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Abstract. The global fire emission inventories depend on ground and airborne measurements of species-10 

specific emission factors (EFs), which translate dry matter losses due to fires to actual trace gas and 

aerosol emissions. The EFs of nitrogen oxides (NOx) and carbon monoxide (CO) can function as a proxy 

for combustion efficiency to distinguish flaming from smoldering combustion. The uncertainties on these 

EFs remain large as they are limited by the spatial and temporal representativeness of the measurements. 

The global coverage of satellite observations has the advantage to fill this gap, making these 15 

measurements highly complementary to ground-based or airborne data. We present a new analysis of 

biomass burning pollutants using space-borne data to investigate the spatiotemporal efficiency of fire 

combustion. Column measurements of nitrogen dioxide and carbon monoxide (XNO2 and XCO) from the 

TROPOspheric Monitoring Instrument (TROPOMI) are used to quantify the relative atmospheric 

enhancements of these species over different fire-prone regions around the world. We find spatial and 20 

temporal patterns in the ΔXNO2/ΔXCO ratio that point to distinct differences in biomass burning 

behavior. Such differences are induced by the burning phase of the fire (e.g. high temperature flaming vs. 

low temperature smoldering combustion) and burning practice (e.g. the combustion of logs, coarse woody 
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debris and soil organic matter vs. the combustion of fine fuels such as savanna grasses). The sampling 

techniques and the signal-to-noise of the retrieved ΔXNO2/ΔXCO signals were quantified with WRF-25 

CHEM experiments and showed similar distinct differences in combustion types. The TROPOMI 

measurements show that the fraction of surface smoldering combustion is much larger for the boreal forest 

fires in the upper northern hemisphere and peatland fires in Indonesia. These types of fires cause a much 

larger increase (3 to 6 times) in ΔXCO relative to ΔXNO2 than elsewhere in the world. The high spatial 

and temporal resolution of TROPOMI also enables the detection of spatial gradients in combustion 30 

efficiency at smaller regional scales. For instance, in the Amazon, we found higher combustion efficiency 

(up to 3-fold) for savanna fires than for the nearby tropical deforestation fires. Out of two investigated 

fire emission products, the TROPOMI measurements support the broad spatial pattern of combustion 

efficiency rooted in GFED4s. Meanwhile, TROPOMI data also add new insights on regional variability 

in combustion characteristics that are not well represented in the different emission inventories, which 35 

can help the fire modeling community to improve their representation of the spatiotemporal variability in 

EFs. 

 

1 Introduction 

The importance of biomass burning as a source of atmospheric trace gases and aerosols has been 40 

increasingly studied and recognized in the past decades (Andreae, 2019). To quantitatively assess the 

influence of biomass burning on atmospheric chemistry and climate the atmospheric modeling 

community requires accurate estimates of fire emissions. Important scientific efforts have led to the 
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development of a number of biomass burning emission products by combining satellite derived datasets 

of burned area with biogeochemical models and biomass density datasets that enabled more accurate 45 

emission estimates (e.g. Hoelzemann et al. 2004; Ito and Penner, 2004; van der Werf et al., 2003). Since 

then much progress has been made to reduce uncertainties of the involved datasets (e.g. burned area, fuel 

loads, combustion factors, and emission factors), but the uncertainties in the emission estimates remain 

substantial especially at the more detailed regional scales (van der Werf et al., 2017). The recent 

emergence of new space-based instruments that measure different trace gases could provide additional 50 

top-down constraints on biomass burning emissions and combustion characteristics. 

 

Since the 1980s numerous field measurement campaigns have provided information on biomass burning 

characteristics and emissions for different biomes and vegetation types around the world (e.g. Andreae et 

al., 1988; Lacaux et al., 1996; Yokelson et al., 1999). Most of these studies derived so-called emission 55 

factors (EF or EFs) for different chemical compounds to quantify the number of grams of a trace gas or 

aerosol emitted per kilogram of biomass burned. These EFs are combined with biogeochemical models 

such as used in the Global Fire Emissions Database (GFED; van der Werf et al., 2010) to provide global 

biomass burning emission estimates, which in turn are used as input for atmospheric transport models 

