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Abstract  

A comprehensive European dataset on monthly atmospheric NH3, acid gases (HNO3, SO2, HCl) and aerosols (NH4
+, NO3

-, 

SO4
2-, Cl-, Na+, Ca2+, Mg2+) is presented and analyzed. Speciated measurements were made with a low-volume denuder and 

filter pack method (DELTA®) as part of the EU NitroEurope (NEU) integrated project. Altogether, there were 64 sites in 20 

countries (2006-2010), coordinated between 7 European laboratories. Bulk wet deposition measurements were carried out at 5 

16 co-located sites (2008-2010). Inter-comparisons of chemical analysis and DELTA® measurements allowed an assessment 

of comparability between laboratories.  

 

The form and concentrations of the different gas and aerosol components measured varied between individual sites and grouped 

sites according to country, European regions and 4 main ecosystem types (crops, grassland, forests and semi-natural). Smallest 10 

concentrations (with the exception of SO4
2- and Na+) were in Northern Europe (Scandinavia), with broad elevations of all 

components across other regions. SO2 concentrations were highest in Central and Eastern Europe with larger SO2 emissions, 

but particulate SO4
2- concentrations were more homogeneous between regions. Gas-phase NH3 was the most abundant single 

measured component at the majority of sites , with the largest variability in concentrations across the network. The largest 

concentrations of NH3, NH4
+ and NO3

- were at cropland sites in intensively managed agricultural areas (e.g. Borgo Cioffi in 15 

Italy), and smallest at remote semi-natural and forest sites (e.g. Lompolojänkkä, Finland), highlighting the potential for NH3 

to drive the formation of both NH4
+ and NO3

- aerosol. In the aerosol phase, NH4
+ was highly correlated with both NO3

- and 

SO4
2-, with a near 1:1 relationship between the equivalent concentrations of NH4

+ and sum (NO3
- + SO4

2-), of which around 

60% was as NH4NO3.  

 20 

Distinct seasonality were also observed in the data, influenced by changes in emissions, chemical interactions and the influence 

of meteorology on partitioning between the main inorganic gases and aerosol species. Springtime maxima in NH3 were 

attributed to the main period of manure spreading, while the peak in summer and trough in winter were linked to the influence 

of temperature and rainfall on emissions, deposition and gas-aerosol phase equilibrium. Seasonality in SO2 were mainly driven 

by emissions (combustion), with concentrations peaking in winter, except in Southern Europe where the peak occurred in 25 

summer. Particulate SO4
2- showed large peaks in concentrations in summer in Southern and Eastern Europe, contrasting with 

much smaller peaks occurring in early spring in other regions. The peaks in particulate SO4
2- coincided with peaks in NH3 

concentrations, attributed to the formation of the stable (NH4)2SO4. HNO3 concentrations were more complex, related to traffic 

and industrial emissions, photochemistry and HNO3:NH4NO3 partitioning. While HNO3 concentrations were seen to peak in 

the summer in Eastern and Southern Europe (increased photochemistry), the absence of a spring peak in HNO3 in all regions 30 

may be explained by the depletion of HNO3 through reaction with surplus NH3 to form the semi-volatile aerosol NH4NO3. 

Cooler, wetter conditions in early spring favour the formation and persistence of NH4NO3 in the aerosol phase, consistent with 

the higher springtime concentrations of NH4
+ and NO3

-. The seasonal profile of NO3
- was mirrored by NH4

+, illustrating the 

influence of gas:aerosol partitioning of NH4NO3 in the seasonality of these components. 

 35 

Gas-phase NH3 and aerosol NH4NO3 were the dominant species in the total inorganic gas and aerosol species measured in the 

NEU network. With the current and projected trends in SO2, NOx and NH3 emissions, concentrations of NH3 and NH4NO3 can 

be expected to continue to dominate the inorganic pollution load over the next decades, especially NH3 which is linked to 

substantial exceedances of ecological thresholds across Europe. The shift from (NH4)2SO4 to an  atmosphere more abundant 

in NH4NO3 is expected to maintain a larger fraction of reactive N in the gas phase by partitioning to NH3 and HNO3 in warm 40 

weather, while NH4NO3 continues to contribute to exceedances of air quality limits for PM2.5.  
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1 Introduction 

Air quality policies and research on atmospheric sulfur (S) and nitrogen (N) pollutant impacts on ecosystem and human health 

have focused on the emissions, concentrations and depositions of sulfur dioxide (SO2), nitrogen  oxides (NOx), ammonia (NH3) 

and their secondary inorganic aerosols (SIAs: ammonium sulfate, (NH4)2SO4; ammonium nitrate, NH4NO3) (ROTAP, 2012; 

EMEP, 2019). The aerosols, formed through neutralisation reactions between the alkaline NH3 gas and acids generated in the 5 

atmosphere by the oxidation of SO2 and NOx (Huntzicker et al., 1980; AQEG, 2012) are a major component of fine particulate 

matter (PM2.5) (AQEG, 2012; Vieno et al., 2016a) and precipitation (ROTAP, 2012; EMEP, 2019). The negative effects of 

these pollutants on sensitive ecosystems are mainly through acidification (excess acidity) and eutrophication (excess nutrient 

N) processes that can lead to a loss of key species and decline in biodiversity (e.g. Hallsworth et al., 2010; Stevens et al., 2010). 

They are also implicated in radiative forcing, and influence climate change through inputs of nitrogen that can alter the carbon 10 

cycle (Reis et al., 2012; Sutton et al., 2013; Zaehle & Dalmonech, 2011). 

 

A number of EU policy measures (e.g. 2008/50/EC Ambient Air Quality Directive, EU, 2008; 2016/2284/EU National 

Emissions Ceilings Directive NECD,  EU, 2016) and wider international agreements (e.g. Gothenburg protocol; UNECE, 

2012) are targeted at abating the emissions and environmental impacts of SO2, NOx and NH3. The largest emissions reductions 15 

have been achieved for SO2, which decreased by 82 % across the EEA-33 since 1990, to 4743 kt SO2 in 2017 (EEA, 2019). 

Reductions in NOx emissions have been more modest, at 45 % over the same period, with emissions in 2017 of 8563 kt NOx 

exceeding those of SO2. By contrast, the reductions in NH3 emissions (of which over 90% come from agriculture) have been 

more modest, decreasing by only 18 %. Here, the decrease was largely driven by reductions in fertiliser use and livestock 

numbers, in particular from eastern European countries, rather than through implementation of any abatement or mitigation 20 

measures. More worryingly, the decreasing trend has reversed in recent years, with emissions increasing by 5 % since 2010, 

to 4788 kt NH3 in 2017 (EEA, 2019).  

 

In recent assessments, critical loads of acidity were exceeded in about 5 % of the ecosystem area across Europe in 2017 (EMEP, 

2018). While the substantial decline in SO2 emissions has allowed the recovery of ecosystems from acid rain, NH3 from 25 

agriculture and NOx from transport are increasingly contributing to a larger fraction of the acidity load. Although NH3 is not 

an acid gas, nitrification of NH3 and ammonium (NH4
+) releases hydrogen ions (H+) that acidify soils and freshwater. The 

deposition of reactive N (Nr, including oxidised N: NOx, HNO3, NO3
- and reduced N: NH3, NH4

+) and their contribution to 

eutrophication effects have also been identified by the EEA as the most important impact of air pollutants on ecosystems and 

biodiversity (EEA, 2019). The deposition of Nr throughout Europe remains substantially larger than the level needed to protect 30 

ecosystems, with critical loads thresholds for eutrophication from N exceeded in around 62 % of the EU-28 ecosystem area 

and in almost all countries in Europe in 2017 (EMEP, 2018).  

 

Following emission, atmospheric transport and fate of the gases are controlled by the following processes: short range 

dispersion and deposition, chemical reaction and formation of NH4
+ aerosols, and the long-range transport and deposition of 35 

the aerosols (Sutton et al., 1998; ROTAP, 2012). Atmospheric S and Nr inputs from the atmosphere to the biosphere occur 

though i) dry deposition of gases and aerosols, ii) wet deposition in rain, and iii) occult deposition in fog and cloud (Smith et 

al., 2000; ROTAP, 2012). The deposition processes contribute very different fractions of the total S or Nr input and different 

chemical forms of the pollutants at different spatial scales. NH3 is a highly reactive, water-soluble gas and deposits much faster 

than NOx (which is not very water soluble and has low deposition velocity). Dry N deposition by NH3 therefore contributes a 40 

significant fraction of the total N deposition to receptors close to source areas and will often exert the larger ecological impacts, 

compared with other N pollutants (Cape et al., 2004; Sutton et al., 1998, 2007). Numerous studies have shown that Nr 

deposition in the vicinity of NH3 sources is dominated by dry NH3-N deposition (e.g. Pitcairn et al., 1998; Sheppard et al., 
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2011), with removal of NH3 close to a source controlled by physical, chemical and ecophysiological processes (Flechard et 

al., 2011; Sutton et al., 2007, 2013). Unlike NOx, HNO3 (from oxidation of NOx) is very water-soluble, while NO3
- particles 

can act as cloud condensation nuclei (CCN) so that they are both scavenged quickly and removed efficiently by precipitation. 

Since NOx is inefficiently removed by precipitation, wet deposition of NOx near a source is small and only becomes important 

after NOx has been converted to HNO3 and NO3
-.   5 

 

Because of the large numbers of atmospheric N species and their complex atmospheric chemistry, quantifying the deposition 

of Nr is hugely complex and is a key source of uncertainty for ecosystems effects assessment (Bobbink et al., 2010; Fowler et 

al., 2007; Schrader et al., 2018; Sutton et al., 2007). Input by dry deposition can be estimated using a combination of measured 

and/or modelled concentration fields with high-resolution inferential models (e.g. Smith et al., 2000; Flechard et al., 2011), or 10 

by making direct flux measurements (e.g. Fowler et al., 2001; Nemitz et al., 2008). Although it is possible to measure Nr 

deposition directly (e.g. Skiba et al., 2009), the flux measurement techniques are complex and resource intensive, unsuited to 

routine measurements at a large number of sites. The ‘inferential’ modelling approach provides a direct estimation of 

deposition from Nr measurements by applying a land-use dependent deposition velocity (Vd) to measured concentrations (Dore 

et al., 2015; Flechard et al., 2011; Simpson et al., 2006; Smith et al., 2000).  15 

 

At present, there are limited atmospheric measurements that speciate the gas and aerosol phase components at multiple sites 

over several years. On a European scale, atmospheric measurements of sulfur (SO2, particulate SO4
2-) and nitrogen (NH3, 

HNO3, particulate NH4
+, NO3

-) have been made by a daily filter pack method across the European Monitoring and Evaluation 

Program (EMEP) networks since 1985, providing data for evaluating wet and dry deposition models (EMEP, 2016; Torseth et 20 

al., 2012). The method, however, does not distinguish between the gas and aerosol phase N species. Consequently, these data 

are reported as total inorganic ammonium (TIA = sum of NH3 and NH4
+) and total inorganic nitrate (TIN = sum HNO3 and 

NO3
-), limiting the usefulness of the data. Speciated measurements by an expensive and labour-intensive daily annular denuder 

method are also made (Torseth et al., 2012), but are necessarily restricted to a small number of sites, due to the high costs 

associated with this type of measurement. There are also networks with a focus on specific N components, for example, the 25 

national NH3 monitoring networks in the Netherlands (LML, van Zanten et al., 2017) and in the UK (National Ammonia 

Monitoring Network, NAMN; Tang et al., 2018a), or compliance monitoring across Europe in the case of SO2 and NOx. The 

UK is unique in having an extensive set of speciated gas and aerosol monitoring data from the Acid Gas and Aerosol Network 

(AGANet), with measurements from 1999 to the present (Tang et al., 2018b). 

 30 

In this context, there is an ongoing need for cost-effective, easy-to-operate, time-integrated atmospheric measurement for the 

respective gas and aerosol phases at sufficient spatial scales. Such data would help to, 1) improve estimates of N deposition, 

2) contribute to development and validation of long-range transport models, e.g. EMEP (Simpson et al., 2006) and EMEP4UK 

(Vieno et al., 2014, 2016), 3) interpret interactions between the gas and aerosol phases, and 4) interpret ecological responses 

to nitrogen (e.g. ecosystem biodiversity or net carbon exchange). To contribute to this goal, a ‘3-level’ measurement strategy 35 

in the EU Framework Programme 6 Integrated Project “NitroEurope” (NEU, http://www.nitroeurope.ceh.ac.uk/) between 2006 

and 2010 delivered a comprehensive integrated assessment of the nitrogen cycle, budgets and fluxes for a range of European 

terrestrial ecosystems (Sutton et al., 2007; Skiba et al., 2009). At the most intensive level (Level 3), state-of-the-art 

instrumentation for high resolution, continuous measurements at a small number of 13 ‘flux super sites’ provided detailed 

understanding on atmospheric and chemical processes (Skiba et al., 2009). By contrast , manual methods with a low temporal 40 

frequency (monthly) at the basic level (Level 1) provided measurements of Nr components at a large number of sites (> 50 

sites) in a cost-efficient way in a pan-European network (Tang et al., 2009). Key species of interest included NH3, HNO3 and 

ammonium aerosols ((NH4)2SO4, NH4NO3).  
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In this paper, we present and discuss four years of monthly reactive gas (NH3, HNO3, HCl) and aerosol (NH4
+, NO3

-, SO4
2-, 

Cl-, Na+
, Ca2+, Mg2+) measurements from the Level 1 network set up under the NEU integrated project (Figure 2). A harmonised 

measurement approach with a simple, cost-efficient time-integrated method, applied with high spatial coverage allowed a 

comprehensive assessment across Europe. The gas and aerosol network was complemented by two years of wet deposition 5 

data made at a subset of the sites (Figure 3). The intention of the smaller bulk wet deposition network was two-fold, i) to 

provide wet deposition estimates at DELTA® sites that do not already have such measurements on site, and ii) to compare the 

relative importances of reduced and oxidized N versus sulfur in the atmospheric pollution load. Measurements across the 

network were coordinated between multiple European laboratories. The measurement approach and the operations of the 

networks, including the implementation of annual inter-comparisons to assess comparability between the laboratories, are 10 

described. The data are discussed in terms of spatial and temporal variation in concentrations, relative contribution of the 

inorganic nitrogen and sulfur components to the inorganic pollution load, and changes in atmospheric concentrations of acid 

gases and their interactions with NH3 gas and NH4
+ aerosol.  

 

<INSERT FIGURE 1> 15 

2 Methods  

2.1 NEU Level 1 DELTA® network 

The NitroEurope (NEU) Level 1 network was operated between November 2006 and December 2010 to deliver the core 

measurements of reactive nitrogen gases (NH3, HNO3) and aerosols (NH4
+, NO3

-) for the project (Figure 1). A low-volume 

denuder-filter pack method, the ‘DEnuder for Long-Term Atmospheric sampling’ system (DELTA®, Sutton et al., 2001a; Tang 20 

et al., 2009, 2018b) with time-integrated monthly sampling was used, which made implementation at a large number of sites 

possible. Other acid gases (SO2, HCl) and aerosols (SO4
2-, Cl-, Na+, Ca2+, Mg2+) were also collected at the same time and 

measured by the DELTA® method. DELTA® measurements were co-located with all NEU Level 3 sites with advanced flux 

measurements (Skiba et al., 2009), and with the network of main CarboEurope-IP CO2 flux monitoring sites 

(www.carboeurope.eu) (Flechard et al., 2011, 2020). Two of the UK sites in the NEU DELTA® network are existing UK 25 

NAMN (Tang et al., 2018a) and AGANet sites (Tang et al., 2018b). These are Auchencorth Moss (UK-Amo) and Bush (UK-

EBu) located in Southern Scotland. Monthly gas and aerosol data at the two sites, made as part of the UK national networks, 

were included in the NEU network. NEU network Nr data were used, together with a range of dry deposition models, to model 

dry deposition fluxes (Flechard et al., 2011) and to assess the influence of Nr on the C cycle, potential C sequestration and the 

greenhouse gas balance of ecosystems using CO2 exchange data from the co-located CarboEurope sites (Flechard et al., 2020). 30 

Other measurements made at the Level 1 sites included estimation of wet deposition fluxes (Sect. 2.3) and also soil and plant 

bioassays (Schaufler et al., 2010).  

 

Altogether, the DELTA® network covered a wide distribution of sites across 20 countries and 4 major ecosystem types: crops, 

grassland, semi-natural and forests . These sites can be described as ‘rural’, and were chosen to provide a regionally 35 

representative estimate of air composition. The network site map is shown in Figure 2, with site details given in Supp. Table 

S1. Further information on the sites are also provided in Flechard et al. (2011). Network establishment started in November 

2006, with 57 sites operational from March 2007 onwards.  Over the course of the network, some sites closed or were relocated 

due to infrastructure changes and new sites were also added. A total of 64 sites provided measurements at the end of the project, 

with 45 of the sites operational the entire time. In addition, replicated DELTA® measurements were made at 4 sites : 40 

 

file:///D:/RenkSyncChris/Literature/CurrentPapers/NEU_DELTA_Sim/www.carboeurope.eu
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Schaufler%2C+G
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1) Auchencorth Moss parallel (P) (UK-AMoP; NH3/NH4
+ measured only) 

2) Easter Bush parallel (P) (UK-EBuP; same method as main site),  

3) SK04 parallel (P) (SK04P; same method as main site).  

4) Fougéres parallel (P) (FR-FgsP: different sample train with 2 x NaCl coated denuders instead of 2 x K2CO3/Glycerol 

coated denuders to capture HNO3; see Sect. 2.2.3) from February to December 2010 only. 5 

 

<INSERT FIGURE 2> 

 

2.1.1 Coordinating laboratories 

A team of seven European laboratories shared responsibility for running the network. Measurement was on a monthly 10 

timescale, with each laboratory preparing and analysing the monthly samples with documented analytical methods (see Supp. 

Table S3 for information on analytical methods and limit of detection (LOD)) for between 5 and 16 DELTA sites (Figure 2). 

