [17] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [17] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [17] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [18] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [18] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 



Page 27: [19] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [19] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [20] Formatted   Author   23/10/2020 20:37:00 

Space After:  0 pt, No widow/orphan control, Keep with next 
 

Page 27: [21] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [21] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [21] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [21] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 27: [21] Formatted   Author   23/10/2020 20:37:00 

Font color: Text 1 
 

Page 28: [22] Formatted   Author   23/10/2020 20:37:00 

Caption, Centered, Space After:  10 pt 
 

Page 28: [23] Formatted   Author   23/10/2020 20:37:00 

Font: Times New Roman, 7.5 pt, Bold, Font color: Text 1, English (United Kingdom) 
 

Page 28: [24] Formatted   Author   23/10/2020 20:37:00 

Caption, Centered, Space After:  10 pt 
 

Page 28: [25] Formatted   Author   23/10/2020 20:37:00 

Font: Times New Roman, 7.5 pt, Bold, Font color: Text 1, English (United Kingdom) 
 

Page 28: [26] Formatted   Author   23/10/2020 20:37:00 

Font: Times New Roman, 7.5 pt, Font color: Text 1 
 

Page 28: [27] Formatted   Author   23/10/2020 20:37:00 

Caption, Centered, Space After:  10 pt 
 

Page 28: [28] Formatted   Author   23/10/2020 20:37:00 

Font: Times New Roman, 7.5 pt, Font color: Text 1 
 

Page 28: [29] Formatted   Author   23/10/2020 20:37:00 

Font: Times New Roman, 7.5 pt, Font color: Text 1 
 

Page 28: [30] Formatted   Author   23/10/2020 20:37:00 

Font: Times New Roman, 7.5 pt, Font color: Text 1 
 

Page 28: [31] Formatted   Author   23/10/2020 20:37:00 

Caption, Centered, Space After:  10 pt 
 

Page 28: [32] Formatted   Author   23/10/2020 20:37:00 

Font: Times New Roman, 7.5 pt, Font color: Text 1 
 

Page 28: [33] Formatted   Author   23/10/2020 20:37:00 

Caption, Centered, Space After:  10 pt 
 



Page 28: [34] Formatted   Author   23/10/2020 20:37:00 

Font: Times New Roman, 7.5 pt, Bold, Font color: Text 1, English (United Kingdom) 
 

Page 28: [35] Formatted   Author   23/10/2020 20:37:00 

Caption, Centered, Space After:  10 pt 
 

Page 28: [36] Formatted   Author   23/10/2020 20:37:00 

Font: Times New Roman, 7.5 pt, Bold, Font color: Text 1, English (United Kingdom) 
 

Page 28: [37] Formatted   Author   23/10/2020 20:37:00 

Caption, Centered, Space After:  10 pt 
 

Page 28: [38] Formatted   Author   23/10/2020 20:37:00 

Font: Times New Roman, 7.5 pt, Bold, Font color: Text 1, English (United Kingdom) 
 

Page 28: [39] Formatted   Author   23/10/2020 20:37:00 

Font: Times New Roman, 7.5 pt, Font color: Text 1 
 

Page 28: [40] Formatted   Author   23/10/2020 20:37:00 

Caption, Centered, Space After:  10 pt 
 

Page 28: [41] Formatted   Author   23/10/2020 20:37:00 

Font: Times New Roman, 7.5 pt, Font color: Text 1 
 

Page 28: [42] Formatted   Author   23/10/2020 20:37:00 

Caption, Centered, Space After:  10 pt 
 

Page 28: [43] Formatted   Author   23/10/2020 20:37:00 

Font: Times New Roman, 7.5 pt, Bold, Font color: Text 1, English (United Kingdom) 
 

Page 28: [44] Formatted   Author   23/10/2020 20:37:00 

Caption, Centered, Space After:  10 pt 
 

Page 28: [45] Formatted   Author   23/10/2020 20:37:00 

Font: Times New Roman, 7.5 pt, Font color: Text 1 
 

Page 28: [46] Formatted   Author   23/10/2020 20:37:00 

Caption, Centered, Space After:  10 pt 
 

Page 28: [47] Formatted   Author   23/10/2020 20:37:00 

Font: Times New Roman, 7.5 pt, Bold, Font color: Text 1, English (United Kingdom) 
 

 



Table S1. Look-up table for mapping the IGBP legend to eight main vegetations categories.  