(e.g. CarbonTracker data-assimilation system; Peters et al., 2007). The main function of these 60 

biogeochemical models is to help predict the spatiotemporal combustion rate of biomass dry matter based 

on the fuel load, combustion completeness and / or remotely-sensed products like burned area or fire 

radiative power (FRP). A number of EF databases have been published providing biome-average EFs 

derived from the large collection of available field and laboratory measurements. The first widely used 
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EF database came from Andreae and Merlet (2001), followed by Akagi et al. (2011), who introduced 65 

additional biome categories and selected only measurements of fresh smoke plumes, before significant 

photochemical processes occurred. The latter improved the consistency with atmospheric transport 

models that use fire emissions as direct inputs before the internal chemistry parameterizations affect the 

emitted tracers. However, these databases do not account for the variability in EFs within the same biome, 

which can be substantial and introduces a major source of uncertainty (van Leeuwen et al., 2013). Natural 70 

variations in the chemical and structural composition of biomass, temperature, moisture content, and wind 

speed can cause large variations in the relative fraction of flaming and smoldering combustion. As a 

consequence, actual EFs may vary substantially calling for more detailed information to move beyond 

the use of biome average values. 

 75 

The lack of spatial representativeness in EF estimates can partly be resolved by increasing the field 

measurement effort. In addition, key information on biomass burning characteristics can be retrieved from 

space-based instruments, as it is reflected in the atmospheric composition of different trace gases. The 

main advantage of these instruments is the large spatial and temporal coverage that can be achieved, 

compensating limitations in spatial resolution and surface sensitivity. Therefore, satellite measurements 80 

of regional trace gas enhancements have the potential to provide valuable information on combustion 

efficiency, burning practices, fuel type and their variability, in particular in remote areas where we lack 

ground-based measurements and other detailed information. Two trace gases of particular interest are 

commonly measured from space: carbon monoxide (CO) and nitrogen dioxide (NO2). Enhanced 

atmospheric abundances of these two species due to fires provide a unique atmospheric fingerprint of 85 
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biomass combustion efficiency, i.e., the fraction of biomass combustion by flaming and smoldering. 

Flaming combustion is hotter and cleaner and produces relatively large amounts of NO2 and relatively 

small amounts of CO, whereas smoldering combustion happens at fairly low temperatures at the surface 

and produces predominantly CO (Andreae and Merlet, 2001).  

 90 

Previous applications of joint trace gas analysis, including CO and NO2, focused mostly on constraining 

anthropogenic and fossil fuel emissions, using either surface observations (e.g. Lopez et al., 2013; Hassler 

et al., 2016) or satellites (e.g. Silva et al., 2013; Reuter et al., 2014; Konovalov et al., 2016). Mebust and 

Cohen (2013) demonstrated the detection of seasonal variations of fire EFs in the African savannas using 

satellite measurements of NO2. Silva and Arellano (2017) used satellite observations of CO, CO2 and NO2 95 

in a novel way to distinguish combustion types around the world. This study provided new insights on 

emission inventories as they found distinct differences in the ratios of CO/CO2 and CO/NO2 between 

different biomass and urban combustion regions, which are often not well represented in emission 

inventories. 

 100 

In this study we aim to demonstrate the capabilities of the new space-borne TROPOspheric Monitoring 

Instrument (TROPOMI, launched in October 2017; Veefkind et al., 2012) to provide new information 

about biomass burning characteristics and efficiency in different regions around the globe. The main 

advantage of TROPOMI is that it delivers co-located column densities of several trace gases, including 

CO and NO2. It extends the capability of legacy instruments like MOPITT and OMI by measuring trace 105 

gases at improved accuracy, surface sensitivity, and spatial resolution providing daily global coverage. 
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The wealth of data that TROPOMI provides offers the unique opportunity to monitor seasonal changes 

in the relative amount of flaming and smoldering combustion, even in remote regions where ground-based 

measurements of fire properties are sparse. For instance, under relatively clear-sky conditions, the 

Amazon basin can now be examined for trace gases in much more detail on a day-to-day basis during 110 

annual dry season fire spells. TROPOMI surmounts some of the limitations of previous joint trace gas 

analysis studies where measurements were often taken from various instruments, each with their own 

intrinsic limitations such as a clear-sky-only retrieval requirement (e.g. with MOPITT), and with widely 

different spatial resolutions and repeat cycles, i.e. the number of days between two satellite overpasses 

over the same region. The improved consistency among the different TROPOMI data products in terms 115 

of overpass time and location, retrieval sensitivity and spatiotemporal resolution might also help to 

suppress aggregation errors and biases in the derived ratios of trace gases, improving the capability to 

distinguish differences in combustion types at the regional scale. The aim of this study is two-fold: (1) To 

demonstrate the detection of spatial variations in the regional enhancements of CO and NO2 for different 

fire prone areas that are either dominated by smoldering or flaming fires, or a combination of both. (2) 120 

To investigate the use of TROPOMI CO and NO2 to verify the current set of biome-specific EFs used in 

the atmospheric and climate modeling community. 