The use of a harmonised DELTA® methodology, coupled to defined quality protocols (Tang et al., 2009) ensured comparability 

of data between the laboratories (see later in Sect. 3.1 and Sect. 3.2). A network of local site operators representing the science 

teams of each site performed the monthly sample changes and posted the exposed samples back to their designated laboratories 15 

for analysis. Air concentration data were submitted by the laboratories for their respective sites in a standard reporting template 

to UKCEH. Following data checks against defined quality protocols (Tang et al., 2009), the finalised dataset was uploaded to 

the NEU database (http://www.nitroeurope.ceh.ac.uk/). Establishment of the network, including the first year of measurement 

results on Nr components are reported in Tang et al. (2009). Information on co-located measurements and agricultural activities 

at each of the sites were also collected and are accessible from the NEU website (http://www.nitroeurope.ceh.ac.uk/).  20 

 

2.2 DELTA® methodology 

The DELTA® method used in the NEU Level 1 network is based on the system developed for the UK Acid Gas and Aerosol 

monitoring network (AGANet, Tang et al., 2018b). Full details of the DELTA® method and air concentration calculations in 

the NEU network are provided by Tang et al. (2009, 2018b). The method uses a small 6 V air pump to deliver low air sampling 25 

rates of between 0.2 to 0.4 L min -1, a high sensitivity gas meter to record the typically monthly volume of air collected and a 

DELTA® denuder-filter pack sample train to collect separately the gas and aerosol phase components. The sample train is 

made up of two pairs of base and acid impregnated denuders (15 cm and 10 cm long ) to collect acid gases and NH3, 

respectively, under laminar conditions. A 2-stage filter pack with base and acid coated cellulose filters collects the aerosol 

components downstream of the denuders. The base coating used was K2CO3/glycerol which is effective for the simultaneous 30 

collection of HNO3, SO2 and HCl (Ferm, 1986), while the acid coating was either citric acid for temperate climates or 

phosphorous acid for Mediterranean climates (Allegrini et al., 1987; Ferm, 1979; Perrino et al., 1999; Fitz, 2002). In this way, 

artefacts between gas and aerosol phase concentrations are minimized (Ferm et al., 1979; Sutton et al., 2001a). The DELTA® 

air inlet has a particle cut-off of ~ 4.5 µm which means fine mode aerosols in the PM2.5 fraction and some of the coarse mode 

aerosols < PM4.5 will be collected (Tang et al., 2015).  35 

 

A low voltage version of the AGANet DELTA® system was built centrally by UKCEH and sent to each of the European sites 

where they were installed by local site contacts. These systems operated on either 6 V (off mains power with a transformer) or 

12 V from batteries (wind and solar powered). Air sampling was direct from the atmosphere without any inlet lines  or filters 

to avoid potential loss of components, in particular HNO3 that is very “sticky”, to surfaces. Sampling height was 1.5 m above 40 

ground/vegetation in open areas. In forested areas, the DELTA® equipment was set up either in large clearings, or on towers 

at 2 – 3 m above the canopy (see Flechard et al., 2011).  
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2.2.1 Calculation of gas and aerosol concentrations  

Atmospheric gas and aerosol concentrations in the DELTA® method are calculated from the amount of inorganic ions (NH4
+, 

NO3
-, SO4

2-, Cl-, and base cations) in the denuder/aerosol aqueous extracts and the volume of air sampled (from gas meter 

readings), which is typically 15 m3 for a monthly sample. The volume of deionised water used to extract acid coated denuders 

and aerosols filters are 3 mL and 4 mL, respectively. For the base coated denuders and aerosol filters, the extract volume in 5 

both cases is 5 mL An example is shown here for calculating the atmospheric concentrations of NH3 (gas) (Equation 1) and 

NH4
+ (aerosol) (Equation 2) from the aqueous extracts, based on an air volume of 15 m3 collected in a typical month.  

 

Gas NH3(µg m−3) =
NH4

 + (mg L−1) [sample−blank] x 3 mL x (
17
18

)

15 m3
     [1] 

Particle NH4
 +(µg m−3) =

NH4
 + (mg L−1)  [sample−blank] x 4 mL

15 m3   [2] 10 

 

Pairs of base and acid coated denuders are used to collect the acid gases and alkaline NH3 gas, respectively. This allows 

denuder collection efficiency of, for example, NH3 (Equation 3) to be assessed as part of the data quality assessment process. 

An imperfect acid coating on the denuders for example can lead to lower capture efficiencies (Sutton et al., 2001a; Tang et a l., 

2003). 15 

 

Denuder collection efficiency, NH3  (%) = 100 x 
NH3 (Denuder 1)

NH3 (Denuder 1+Denuder 2)
  [3] 

 

A correction, based on the collection efficiency, is applied to provide a corrected air concentration (a (corrected), Equation 

4) (Sutton et al., 2001a; Tang et al., 2018a, 2018b). With a collection efficiency of 95 %, the correction amounts to 0.3 % of 20 

the corrected air concentration. For an efficiency below 60 %, the correction amounts to more than 50 % and is not applied. 

The air concentration of (a) of NH3 is then determined as the sum of NH3 in denuders 1 and 2 (Tang et al., 2018a). By applying 

the infinite series correction, the assumption is that any NH3 (and other gases) that is not captured by the denuders will be 

collected on the downstream aerosol filter. To avoid double counting, the estimated amount of ‘NH3 breakthrough’ is 

subtracted from the NH4
+ concentrations on the aerosol filter. 25 

 


a

 (corrected) = 
a

 (Denuder 1) ∗
1

1− [
 a(Denuder 2)

 a(Denuder 1)
 ]
    [4]  

 

2.2.2 Estimating sea salt and non-sea salt SO4
2- (ss-SO4

2- and nss-SO4
2-) 

Sea salt SO4
2- (ss-SO4

2-) in aerosol was estimated according to Equation 5, based on the ratio of the mass concentrations of 30 

SO4
2- to the reference Na+ species in seawater (Keene et al., 1986; O’Dowd and de Leeuw, 2007).   

[ss-SO4
2-] (µg ss-SO4

2- m-3) = 0.25 x [Na+] (µg Na+ m-3)     [5]  

 

Non-sea salt SO4
2- (nss-SO4

2-) was then derived as the difference between total measured SO4
2- and ss-SO4

2- (Equation 6). 

[nss-SO4
2-]  (µg nss-SO4

2- m-3) = [SO4
2-] (µg SO4

2- m-3) - [ss_SO4
2-] (µg ss-SO4

2- m-3)  [6]  35 
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2.2.3 Artefact in HNO3 determination 

Results from the first DELTA® inter-comparison in the NEU network (Tang et al., 2009) (see also Sect. 2.5) and further work 

by Tang et al. (2015, 2018b) have shown that HNO3 concentrations may be overestimated on the carbonate coated denuders 

used, due to co-collection of other oxidized nitrogen components, most likely from nitrous acid (HONO). In the UK AGANet, 

HNO3 data are corrected with an empirical factor of 0.45 derived by Tang et al. (2015). Since the correction factor for HNO3 5 

is uncertain (estimated to be ± 30 %) and derived for UK conditions, no attempt has been made to correct the HNO3 data from 

the NEU network. The DELTA® method remained unchanged throughout the entire network operation and provided a 

consistent set of measurements by the same protocol. The caveat is that the HNO3 data presented in this paper also includes 

an unknown fraction of oxidized N, most probably HONO, and therefore represents an upper limit in the determination of 

HNO3. Contribution from NO2 is likely to be small, since this is collected with a low efficiency on carbonate coated denuders 10 

(Bai et al., 2003; Tang et al., 2015) and the network sites are rural, where NOx concentrations are expected to be in the low 

ppbs. At the French Fougéres parallel site (FR-FgsP), NaCl coated denuders were used to measure HNO3, to compare with 

results from K2CO3/glycerol coated denuders at the main site (FR-Fgs) (see Sect. 2.1 for methodology and Sect. 3.3.1 for data 

intercomparison). 

 15 

2.3 NEU Bulk wet deposition network 

The NEU bulk wet deposition network (Figure 3, Supp. Table S2) was established to provide wet deposition data on NH4
+ and 

NO3
-. It was set up two years after the establishment of the NEU DELTA® network, with sites located at a subset of DELTA® 

sites that did not already have on-site wet deposition measurements. Sampling commenced at some sites in January 2008, with 

14 sites operational from March 2008.  Site changes also occurred during the operation of this network, again with some site 20 

closures and new site additions over time. In total, 12 sites provided 2 years of monthly data, with a further 6 sites providing 

1 year of monthly data between 2008 to October 2010 when measurements ended.   

 

<INSERT FIGURE 3>  

 25 

The type of bulk precipitation collector used was a Rotenkamp sampler (Dämmgen et al., 2005), mounted 1.5 m above ground, 

or in the case of forest sites, either in clearings or above the canopy. Each unit has two collectors providing replicated samples, 

comprising of a pyrex glass funnel (aperture area = 84.9 cm2) with vertical sides, connected directly to a 3 L collection bottle 

(material = low density polyethylene) which was changed monthly. Thymol (5-methyl-2-(1-methylethyl)phenol) (150 mg) 

was added as a biocide (Cape et al., 2012) to a clean, dry pre-weighed bottle at the start of each collection period. This provided 30 

a minimum thymol concentration of 50 mg L-1 for a full bottle to preserve the sample against biological degradation of labile 

nitrogen compounds during the month-long sampling. 

 

Three European laboratories shared management and chemical analysis for the network (Figure 3). The laboratories were 

CEAM (all 3 Spanish sites), INRAE (French Renon site) and SHMU, designated the main laboratory responsible for all other 35 

sites. A full suite of precipitation chemistry analyses were carried out that included: pH, conductivity, NH4
+, NO3

-, SO4
2-, PO4

3-

, Cl-, Na+, K+, Ca2+ and Mg2+. Rain volumes and precipitation chemistry data were submitted in a standard template to UKCEH 

for checking and then uploaded to the NEU database (http://www.nitroeurope.ceh.ac.uk/). Samples with high P (> 1 µg L-1 

PO4
3-), high K+ and/or NH4

+ values that are indicative of bird contamination were rejected. Annual wet deposition (e.g. kg N 

ha-1 yr-1) were estimated from the product of the species concentrations and rain volume. Determinations of organic N were 40 

also carried out on some of the rain samples in a separate investigation reported by Cape et al. (2012). 
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2.4 Laboratory inter-comparisons: chemical analysis 

All laboratories in the DELTA® and bulk wet deposition networks participated in water chemistry proficiency testing (PT) 

schemes in their own countries, as well as the EMEP (once annual, http://www.emep.int) and/or WMO-GAW (twice annual, 

http://www.qasac-americas.org/lab_ic.html) laboratory inter-comparison schemes. PT samples for analysis are synthetic 5 

precipitation samples for determination of pH, conductivity and all the major inorganic ions at trace levels. In addition, UKCEH 

also organised an annual PT scheme for the duration of the project (NEU-PT) to compare laboratory performance in the 

analysis of inorganic ions at higher concentrations relevant for DELTA® measurements. This comprised the distribution of 

reference solutions containing known concentrations of ions that were analysed by the laboratories as part of their routine 

analytical procedures.  10 

 

2.5 Field inter-comparisons: DELTA measurements 

Prior to the NEU DELTA® network establishment, a workshop was held to provide training to participating laboratories on 

sample preparation and analysis. This was followed by a 4-month inter-comparison exercise (July to October 2006) between 

six laboratories at four test sites (Montelibretti, Italy; Braunschweig, Germany; Paterna, Spain , and Auchencorth, UK). Results 15 

of the inter-comparison on Nr components were reported by Tang et al. (2009), which demonstrated good agreement under 

contrasting climatic conditions and atmospheric concentrations of the Nr gases and aerosols. The first DELTA® inter-

comparison allowed the new laboratories to gain experience in making measurements, and was an extremely useful exercise 

to check how the whole system works, starting with coating of denuders and filters and DELTA® train preparation, sample 

exchange via post, sample handling and inter-comparing laboratory analytical performance. Further DELTA® inter-20 

comparisons between laboratories were conducted each year for the duration of the project, details of which are summarised 

in Table 1. At each test site, DELTA® systems were randomly assigned to each of the participating laboratories. All laboratories 

provided DELTA® sampling trains for each of the inter-comparison sites and carried out chemical analysis on the returned 

exposed samples. Measurement results were returned in a standard template to UKCEH, the central coordinating laboratory 

for collation and analysis. 25 

 

<INSERT TABLE 1>  

2.6 European emissions data  

National emissions data: With the exception of Russia and Ukraine, official reported national emissions data on SO2, NOx and 

NH3 are available for all other 18 countries in the NEU network from the European Environment Agency (EEA) website (EEA, 30 

2020). Emissions data for the period 2007 to 2010 were extracted and the emission densities of each gas (tonnes (t) km-2 yr-1) 

in each country was derived by dividing the 4-year averaged total emissions by the land area (km2). Gridded emissions data 

(at 0.1º x 0.1º resolution) for SO2, NOx and NH3 are available from the EMEP emissions database (EMEP, 2020). The 0.1º x 

0.1º gridded data for the period 2007 to 2010 were downloaded and were used to estimate national total emissions (sum of all 

grid squares in each country) and 4-year averaged emission densities (t km-2 yr-1) for Russia and Ukraine. As a check, total 35 

emissions for the other 18 countries were also calculated by this method and were the same as the national emission totals 

reported by the EEA (EEA, 2019). 

http://www.emep.int/
http://www.qasac-americas.org/lab_ic.html
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2.7 National air quality network data from the Netherlands and UK 

2.7.1 Dutch LML network data 

Atmospheric NH3 has been monitored at 8 sites in the Dutch national air quality monitoring network (LML, Landelijk Meetnet 

Luchtkwaliteitl) since 1993 (van Zanten et al., 2017). The low density, high time-resolution LML network is complemented 

by a high density monthly diffusion tube network, the Measuring Ammonia in Nature (MAN) network (http://man.rivm.nl) 5 

(Lolkema et al., 2015). The MAN network has 136 monitoring locations sited within nature reserves that includes 60 Natura 

2000 sites, with concentrations ranging between 1.0 and 14 μg m-3 (Lolkema et al., 2015). The focus of the MAN network is 

to provide site-based NH3 concentrations for the nature conservation sites, rather than a representative spatial concentration 

field for the country. Hourly NH3 and SO2 data which were also available from the 8 sites in the LML network were 

downloaded from the RIVM website (http://www.lml.rivm.nl/gevalideerd/index.php). The 4-year averaged NH3 and SO2 10 

concentrations for the period 2007 to 2010 were calculated and used to complement measurement data from the 4 Dutch sites 

in the NEU DELTA® network.  

 

2.7.2 UK NAMN and AGANet network data 

Atmospheric NH3, acid gases and aerosols are measured in the UK NAMN (since 1996) and AGANet (since 1999) (Tang et 15 

al., 2018a, 2018b). The UK approach is a high density network with low time-resolution (monthly) measurements, combining 

an implementation of the DELTA® method used in the present NEU DELTA® network and a passive ALPHA® method (Tang 

et al., 2001) to increase network coverage in NH3 measurements (Sutton et al., 2001b; Tang et al., 2018a). Monthly and annual 

data for the overlapping period of the project were extracted from the UK-AIR website (https://uk-air.defra.gov.uk/) and nested 

with the NEU network data for analysis in this paper.  20 

3 Results and Discussion 

3.1 Laboratory inter-comparison results: chemical analysis 

Figure 4 compares the percentage deviation of results from reference solution concentrations (‘true value’) reported by the 

laboratories for different chemical components in the EMEP, WMO-GAW and NEU proficiency testing (PT) schemes, 

combined from 2006 to 2010. Each data point is colour-coded in the graphs according to the laboratory providing the 25 

measurements.  

 

<INSERT FIGURE 4>  

 

Altogether, results from the combined PT schemes produced >100 observations for each reported chemical component over 30 

the 4 year period. The performances of laboratories in Figure 4 can be summarised in terms of the percentage of reported 

results agreeing within 10 % of the true values (see summary table below Figure 4), where the true values represent the nominal 

concentrations in the aqueous test solutions. The best agreements was for SO4
2- and NO3

-, with an average of 92 % and 87 % 

of all reported results agreeing within 10 % of the true value across the concentration range covered in the PT schemes. In the 

case of NH4
+, while an average of 90 % of reported results were within 10% of the reference at 1 mg L-1 NH4

+, laboratory 35 

performance was poorer (68 % agreeing within 10 %) at lower concentrations (0.1 – 0.9 mg L-1). Poorer performance at the 

low concentrations was largely due to two laboratories (CEAM and SHMU) with > 50 % of their results reading high. For Na+ 

and Cl-, the percentages of results agreeing within 10 % of the reference were 81 % and 86 %, respectively, across the full 

range of PT concentrations. At concentrations above 1 mg L-1, the agreement improved and increased to 89 % for Na+ and 

96% for Cl-. A larger spread around the reference values were provided for the base cations Ca2+ and Mg2+ at low concentrations 40 

http://www.lml.rivm.nl/
http://man.rivm.nl/
http://www.lml.rivm.nl/gevalideerd/index.php
https://uk-air.defra.gov.uk/
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(< 1 mg L-1). The percentage of results passing at low concentrations below 1 mg L-1 was 36 % (Ca2+) and 59 % (Mg2+), 

increasing to 80 % (Ca2+) and 90 % (Mg2+) above 1 mg L-1. The larger scatter at low concentrations is likely due to uncertainty 

in the chemical analysis at or close to the method limit of detection, and reflects challenges of measuring base cations, in 

particular Ca2+ as this is very ‘sticky’ and adsorbs/desorbs from surfaces leading to analytical artefacts.  

 5 

To show what the PT reference solution concentrations would correspond to if they were a denuder and/or aerosol extract, 

equivalent gas (Equation 1) and/or aerosol concentrations (Equation 2) (Sect. 2.2.1) are calculated for each of the ions and 

provided in the summary table in Figure 4. A 0.5 mg L-1 NH4
+ solution, for example, is equivalent to an atmospheric 

concentration of 0.09 µg NH3 m
-3 (gas), or 0.13 µg NH4

+ m-3 (aerosol) for a monthly sample. In Figure 5, scatter plots are 

shown comparing all NEU laboratory reported results with PT reference, where all ion concentrations (mg L-1) from Figure 4 10 

have been converted to equivalent gas and aerosol concentrations (µg m-3), based on a typical volume of 15 m3 over a month. 

With the exception of a small number of outliers, most data points are close to the 1:1 line with laboratory results agreeing 

within ± 0.05 µg m-3 in equivalent gas and/or aerosol concentrations. These are low ambient concentrations and show that the 

measurement uncertainty in the analysis of very low concentrations in the PT schemes will be small for the majority of sites 

in the network, where concentrations were found to be much higher (see Figure 6).  15 

 

<INSERT FIGURE 5> 

 

3.2 Field inter-comparison results: DELTA® measurements 

Results from 4 years of annual DELTA® field inter-comparisons (2006 – 2009), for all field sites, are combined and 20 

summarised in Figure 6. The gas and aerosol concentrations measured and reported by each of the laboratories are compared 

with the median estimate of all laboratories in each of the scatter plots, with the colour of the symbols identifying the laboratory 

providing the measurements. Regression results (slope and R2) in the table below the plots provide the main features of the 

inter-comparison. The slope is equivalent to the mean ratio of each laboratory against the median value, where values close to 

unity indicate closer agreement to the median value. Overall, the scatter plots show good agreement between the laboratories, 25 

with some laboratories showing very close agreement to the median estimates, and more scatter observed from the others.  

 

<INSERT FIGURE 6> 

 

The occurrence of outliers in some of the individual monthly values indicates that caution needs to be exercised in the 30 

interpretation of these data points in the inter-comparison. To average out the influence of a few individual outliers, the mean 

concentrations from each of the seven laboratories for each of the four field sites were calculated and compared with averaged 

median estimates of all laboratories for each site. A summary of the mean concentrations and the percentage difference from 

median is presented in Table 2. Since the INRAE laboratory did not join the NEU network until 2008, averaged median values 

from the 2008 and 2009 inter-comparisons are used to compare with the INRAE results, included in the table for clarity. The 35 

mean concentrations between laboratories are broadly comparable. Each of the laboratories were also able to resolve the main 

differences in mean concentrations at the four field sites, ranging from the smallest concentrations at Auchencorth (e.g. median 

= 1.4 µg NH3 m
-3) to higher concentrations representing a more polluted site at Paterna (e.g. median = 5.2 µg NH3 m

-3) for the 

test periods (Table 2). Larger differences for HCl, Ca2+ and Mg2+ are due to clear outliers from one or two laboratories at the 

very low concentrations of these species encountered and may be related to measurement uncertainties at the low air 40 

concentrations.  The comparability between laboratories for each of the components is next considered in turn.  
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<INSERT TABLE 2> 

 

3.2.1 Inter-comparisons: NH3, NH4
+, HNO3, NO3

- 

The best agreement between laboratories was for the Nr gases (NH3, HNO3) and aerosol species (NH4
+, NO3

-), with slopes 

within ± 10 % of the median values and R2 > 0.9 in the regression analysis from five of the laboratories (Figure 6, Table 2). 5 

This is important since Nr species were the primary focus for the NEU DELTA® network. Slightly poorer agreement for NH3 

and NH4
+ were provided by CEAM and MHSC laboratories, with data points both above and below the 1:1 line (Figure 6). 