Name Value Description Main Category 

Percentage 

Needleleaf 

Evergreen Forest 

1 Dominated by evergreen conifer 

trees (canopy >2m).  
100% NET 

Broadleaf 

Evergreen Forest 

2 Dominated by evergreen broadleaf 

and palmate trees (canopy >2m). 
100% BET 

Needleleaf 

Deciduous Forest 

3 Dominated by deciduous needleleaf 

(larch) trees (canopy >2m). 
100% NDT 

Broadleaf 

Deciduous Forest 

4 Dominated by deciduous broadleaf 

trees (canopy >2m). 
100% BDT 

Mixed Forests 5 Dominated by neither deciduous nor 

evergreen (40-60% of each) tree 

type (canopy >2m). 

100% Mixed Forests 

Closed Shrublands 6 Dominated by woody perennials (1-

2m height) >60% cover. 
100% Shrub 

Open Shrublands 7 Dominated by woody perennials (1-

2m height) 10-60% cover. 
60% Shrub 

40% Grass 

Woody Savannas 8 Tree cover 30-60% (canopy >2m). 60% Mixed Forest 

20% Shrub 

20% Grass 

Savannas 9 Tree cover 10-30% (canopy >2m). 30% Mixed Forest 

35% Shrub 

35% Grass 

Grasslands 10 Dominated by herbaceous annuals 

(<2m). 
100% Grass 

Permanent 

Wetlands 

11 Permanently inundated lands with 

30-60% water cover and >10% 

vegetated cover. 

40% Grass 

Croplands 12 At least 60% of area is cultivated 

cropland. 
100% Crop 



Urban and Built-up 

Lands 

13 At least 30% impervious surface 

area including building materials, 

asphalt, and vehicles. 

None 

Cropland/Natural 

Vegetation Mosaics 

14 Mosaics of small-scale cultivation 

40-60% with natural tree, shrub, or 

herbaceous vegetation. 

60% Crop 

20% Shrub 

20% Grass 

Permanent Snow 

and Ice 

15 At least 60% of area is covered by 

snow and ice for at least 10 months 

of the year. 

None 

Barren 16 At least 60% of area is non-

vegetated barren (sand, rock, soil) 

areas with less than 10% vegetation. 

None 

 

Table 2. The climatic criteria for mapping main vegetation categories to CLM PFTs. 

Main Category Mapping Condition CLM PFT 

NET Tc >-19 °C and GDD > 1200 100% NET Temperate 

Tc≤-19 °C or GDD  ≤ 1200 100% NET Boreal 

BET Tc >15.5 °C 100% BET Tropical 

Tc≤15.5 °C 100% BET Temperate 

NDT None 100% NDT 

BDT Tc >15.5 °C 100% BDT Tropical 

-15.5 °C <Tc≤15.5 °C or 

GDD>1200 

100% BDT Temperate 

Tc≤-15.5 °C or GDD ≤ 1200 100% BDT Boreal 

Mixed Forest Tc >15.5 °C 50% BET Tropical 

50% BDT Tropical 

-15.5 °C<Tc≤15.5 °C and 

GDD>1200 

33.33% NET Temperate 

33.33% BET Temperate 

33.33% BDT Temperate 

Tc≤-15.5 °C or GDD ≤ 1200 33.33% NDT 

33.33% NET Boreal 

33.33% BDT Boreal 



Shrub Tc >-19 °C and GDD > 1200 100% BDS Temperate 

Tc≤-19 °C or GDD ≤ 1200 100% BDS Boreal 

Grass GDD<1000 100% C3 Arctic 

GDD>1000 and (Tc ≤ 

22°C or Pmon≤25 mm) 

100% C3 

GDD>1000 and Tc > 22°C 

and Pmon >25 mm 

100% C4 

Crop None 100% Crop 

Table S3. The physical schemes for the WRF simulation. 

Physical mechanism Scheme 

Microphysics WSM 3-class simple ice scheme 

Long-wave radiation RRTM scheme 

Short-wave radiation Duhbia scheme 

Land Surface Noah Land Surface Model 

PBL Scheme YSU scheme 

Cumulus parameter Kain-Fritsch (new Eta) scheme 
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