2 Methodology 

2.1 GFED4s and GFAS Emission Factor Ratio  

We used two well-established biomass burning emission datasets to interpret and validate TROPOMI 125 

inferred combustion characteristics and efficiencies: the Global Fire Emission Database version 4 with 
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small fires (GFED4s; van der Werf et al., 2017) and the Global Fire Assimilation System version 1 

(GFAS; Kaiser et al., 2012). Both datasets provide global fire emission fluxes for a large number of 

chemical species but use different methods.  

 130 

GFED4s is based on Carnegie–Ames–Stanford Approach (CASA) biogeochemical model (Potter et al., 

1993) to predict the amount of above and below ground biomass at monthly temporal resolution. The 

MODIS Collection 5.1 MCD64A1 500 m burned area satellite product (Giglio et al., 2013) is used to 

estimate the daily dry matter combustion rate at 0.25°×0.25° spatial resolution from 2001 up to 2016. 

GFED4s also includes 1×1 km2 thermal anomalies (active fire counts) from Terra and Aqua MODIS, and 135 

500×500 m2 surface reflectance observations, providing a statistical estimate of the burned area associated 

with small fires (Randerson et al., 2012; van der Werf et al., 2017). The GFED4s flux estimates from 

2017 onward (used in this study) are not directly derived from the burned area product because the 

underlying MODIS algorithm was upgraded from Collection 5.1 to Collection 6. Instead, flux estimates 

are simply derived from MODIS active fire detections and their FRP and the climatological ratio between 140 

them derived from the overlapping 2003-2016 period. The GFAS product calculates emissions by 

assimilating FRP observations from the MODIS Terra and Aqua satellites and is tuned to match the dry 

matter combustion rate of GFED3 per biome (Kaiser et al., 2012). The version we used provides daily 

emissions at 0.1°×0.1° spatial resolution. 

 145 

Both biomass burning products are combined with EFs to translate the derived dry matter combustion 

rate to specific trace gas and aerosol emissions. These EFs are based on a large number of trace gas 
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measurement campaigns in the field, in the air or in the laboratory, and are subdivided for dominant 

biome/burning categories without specifying any variability in space and time. GFAS uses the older EF 

dataset compiled by Andreae and Merlet (2001) with additional updates from the literature and EFs of 150 

peatland fires from Christian et al. (2003). In this dataset boreal and temperate forest fires form together 

a single category named extratropical forest fires (ETF). GFED4s uses EFs largely based on the dataset 

compiled by Akagi et al. (2011). This dataset is based on trace gas measurements from fresh smoke 

sampled in close proximity of the fire source and cooled to ambient temperature but with minimal 

photochemical processing. This provides a better representation of the initial emissions without chemical 155 

disturbances (to aid assessment of biomass burning in atmospheric chemistry models). The Akagi et al. 

(2011) dataset makes a distinction between boreal and temperate forest fires. For boreal fires they used 

the average of airborne and ground-based measurements that is roughly equivalent of assuming 70% of 

dry matter consumption is originating from smoldering combustion. Therefore, the EFs for the boreal 

latitudes are relatively high for carbon monoxide (EFCO: 127.0 g kg-1) and low for nitrogen oxides (EFNOx: 160 

0.9 g kg-1). The EFs for the temperate fires are 88.0 and 1.9 g kg-1, respectively for CO and NOx, and 

represent a larger fraction of flaming combustion similar to the ETF category used in the Andreae and 

Merlet (2001) dataset. Other variations in EFs between Akagi et al. (2011) and Andreae and Merlet (2001) 

are due to variations in the averaging and weighting methods of the measurements. In addition, GFED4s 

includes sub-grid cell partitioning of burned area to account for different fire types within a grid cell, 165 

which affects the grid-average emissions of CO and NOx. Because NO is usually the most abundant N-

species emitted to the atmosphere and because NO and NO2 are rapidly interconverted in the atmosphere 

both datasets report EFs for NOx as NO. Henceforth, the EFs are reported in units of mmol kg-1 and mol 
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kg-1 for EFNOx and EFCO, respectively, to make ratios of EFs of similar magnitude as the ratios of column 

densities measured by TROPOMI (see Sect. 2.2). Table 1 shows an overview of EFs of CO and NOx used 170 

by GFAS and GFED4s.  