The outliers above the 1:1 line from MHSC were from the 2006 inter-comparison exercise. Removal of these 2006 outliers 

improved the MHSC regression slope for NH3 from 1.21 (R2 = 0.87, n = 41) to 0.99 (R2 = 0.99, n =10) (Supp. Figure S1). 

While this seems to suggest that the performance of MHSC for NH3 improved following the first inter-comparison exercise, 10 

the regression slope for aerosol NH4
+ increased instead from a slope of 1.26 (R2 = 0.83, n = 41) to 1.48 (R2 = 0.93, n = 10), 

suggesting an over-estimation of NH4
+ concentrations (Supp. Figure S1). A possible cause may be the quality and/or variability 

in the aerosol filter blank values for NH4
+, as laboratory blanks are subtracted from exposed samples to estimate aerosol NH4

+ 

concentrations. While the laboratory blanks reported by MHSC for aerosol NH4
+ were low (mean = 0.48 µg NH4

+) and smaller 

than other laboratories (mean = 0.64 – 1.20 µg NH4
+) (Supp. Fig. S2), their field blanks in the 2006 DELTA intercomparison 15 

exercise were on average 5.5 times larger than the laboratory blanks. This is likely due to extensive delays in getting samples 

released from customs in Slovakia at the start of the network. Another possibility is a breakthrough of NH3 from the acid 

coated denuders onto the aerosol filters. The denuder collection efficiency of NH3 gas (Equation 3, Sect. 2.2.1) reported by 

MHSC was on average 88 % for all years and 91 % where 2006 data have been excluded (Supp. Table S3). This is comparable 

with the mean collection efficiencies of all laboratories (91 and 90 %) (Supp. Table S4), which makes NH3 breakthrough an 20 

unlikely explanation for the higher readings. The assessment of NH4
+ is however more uncertain from the reduced number of 

data points (n = 10).  

 

For the CEAM laboratory, reported NH3 concentrations were on average 16 % lower (n = 41) than the median, with a slope of 

0.89 (R2 = 0.87) and particulate NH4
+ were on average 13 % lower (n = 41) than the median, with a slope of 0.42 (R2 = 0.22) 25 

(Figure 6). A need to improve the NH4
+ analysis (Indophenol colorimetric assay) in the acid coated denuders and aerosol filters 

by the CEAM laboratory was identified from the 2006 inter-comparison (Tang et al., 2009). The Indophenol method for 

aqueous NH4
+ determination is pH sensitive. Calibration solutions and quality control checks for the colorimetric assays are 

made up in deionised water (pH 7), whereas the aqueous extracts from the DELTA ® acid coated denuders and cellulose filters 

are acidic (pH ~3). Determination of NH4
+ in the denuder extracts may therefore be under-estimated if the pH of the indophenol 30 

reaction has not been adjusted for the increased acidity in the sample extracts. When the 2006 data are excluded from the 

regression analysis, the slopes for NH3 and NH4
+ increased to 1.02 (R2 = 0.94, n = 12) and 0.98 (R2 = 0.51, n = 12), respectively 

(Supp. Figure S1). The improved agreement with other laboratories after the 2006 inter-comparison suggests that the method 

under-read was largely resolved, reflected in an improvement in the slope. Despite some uncertainties in the NH3/NH4
+ 

measurements, the laboratories were able to clearly resolve the main differences in mean concentrations at the four different 35 

field sites in all years (Table 2). The results presented here for CEAM and MHSC highlight the importance of the initial inter-

comparison exercise in identifying and resolving sampling and analytical issues at the start of the project.  

 

3.2.2 Inter-comparisons: SO2, SO4
2- 

Six laboratories provided slopes within 12 % of the median values in the regression analysis for SO2 (Figure 6). The smaller 40 

R2 values were from two laboratories (CEAM and SHMU, R2 < 0.7), with data points both above and below the 1:1 line. For 

INRAE, the larger slope of 1.6 (R2 = 9) was due to a single high SO2 reading reported for Auchencorth of 2.0 µg SO2 m
-3, 
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compared with the median of 1.4 µg SO2 m
-3. When the mean SO2 concentrations measured by INRAE are compared with the 

median, the difference was on average 13 %, providing acceptable agreement, which suggests that the high reading may just 

be an outlier. There was more scatter in the inter-comparison for SO4
2-, although the majority of points are still close to the 1:1 

line (Figure 6). Six laboratories provided slopes within 12 % of the median values in the regression analysis also for SO4
2-. 

The regression slope from CEAM for SO4
2- was 1.2 (R2 = 0.9) which is still within 20% of the median. The SO2 and SO4

2- 5 

measurements were broadly comparable between the laboratories, with mean concentrations agreeing on average within 6 % 

of the median (Table 2). 

3.2.3 Inter-comparisons: HCl, Cl- 

The HCl inter-comparison show clear outliers from the CEAM laboratory, with concentrations that were on average up to 2 

times higher than other laboratories (slope = 1.8). For example, a mean concentration of 1.8 µg HCl m-3 was reported by 10 

CEAM for Paterna, compared with a median of 0.7 µg HCl m-3. Apart from CEAM, the mean concentrations of HCl reported 

by the other laboratories were generally comparable (Table 2). The larger % differences between the measured mean and 

median at each site reflect the challenges of measuring the very low concentrations of HCl at these sites of < 0.5 µg HCl m-3 

(slightly higher at Paterna). HCl results were reported by NILU for the 2008 inter-comparison exercise only, limiting the 

number of measurements (n = 4) available for comparison.  15 

 

The comparison for Cl- showed better agreement of the CEAM laboratory results with other laboratories, in both the inter-

comparison of individual monthly values (Figure 6) and the mean concentrations (Table 2). Like HCl, larger % differences 

between the measured concentrations and median at each site may be attributed to higher measurement uncertainties at the low 

concentrations of Cl-. For NILU, there were only 2 data points for Cl- from the Auchencorth site in the 2008 inter-comparison. 20 

Overall, the inter-comparison for HCl and Cl- showed that the laboratories were able to resolve the main differences in mean 

concentrations at the different sites even at the low concentrations encountered.  

 

3.2.4 Inter-comparisons: Base cations (Na+, Ca2+, Mg2+) 

Measurements of Ca2+ and Mg2+ were the most uncertain, with the largest scatter in the inter-comparisons (Figure 6). Despite 25 

the trace levels of these base cations at all field sites, 4 laboratories (INRAE, UKCEH, SHMU, VTI) provided data close to 

the 1:1 line, demonstrating close agreement between these laboratories. The clear outliers above the 1:1 line are from CEAM, 

MHSC and NILU, with slopes > 2. While MHSC over-read Ca2+ and Mg2+, their results for Na+ were in better agreement with 

other laboratories, with a slope of 0.9 (R2 = 0.5) (Figure 6). There was a lot of scatter in the data however, with outlier points 

both above and below the 1:1 line, suggesting measurement uncertainties in their base cation measurements. For NILU, the 30 

only base cation results reported by the laboratory were for the 2008 DELTA® inter-comparisons at Auchencorth and 

Braunschweig. This accounts for the low number of data points (n = 4) from the NILU laboratory. The median concentrations 

of Ca2+ and Mg2+ at both field sites were very low (< 0.1 µg m-3), which makes comparison with the few data reported from 

NILU highly uncertain. Like NILU, CEAM also did not report base cations results for all of the DELTA ® inter-comparison. 

Base cation results provided by CEAM were for 2007 – 2009 only.  35 
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3.3 Variation in annual mean gas and aerosol concentrations and composition 

3.3.1 Comparisons according to ecosystem types  

Annual averaged concentrations of gases and aerosols measured in the NEU DELTA® network are presented in Figure 7, with 

sites grouped according to each of four major ecosystem types: crops, grassland, forests and semi-natural. These are the 

classifications used in dry deposition models, where ecosystem-specific deposition velocities (Vd) are combined with 5 

measurement data to produce estimates of Nr dry deposition (Flechard et al., 2011).  

 

<INSERT FIGURE 7> 

 

A total of 64 sites from 20 different countries, including replicated measurements at 4 of the sites , are compared in Figure 7. 10 

Not all of the sites were however operational all of the time or at the same time. Changes in the numbers and locations of sites 

occurred over the duration of the network, for example, due to site closures, relocations and/or new site additions. The annual 

averaged concentrations plotted for each site are the mean of all available annual means. Where the annual averaged 

concentration is derived from less than 4 full years of data, the number of years providing the mean is shown, in brackets, next 

to the site data in the graph. To avoid bias in the calculation of annual means, due to  seasonality in the data (see later in Sect. 15 

3.5), years with incomplete data coverage (< 7 months of data in any year) were excluded. Applying these data exclusions, the 

number of sites that provided annual data was 55 sites for 2007, 57 sites for 2008, 54 sites for 2009 and 55 sites for 2010. The 

number of sites that provided annual data for each year over the entire period was 45 sites.  

 

Sites with parallel (P) DELTA® measurements were Auchencorth Moss (UK-AMoP), Easter Bush (UK-EBuP), Fougéres (FR-20 

FgsP) and SK04P (EMEP site in Slovakia) (Figure 7). Overall, good reproducibility in DELTA® measurements was 

demonstrated by the parallel measurements (Supp. Figures S3 - S6). At the Auchencorth Moss parallel site (UK-AMoP), NH3 

and NH4
+ only were measured, and agreement for these 2 components were on average within 4 % at the low concentrations 

measured at this site (annual mean: 0.5 – 0.9 µg NH3 m
-3 and 0.3 – 0.5 µg NH4

+ m-3) (Supp. Table S5). Parallel measurements 

at Easter Bush (UK-EBuP) stopped in March 2010. With the exception of Ca2+ and Mg2+, the comparison of annual mean data 25 

from the replicated measurements for 2006 to 2009 provided excellent agreement of 4 % (NO3
--) to 12 % (NH3

-) at Easter 

Bush (Supp. Table S6). At Fougéres (Supp. Table S7), HNO3 concentration measured on K2CO3/Glycerol coated denuders 

(FR-Fgs) was about 2-fold higher than on NaCl coated denuders in the parallel DELTA® system (FR-FgsP), consistent with 

over-estimation of HNO3 (on average 45 %) on carbonate coated denuders (see Sect. 2.2.3). The disadvantage of a NaCl 

coating, however, is that it can only collect HNO3 and not the other acid gases. A third carbonate denuder is necessary in the 30 

sample train to collect and measure SO2, since SO2 is only partially captured and HCl cannot be measured on NaCl denuders 

(Tang et al., 2015, 2018b). This explains the smaller SO2 concentrations reported by the FR-FgsP site, with break-through of 

SO2 (inefficiently captured by NaCl denuders) onto the aerosol filters resulting in larger particulate SO4
2- concentrations than 

the Fr-Fgs site. For the SK04 site, measurement reproducibility for the 4 years of parallel data for N and S component was 

good, with agreement ranging from 1.2 % (NH4
+) to 9 % (SO4

2-) (Supp. Table S8).  HCl and Na+ and determinations were 35 

however more uncertain with differences of 67 and 43 %, respectively (Supp. Table S8). It has to be noted, however, that the 

concentrations of the two components were very low, at < 0.2 µg HCl m-3 and < 0.4 µg Na+ m-3. The differences in 

concentrations are therefore actually within ± 0.1 µg m-3 for HCl and within ± 0.2 µg m-3
.for Na+.  

 

A key feature in Figure 7 is the dominance of N over S species at most sites, when expressed as µg m-3 of the element. The 40 

mean percentage contribution of sum Nr (NH3-N, HNO3-N, NH4
+-N, NO3

--N) concentrations to the total mass of gas and 

aerosol species measured is 52 % (range = 24 – 80%), twice as much as from sum S (SO2-S and SO4
2--S; mean = 23 %, range 
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= 7 – 53%) (Figure 8). This is consistent with more substantial reductions in SO2 emissions (−72%) than achieved with NOx 

(−43%) or NH3 (−18%) in Europe between 1991 – 2010 (EEA, 2019). The differences in atmospheric composition of S and N 

species in the present assessment therefore reflected changes in emissions of the precursor gases, and are also in agreement 

with a recent assessment of air quality trends showing important changes in S and N composition in air and rain across the 

EMEP networks (EMEP, 2016).  5 

<INSERT FIGURE 8> 

 

Most of the Nr concentrations at each site in turn are dominated by reduced N (NH3-N, NH4
+-N), rather than by oxidised N 

species (HNO3-N (includes other oxidized N compounds, see Sect.2.2.3) and NO3
--N). Of the sum Nr concentrations measured, 

60 – 97 % (mean = 76%, n = 66) were reduced N (Nred) (Figure 8). Even more strikingly, NH3 (NH3-N) was by far the single 10 

most dominant component at the majority of sites, contributing on average 42% (range = 24 – 56 %, n = 10) at cropland sites 

and 20 % (6 – 46%, n = 35) of the total gas/aerosol concentrations at forest sites (Figure 8). This illustrates very clearly the 

importance of NH3 and by association agricultural emissions in contributing to NH3-N concentrations and deposition in Europe, 

with 92 % of total NH3 emissions in Europe estimated to come from agriculture (EEA, 2019). The reaction of NH3 with the 

acid gases HNO3 and SO2 forms NH4
+-containing particulate matter (PM) that are primarily NH4NO3 and (NH4)2SO4 (Figure 15 

1) (see Sect. 3.4). Together, particulate NH4
+-N, NO3

--N and SO4
2--S made up on average 28% (17 – 40 %, n = 10) of the total 

gas/aerosol concentrations measured at cropland sites (Figure 8). At semi-natural and forest sites however, that number was 

even bigger at 33% (20 – 40%, n = 11) and 37 % (24 – 57%, n = 35), respectively (Figure 8).   

 

Secondary NH4
+ particles are mainly in the ‘fine’ mode with diameters of less than 2.5 µm (PM2.5) and estimated to contribute 20 

between 10 to 50 % of ambient PM2.5 mass concentration in some parts of Europe (Putaud et al., 2010, Schwartz et al., 2016). 

An assessment by Hendriks et al. (2013) found that secondary NH4
+ contributed 10 – 20% of the PM2.5 mass in densely 

populated areas in Europe and even higher contributions in areas with intensive livestock farming. Concentrations of PM2.5 

continue to exceed the EU limit values of 25 μg m-3 annual mean in large parts of Europe in 2017 (EEA, 2019). Particulate 

NH4
+ data presented from the DELTA® network therefore highlights the potential contribution of NH3 of agricultural origin to 25 

fine NH4
+ aerosols in PM2.5. The formation and transport of these secondary aerosols poses a serious risk to human health, 

since PM2.5 are linked with increased mortality from respiratory and cardiopulmonary diseases (AQEG, 2012). 

 

A considerable fraction of the aerosol components measured was made up of sea salt (Na+ and Cl-), with contributions from 

sum (Na+ and Cl-) ranging from 4 % of the total aerosol loading at the inland Höglwald site in Germany (DE-Hog) to 43 % at 30 

Dripsey (IE-Dri), a coastal site in Ireland (Figure 7). With the reduction in European emissions and concentrations of the gases 

SO2, NOx and NH3 for formation of NH4
+-containing aerosols, sea salt is therefore assuming a proportionate increase of the 

aerosol composition, consistent with observations from a recent European assessment of composition and trends in long-term 

EMEP measurements (EMEP, 2016). The concentrations of Ca2+ and Mg2+ were very low across the network, with values 

(mean of all sites < 0.1 µg m-3) that were at or below method limit of detection (LOD = ~ 0.1 µg m-3) (Supp. Table S3). These 35 

data are also considered to be under-estimated due to the DELTA particle sampling cut-off (~ PM4.5) and they were excluded 

from further assessment in this paper. 

 

3.3.2 Comparisons with national gas emissions 

In Figure 9, the annual averaged gas and aerosol concentrations of grouped sites from each country are plotted with the 40 

corresponding national emission densities derived for NH3, NOx and SO2. The emissions data in the graphs are the 4-year 

averages for the period 2007 to 2010, expressed as emissions per unit area of the country per year (t km-2 yr-1) (see Sect. 2.6) 

https://www.eea.europa.eu/
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and ranked in order of increasing emission densities. From the visual comparisons, national mean measured concentrations in 

each country appear to scale reasonably well with the ranked emission densities. This is supported by further regression 

analyses which showed significant correlation between annual averaged concentrations of NH3, NOx and SO2 with emission 

densities of NH3 (R
2 = 0.49, p < 0.001, Figure 10A1), NOx (R

2 = 0.20, p < 0.05, Figure 10A2) and SO2 (R
2 = 0.65, p < 0.001, 

Figure 10A3), respectively (Table 3). The particulate components NH4
+ and NO3

- were also correlated with emission densities 5 

of  NH3 and HNO3 (Table 3). By contrast, there was no relationship between SO4
2- with emission densities of any of the three 

gases, possibly because of contributions to SO4
2- from long-range transport. All regression plots of concentrations against 

emission densities, including summary statistics are provided in Supp. Figure S7.  

 

The comparisons here used national emission totals, where emissions have been summed and averaged across very large and 10 

heterogeneous areas in each country. Additional analysis were also undertaken to compare the individual site mean data with 

i) gridded emissions from individual 0.1° x 0.1° EMEP grids in which the NEU sites are located (Supp. Figure S8, S9), and ii) 

averaged emissions of an extended number of EMEP grids (4 x grids) closest to the site (Supp. Figure S10). Since results from 

these analysis were similar to the comparisons with national emission densities, they are not included for further discussions 

in this paper. The purpose of the ranked emission densities is to compare the pollution climate in terms of primary gas emissions 15 

(SO2, NO2, NH3) across the 20 European countries and to see if this is matched by the DELTA® measurements. Despite the 

complex relationship between emissions and concentrations, the pollution gradient in Europe is clearly captured by the present 

data. At the same time, it also demonstrated the potential application of the DELTA® approach in providing national 

concentration fields, as evidence to compare against spatial and long-term trends in the national emissions data. 

 20 

<INSERT FIGURE 9> 

<INSERT FIGURE 10> 

<INSERT TABLE 3> 

 

3.3.3 Spatial variability across geographical regions  25 

The form and concentrations of the different gas and aerosol components measured also varied according to geographic regions 

across Europe (Figure 11). Smallest concentrations (with the exception of SO4
2- and Na+) were in Northern Europe 

(Scandinavia), with broad elevations across other regions. Gas-phase NH3 and particulate NH4
+ were the dominant species in 

all regions (Figure 11). NH3 showed the widest range of concentrations, with largest concentrations in Western Europe (mean 

= 2.4 NH3 m
-3, range = 0.2 – 7.1 µg NH3 m

-3, n = 26 in 4 countries). By contrast, HNO3 and SO2 concentrations were largest 30 

in high NOx and SO2 emitting countries in Central and Eastern Europe (Sect.3.3.2). Particulate SO4
2- concentrations were 

however more homogeneous between regions, which may be attributed to atmospheric dispersion and long-range 

transboundary transport of this stable aerosol between countries in Europe (Szigeti et al., 2015; Schwarz et al., 2016). In the 

aerosol components, the spatial correlations between NO3
-, NH4

+ and NH3 illustrates the potential for NH3 emissions to drive 

the formation and thus regional variations in NH4
+ and NO3

- aerosol. Particulate SO4
2- concentrations in Northern Europe 35 

(Scandinavia) were similar to other countries, despite having the smallest SO2 and NH3 emissions and concentrations (Figure 

9). By comparison, the smaller particulate NH4
+ and NO3

- concentrations in Northern Europe are consistent with smallest 

emissions (NH3 and NOx) and concentrations of NH3 and HNO3 (Figure 9). As discussed later in Sect. 3.4, the larger SO4
2- 

concentrations reported in Northern Europe were flagged up as anomalous from ion balance checks (ratio of NH4
+:sum anions).  