 

The spatial stratification of the different biomass burning categories is apparent in the ratio between NOx 

and CO EFs. This ratio exhibits a distinct “fingerprint” that carries information on combustion efficiency, 

combustion practice, and fuel type. In this study, we call this dimensionless metric the Emission Factor 175 

Ratio (EFR = EFNOx/EFCO). EFR is a relative measure of how much millimoles of NOx are released to the 

atmosphere for each mole of CO. This metric is a proxy for the modified combustion efficiency (MCE) 

parameter that is often used in fire emission quantification studies but more difficult to derive from space 

given the relatively small departures of CO2 concentrations over biomass burning regions from 

background conditions. The MCE is defined as ΔCO2/(ΔCO+ΔCO2) to indicate combustion efficiency of 180 

a fire by measuring the amount of excess in CO2 in comparison to total emitted C from CO2 and CO 

(Yokelson et al, 1999). Table 1 gives the EFR for the different combustion types based on the ratio 

between the EFs of NOx and CO used by GFED4s and GFAS. Figures 1a and 1b show the spatial 

distribution of EFR in both datasets. For GFED4s, we subdivided EFR into three different categories: 

high EFR above 50 for savanna fires, EFR between 10 and 50 for temperate forest fires, tropical 185 

deforestation fires and agricultural waste burning, and EFR lower than 10 for boreal and peatland fires. 

High EFR is thus related to the flaming type of combustion that is hotter and more efficient as it produces 

relatively less CO alongside CO2 and relatively more NOx by combustion of N in the biomass itself. 

Conversely, low EFR is generally related to slow smoldering type of combustion. The EFR categories are 
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similar for GFAS, however, due to differences between the EFs datasets (for reasons discussed in the 190 

previous paragraph) EFRs are classified differently: high EFR above 30 for savanna fires, EFR between 

10 and 30 for ETF fires, tropical deforestation fires and agricultural waste burning, and EFR lower than 

10 for peatland fires.  

 

Highlighted in Fig. 1 are various regions of interest studied in this paper with strong seasonal occurrences 195 

of biomass burning. Regions that have been selected for detailed analysis using TROPOMI: two boreal 

fire regions in North America, one boreal fire region in Siberia, five savanna fire regions on the African 

continent, one savanna fire region in Australia, two peatland fire regions in Indonesia, and 15 regions in 

South America to more specifically study spatial gradients in combustion efficiency between tropical 

deforestation and savanna fires. 200 

2.2 TROPOMI CO and NO2 

The TROPOMI instrument was launched on 13 October 2017 onboard the Sentinel-5 Precursor satellite 

to monitor the chemical composition of the atmosphere (Veefkind et al., 2012). It measures a range of 

trace gases at unprecedented spatial resolution with a daily global coverage. Sect. 2.2.1 and 2.2.2 provide 

further details about the TROPOMI operational level 2 column density data products of carbon monoxide 205 

(XCO) and nitrogen dioxide (XNO2). Figure 2 shows a few examples of monthly and daily average maps 

of XCO and XNO2 for a number of biomass burning regions together with CO emissions from GFED4s 

(Sect. 2.1). Enhancements in XCO and XNO2 correspond well with local fire emissions based on 

independently derived burned area. Note that the chemical lifetime of NOx is much shorter than for CO 

(minutes to hours vs. weeks to months). The main chemical driver during daytime is the photochemical 210 
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balance between NO2 photolysis and NO oxidation by ozone converting NO into NO2 and makes NO2 a 

robust measure for NOx. The NOx lifetime is limited by the conversion of NO2 to HNO3 in reaction with 

hydroxyl (OH) radicals. The short chemical lifetime results in a precise alignment between the 

enhancements of XNO2 and the location of fire emissions, while enhancements of XCO are more affected 

by atmospheric transport due to its longer chemical lifetime. These differences in lifetime can cause biases 215 

in the joint analysis of XNO2 and XCO and its ratio. That limits our ability to make direct quantitative 

comparisons between EFs and column densities. Nonetheless, assuming the lifetime does not vary greatly 

from fire to fire and from region to region, it is probable that it does not affect our ability to the detect 

variations in fire characteristics around the world. This limitation is further discussed in Sect. 4 of the 

paper.  220 

2.2.1 XCO 

The carbon monoxide total column density from TROPOMI is retrieved from reflected and backscattered 

solar radiance around 2.3 μm measured by the shortwave infrared module of the spectrometer. The 

Shortwave Infrared Carbon Monoxide Retrieval algorithm (SICOR, Landgraf et al., 2016) is used to 

translate spectral radiances to XCO column densities, with high sensitivity to the planetary boundary layer 225 

for clear-sky conditions over land. For cloudy conditions over land and ocean, the XCO has a stronger 

sensitivity at higher altitude. To account for cloud interferences SICOR retrieves an effective cloud optical 

depth and cloud height, and provides a column averaging kernel as part of the product which represents 

the height sensitivity of the measurement. 

 230 
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A good agreement was found between TROPOMI XCO and TCCON XCO ground measurements for 

clear and cloudy sky conditions (Borsdorff et al., 2018a). Mean biases amount to: 6.0 ppb for clear-sky, 

6.2 ppb for cloudy-sky retrievals and 5.8 ppb for the combination of both. The station-to-station standard 

deviation of the bias was 3.9 ppb for clear-sky, 2.4 ppb for cloud-sky, and 2.9 ppb for the combination of 

both. Thereby, TROPOMI achieves its mission requirements on precision (<10%). 235 

 

The XCO column density for 2018 is observed with daily global coverage at a spatial resolution of 7×7 

km2 in nadir. The data is selected for clear-sky and cloudy-sky conditions with a cloud top height limited 

to 5000 m and an aerosol optical thickness equal or larger than 0.5 (TROPOMI CO level 2 README 

Document, 2018). In addition, the two most westward pixels of the swath were excluded due to 240 

performance issues (Borsdorff et al., 2018b). The XCO column density is presented in units of mole per 

square meter (mol m-2). 

2.2.2 XNO2 

The tropospheric nitrogen dioxide column density from TROPOMI is retrieved from spectrometer 

measurements of direct and backscattered solar radiance between 405 and 465 nm. The XNO2 retrieval 245 

algorithm uses the DOAS approach and is an adapted version of the algorithm used for the DOMINO 

v2.0 (Boersma et al., 2011) and QA4ECV XNO2 products (van Geffen et al., 2015, Boersma et al., 2018). 

In the retrieval procedure, NO2 slant columns are derived from the measured spectra using the DOAS 

method. Then the tropospheric component of the slant columns is separated from the stratospheric 

component, and finally the tropospheric slant columns are converted to vertical columns XNO2 based on 250 

the tropospheric air mass factor (AMF). 
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XNO2 is observed with daily global coverage at a spatial resolution of 3.5×7 km2 in nadir. The 

spectrometer’s near infrared band provides additional information on cloud characteristics and allows a 

better cloud correction, i.e., improving the measurement precision under cloudy conditions. XNO2 255 

column densities have been compared with ground-based MAX-DOAS measurements at 14 stations. In 

general, TROPOMI underestimates the tropospheric column at polluted sites. The daily median negative 

biases are generally less than 50%, within the required measurement precision, but vary from station-to-

station (TROPOMI NO2 level 2 README Document, 2018). Because this bias is largely systematic, it 

is not expected to deteriorate our ability to differentiate between fire characteristics. This is further 260 

investigated in Sect. 3.2.  

 

For this study, we use the recommended filter settings outlined in the README document, removing 

cloud-covered scenes with a cloud radiance fraction exceeding 0.5, scenes covered by snow or ice, and 

other problematic retrievals (qa_value > 0.75). The XNO2 column density is presented in units of 265 

millimole per square meter (mmol m-2).  

2.3 Mole Fraction Ratio: sampling methods   

For our analysis, we selected important hotspots of biomass burning according to the GFED4s database. 

To prevent contamination with urban trace gas emissions large population centers were avoided. The 

regions are outlined in Fig. 1 and 2. Within each region we collected all the available XCO and XNO2 270 

data that passed the filters explained in Sect. 2.2.1 and 2.2.2 for up to three consecutive months depending 

on the timing and duration of the fire season. 
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To derive the regional enhancements in XCO and XNO2 relative to the background, ΔXCO and ΔXNO2 

respectively, we used two main sampling methods depending on the scale and severity of the fires in the 275 

region. A statistical bulk method (SBM) is used for regions that are characterized by extensive seasonal 

burning over a large area and where upwind background levels of XCO and XNO2 are difficult to define. 