 40 

< INSERT FIGURE 11> 
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3.3.4 Comparisons by grouped components 

In the following sections, variations in concentrations of the different gas and aerosol components according to ecosystem 

types (crops, grassland, forests and semi-natural) and in relation to emissions (NH3, NOx and SO2) are further discussed. For 

ease of interpretation, components are grouped as follows: reduced N (NH3, NH4
+), oxidised N (HNO3, NO3

-), S (SO2, SO4
2-), 

HCl, Na+ and Cl-.  5 

 

Reduced N (NH3 and NH4
+)  

Broad differences in NH3 concentrations are observed between the grouped sites, with the largest concentrations at cropland 

sites, as expected, as these are intensively managed agricultural areas dominated by NH3 emissions (Figure 7A). Borgo Cioffi 

(IT-BCi) is an ecosystem station located in a 15 ha field (arable crops) on the Sele Plain, an agricultural area with intensive 10 

buffalo farming in Southern Italy and this provided the highest 4-year average of 8.1 µg NH3-N m-3 (cf. group mean = 3.8 µg 

NH3-N m-3, n = 10) (Table 4, Supp. Table S9). Next highest in this group are the German Gebesee (DE-Geb) and the Belgian 

Lonzee (BE-Lon) sites with 4-year average concentrations of 4.9 and 4.8 µg NH3-N m-3, respectively (Supp. Table S9). At 

Gebesee, a decrease in NH3 concentrations was observed over the 4 year period, falling almost 2-fold from an annual mean of 

8.8 µg NH3-N in 2007 to 4.8 µg NH3-N in 2010 (Supp. Table S9). Annual mean concentrations in 2008 (2.9 µg NH3-N m-3) 15 

and 2009 (3.2 µg NH3-N m-3) were similar, but smaller than in 2010. This illustrates the large inter-annual variability in 

concentrations that can occur even over a short time period. Variability between years may reflect changes in meteorological 

conditions on emissions from potential sources, with for example warmer, drier years increasing emissions and concentrations, 

contrasting with lower emissions and concentrations from the same source in a colder and wetter year. Episodic pollution 

events can also have a large influence on the annual mean concentration, rather than the direct effects of changes in 20 

anthropogenic emissions over this short time scale. This suggests that for compliance assessment, an average over several 

years would provide a more robust basis than individual years. The assessment of trends also needs a longer time series of at 

least 10 years (Tang et al., 2018a, 2018b; Torseth et al., 2012; van Zanten et al., 2017). 

 

< INSERT TABLE 4> 25 

 

Grassland sites, with NH3 emissions from grazing and fertilisers, provided the next highest concentrations, with annual 

averaged concentrations of 2.2 µg NH3-N m-3 from the 10 sites in this group (Table 4). Cabauw in the Netherlands (NL-Cab) 

in this group was the second highest NH3 concentration site in the DELTA® network, after Borgo Cioffi (IT-BCi), with a 4-

year annual averaged concentration of 5.9 µg NH3-N m-3 (Supp. Table S9). Unlike the Gebesee site (DE-Geb), annual NH3 30 

concentrations were consistent between years at Cabauw, ranging from annual mean of 6.3 µg NH3-N m-3 in 2017 to 5.8 µg 

NH3-N m-3 in 2010 (Supp. Table S9).  

 

At the clean end of the NH3 gradient are semi-natural and forest sites. The smallest concentrations were found at remote 

background sites in Russia (Fyodorovskoe bog, RU-Fyo) and the Scandinavian countries, in Finland (Lompolojänkkä FI-Lom, 35 

Hyytiälä FI-Hyy, Sodankylä FI-Sod), Norway (Birkenes, NO-Bir) and Sweden (Norunda SE-Nor, Skyytopr SE-Sky), where 

NH3 concentration at each site was < 0.3 NH3-N m-3
 (Figure 7, Supp. Table S9). By contrast, the semi-natural Horstermeer 

(NL-Hor) and forest sites Speulder (NL-Spe) and Loobos (NL-Loo) in the Netherlands gave concentrations that were ten-fold 

higher (2.9 - 4.1 µg NH3-N m-3) (Figure 7, Supp. Table S9). This is consistent with much higher NH3 emission density in the 

Netherlands (4-year average = 3.4 kt NH3-N km-2 yr-1) (Figure 9).  40 

 

With the exception of the Czech Republic, the annual averaged NH3 concentrations scaled reasonably well with the 4-year 

averaged mean NH3 emission density in each country (Figures 9, 10A1, 10B1) (see also Sect. 3.3.2). In the Czech Republic, 
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measurement was made at a single site, BKFores (CZ-BK1), located at a remote forest location. The 4-year averaged emissions 

in the EMEP grid (0.1° x 0.1°) containing the site is very small, at 2 t NH3-N yr-1 compared with an average of 68 t NH3-N yr-

1 (range = < 0.01 to 567 t NH3-N yr-1) across the Czech Republic (Supp. Figure S9). The low emissions, combined with the 

small concentrations measured at BKFores (0.5 µg NH3-N m-3), suggests it is highly likely to represent concentrations at the 

low end of the range of NH3 concentrations that might be expected to be encountered in the Czech Republic. By comparison, 5 

Belgium has a similar emission density as the Czech Republic, but the mean concentrations from 3 sites (2.6 µg NH3-N m-3) 

encompassed sites located in cropland areas (Lonzee BE-Lon, 4.7 µg NH3-N m-3) and forest sites (Braschaat BE-Bra, 2.8 µg 

NH3-N m-3, and Vielsalm BE-Vie, 0.4 µg NH3-N m-3) (Supp. Table S9).  

 

The markedly high concentrations of NH3 across the NEU network indicates that contributions by emission and deposition of 10 

NH3 would be a major contributor to the effects of Nr on sensitive habitats. In comparing the annual averaged NH3 

concentration with the revised UNECE ‘Critical Levels’ of NH3 concentrations (Cape et al., 2009), the lower limit of 1 µg 

NH3 m
-3 annual mean for the protection of lichens-bryophytes were exceeded in 63 % of sites (40 sites in 15 countries) (Supp. 

Table S10). Even the higher 3 µg NH3 m
-3 annual mean for the protection of vegetation was still exceeded at 27 % of sites (17 

sites in 10 countries) (Supp. Table S10). Most notably, all 4 sites from the Netherlands were in exceedance of both the 1 and 15 

the 3 µg NH3 m
-3 thresholds. The large concentrations in the Netherlands highlights the high levels of NH3 that semi-natural 

and forest areas are exposed to within an intensive agricultural landscape, where 117 out of the 166 Natura 2000 areas were 

reported to be sensitive to nitrogen input (Lolkema et al., 2015). A recent assessment estimated that critical loads for 

eutrophication were exceeded in virtually all European countries and over about 62 % of the European ecosystem area in 2016 

(EMEP, 2018). In particular, the highest exceedances occurred in the Po Valley (Italy), the Dutch-German-Danish border areas 20 

and north-western Spain where the highest NH3 concentrations have been measured in this network. Since NH3 is preferentially 

deposited to semi-natural and forests (high Vd to these ecosystem types, Sutton et al., 1995), then NH3 will dominate dry N 

deposition and exert the larger ecological impact. In Flechard et al. (2011), dry NH3-N deposition from the first 2 years of NH3 

measurement in the NEU DELTA® network was estimated to contribute between 25 and 50% of total dry N deposition in 

forests, according to models. The fraction is larger in short semi-natural vegetation, since Vd for NH4
+ and NO3

- is smaller in 25 

short vegetation than to forests (Flechard et al., 2011). 

 

 

Comparison with NH3 data from the Dutch LML network 

The 4-year averaged NH3 concentrations from the Dutch LML air quality network (see Sect.2.7.1) for the period 2007 to 2010 30 

are plotted alongside the NH3 measurements made at the 4 Dutch sites in the DELTA® network (Figure 9A). The 4-year 

averaged concentrations from the 8 LML sites were between 1.5 to 15 μg NH3-N m-3, highlighting the high concentrations and 

spatial variability in concentrations in the Netherlands. The mean NH3 concentrations measured at the 4 Dutch sites in the 

DELTA® network of 2.9 μg NH3-N m-3 (Horstermeer, NL-Hors; semi-natural) to 5.9 μg NH3-N m-3 (Cabauw, NL-Cab; 

grassland) were within the range of concentrations measured in the Dutch LML network.  35 

 

Comparison with NH3 data from the UK NAMN network 

The 4-year averaged NH3 concentrations calculated from the 72 sites in the NAMN (see Sect. 2.7.2) for the period 2007 to 

2010 were smaller than the Dutch LML network, ranging from 0.05 to 6.7 μg NH3-N m-3
, consistent with smaller NH3 

emissions from the UK (Figure 9A). In a joint collaboration between the UK and Dutch networks, inter-comparison of NH3 40 

measurements by the DELTA® method (monthly) with the Dutch network AMOR wet chemistry system (hourly, van Zanten 

et al., 2017) were carried out at the Zegweld site (ID 633) in the Dutch LML network (van Zanten et al., 2017) between 2003 



19 
 

and 2015. Good agreement was provided lending support for comparability between the independent measurements, reported 

in Tang et al. (2018a). 

 

Particulate NH4
+ 

Particulate NH4
+ concentrations across the 64 sites were more homogeneous than NH3, varying over a narrower range between 5 

0.13 µg NH4
+-N m-3 at Sodankylä (Finland, FI-Sod) and 2.1 µg NH4

+-N m-3 at Borgo Cioffi (Italy, IT-BCi) (Figure 7, Supp. 

Table S11). By comparison, the difference in NH3 between the smallest (0.07 µg NH3-N m-3 at Lompolojänkkä, Finland, FI-

Lom) and largest (8.1 µg NH3-N m-3 at Borgo Cioffi, Italy, IT-BCi) concentrations varied by a factor of 110 (Figure 7, Supp. 

Table S10). Secondary aerosols have longer atmospheric lifetimes and will therefore vary spatially much less than their 

precursor gas concentrations. While the concentrations of NH3 vary at a local to regional level owing to large numbers of 10 

sources at ground level, and high deposition in the landscape, NH4
+ is less influenced by proximity to NH3 emission sources 

and varies in concentration at regional scales (Sutton et al., 1998; Tang et al., 2018a).  

 

In Figure 9, annual averaged NH4
+ concentrations (µg NH4

+-N, Figure 9E; nmol m-3 in Figure 9G) are plotted with 4-year 

averaged emissions densities for NH3, NOx and SO2 from each country, with the combined total emission densities shown in 15 

ranked order. Regression analyses showed NH4
+ concentrations to be correlated with NH3 emissions (R2 = 0.36, p < 0.01, n = 

20) and NOx emissions (R2 = 0.27, p = 0.02, n = 20), but not with SO2 emissions (Table 3, Supp. Figure S7). The smallest 

NH4
+ concentrations were in Sweden, Norway and Finland (annual average < 0.3 µg NH4

+-N m-3) with the lowest emissions 

of NH3, NOx and SO2 and also the smallest concentrations of the precursors gases NH3 (< 0.3 µg NH3-N m-3), HNO3 (< 0.1 µg 

HNO3-N m-3) and SO2 (< 0.3 µg SO2-S m-3).  20 

 

The UK and Irish sites have the next smallest NH4
+ concentrations of 0.4 and 0.5 µg NH4

+-N m-3 (cf. mean of all countries = 

0.74 µg NH4
+-N m-3). Particulate NH4

+ data from the UK NAMN (Tang et al., 2018a) are also included for comparison. The 

4-year average concentrations from the 30 sites (0.5 µg NH4
+-N m-3, range = 0.14 to 1.0 µg NH4

+-N m-3) are comparable with 

the mean of 0.40 µg NH4
+-N m-3 (range = 0.2 to 0.9 µg NH4

+-N m-3) from just 4 sites in the NEU network. A combination of 25 

lower emissions of precursor gases (Figure 9) and being further away from the influence of long -range transport of NH4
+ 

aerosols from the higher emission countries on mainland Europe may be contributing factors to the small NH4
+ concentrations 

measured in the UK and Ireland.    

 

The largest national mean concentration of particulate NH4
+ (1.4 µg NH4

+-N m-3) was measured in the Netherlands, which also 30 

has highest NH3 and NOx emissions (Figure 9E). Indeed, the NH4
+ was matched by large NO3

- concentration (0.9 µg HNO3-

N m-3) (Figure 9E), lending support to the contribution of NH4NO3 to the NH4
+ and NO3

- load, together with contribution from 

(NH4)2SO4 (0.6 µg SO4
2--S) (Figure 9F). The particulate NH4

+ concentrations measured in Italy (mean = 1.0 µg NH4
+-N m-3) 

(Figure 9E), which includes the site in the Po Valley (IT-PoV) with a mean concentration of 1.9 µg NH4
+-N m-3 (Supp. Table 

S11), is comparable with an assessment of PM2.5 composition at 4 sites in the Po Valley (Ricciardelli et al., 2017). 35 

 

Oxidised N (HNO3 and NO3
-) 

The percentage mass contribution of oxidised N (sum of HNO3 and NO3
-, µg N m-3) to the total gas and aerosol species 

measured was on average 13 % (range = 2 – 24 %) (Figure 8). This compares with 41 % (range = 17 – 70 %) from reduced N 

(sum NH3 and NH4
+, µg N m-3), and 23 % (range = 7 – 53 %) from sulfur (sum of SO2 and SO4

2-, µg S m-3) (Figure 8). DELTA® 40 

measurements of HNO3 also include contributions from co-collected oxidised N species such as HONO (see Sect. 2.2.3) and 

are therefore an upper estimate, that may in some cases be twice as large as the actual HNO3 concentration, based on 

observations in the UK (Tang et al 2018b; correction factor of 0.45) and from the parallel DELTA® measurements made at 
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Fougéres (FR-FgsP) (Supp. Figure S5). At this site, HNO3 measurement with NaCl coated denuders provided an annual mean 

concentration of 0.08 µg HNO3-N m-3, compared with 0.19 µg HNO3-N m-3 measured on carbonate coated denuders from the 

main site (FR-Fgs) (Supp. Table S7). With this caveat in mind, uncorrected annual mean HNO3 concentrations were in the 

range of 0.03 µg HNO3-N at Kaamenan (Finland, FI-Kaa) to 0.47 µg HNO3-N at Braschaat (Belgium, BE-Bra) (Supp. Table 

S7). In Figure 9B, HNO3 concentrations are compared with NOx emissions, the precursor gas for secondary formation of 5 

HNO3. Overall, a weak, but significant correlation was observed between concentrations of HNO3 and NOx emission densities 

across the 20 countries (R2 = 0.2, p < 0.05) (Figure 10A2, Table 3, Supp. Figure S2). Russia has the lowest NOx emission 

densities (0.04 t NOx-N yr-1), but HNO3 from the single site (0.15 µg HNO3-N m-3) is larger than the smallest concentrations 

measured in Finland, Norway and Sweden (annual average < 0.1 µg HNO3-N m-3). HNO3 formation by photochemical 

processes may be enhanced in hotter, sunnier summer weather in Russia. Since SO2 concentrations (mean = 0.49 µg SO2-S) at 10 

the Russian site (RU-Fyo) is in molar excess over the low levels of NH3 (mean = 0.32 µg NH3-N m-3), removal of HNO3 by 

reaction with NH3 will also be limited. HNO3 concentrations in the UK and Ireland are marginally higher than the Scandinavian 

countries. Here, the annual averaged concentrations of HNO3 are similar (0.10 vs 0.09 µg m-3) (Supp. Table S12), despite NOx 

emissions density (t km-2
 yr-1) in the UK being 3 times larger than in Ireland (Figure 9B). HNO3 concentrations on the European 

continent were generally higher (0.2 – 0.4 µg HNO3-N m-3). 15 

 

In the UK, HNO3 data are also available on a wider spatial scale from the AGANet (Tang et al., 2018b, Sect. 2.7.2). The 4-

year average concentrations of HNO3 from 30 sites in the AGANet are plotted alongside the NEU HNO3 data from the 4 UK 

sites in its network in Figure 9B. The UK HNO3 data on the UK-AIR database (https://uk-air.defra.gov.uk/) have been 

corrected for HONO interference with a 0.45 correction factor (see Tang et al. 2018b). For consistency in Figure 9B, the UK 20 

raw uncorrected HNO3 data are used for the present comparison. The 30-site mean (0.17 µg HNO3-N m-3) was higher than 

from just 4 UK sites in the NEU network (0.10 µg HNO3-N m-3). The range of concentrations were also wider, from 0.03 µg 

HNO3-N m-3 at a remote background site in Northern Ireland to 0.77 µg HNO3-N m-3 at a central London urban site, where 

interference from HONO and NOx in HNO3 determination is likely to be larger (Tang et al., 2015; 2018b). 

 25 

Like particulate NH4
+, NO3

- concentrations are also correlated with emission densities of NH3 (R
2 = 0.57, p < 0.001, n = 20) 

and NOx (slope = 0.15, R2 = 0.44, p <0.01, n = 20), but not with SO2 (Table 3, Supp. Figure S7). Smallest NO3
- concentrations 

were again in Sweden, Norway and Finland with low NH3 and NOx emissions and also smallest concentrations of HNO3, SO2 

and NH4
+ in the network (Figure 9). Largest NO3

- concentrations was measured in the Netherlands with a mean of 0.92 µg 

NO3
--N m-3, compared with a network average of 0.39 µg NO3

--N m-3 (Figure 9E, Supp. Table S13). The higher NO3
- 30 

concentrations correlated well with the high NH3, HNO3 and NH4
+ concentrations in the Netherlands (Figure 9). This suggests 

that concentrations of NO3
- are linked to local formation of NH4NO3, which is dependent on concentrations of NH3 and HNO3, 

and also to the influence of meteorology on transport of NH4NO3 between countries on mainland Europe and export out of 

Europe. Countries in Scandinavia such as Sweden, Norway and Finland and in the British Isles are furthest from the influence 

of long-range transboundary transport from Europe, with concentrations of NH4NO3 that are smaller than on the continent. 35 

 

Sulfur (SO2 and SO4
2-) 

Annual averaged SO2 concentrations measured across the network were between 0.9 and 2.3 µg SO2-S m-3 (Figure 9C, Supp. 

Table S14). By comparison, the EMEP network of 58 urban background sites reported annual mean concentrations of 0.03 

and 5.5 µg SO2-S m-3 over the same period, with largest SO2 concentrations from North Macedonia and Serbia. Since these 40 

high emitting countries were not included in the DELTA® network, the range of SO2 concentrations are smaller. Together, 

the small SO2 concentrations reflect the substantial reductions in SO2 emissions across Europe (-74 % between 1990 and 2010) 

and large reductions in ambient concentrations and deposition of sulfur species across Europe during the last decades (EMEP, 

2016).  
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SO2 concentrations were also correlated with SO2 emission density (R2 = 0.65, p < 0.001, n = 20) in each country (Figure 

10A3, Table 3). The smallest and largest SO2 annual average concentrations corresponded with the lowest emissions in Norway 

and highest in the Czech Republic (Figure 9C). By contrast, SO2 concentrations from the single measurement site Bugac in 

Hungary (HU-Bug) are much higher than expected on the basis of SO2 emission density estimated for the country. This 5 

suggests that Bugac is likely to be affected by proximity to sources. This contrasts with the BKFores site in the Czech Republic 

(CZ-BK1) which had smaller NH3 concentrations due to its location away from sources.    

 

 

 10 

 

Following emission, SO2 disperses and undergoes chemical oxidation in the atmosphere to form SO4
2- both in the gas phase 

and in cloud and rain droplets (Baek et al., 2004; Jones and Harrison, 2011). Particulate SO4
2- produced is generally associated 

with NH4
+ and NO3

- (see Sect. 3.4). The regional pattern of SO4
2- was similar to, and correlated well with, particulate NH4

+ 

and NO3
 - (Figure 9G), suggesting well-mixed air on the continent, since (NH4)2SO4 is stable and long-lived. Countries in the 15 

British Isles (UK and Ireland) and in Scandinavia (Sweden, Norway, Finland) have smaller concentrations of SO4
2- (Supp. 

Table S15). They are located far enough away from sources and activities on continental Europe such that they are less 

influenced by the emissions from central Europe. 

 

As discussed earlier, particulate NH4
+ and NO3

- concentrations were smallest in the Scandinavian countries, which 20 

corresponded with low emission densities of the precursor gases NH3 and NOx. By analogy, since these countries also have 

the lowest emission densities of SO2 (Figure 9C), then particulate SO4
2- concentrations would be expected to be similarly low. 

Particulate SO4
2- in Finland and Norway (mean = 0.34 µg SO4

2--S m-3) and Sweden (mean = 0.37 µg SO4
2--S m-3) were however 

comparable with concentrations on mainland Europe (range = 0.33 to 1.0 µg SO4
2--S m-3) and larger than the UK (0.18 µg 

SO4
2--S m-3) and Ireland (0.24 µg SO4

2--S m-3) (Figure 9F). An ion balance check on the ratio of equivalent concentrations of 25 

NH4
+ to the sum of NO3

- and SO4
2- (see next section 3.4) was less than 0.5. Since NH4

+ is a counter-ion to NO3
- and SO4

2- 

formation, the imbalance suggests that SO4
2- concentrations may be over-estimated at the sites in Sweden, Norway and Finland. 

  

HCl, Cl- and Na+ 

The average concentrations of HCl across the network were of low magnitude, with limited variability, ranging from 0.07 in 30 

Russia to 0.36 µg HCl-Cl- m-3 in Portugal (Figure 9D). At a site level, HCl concentrations varied between 0.06 at Renon (Italy, 

IT-Ren – inland location) to 0.48 µg HCl-Cl- m-3 at Espirra (Portugal, PT-Esp – coastal location) (Supp. Table S16). In the UK 

AGANet network, the highest concentrations of HCl were found in the source areas in SE and SW of England, and also in 

central England, north of a large coal-fired power station (Tang et al., 2018b). HCl emissions and concentrations in the 

atmosphere are mostly derived from combustion of fossil fuels (coal and oil), biomass burning and from the burning of 35 

municipal and domestic waste in municipal incinerators (Roth and Okada 1998; McCulloch et al., 2011; Ianniello et al., 2011). 

Several manufacturing processes, including cement production also emits HCl (McCulloch et al., 2011). At coastal sites, HCl 

released from the reaction of sea salt with HNO3 and H2SO4 can be a significant source (Roth and Okada 1998; Keene et al., 

1999; McCulloch et al., 2011; Ianniello et al., 2011). UK is the only country with available HCl emission estimates 

(https://naei.beis.gov.uk/data/). Emissions of HCl in the UK (mainly from coal burning in power stations) have declined to 40 

very low levels, from 74 kt in 1999 to 5.7 kt in 2015. The 4-year averaged emission density for HCl for the period 2007 to 

2010 was just 0.05 tonnes HCl-Cl- km-2 yr-1, although HCl emissions could still pose a threat to sensitive habitats close to 

sources (Evans et al., 2011). The low HCl concentrations measured in the network would suggest that the shift in Europe’s 

https://naei.beis.gov.uk/data/
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energy system from coal to other sources has contributed to low HCl emissions (UK) and concentrations (observed across the 

network).  

 

Particulate Cl- on the other hand is predominantly marine in origin, with sea salt (NaCl) as the most significant source (Keene 

et al. 1999). Molar concentrations of Cl- and Na+ are seen to be similar in most countries, demonstrating close coupling between 5 

the two components (Figure 9H). Largest concentrations of Na+ and Cl- occurred at coastal countries such as the UK, Ireland, 

Netherlands and Portugal, with the highest of country-averaged annual concentrations of 1.6 µg Cl- m-3 and 0.9 µg Na+ m-3 

from Ireland (Supp. Tables S16 and S17). Data from the 30 sites in the UK AGANet network showed a wider range of Cl- and 

Na+ concentrations (Figure 9H), with the highest 4-year annual averaged concentrations of 3.8 µg Cl m-3 and 2.0 µg Na+ m-3 

from the coastal Lerwick monitoring site on the east coast of the Shetland Islands, exposed to the North Atlantic. 10 

 

Further away from the coastal influence of marine aerosol, the smallest concentrations of Cl- and Na+ were measured in land-

locked countries such as Germany (mean of all sites = 0.27 µg Cl- m-3 and 0.15 µg Na+ m-3). Concentrations in Hungary, 

Poland, the Czech Republic and Russia were also low, but inferences about these countries are necessarily limited by 

measurements at a single site in each of these countries. At coastal sites in Norway (NO-Bir) and Sweden (SE-Nor and SE-15 

Sk2), the very low particulate Cl- concentrations (< 0.1 - 0.3 µg m-3), and high Na:Cl molar ratios (3 – 5) are anomalous. It is 

possible for sea salt to be depleted in Cl- (through the loss of HCl gas) by the reaction of NaCl particles with atmospheric acids 

(Finalyson-Pitts and Pitts, 1999; Keene et al., 1999), leading to high Na:Cl ratios for sea salts transported over long distances. 

The coastal locations of these sites (Figure 2) suggests that they are more likely to be influenced by freshly generated marine 

aerosols (cf. coastal sites in UK and Ireland), and larger concentrations of sea salt (Na+ and Cl-) and a 1:1 relationship between 20 

Na+ and Cl- are expected. The Cl- concentrations are likely to be under-estimated at these sites (see Sect. 3.2.3) and further 

discussed in the next section (Sect. 3.4). 

 
 

3.4 Correlations between gas and aerosol components 25 

Regression analyses was carried out between the mean molar equivalent concentrations of all inorganic gas and aerosol 

components measured at each site (n = 66; Fr-FgsP and UK-AmoP excluded) in the NEU network, with summary statistics 

provided in Table 5. With the exception of SO2 vs HCl (R2 = 0.05, p > 0.05), the gases were positively correlated with each 

other, possibly due to similarities in the regional distribution of their emissions and concentrations. Comparing the mean molar 

concentrations of NH3 with SO2 and HNO3 showed that NH3 was on average 6-fold and 7-fold higher, respectively, whereas 30 

molar concentrations of SO2 and HNO3 were similar (Table 6, Figure 12). The molar ratio of NH3 to the sum of all acid gases 

(SO2, HNO3 and HCl) was on average 3 (Table 6, Figure 12), confirming that there is a surplus of the alkaline NH3 gas to 

neutralise the atmospheric acids in the atmosphere, similar to that observed in the UK (Tang et al., 2018b). With the more 

substantial decline in emissions of SO2, compared with a more modest reduction in NOx, the concentrations of SO2 are at a 

level where it is no longer the dominant acid gas, such that HNO3 and HCl are together contributing a larger fraction of the 35 

total acidity in the atmosphere in the present assessment. 

 

<INSERT TABLE 5> 

<INSERT TABLE 6> 

<INSERT FIGURE 12> 40 

 

In the aerosol phase, NH4
+ correlated well with NO3

- (R2 = 0.75, p < 0.001, Figure 13A) and SO4
2- (R2 = 0.75, p < 0.001, Figure 

13B) (Tables 5 and 7), but not with Cl- (Table 5). Regression of the molar equivalent concentrations of the sum of NO3
- and 
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SO4
2- against NH4

+ show points close to the 1:1 line (slope = 0.84) and significant correlation (R2 = 0.64, p < 0.001), which 

demonstrates the close coupling between the base NH4
+ and the acid NO3

- + SO4
2- aerosols (Figure 13C, Table 7). The reaction 

of NH3 with H2SO4 is irreversible (i.e. ’one-way’) under atmospheric conditions (Baek et al., 2004; Finlayson-Pitts and Pitts, 

1999; Jones and Harrison, 2011; Huntzicker et al., 1980), whereas any NH4NO3 or NH4Cl that are formed can dissociate to 

release NH3 which can then be ‘removed’ by reaction with H2SO4. The lack of correlation between NH4
+ and Cl- (R2 = 0.00, 5 

Table 5) in the analysis suggests that NH4
+ is mainly associated with NO3

- and SO4
2.  

 

<INSERT TABLE 7> 

 

Particulate Cl- was correlated with Na+ (R2 = 0.65, p < 0.001) (Figure 13F, Tables 5, 7), consistent with observations that NaCl 10 

in atmospheric aerosols are mainly sea salt in origin (O’Dowd and de Leeuw, 2007; Tang et al., 2018b). Like the precursor 

gases, the molar concentrations of particulate NH4
+ are larger than either NO3

- or SO4
2- (Figure 12, Table 8). Particulate NO3

- 

concentrations were on average 2-fold higher than particulate SO4
2- (on a molar basis), so that there was twice as much NH4NO3 

(Figure 13A) as (NH4)2SO4 (Figure 13B). The shift in PM composition from (NH4)2SO4 to NH4NO3 across Europe is well 

documented (Bleeker et al., 2009; Fowler et al., 2009; Tang et al. 2018b; Torseth et al., 2017).  15 

 

<INSERT FIGURE 13> 

<INSERT TABLE 8> 

 

Non-sea salt SO4
2- (nss-SO4

2-) was also estimated from the SO4
2- and Na+ data (see Sect. 2.2.1). The nss-SO4

2- is estimated to 20 

comprise on average 25 % (range = 3 – 83 %, n = 187) of the measured total SO4
2- aerosol (Table 8). This demonstrates that 

sea salt SO4
2- (ss-SO4

2-) aerosol makes up a large and variable fraction of the total SO4
2- measured, consistent with observations 

of the contribution by ss-SO4
2- to the total SO4

2- in precipitation observed in the wet deposition measurements in this study 

(Figure 11) and across Europe (ROTAP, 2012). Regression of nss-SO4
2- vs NH4

+ (slope = 0.27, R2 = 0.30) was not significantly 

different from the regression of SO4
2- vs NH4

+ (slope = 0.27, R2 = 0.28) (Table 5). This suggests that NH4
+ is mainly associated 25 

with the nss-SO4
2-.  

 

Correlation between NH4
+ and the sum of anions (NO3

- + SO4
2-) is an important point of discussion (Table 7), as the ion balance 

serves as a quality check for the aerosol measurement. Due to some outliers in the comparison, the correlation between NH4
+ 

and SO4
2- (R2 = 0.28, Figure 13B) is weaker than between NH4

+ and NO3
- (R2 = 0.75, Figure 13C, Table 7). The outliers were 30 

measurements made by NILU and CEAM, although these vary according to monitoring locations. The NILU laboratory made 

DELTA® measurements for 16 sites in 6 different countries (Belgium, Denmark, Finland, Norway, Sweden and Switzerland). 

At 3 sites (Kaamanen FI-Kaa, Laegern CH-Lae, Oensingen CH-Oe1), the ion balance of equivalent concentrations of 

NH4
+:sum (NO3

-  +  SO4
2-) was 1.0, whereas the ratios at the other 13 sites were between 0.4 and 0.7. The CEAM laboratory 

made measurements for all 3 sites in Spain. For CEAM, the ion balance ratio at Vall de Aliñá (ES-VDA) was 1, whereas the 35 

other 2 sites had ratios of 0.5 and 0.6. 

 

Removal of the outlier NILU (7 out of 16) and CEAM (1 out of 3) data points with ion balance ratio < 0.5 improved both the 

slope (new slope = 0.90) and correlation (new R2 = 0.78) (Figure 13C). This indicates either an over-read of the anions (NO3
-

, SO4
2-) or under-read of NH4

+ concentrations by the two laboratories at some sites. Results reported by NILU in the DELTA® 40 

field inter-comparisons (Sect. 3.2) showed that, with the exception of a few high NH4
+ and NO3

- readings, there was on average 

no overall bias in the NH4
+, NO3

- or SO4
2- measurements by the NILU laboratory that could account for the high SO4

2- outliers 

in the regression (Figure 13). An inspection of individual monthly site data reported by NILU showed that 15 % of aerosol 
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NH4
+ and 17 % of NO3

- concentrations were below 0.1 µg m-3, compared with only 0.7 % of all SO4
2- data. This then points to 

a potential under-read in NH4
+ and NO3

-. Possible reasons include: 

i) loss of NH4
+, NO3

- from filters (e.g. microbial degradation),  

ii) non-capture on the aerosol filters (e.g. aerosol filters installed wrong way round), 

iii) filters mixed up and wrong analysis performed on the acid and base-coated filters, 5 

iv) high  blanks subtracted from already low concentrations at clean sites. 

 

Possibilities still remain however, of a potential over-read in SO4
2-. The ion balance checks suggest increased uncertainty in 

the NH4
+, NO3

- and SO4
2- measurements for 7 sites:  Hyytiälä (FI-Hyy), Sodankylä (FI-Sod), Rimi (DK-Rim), Risbyholm 

(DK-Ris), Soroe (DK-Sor), Skyttorp (SE-Sk2) and Vielsalm (BE-Vie). Examination of  monthly site data from CEAM showed 10 

only 1.5 % of aerosol NH4
+ and 0.8 % of NO3

- concentrations below 0.1 µg m-3, whereas all SO4
2- data were above 0.1 µg m-

3. For the CEAM lab, the uncertainty in NH4
+, NO3

- and SO4
2- measurements affected 2 sites, El Saler (ES-Els) and Las Majadas 

(ES-Lam) (see also Sect. 3.3.3).  

 

The regression of Na+ and Cl- also showed the majority of data points close to the 1:1 line, but with a small group of outliers 15 

below the 1:1 line from the CEAM and NILU laboratories (Figure 13F). Both laboratories performed well in laboratory PT 

schemes (Sect. 3.1), with more than 80% of reported data agreeing within ± 10% of reference values in both Na+ and Cl-, with 

no bias in the analytical method. The outliers in the ion balance therefore suggests some problems with Na+ and Cl- 

determination on the DELTA® aerosol filters. Na+ and Cl- data for some of the field DELTA® inter-comparisons were omitted 

from submissions by CEAM and NILU, and submitted data were in poor agreement with other laboratories (Sect. 3.2). Further 20 

regression analyses were carried out on individual monthly data, with sites grouped according to measurements made by each 

of the seven laboratories (Supp. Figure S11). Regressions for CEAM and NILU show the vast majority of data points below 

the 1:1 line, indicating a systematic under-estimation of particulate Cl- concentrations. The other 5 laboratories (INRAE, 

MHSC, SHMU, UKCEH and VTI) all have data points close to the 1:1 line, with larger scatter both above and below the 1:1 

line at lower concentrations. In Figure 13F, a new regression line has therefore also been fitted where outlier data with Na:Cl 25 

ratios > 2 from NILU (13 out of 16 sites) and CEAM (all 3 sites) have been removed. Exclusion of the outlier data points 

provided a regression line that is not significant different from unity (slope = 1.02), with a R2 value of 0.95 (p < 0.001). The 

near 1:1 relationship between particulate Na+ and Cl- is consistent with their origin from sea salt (NaCl).  

 

The ion balance checks, together with the regular PT exercises and field inter-comparisons therefore provided the platform 30 

against which to assess data quality and comparability of measurements between laboratories. This shows that overall, with 

the exception of a few identified outlier measurements, the laboratories are performing well and providing good agreement. 

 

3.5 Seasonal variability in gases and aerosol 

The time series of monthly averaged concentrations for the period 2006 to 2010 have been plotted to examine seasonality in 35 

the different gas and aerosol components according to ecosystem types (crops, grassland, semi-natural and forests) (Figure 14) 

and geographical regions (Figure 15). Distinct seasonality were observed in the data, influenced by seasonal changes in 

emissions, chemical interactions and the influence of meteorology on partitioning between the main inorganic gases and 

aerosol species. 

 40 

<INSERT FIGURE 14> 

<INSERT FIGURE 15> 
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3.5.1 NH3  

Distinctive and contrasting features in the seasonal cycle are observed, with  largest concentrations at cropland sites and 

smallest at semi-natural and forest sites (Figure 14A). Similar to that observed in the annual mean concentrations (Figure 9, 

11), the monthly concentrations are also smallest in Northern Europe and largest in Western Europe (Figure 15A).  5 

 

Semi-natural sites:  

There are two distinct peaks in the seasonal cycle of grouped semi-natural sites, in April (mean = 2.2 µg NH3 m
-3, n = 12) and 

in July (mean = 1.9 µg NH3 m-3, n = 12) (Figure 14A). Since these sites are located away from agricultural sources, the 

seasonality in NH3 concentrations is mostly governed by changes in environmental conditions and regional changes in NH3 10 

emissions. The differences in concentrations between the summer and winter at these sites was by a factor of 3, with smallest 

concentrations in wintertime (Dec and Jan) when low temperatures and wetter conditions decrease NH3 emissions from 

regional agricultural sources, while favouring a thermodynamic shift from gaseous NH3 to the aerosol NH4
+ phase. Conversely, 

warm, dry conditions in summer increases surface volatilization of NH3 from low density grazing livestock and wild animals, 

and favour a thermodynamic shift to the gaseous (NH3) phase, producing the summer peak. Vegetation is another potential 15 

source at these background sites under the right conditions (Flechard et al., 2013; Massad et al., 2010). A complex interaction 

between atmospheric NH3 concentrations and vegetation can lead to both emission and deposition fluxes  known as “bi-

directional exchange”, dependent on relative differences in concentrations. This process is controlled by the so-called 

“compensation point”, defined as the concentration below which growing plants start to emit NH3 into the atmosphere 

(Flechard et al., 1999; Massad et al., 2010; Sutton et al., 1995). At sites distant from intensive farming and emissions, the bi-20 

directional exchange with vegetation will partly control NH3 concentrations. Inclusion of bi-directional exchange in dispersion 

modelling of NH3, by incorporating a ‘canopy compensation point’ is shown to improve model results for NH3 concentrations 

in remote areas (e.g. Smith et al., 2000; Flechard et al., 1999, 2011; Massad et al., 2010). The larger peak in April at these sites 

on the other hand suggests the influence of emissions from agricultural sources, e.g. from land spreading of manures. 

 25 

Forest sites:  

The average seasonal cycle from the forest sites is similar to that of the semi-natural sites, but diverged over the summer 

months (Figure 14A). Here, the seasonal profile is characterised by the absence of any peaks in summer, with concentrations 

plateauing between May and August. Studies have shown that atmospherically deposited N is taken up by forest canopies, 

since growth in forest ecosystems is commonly limited by the availability of N (Sievering et al., 2007) and tree canopies are 30 

a potential sink for atmospheric NH3 (Fowler et al., 1989; Theobald et al., 2001). The capture and uptake of NH3 during the 

growing seasons over the summer period could therefore account for the absence of a summer peak in NH3 concentrations at 

forest monitoring sites, although a similar effect would also be expected for semi-natural sites. 

 

Cropland sites: 35 

Fertilizers and arable crops are significant sources of NH3 emissions and concentrations in an intensive agricultural landscape. 

Sites in this group showed considerably higher monthly mean monitored NH3 concentrations than the other groups (Figure 

14A). A more complex seasonal pattern can be seen, with three peaks in NH3 concentrations. Concentrations here are also 

lowest in the winter, although the wintertime concentrations are 3 times larger than semi-natural and forest sites, reflecting the 

elevated regional background in NH3 concentrations located within agricultural landscapes. This rises rapidly with improving 40 

weather conditions and peaks in the spring to coincide with the main period for manure spreading and fertiliser application 

before the sowing of arable crops (Hellsten et al., 2007). The distinct springtime maxima in NH3 also reflects implementation 
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of the Nitrates Directive (91/676/EEC), which prohibits manure spreading in winter. In summer, the second peak in NH3 

concentrations may be associated with increased land surface emissions promoted by warm, dry conditions, and possibly from 

the application of fertilisers. The smaller autumn peak is also expected to be related to seasonal farming activities/manure 

spreading. The key drivers for seasonal variability in NH3 concentrations at crops sites are therefore a combination of seasonal 

changes in agricultural practices (e.g. timing of fertiliser/manure applications) and climate that will affect emissions, 5 

concentrations, transport and deposition of NH3. 

 

Grassland sites: 

An additional major source of NH3 in this group of sites is expected to come from grazing emissions and housed livestock 

(e.g. cattle). Concentrations in this group of sites were generally 2 - 3 times larger than semi-natural sites (Figure 14A), 10 

attributed to the increased emissions and concentrations from livestock (Hellsten et al., 2007). The spring peak is related to the 

practice of fertiliser and manure being spread on grazing fields to aid spring grass growth, which will be cut for hay and silage 

later in the year. NH3 concentrations in June and July are smaller than in spring or late summer, possibly because grass will be 

actively growing with possible uptake and removal of NH3 from the atmosphere (Sutton et al., 2009). The concentrations are 

also larger in summer than winter, with warmer conditions promoting NH3 volatilization and thermodynamic shift of NH4NO3 15 

to the gas phase.  

 

European regions: 

The seasonal profiles of NH3 for Central and Western European regions were similar, characterised by a large peak in spring 

that is likely to be agriculture–related (Figure 15A), as observed at cropland sites (Figure 14A). While the peak concentrations 20 

in both regions are of comparable magnitude (Central = 2.6 µg NH3 m
-3, Western = 2.8 µg NH3 m

-3), winter concentrations in 

the Centre Europe (0.6 µg NH3 m
-3) were three times smaller than the West (1.5 µg NH3 m

-3). This may be related to either 

lower regional background in NH3 concentrations and/or suppressed emissions in colder temperature of Central Europe.in 

winter. By contrast, Eastern and Southern European regions have a broad peak in summer, although the Eastern region also 

has a second peak in October (likely agriculture related). Smallest concentrations were found in Northern Europe with the 25 

lowest NH3 emissions (Figure 9). The three peaks in the profile shows elevated concentrations in summer driven by warming 

temperatures, with the spring and autumn peaks attributed to influence from NH3 emissions from agricultural sources. 

 

3.5.2 HNO3  

The seasonal distribution in HNO3 is similar between the different ecosystem groups, varying only in magnitude of 30 

concentrations (Figure 14C) and reflects the secondary nature of this component that is formed from oxidation of NOx (Fahey 

et al., 1986; ROTAP, 2012). Since the HNO3 data is actually the sum of HNO3 and HONO, with a small contribution from 

NO2 (see Sect 2.2.3), the temporal patterns seen are likely to be the superimposed profiles of both HNO3 and HONO. NO2 are 

predominantly from vehicular sources which are not expected to show large seasonal variations and should therefore exert 

negligible effect on the temporal patterns in HNO3. With this caveat in mind, HNO3 concentrations in the crops group are up 35 

to 2 times larger than the grassland group, while the smallest concentrations are in the semi-natural group. This is likely related 

to proximity of sites in the different groups to combustion sources. A weak seasonal cycle is seen in the secondary HNO3 air 

pollutant in all cases, with slightly higher concentrations in late winter, spring and summer and smallest in March and 

November. The reaction of NO2 with the OH radical is an important source of HNO3 during daytime, whereas N2O5 hydrolysis 

is considered an important source of HNO3 at night time (Chang et al., 2011). Larger HNO3 concentrations in summer are 40 

therefore from increased OH radicals for reaction with NO2 to form HNO3. Similarly, higher concentrations of ozone in spring 
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in Europe (EMEP, 2016) can potentially increase HNO3 concentrations in springtime. Conversely, HNO3 concentrations are 

lower in winter when oxidative capacity is less.  

 

Seasonal variability in HNO3 will also be influenced by gas-aerosol phase equilibrium. In the atmosphere, HNO3 reacts 

reversibly with NH3 forming the semi-volatile NH4NO3 aerosol if the necessary concentration product [HNO3].[NH3] is 5 

exceeded (Baek et al., 2004; Jones and Harrison et al., 2011). Because of this process, the prime influences upon HNO3 

concentrations at sites where NH4NO3 is formed are expected to be ambient temperature, relative humidity and NH3 

concentrations that affect the partitioning between the gas and aerosol phase (Allen et al., 1989; Stelson and Seinfeld, 1982). 

The availability of surplus NH3 in spring (Sect. 3.5.1) would tend to reduce HNO3 and increase NH4NO3 formation, which is 

reflected in the reduced HNO3 concentrations observed in March when NH3 is at a maximum. In summer, warmer, drier 10 

conditions promotes volatilisation of the NH4NO3 aerosol, increasing the gas phase concentrations of HNO3 and NH3 relative 

to the aerosol phase. Seasonality in HNO3 is therefore complex, related to traffic and industrial emissions, photochemistry and 

HNO3:NH4NO3 partitioning. 

 

An analysis of the same data grouped according to geographical regions revealed distinctive cycles in HNO3 in Eastern and 15 

Southern Europe (Figure 15C). These two regions showed highest concentrations in summer and smallest in winter, consistent 

with enhanced photochemistry in warmer, sunnier climates and thermodynamic equilibrium favouring gas phase-HNO3 

(Figure 15C). Summertime peak concentrations in NH3 were also observed in these 2 regions (Figure 15A). In comparison, 

the seasonal profiles of HNO3 in other regions were similar to that described for different ecosystem types (Figure 14C).  

 20 

3.5.3 SO2 

Seasonality in SO2 show concentrations peaking in winter at most sites (Figure 14E), except in Southern Europe where the 

peak appeared in summer (Figure 15E). Increased SO2 emissions from combustion processes (heating) in the winter months, 

coupled to stable atmospheric conditions can result in build-up of concentrations at ground level, thereby contributing to the 

peak wintertime concentrations. The largest winter concentrations in Central and Eastern regions exceeded summer values on 25 

average by a factor of 4, compared with smaller differences in other regions (Figure 15E). Enhanced oxidation processes in 

summer also tend to further reduce concentrations of SO2 through the oxidation of SO2 to H2SO4 (Saxena and Seigneur, 1987; 

Sickles and Shadwick, 2007; Paulot et al., 2017). In Southern Europe, the seasonal cycle have winter minima and summer 

maxima instead, likely from increased combustion sources to meet energy demands for air-conditioning over the hot summer 

months. It was shown earlier in Section 3.4 that SO2 was spatially correlated to HNO3; differences in relative concentrations 30 

between the different ecosystem groups (Figure 14E) is thus also likely related to relative distance from emission sources.  

 

3.5.4 NH4
+, NO3

- and SO4
2- 

The seasonal profiles of particulate NH4
+ (Figures 14B and 15B) were mirrored by particulate NO3

- (Figures 14D and 15D) in 

all groups, demonstrating temporal, as well as regional (see Sect.3.3.4) correlation between these two components. Since 35 

NH4NO3 is more abundant than (NH4)2SO4, the seasonality of NH4
+ is likely to be influenced more by the temperature and 

humidity dependence of the semi-volatile NH4NO3, than by the stable (NH4)2SO4. In summer, warmer and drier conditions 

promotes the dissociation of NH4NO3, decreasing particulate phase NH4NO3 relative to gas phase NH3 and HNO3. This process 

accounts for the summertime minima in NH4
+ (Figures 15B and 15B) and NO3

- (Figures 14D and 15D). Conversely, cooler 

temperatures and higher humidity conditions in winter, spring and autumn shift the equilibrium to the aerosol phase, with 40 

observed peaks in concentrations of NH4
+ and NO3

-. Since NH3 concentrations are also generally higher in spring than in 
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autumn (Figure 14A, 15A), the increased availability of NH3 in this period contributes towards the higher concentrations of 

NH4NO3 in spring than in autumn. In winter, the combination of NH4NO3 remaining in the aerosol phase, combined with the 

stable conditions that can often develop, maintains high concentrations of NH4
+ and NO3

- in the atmosphere. The peak in NO3
- 

in Southern Europe was in February only, compared with broader peaks (Feb-April) in other regions (Figure 15D) which may 

reflect differences in climatic conditions. In Figures 14H and 15H, the ratio of the molar equivalent concentrations of NO3
- to 5 

sum (NO3
- + SO4

2-) are plotted. The ratios were highest in spring and autumn, and smallest in summer, lending support to the 

importance of NH4NO3 in controlling the seasonality of NH4
+. 

 

In the seasonal profiles for particulate SO4
2-, clear summer maxima and winter minima were observed at sites in Southern and 

Eastern Europe (Figure 15F). The peaks occurred at different times, in July (Southern Europe) and in August (Eastern Europe) 10 

(Figure 15F) and coincided with the timing of corresponding peaks in NH3 concentrations (Figure 15A), illustrating the 

importance of NH3 in driving the formation of the stable (NH4)2SO4. Since (NH4)2SO4 is formed through the preferential and 

irreversible reaction between the precursor gases (Bower et al., 1997), particulate SO4
2- concentrations will be governed by the 

availability of NH3 and H2SO4 (from oxidation of SO2). As discussed earlier, SO2 concentrations in Southern Europe have a 

different seasonal cycle from other regions, with higher concentrations in summer than in the winter months (Figure 15E). 15 

Although the seasonal cycle for Eastern Europe showed smallest SO2 concentrations in the summer, the summer minima here 

(mean = 1.3 µg SO2 m-3) are in fact larger than the summer peak in Southern Europe (mean = 1.1 µg SO2 m-3) and 

concentrations in other regions (0.4 - 1.0 µg SO2 m
-3). Enhanced summertime concentrations in HNO3 were observed in these 

two regions (Figure 15B) which also suggests potentially increased oxidative capacity for more of the SO2 to be converted 

H2SO4 (Sect. 3.5.3). The ready availability of both SO2 (and conversion to H2SO4) and NH3 (Figure 15A) in Southern and 20 

Eastern regions in this period thus coincide to produce the summer peak in particulate SO4
2-. 

 

In other regions (Central, Northern, Western), formation of (NH4)2SO4 will be limited by the availability of SO2 which is 

lowest in summer (Figures 15E). Conversely, SO2 concentrations is highest in winter (Figures 15E), but lower oxidative 

capacity at this time of year limits formation of H2SO4. Since NH3 concentrations are also smallest in winter (Figures 15A), 25 

formation of (NH4)2SO4 is also limited in winter. This accounts for the higher concentrations of particulate SO4
2- concentrations 

in winter and in early spring in these regions (Figure 15F).  

 

3.5.5 HCl, Cl- and Na+ 

The concentrations of HCl measured at all sites, in all groups, were very small, with monthly mean concentrations varying 30 

between 0.1 and 0.3 µg HCl m-3 (Figures 14G and 15G). There is no discernible seasonality in the data, which suggests either 

sites in the network are not affected by any large sources of HCl, or that small differences between months are not detectable 

due to measurement uncertainties at the very low concentrations (method limit of detection ~ 0.1 µg HCl m-3 for monthly 

sampling). By contrast, Cl- (Figures 14I and 15I) has a distinctive seasonal cycle with higher concentrations in the winter 

months than summer, similar to that of Na+ (Figures 14J and 15J). The temporal correlation in the data therefore lends further 35 

support that Na+ and Cl- in the measurements are mainly sea salt (see also spatial correlation in Sect. 3.4). The highest 

concentrations of Na+ and Cl- during winter months would be consistent with increased generation and transport of sea salt 

generated by more stormy weather from marine sources during those periods (O'Dowd and de Leeuw, 2007).  
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3.6 Bulk wet deposition measurements 

Annual mean wet deposition of chemical species measured at the NEU bulk sampling sites was estimated by combining 

measured concentrations with annual precipitation. Site changes also occurred during the operation of the bulk wet deposition 

network, with some sites closed and new sites added. At Mitra (PT-Mi3), contamination of the rain samples from bird strikes 

resulted in the rejection of a large proportion of the monthly data and this site was excluded from the data analysis. In total, 12 5 

sites provided 2 years of monthly data, with a further 5 sites providing 1 year of monthly data over the period 2008 to 2010. 

Due to differences in start and end dates for bulk measurements between the sites, the annual mean data derived are for 12 

month periods or 2 x 12 month periods, and not from calendar years.  

 

<INSERT FIGURE 16> 10 

 

Annual mean wet deposition data for the 17 sites from 6 countries (Belgium, France, Germany, Italy, Poland, Spain and 

Switzerland) are summarised in Figure 16. Using Na+ as a tracer for sea-salt (Keene et al,. 1986), nss-SO4
2- concentrations 

were also estimated from the total SO4
2- (see Sect. 2.2.2) and are included for comparison. Since the measurements were made 

at a limited number of sites across Europe, there is insufficient information to make inferences about spatial differences in 15 

concentrations. Detailed assessments of extensive precipitation chemistry across Europe are made elsewhere, for example from 

the EMEP wet deposition networks (EMEP, 2016; Torseth et al., 2012). What the NEU bulk network data clearly shows is 

that Nr components in rain also exceed that of S (Figure 16), as was observed in the atmospheric data. The mean proportional 

contribution of total N (NH4
+ and NO3

-) to the sum total of all wet deposited species measured (by mass) was 19% (range = 3 

– 39%), compared with a smaller 9 % (range = 1 – 19%) contribution from nss-SO4
2- (Supp. Table S14). Wet deposited N 20 

(NH4
+ and NO3

-) was on average 2 times higher than nss-SO4
2-, similar to that seen in the relative proportion of total Nr (sum 

of NH3, NH4
+, HNO3, NO3

-) to total S (sum of SO2, SO4
2-) in the atmospheric data (Sect. 3.3.4). Similar to the atmospheric 

data (Sect. 3.3.4), a considerable fraction of the wet deposited components was made up of sea salt (Na+ and Cl-), with the sum 

of Na+ and Cl- contributing on average 50% of the total wet deposited components (range = 20 – 84 %, n = 17). Contributions 

by the other base cations Ca2+ and Mg2+ gave a further 20 % (range = 8 – 41 %, n = 17) (Supp. Table S14).  25 

 

The wet deposition data on NH4
+ and NO3

-, combined with a wider precipitation chemistry dataset (e.g. from EMEP and other 

national precipitation networks) was used to estimate total Nr deposition to a site (Flechard et al., 2011; 2020). Together, the 

dry (DELTA® network) and wet Nr estimates (NEU bulk network, combined with data from other national precipitation 

chemistry networks) are used to compare with EMEP models and to examine the interactions between Nr supply and 30 

greenhouse gas exchange at the NEU DELTA® sites, presented in a separate paper by Flechard et al. (2020). The wet deposition 

measurements in this paper highlights where DELTA® and bulk wet deposition data are co-located and provides parallel 

information on gas and aerosol concentrations (for dry deposition modelling) and wet deposition at those sites. The co-located 

data is important for deriving N budgets and linking to ecosystem response (e.g. Flechard et al. 2020) and invaluable for 

modellers.  35 
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4 Conclusion 

The NitroEurope DELTA® network has provided for the first time a comprehensive quality-assured multi-annual dataset on 

reactive gases (NH3, HNO3, SO2, HCl) and aerosols (NH4
+, NO3

-, SO4
2-, Cl-) across the major gradients of emission densities, 

ecosystem type and climatic zones of Europe. By sharing the method and protocol with several European laboratories, and 

developing synergies with established infrastructure (e.g. CarboEurope network and EMEP field sites), it has proven possible 5 

to establish a large-scale network within a relatively short time-scale and with low costs. Key elements were a harmonised 

methodology and the implementation of quality protocols that included regular laboratory and field inter-comparisons to 

monitor and improve performance.  

 

At the same time, the concurrent measurement of the gas and aerosol components permitted an assessment of the atmospheric 10 

composition, spatial and seasonal characteristics in the gas and aerosol phase of these components. The dataset has also been 

used to develop estimates of site-based Nr dry deposition fluxes across Europe, including supporting the development and 

validation of long-range transport models. Combined with estimates of wet deposition (from NEU bulk wet deposition network 

and other networks such as EMEP), an assessment of the interactions between N supply and greenhouse gas exchange was 

addressed in a separate paper by Flechard et al. (2020), using Nr and CO2 flux data from the co-location of the NEU DELTA® 15 

with CarboEurope Integrated Project sites.  

 

Two key features have emerged in the data. The first is the dominance of NH3 as the largest single component at the majority 

of sites, with molar concentrations exceeding that of HNO3 and SO2, combined. As expected, the largest NH3 concentrations 

were measured at cropland sites, in intensively managed agricultural areas dominated by NH3 emissions. The smallest 20 

concentrations were at remote semi-natural and forest sites, although concentrations in the Netherlands, Italy and Germany 

were up to 45 times larger than similarly classed sites in Finland, Norway and Sweden (< 0.6 µg NH3-N m-3), illustrating the 

high NH3 concentrations that sensitive habitats are exposed to in intensive agricultural landscapes in Europe. The second key 

feature is the dominance of NH4NO3 over (NH4)2SO4, with on average twice as much NO3
- as SO4

2- (on a molar basis). A 

change to an atmosphere that is more abundant in NH4NO3 will likely increase the atmospheric lifetimes and extend the 25 

footprint of the NH3 and HNO3 gases, by the re-volatilisation of NH4NO3 in warm weather.  

 

Temporally, peak concentrations in NH3 for crops and grassland sites occurred in spring, reflecting the implementation of the 

EU Nitrates Directive that prohibits winter manure spreading. The spring agriculture-related peak was seen even at semi-

natural and forest sites, highlighting the influence of NH3 emissions at sites that are more distant from sources. Summer peaks, 30 

promoted by increased volatilisation of NH3, but also by gas-aerosol phase thermodynamics under warmer, drier conditions 

were seen in all ecosystem groups, except at Forest sites. The seasonality in the NH3 concentrations thus provided important 

insights into both the relationship to occurrence of emissions and possible abatement measures to target peak emission periods. 

Seasonality in the other gas and aerosol components is also driven by changes in emission sources, chemical interactions and 

by changes in environmental conditions influencing partitioning between the precursor gases (SO2, HNO3, NH3) and secondary 35 

aerosols (SO4
2-, NO3

-, NH4
+).  

 

Seasonal cycles in SO2 were mainly driven by emissions (combustion), with concentrations peaking in winter, except in 

Southern Europe where the peak occurred in summer. HNO3 concentrations were more complex, as affected by 

photochemistry, meteorology and by gas-aerosol phase equilibrium. Southern and eastern European regions provided the 40 

clearest seasonal cycle for HNO3, with highest concentrations in summer and smallest in winter, attributed to increased 

photochemistry in the summer months in hotter climates. In comparison, a weaker seasonal cycle is seen in other regions, with 

marginally elevated concentrations in late winter, spring and summer and smallest in March and November. Increased ozone 
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in spring is likely to enhance oxidation of NOx to HNO3 for forming the semi-volatile NH4NO3 by reaction with a surplus of 

NH3. Cooler, wetter conditions in spring also favour the formation of NH4NO3 and more of the NH4NO3 remains in the aerosol 

or condensed phase. This accounts for the higher concentrations of NH4
+ and NO3

- in spring and the absence of a HNO3 peak 

at this time of year. Conversely, increased partitioning to the gas phase in summer decreases NH4NO3 concentrations relative 

to gas phase NH3 and HNO3. Particulate SO4
2- showed large peaks in concentrations in summer in Southern and also Eastern 5 

Europe, contrasting with much smaller peaks occurring in early spring in other regions. The peaks in particulate SO4
2- coincided 

with peaks in NH3 concentrations, illustrating the importance of NH3 in driving the formation of (NH4)2SO4. Since NH4NO3 

is more abundant than (NH4)2SO4, the seasonality of NH4
+ is likely to be influenced more by the temperature and humidity 

dependence of the semi-volatile NH4NO3, than by the stable (NH4)2SO4. This is supported by similarity in the the seasonal 

profiles of NH4
+ and NO3

- at all sites, demonstrating temporal, as well as regional correlation between these two components.  10 

 

Data from the network showed Critical Levels of 1 and 3 µg NH3 m
-3 for the protection of lichens-bryophytes and vegetation 

were exceeded at 62 % and 27 % of the sites, respectively. At the same time, NH3 dry deposition will also contribute to a 

significant fraction of deposited acidity and total N deposition to sensitive habitats, along with NH4
+ and HNO3 dry deposition 

and wet deposited NH4
+ and NO3

-. Although the concentrations of SO2 have fallen to very low levels at all sites  (< 1 µg SO2-15 

S m-3), SO2 will continue to be important in contributing to the exceedance of acidification in European ecosystems (EEA, 

2019), since SO2 has a higher acidification potential than NOx (0.70 kg SO2 = 1 kg eq. NO2 in acidity) (see Hauschild and 

Wenzel, 1998). Changes in the relative concentrations of the pollutant gases captured in the data suggests that the deposition 

rates of SO2 and NH3 will increasingly be controlled by the molar ratio of NH3 to combined acidity (sum of SO2, HNO3 and 

HCl) and deposition models should take these changes into account. Indications from the current and projected trends in 20 

emissions of SO2, NOx and NH3 are that NH3 and NH4NO3 will continue to dominate the inorganic pollution load over the 

next decades, contributing to ecosystem effects through acid and N deposition. The growing relative importance of NH3 and 

NH4
+ to total acidic and total N deposition indicates that strategies to tackle acidification and eutrophication need to include 

measures to abate emissions of NH3 (Sutton and Howard, 2018).  

 25 

There is still a lack of NH3 and speciated monitoring of the inorganic gas and aerosol composition across the EU. An 

implementation of the DELTA® approach across Europe would provide cost-efficient monitoring of the gas and aerosol phase 

pollutants for which reduction commitments are set out in Annex II to the NECD. Monitoring of NH3 and the interacting acid 

gases and aerosols are needed to assess contributions of NH3 to PM2.5 and which will provide the baseline and evidence against 

which any changes and potential recovery in ecosystem response to changes in emissions can be assessed, as required under 30 

Article 9 of the NECD. Issues such as human health impacts from fine ammoniums aerosols will also drive policy decisions, 

since controlling NH3 should also reduce PM concentrations (Backes et al., 2016). 
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Figure 1: Reaction scheme for the formation of ammonium aerosols from interaction of NH3 with acid gases HNO3, SO2 and 

HCl, showing the components (green) that were measured in NitroEurope (NEU) DELTA® network. Dry deposition of the gas 

and aerosol components was estimated by inferential modelling (Flechard et al., 2011), while wet deposition (blue) was 

measured in the NEU bulk wet deposition network at a subset of the DELTA® sites. 
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Name / Ecosystem 
Type 

1 DE-Hai Hainich F 18 IT-MB Monte Bondone SN 35 DK-Ris Risbyholm C 51P SK-04P Stara Lesna G 

2 DE-Wet Wetzstein F 19 IT-BCi Borgo Cioffi  C 36 SE-Nor Norunda F 52 SK-06 Starina G 

3 DE-Geb Gebesee C 20 FR-Hes Hesse F 37 SE-Sky Skyttorp F 53 SK-07 Topolniky G 

4 DE-Tha Tharandt F 21 IE-Dri Dripsey G 38 BE-Bra Braschaat F 54 ES-ES1 El Saler F 

5 DE-Gri Gril lenburg G 22 FR-Gri Grignon C 39 BE-Vie Vielsalm F 55 ES-VDA Vall de Aliñá SN 

6 DE-Kli Klingenberg C 23 FR-Fon Fontainebleau F 40 BE-Lon Lonzee C 56 ES-LMa Las Majadas  F 

7 DE-Hoe Höglwald F 24 FR-LBr Le Bray F 41 FI-Hyy Hyytiälä  F 57 UK-AMo Auchencorth SN 

8 PT-Mi1 Mitra F 25 FR-Lq2 Laqueuille G 42 IT-Ro2 Roccarespampani F 57P 
UK-

AMoP 
Auchencorth SN 

9 U-Pet Petrodolinskoye C 26 FR-Pue Puechabon F 43 NL-Ca1 Cabauw  G 58 UK-Bu Easter Bush G 

10 IT-Ren Renon F 27 UK-Gr Griffin F 44 NL-Hor Horstermeer SN 58P UK-BuP Easter Bush  G 

11 RU-Fyo 
Fyodorovskoe 

bog 
F 28 UK-ES East Saltoun C 45 NL-Spe Speulder F 59 DE-Meh Mehrstedt F 

12 PT-Esp Espirra F 29 IE-Ca2 Carlow G 46 IT-Amp Amplero SN 60 FR-Fgs Fougéres F 

13 CZ-BK1 BKFORES F 30 DK-Sor Soroe F 47 IT-Col Collelongo F 60P 
FR-

FgsP 
Fougéres  F 

14 HU-Bug Bugac SN 31 FI-Sod Sodankylä F 48 IT-SRo San Rossore F 61 IE-Sol Solohead G 

15 PL-Pol Polwet SN 32 FI-Kaa Kaamanen SN 49 IT-PoV Po Valley Pavia C 62 NO-Bir Birkenes F 

16 CH-Oe1 Oensingen G 33 FI-Lom Lompolojänkkä  SN 50 NL-Loo Loobos F 63 DK-Brj Brandbjerg SN 

17 CH-Lae Laegern F 34 DK-Lva Rimi G 51 SK-04 Stara Lesna G 64 FR-Bil Bilos F 

Figure 2: NitroEurope (NEU) DELTA® network sites operated between 2006 and 2010. The colour of the symbols indicates 

the responsible laboratories: CEAM (The Mediterranean Center for Environmental Studies), vTI (von Thunen Institut), INRAE 

(French National Research Institute for Agriculture, Food and Environment), MHSC (Meteorological and Hydrological 

Service of Croatia), UKCEH (UK Centre for Ecology & Hydrology), NILU (Norwegian Institute for Air Research), SHMU 5 

(Slovak Hydrometeorological Institute). Ecosystem types are C: Crops, G: Grassland, F: Forests and SN: short Semi-Natural 

(includes moorland, peatland, shrubland and unimproved/upland grassland). Replicated (P = parallel) DELTA measurements 

are made at 4 sites: SK04/SK04P; UK-AMo/UK-AMoP (NH3/NH4
+ only), UK-Bu/UK-BuP and FR-Fgs/FR-FgsP (NaCl 

coated denuders instead of K2CO3/glycerol in sample train).   
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Figure 3: NitroEurope (NEU) Bulk wet deposition network sites operated between 2008 and 2010. The colour of the symbols 

indicates the responsible laboratories: CEAM (The Mediterranean Center for Environmental Studies), INRAE (French 

National Research Institute for Agriculture, Food and Environment), and SHMU (Slovak Hydrometeorological Institute). 5 
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Component Ref erence solute 

concentration  
(mg L-1) 

1Equiv alent gas concentration 

(µg m-3) 

2Equiv alent aerosol concentration 

(µg m-3) 

% of  reported results within ± 10% of 

true v alue. Mean of all labs (range = 
min, max) 

n 

NH4
+ 

0.1 - 0.9 NH3 0.02 - 0.17 NH4
+ 0.03 - 0.24 68% (39 – 97 %) 191 

1 0.19 0.27 90% (67 – 100 %) 16 

NO3
- 

0.3 - 0.98 HNO3 0.06 - 0.2 NO3
- 0.08 - 0.26 85% (78 – 93%) 197 

1 - 3 0.2 - 0.6 0.27 - 0.80 88% (81 – 96%) 152 

SO4
2- 

0.5 - 0.8 SO2 0.07 - 0.11 SO4
2- 0.13 - 0.21 91% (83 – 100 %) 199 

1 - 22 0.13 - 2.9 0.27 - 5.9 93% (85 – 100%) 178 

Cl- 
0.07 - 0.8 HCl 0.01 - 0.16 Cl- 0.02 - 0.21 76% (48 – 93%) 187 

1 - 10 0.27 - 4.5 0.27 - 5.9 96% (83 – 100%) 45 

Ca2+ 
0.07 - 0.6  Ca2+ 0.02 - 0.16 36% (12 – 59%) 176 

1 - 24 0.27 - 6.4 80% (0 = 100 %) 10 

Mg2+ 
0.05 - 0.25 Mg2+ 0.01 - 0.07 59% (22 – 75%) 160 

1 - 5 0.27 - 1.3 90% (50 – 100%) 10 

Na+ 
0.08 - 0.5 Na+ 0.02 - 0.13 72% (46 – 85%) 170 

1 - 52 0.27 - 14 89% (60 – 100%) 48 
1
Equivalent gas concentrations, based on denuder extraction volumes of 3  mL (NH3) and 5 mL (HNO3, SO2, HCl) and air volume of 15 m

3
 

(typical volume of air sampled by DELTA
®
 system over a month). 

2
Equivalent aerosol concentrations, based on aerosol fi lter extraction volume of 4 mL (NH4

+
) and 5 mL (NO3

-
, SO4

2-
, Cl

-
, Na

+
, Ca

2+
 and Mg

2+
) 5 

and air volume of 15 m
3
 (typical volume of air sampled by DELTA

®
 system over a month).  

 
 

Figure 4: Summary of reported results from all laboratories in wet chemistry proficiency testing (PT) schemes for chemical 

analysis of aqueous inorganic ions (2006 – 2010: EMEP, WMO-GAW and NitroEurope), expressed as a percentage deviation 10 

from the true value (PT reference solutions). The grey shaded areas in the graphs show values that are within ± 10 % of true 

value. 

 

 

  15 
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Figure 5: Scatter plots comparing all NEU laboratory reported results from wet chemistry proficiency testing (PT) schemes 5 

(2006 – 2010: EMEP, WMO-GAW and NitroEurope) vs true values (PT reference solutions). All aqueous ion concentrations 

(mg L-1) from Figure 4 are converted to equivalent gas and aerosols concentrations (µg m-3) for the comparisons.   
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Lab 

Gas: NH3 Gas: HNO3 Gas: SO2 Gas: HCl 

R2 slope n R2 slope n R2 slope n R2 slope n 

CEAM 0.87 0.89 41 0.80 0.90 39 0.66 0.94 41 0.16 1.77 41 
INRAE 0.99 1.00 8 0.99 0.99 8 0.88 1.25 7 0.02 1.73 8 

UKCEH 0.99 1.00 42 0.96 1.10 42 0.92 0.96 42 0.43 0.52 42 

NILU 0.92 1.17 30 0.96 0.93 30 0.91 0.95 30 0.08 0.70 4 
MHSC 0.87 1.21 41 0.93 1.08 37 0.92 1.01 38 0.58 0.58 39 

SHMU 0.96 1.0 38 0.98 1.0 37 0.62 0.88 39 0.62 1.37 39 

VTI 0.92 0.91 42 0.94 0.88 42 0.91 1.08 42 0.87 0.96 42 
 

Lab 
Particle: NH4

+ Particle: NO3
- Particle: SO4

2- Particle: Cl- 

R2 slope n R2 slope n R2 slope n R2 slope n 

CEAM 0.22 0.42 41 0.96 1.03 41 0.89 1.20 41 0.54 1.01 40 
INRAE 0.98 0.93 8 0.72 0.82 8 0.75 0.75 8 0.70 1.31 8 

UKCEH 0.90 0.93 43 0.98 0.98 39 0.96 0.99 38 0.77 0.87 37 

NILU 0.80 0.94 26 0.82 0.92 27 0.76 0.91 27 - 2.61 2 

MHSC 0.80 1.26 40 0.93 1.02 41 0.78 0.89 39 0.80 0.85 39 
SHMU 0.91 1.09 39 0.85 0.92 39 0.59 0.90 39 0.38 0.85 39 

VTI 0.87 1.02 41 0.91 0.91 40 0.88 0.88 41 0.68 0.91 41 
 

Lab 
Particle: Na+ Particle: Ca2+ Particle: Mg2+ 

 

R2 slope n R2 slope n R2 slope n 

CEAM 0.53 1.40 12 0.52 1.60 11 0.66 1.86 12 
INRAE 0.99 0.99 8 0.39 0.57 8 0.04 0.33 8 

UKCEH 0.82 0.95 38 0.77 0.92 38 0.86 1.05 40 

NILU 0.84 2.24 4 0.75 4.72 4 0.48 2.56 4 
MHSC 0.49 0.88 34 0.42 1.74 40 0.49 2.42 39 

SHMU 1.0 0.78 27 0.82 1.01 39 0.70 0.74 39 

VTI 0.82 1.0 41 0.75 0.88 37 0.84 0.95 41 

 5 
Figure 6: Scatter plots comparing atmospheric gas (NH3, HNO3, SO2 and HCl) and aerosol (NH4

+, NO3
-, SO4

2-, Cl-, Na+, Ca2+, Mg2+) 

concentrations measured by each of the NEU laboratories with the median estimate of all laboratories. Data from all field inter-comparisons 

(2006 – 2009) for all test sites (Auchencorth-UK, Braunschweig-Gemany, Montelibretti-Italy and Paterna-Spain) are combined in the 

analysis. A summary of the regression results is shown in the table below the graphs. Note (i) there are fewer data points for INRAE because 

they joined the NEU network later in 2007 and participated in the 2008 and 2009 inter-comaprisons only, (ii) low number of observations 10 
in some cases were due to some laboratories not reporting all parameters. NILU: HCl, Cl-

, Na+, Ca2+ and Mg2+ reported for 2008 inter-
comparisons only; CEAM: Na+, Ca2+, Mg2+ reported for 2007-2009 inter-comparisons only. 
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Figure 7:  (LEFT) Annual averaged gas and aerosol concentrations (2007 – 2010) of sites in the NEU DELTA® network, 
grouped according to ecosystem types: crops (n = 10), grassland (n = 9 + 1 parallel), semi-natural (n = 11 + 1 parallel) and 
forests (n = 34 + 2 parallel). (RIGHT) Percentage composition of gas and aerosol components measured at NEU DELTA® 

network sites (n = 64 + 4 parallel sites) (mean of all annual mean concentrations from 2007 to 2010). Years with < 7 months 5 
of data, including 2006, are excluded. Where the number of years contributing to the annual average is < 4, the number is 
shown in brackets beside the site data. Ca2+ and Mg2+ data are not included as these were mostly at or below limit of detection. 

Replicated DELTA measurements are made at 4 sites: FR-Fgs/FR-FgsP (NaCl instead of K2CO3/glycerol coated denuders - 
HCl not measured), SK04/SK04P; UK-Ebu/UK-EbuP and UK-AMo/UK-AMoP (NH3/NH4

+ only).  

 10 
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Annual mean (µg m
-3
) 

Percentage contribution to total gas and aerosol measured (by mass) 

(A) ALL SITES         

(n = 66) % 

(B) CROPS               

(n = 10) % 

(C) GRASSLAND         

(n = 10) % 

(D) FORESTS 

(n = 35) % 

(E) SEMI-NATURAL  

(n = 11) % 
mean min max mean min max mean min max mean min max mean min max 

NH3-N 27 6 56 42 24 56 33 18 47 20 6 46 26 7 39 

NH4
+
-N 14 6 23 13 7 21 11 6 18 15 9 23 12 6 20 

HNO3-N 5 1 9 4 2 5 3 1 7 5 3 9 5 1 8 

NO3
-
-N 8 0 15 7 4 13 7 3 9 8 1 13 8 0 15 

SO2-S 11 3 40 11 4 28 9 3 26 12 4 40 12 6 20 

SO4
2-

-S 12 3 31 8 3 12 7 4 13 14 5 31 13 5 26 

HCl-Cl
-
 5 1 21 3 1 3 3 1 5 6 2 16 7 1 21 

Cl
-
 10 2 29 7 3 17 16 3 28 10 2 26 9 2 29 

Na
+
 9 1 21 6 2 13 11 3 21 10 1 21 8 1 17 

Total 100    100       100 100   

Sum Nr 54 24 80 66 54 80 54 41 73 49 24 80 51 24 67 

Sum Nred 41 17 70 55 41 70 44 29 59 35 17 64 38 19 56 

Sum Nox 13 2 24 11 5 17 10 5 16 13 5 20 13 2 24 

Sum S  23 7 53 18 11 36 16 7 35 26 11 53 25 15 38 

Sum (NH4
+
-N + NO3-

N + SO4
2—

S) 
34 15 57 28 17 40 25 15 36 37 24 57 33 20 40 

 Percentage contribution: by groups of components measured (by mass) 

Nred / Nr 76 60 97 84 76 91 81 69 91 72 62 82 75 60 97 

NaCl / total aerosol 20 4 45 12 6 27 27 6 43 20 4 42 17 4 45 

 

Figure 8: (TOP) Pie charts showing the mean atmospheric composition of gas and aerosol components from annual averaged 
concentrations (µg m-3) measured at NEU DELTA® sites, for A) All sites (n = 66) and sites grouped according to ecosytem 5 

types, B) Crops (n = 10), C) Grassland (n = 10), D) Forests (n = 35) and E) Semi-natural (n = 11). UK-AmoP (parallel DELTA® 
at Auchencorth: NH3/NH4

+ only) and FR-FgsP (parallel DELTA® at Fougéres: different sample train) were excluded in this 
analysis. (BOTTOM) Summary statistics on percentage composition by mass (µg m-3 element) measured. Sum Nr = sum (NH3-

N + NH4
+-N + HNO3-N + NO3

--N), Sum S = sum (SO2-S + SO4
2--S), Nred = sum reduced N (NH3-N + NH4

+-N), Nox = sum 
oxidised N (HNO3-N + NO3

--N).  10 
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 5 
Figure 9: Comparisons of annual averaged gas and aerosol concentrations (2007 – 2010) of sites in the NEU DELTA® network, 

grouped by countries, with the respective 4-year averaged annual emission densities of gases (NH3, NOx and SO2) over the 
same period. Monitoring data from 3 national monitoring networks: *UK NAMN (NH3 from 72 sites and NH4

+ from 30 sites; 
Tang et al., 2018a), *UK AGANet (raw uncorrected HNO3, SO2, HCl, NO3

-, SO4
2-, Cl-, Na+ from 30 sites; Tang et al. 2018b) 

and *NL-LML (NH3 and SO2 from 8 sites; van Zanten et al. 2017) are also included to illustrate the wider range of 10 
concentrations from larger numbers of sites. Error bars show the minimum and maximum concentrations measured in each 

country in the network. Where error bars are not visible, this indicates either that the country has measurement from just one 
site, or the range of concentrations measured are very close to the average. 
 

  15 
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 5 

 

Figure 10: Regression plots of national annual averaged gas (NH3, HNO3, SO2) concentrations (2007 – 2010) vs 4-year national 

averaged emission densities of respective gases (NH3, NOx and SO2: tonnes km-2 yr-1) from each country over the same period 

(n = 20).  

 10 
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Figure 11: (LEFT) Spatial variation in annual averaged gas and aerosol concentrations (2007 to 2010) measured in the NEU 

DELTA® network across Europe, grouped according to geographical distribution of the monitoring sites: Central (n = 17), 5 

Eastern (n = 2), Northern (n = 11), Southern (n = 12) and Western (n = 26). p in front of component name denotes particulate. 

(RIGHT) Percentage composition of gas and aerosol components according to European regions.  

 
 

 10 
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(A) Gases: % contribution to total (sum of NH3, HNO3, SO2, HCl) (nmol m -3) 

 

 (B) Aerosols: % contribution to total (sum of NH4
+, NO3

-, SO4
2, Cl -) (nmol m -3) 5 

 

 

 

Figure 12: Pie charts of mean relative proportions of (TOP) Gases: NH3, HNO3, SO2, HCl, and (BOTTOM) Aerosols: NH4
+, 

NO3
-, SO4

2-, Cl-. Data are annual averaged concentrations (nmol m-3) measured at NEU DELTA® sites, for (A) All sites (n = 10 

66) and sites grouped according to ecosystem types,( B) Crops (n = 10), C) Grassland (n = 10), D) Forests (n = 35) and E) 

Semi-natural (n = 11). UK-AmoP (parallel DELTA® at Auchencorth: NH3/NH4
+ only) and FR-FgsP (parallel DELTA® at 

Fougéres: different sample train) were excluded in this analysis.   
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Figure 13:  Regression plots between mean molar equivalent concentrations of (A) NH4
+ and NO3

-, (B) NH4
+ and SO4

2-, (C) 

NH4
+ and sum (NO3

- + SO4
2-), (D) NH4

+ and nss-SO4
2-, (E) NH4

+ and sum (NO3
- + nss-SO4

2-) and (F) Na+ and Cl-, measured 

in the NEU DELTA® network. Each data point represents the mean of all monthly measurements at each site, with different 5 

coloured symbols for each laboratory making the measurements. Outliers: where equivalent concentrations of NH4
+:sum 

(anions) < 0.5 and Na:Cl > 2. 

 

 
 10 
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 5 
Figure 14: Seasonal variability in atmospheric gas (A) NH3, (C) HNO3, (E) SO2, (G) HCl) and aerosol concentrations (B) 
pNH4

+, (D) pNO3
-, (F) pSO4

2-, (I) pCl-, (J) pNa+ (p in front of component name denotes particulate). Each data point is the 
monthly averaged concentrations of grouped sites for the period 2006 to 2010, classified according to four ecosystem types: 

crops (n = 10), grassland (n = 10), semi-natural (n = 11) and forests (n = 35). Graph (H) shows the monthly mean ratio of 
molar equivalent (equiv.) concentrations of NO3

- to sum (NO3
- + SO4

2).  Month 1 = January and Month 12 = December.   10 
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 5 
Figure 15:  Seasonal variability at sites grouped according to European regions in atmospheric gas (A) NH3, (C) HNO3, (E) 
SO2, (G) HCl) and aerosol concentrations (B) pNH4

+, (D) pNO3
-, (F) pSO4

2-, (I) pCl-, (J) pNa+ (p in front of component name 

denotes particulate). Each data point is the monthly averaged concentrations of grouped sites for the period 2006 to 2010, 
classified according to five European regions: Central (n = 17), Eastern (n = 2), Northern (n = 11), Southern (n = 12) and 
Western (n = 26). Graph (H) shows the monthly mean ratio of molar equivalent (equiv.) concentrations of NO3

- to sum (NO3
- 10 

+ SO4
2).  Month 1 = January and Month 12 = December.   

 



57 
 

 

 

Figure 16: (LEFT) Annual wet deposition of inorganic components (kg ha-1 yr-1) estimated from Rotenkamp bulk precipitation 

collectors in the NEU bulk wet deposition network. (RIGHT) Percentage contribution of inorganic components to total (by 

mass) measured at 17 sites from 2008 to 2010. The data shown are 2-year averaged deposition, made between 2008 and 2010, 5 

except at 5 sites with 1 year of measurement only, as indicated in the graph in brackets. 
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Table 1: Details of annual NitroEurope (NEU) DELTA® field inter-comparisons conducted between 2006 and 2010.  

Inter-comparison period Test sites Participating laboratories Number of monthly 

measurement periods 

2006 (Jul – Oct) Auchencorth, UK 

Braunschweig, Germany 
Montelibretti, Italy 

Paterna, Spain 

6 4 

2007 (Jul – Aug) Auchencorth, UK Montelibretti, 

Italy 

6 2 

2008 (Apr – May) Auchencorth, UK 
Braunschweig, Germany 

7 (INRAE = new laboratory) 2 

2009 (Nov – Dec) Auchencorth, UK 
Montelibretti, Italy 

7 (INRAE = new laboratory) 2 
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Table 2: Inter-comparison of results from 7 European laboratories at 4 different field test sites for all years (2006 – 2010). The 

results shown are the mean concentrations from each laboratory for each site and the averaged median estimates derived from 

all laboratories for each site. 

 

Site 
Median 

(all y ears) 
CEAM % dif f  CEH % dif f  MHSC % dif f  NILU % dif f  SHMU % dif f  VTI % dif f  

*Median 
(2008/09) 

*INRAE *% dif f 

NH3                 

Auchencorth 1.42 1.23 -13 1.39 -2 1.51 6 1.60 13 1.48 4 1.38 -2 1.06 1.17 10 

Braunschweig 4.32 3.61 -16 4.34 0 4.62 7 4.87 13 4.27 -1 4.41 2 6.40 6.64 4 

Montelibretti 2.46 1.66 -33 2.44 -1 2.89 18 2.77 12 2.63 7 2.34 -5 1.91 1.91 0 
Paterna 5.21 4.39 -16 5.27 1 7.00 34 6.22 19 5.55 7 4.57 -12    

NH4
+                 

Auchencorth 0.73 0.69 -6 0.64 -13 0.92 26 0.73 0 0.96 31 0.74 2 0.58 0.60 2 

Braunschweig 1.55 1.54 -1 1.61 4 2.15 39 1.18 -24 1.64 6 1.45 -6 1.38 1.31 -5 

Montelibretti 0.95 0.87 -9 0.86 -9 1.21 27 0.72 -24 1.13 19 0.93 -3 0.96 0.96 0 

Paterna 1.80 0.50 -72 1.56 -13 2.12 18 1.64 -9 2.04 13 2.26 25    

HNO3                 

Auchencorth 0.57 0.57 -1 0.53 -7 0.69 21 0.62 9 0.59 3 0.49 -15 0.55 0.59 7 

Braunschweig 2.36 1.79 -24 2.82 19 2.67 13 2.43 3 2.48 5 2.09 -11 2.85 2.85 0 

Montelibretti 2.64 2.53 -4 2.74 4 3.08 17 2.60 -2 2.77 5 2.31 -13 1.70 1.70 0 

Paterna 2.67 2.82 6 2.73 2 3.18 19 2.61 -2 2.40 -10 2.05 -23    

NO3
-                 

Auchencorth 1.21 1.24 3 1.18 -2 1.16 -4 1.27 4 1.20 -1 1.18 -3 1.26 1.14 -9 

Braunschweig 3.26 3.70 14 3.43 5 3.33 2 2.28 -30 3.09 -5 2.36 -28 2.92 2.94 1 

Montelibretti 1.81 2.00 10 1.84 1 1.57 -13 1.28 -29 1.91 5 1.56 -14 2.11 2.11 0 

Paterna 4.52 4.73 5 4.34 -4 4.60 2 4.34 -4 4.57 1 4.32 -4    

SO2                 

Auchencorth 0.95 0.91 -4 0.88 -7 0.99 4 1.10 15 0.91 -4 1.05 10 0.93 1.21 30 

Braunschweig 1.49 1.33 -11 1.49 0 1.65 10 1.32 -12 1.41 -5 1.45 -3 1.05 1.17 11 

Montelibretti 1.12 1.29 15 1.15 2 1.48 31 0.94 -16 1.45 29 0.99 -12 0.54 0.54 0 

Paterna 1.96 2.07 6 1.96 0 2.04 4 1.93 -2 1.99 2 1.78 -9    

SO4
2-                 

Auchencorth 1.04 1.21 17 0.80 -23 1.14 10 1.66 60 1.23 19 0.97 -7 0.82 0.58 -29 

Braunschweig 2.04 2.67 31 2.12 4 2.35 15 1.58 -22 1.72 -16 1.51 -26 1.61 1.37 -15 

Montelibretti 1.55 1.89 22 1.35 -13 1.61 4 1.49 -4 1.79 16 1.43 -8 0.83 0.83 0 

Paterna 3.28 4.19 28 3.06 -7 3.06 -7 3.68 12 3.01 -8 3.21 -2    

HCl                 

Auchencorth 0.20 1.01 396 0.19 -9 0.15 -28 0.21 4 0.33 62 0.19 -6 0.22 0.74 244 

Braunschweig 0.39 1.35 247 0.22 -43 0.16 -59 0.08 -78 0.63 62 0.35 -9 0.16 0.10 -37 

Montelibretti 0.40 1.01 151 0.33 -18 0.40 -1 - - 0.58 45 0.36 -11 0.54 0.54 0 

Paterna 0.73 1.77 141 0.42 -42 0.47 -36 - - 1.32 80 0.81 10    

Cl-                 
Auchencorth 0.84 0.93 10 0.73 -13 0.86 3 0.26 -69 1.17 39 0.85 1 0.95 0.81 -15 

Braunschweig 0.52 0.78 51 0.35 -32 0.57 10 - - 0.81 56 0.36 -30 0.33 0.21 -39 

Montelibretti 0.85 0.94 11 0.76 -11 0.84 -1 - - 1.19 41 0.86 1 0.66 0.66 0 

Paterna 1.37 1.74 27 1.11 -19 1.31 -5 - - 2.10 54 1.06 -23    

Na+                 

Auchencorth 0.53 0.79 47 0.55 2 0.60 13 1.25 134 0.68 28 0.56 5 0.65 0.57 -11 

Braunschweig 0.37 0.38 4 0.21 -43 0.37 1 0.24 -34 0.85 131 0.37 1 0.27 0.19 -29 

Montelibretti 0.59 0.99 67 0.62 4 0.70 18 - - 0.84 42 0.59 -1 0.51 0.51 0 

Paterna 0.94 - - 1.01 7 0.71 -25 - - 0.94 -1 0.95 1    

Ca2+                 

Auchencorth 0.06 0.06 -5 0.06 -11 0.32 415 0.15 137 0.05 -27 0.06 -12 0.03 0.04 38 

Braunschweig 0.16 0.07 -57 0.14 -15 0.61 272 0.36 122 0.09 -47 0.11 -34 0.07 0.08 15 

Montelibretti 0.16 0.54 241 0.16 -1 0.45 183 - - 0.15 -4 0.16 2 0.08 0.08 0 

Paterna 0.64 - - 0.53 -17 1.69 163 - - 0.49 -24 0.57 -12    

Mg2+                 

Auchencorth 0.05 0.07 27 0.05 -3 0.14 172 0.18 251 0.05 -6 0.05 -8 0.05 0.09 65 
Braunschweig 0.05 0.03 -33 0.04 -26 0.10 114 0.08 61 0.03 -35 0.02 -56 0.02 0.04 77 

Montelibretti 0.06 0.13 113 0.06 -2 0.18 185 - - 0.05 -13 0.06 2 0.04 0.04 0 

Paterna 0.13 - - 0.13 -4 0.33 147 - - 0.10 -24 0.13 -2    

 5 
 
 

 
 
 10 
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Table 3: Summary statistics of regression analyses between national annual averaged gas (NH3, HNO3, SO2) and aerosol 

(NH4
+, NO3

-, SO4
2-) concentrations, and national emission densities (4-year average for period 2007 to 2010, expressed as 

emissions per unit area of the country per year) for each of the 20 countries in the NEU DELTA® network.   

 

National annual 

average (n = 20) 

National emission densities (20 countries) 

NH3 (tonnes N km-2 yr-1) NOx (tonnes N km-2 yr-1) SO2 (tonnes S km-2 yr-1) 

(µg m-3) slope intercept R2 slope intercept R2 slope intercept R2 

Gas NH3 - N 0.75 0.70 0.49*** 0.57 0.90 0.30* 0.05 1.46 0.00ns 

Gas HNO3 - N 0.06 0.17 0.24* 0.05 0.18 0.20* 0.08 0.18 0.25* 

Gas SO2 - S 0.17 0.52 0.24ns 0.22 0.46 0.16ns 0.60 0.29 0.65*** 

Aerosol NH4 - N  0.23 0.50 0.36** 0.19 0.54 0.27* 0.20 0.61 0.16ns 

Aerosol NO3
- - N 0.18 0.20 0.57*** 0.15 0.23 0.44** 0.08 0.33 0.07ns 

Aerosol SO4
2- - S 0.06 0.47 0.07ns 0.07 0.45 0.12ns 0.12 0.44 0.18ns 

 5 

 

 

Table 4: Annual averaged concentrations of gas and aerosol concentrations, measured at all sites and at grouped sites classified 

according to each of 4 ecosystem types in the NEU DELTA® network. 

 10 

NEU Netw ork 
Annual averaged concentrations (µg m-3) (2007 – 2010) 

NH3-N NH4-N HNO3-N pNO3
--N SO2-S pSO4

2--S HCl-Cl- Cl- Na+ 

All sites (n = 66) 1.63 0.73 0.23 0.42 0.58 0.48 0.22 0.57 0.46 

Crops (n = 10) 3.81 1.11 0.32 0.61 0.87 0.63 0.24 0.58 0.49 

Grassland (n = 10) 2.16 0.67 0.20 0.42 0.53 0.38 0.21 0.98 0.64 

Forest (n = 35) 1.04 0.65 0.23 0.39 0.54 0.48 0.22 0.52 0.45 

Semi-natural (n = 11) 1.11 0.70 0.18 0.35 0.50 0.43 0.22 0.37 0.30 

 

 

 

 

Table 5: Regression correlations (R2) between the mean molar concentrations (nmol m-3) of gas and aerosol components at 15 

sites (n = 66) in the NEU DELTA® network.  

 HNO3 HCl SO2 NH3 NO3
- 

Cl
- 

2 x SO4
2- 2 x nss-

SO4
2- NH4

+ 
Na

+ 

HNO3 1          

HCl 0.13** 1         

SO2 0.46*** 0.05
ns 

1        

NH3 0.28*** 0.11** 0.08* 1       

NO3
- 0.66*** 0.21** 0.19*** 0.43*** 1      

Cl
- 0.00

ns 
0.22*** 0.01

ns 
0.11** 0.06* 1     

2 x SO4
2- 0.34*** 0.24*** 0.33*** 0.18*** 0.39*** 0.01

ns 
1    

2 x nss-SO4
2- 0.35*** 0.17*** 0.36*** 0.15** 0.35*** 0.04

ns 
0.98*** 1   

NH4
+ 0.72*** 0.06

ns 
0.34*** 0.43*** 0.75*** 0.00

ns 
0.28*** 0.30*** 1  

Na
+ 0.00

ns 
0.42*** 0.00

ns 
0.10** 0.13** 0.65*** 0.09* 0.03

ns 
0.00

ns 
1 

Significance level: * p < 0.05, ** p < 0.01, *** p < 0.001, ns = non-significant (p > 0.05) 
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Table 6: Mean molar concentrations of gases and NH3:acid gas ratios measured at sites (n = 66) in the NEU DELTA® network. 

All NEU sites 
Molar concentrations (nmol m

-3
) Ratios 

NH3 HNO3 SO2 HCl sum acids NH3 : HNO3 NH3 : SO2 NH3 : sum acids 

mean 115 16.5 18.3 6.4 41.1 7.5 7.7 2.9 

min 5.4 2.0 2.5 1.6 10.9 0.8 0.5 0.3 

max 566 33.8 78.2 13.4 122 34 33 13 

SD 108 8.4 14.7 2.8 22.4 7.2 6.6 2.6 

n 66 66 66 66 66 66 66 66 

 

 

Table 7: Linear regressions between the mean molar equivalent concentrations of aerosol components (neq m-3) at sites (n = 5 

66) in the NEU DELTA® network.  

Linear 
Regression 

Mean molar equivalent concentrations (neq m
-3
) 

NH4
+
 vs NO3

-
 NH4

+
 vs SO4

2-
 

NH4
+
 vs sum 

(NO3
-
 + SO4

2-
) 

Na
+
 vs nss-SO4

2-
 

NH4
+
 vs sum 

(NO3
-
 + nss-

SO4
2-
) 

Na
+
 vs Cl

-
 

(all data) 

Na
+
 vs Cl

-
 

(outliers 
excluded) 

R
2
 0.75*** 0.28*** 0.64*** 0.30*** 0.67*** 0.65*** 0.95*** 

slope 0.57*** 0.27*** 0.84
ns

 0.27*** 0.84* 0.75*** 1.01
ns

 

intercept 0.01
ns

 16.1*** 16.1** 13.6*** 13.6** 1.56
ns

 -0.05
 ns

 

No. of sites: n 66 66 66 66 66 66 50 

Significance level: * p < 0.05, ** p < 0.01, *** p < 0.001, ns = non-significant (p > 0.05) 

 

 

Table 8: Mean molar concentrations of aerosols and ratios measured at sites (n = 66) in the NEU DELTA® network. 10 

All NEU sites 

Molar concentrations (nmol m
-3
) Ratios 

NH4
+
 NO3

-
 SO4

2-
 nss-SO4

2-
 NH4

+
 : NO3

-
 NH4

+ 
: 2xSO4

2-
 

NH4
+
 :  

2xnss-SO4
2-
 

NH4
+
 :  

(NO3
-
 + 2xSO4

2-
) 

mean 52.8 30.2 15.1 13.9 2.4 1.8 2.1 0.9 

min 10.1 0.7 5.8 4 0.9 0.4 0.4 0.4 

max 141 84.3 38.4 35.8 21 3.6 5.1 1.6 

SD 27.6 18.2 7.0 6.8 2.7 0.8 0.9 0.3 

n 66 66 66 66 66 66 66 66 

 

 

 