A local sampling method (LSM) is used for regions where we could identify local fires and plumes of 

enhanced trace gas abundance for which the wind direction and background column density upwind of 

the fires could be determined. Each method is discussed in more detail in Sect. 2.3.1 and 2.3.2, 280 

respectively. With daily estimates for ΔXNO2 and ΔXCO we were able to derive a new dimensionless 

metric: the Mole Density Ratio (MDR = ΔXNO2/ΔXCO). The MDR is the atmospheric equivalent to EFR 

and provides a remotely sensed proxy for biomass combustion efficiency. 

2.3.1 Statistical bulk method  

The statistical bulk method (SBM) is based on the method discussed in Silva and Arellano (2017) who 285 

used it to distinguish urban and industrial trace gas enhancements from biomass burning. It provides a 

simple measure of regional trace gas enhancements when background column densities are difficult to 

determine. For this method, the daily TROPOMI data were regridded at 0.1°×0.1° resolution from which 

co-located XCO and XNO2 data within 5°×5° boxes were sampled each day over the selected regions 

(see Fig. 1 and 2). The size of these boxes allows for a sufficient number of trace gas observations each 290 

day (more than 1000). To determine the regional trace gas enhancement relative to the background 

(ΔXCO and ΔXNO2 are here jointly indicated by ΔX) we assume that the sampled data exhibits a Gaussian 

normal distribution. A trace gas enhancement of one standard deviation above the daily mean of the 
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distribution is assumed to be due to fires, i.e., Xfire = μX + σX. Conversely, a column density of one standard 

deviation below the mean is assumed to represent the trace gas background, i.e., XBG = μX − σX. This 295 

implies that the regional trace gas enhancement is assumed to be two times the standard deviation of the 

distribution, i.e., ΔX = Xfire − XBG  = 2σX. Figure 3a displays an idealized normal distribution of sampled 

column densities of XCO indicating the values of XCOfire, XCOBG, ∆XCO, μXCO, and σXCO along the 

distribution. The MDR between ΔXNO2 and ΔXCO is therefore equal to the ratio between two standard 

deviations σXNO2/σXCO. As discussed by Silva and Arellano (2017), this assumption is only valid if both 300 

species are highly correlated with each other. This is the case for this study given the strong co-location 

of the sampled XCO and XNO2 data, the daily sampling interval for both species, and because we 

carefully selected strong biomass burning source regions. SBM was used for the following regions: 15 

regions over the southern Amazon basin of South America, where data was sampled between July and 

September 2018, 2 regions over Northern Africa, where data was sampled in December 2018, and 3 305 

regions over Southern Africa, where data was sampled between July and September 2018. Deriving ΔX 

as outlined above, may not reflect a formally correct estimate of the regional trace gas enhancement 

relative to the actual background, but that is also not our main goal. The purpose is to have a consistent 

method among the two trace gases that provides a reasonable proxy for regional fire induced column 

enhancements. Therefore, this method was only used for regions where we have a very high density of 310 

fires within our study area and where it is difficult to investigate individual fire plumes and their 

background mole density levels. Some of the errors introduced by this method are systematic and have a 

similar impact on ΔXNO2 and ΔXCO (e.g. error due to atmospheric transport) and will cancel out in the 

estimate of MDR. Other errors may introduce new uncertainties and biases on top of the TROPOMI 
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column uncertainty unevenly between XNO2 and XCO, potentially affecting our ability to differentiate 315 

between combustion characteristics. For instance, the assumption of a Gaussian normal distribution of 

the sampled data might not hold for one or both of the trace gases. To assess the importance of these 

uncertainties, we developed two alternative methods to derive ΔX that are closely related to SBM. The 

first alternative method (SBM_alt1) assumes that ΔX is not determined by the standard deviation but by 

the difference between the 15.9 and 84.1 percentile ranks around the median of the distribution. Figure 320 

3b shows an example of such a distribution. Only if the sampled data is perfectly normally distributed, 

SBM_alt1 and SBM will yield the same result because the two percentile ranks will align with the minus 

one and plus one standard deviations. Variations from the standard normal could for instance deteriorate 

our ability to differentiate between combustion characteristics as it will affect the estimates for ΔX and 

MDR. The second alternative method (SBM_alt2) derives ΔX by taking the difference between Xfire from 325 

the standard SBM method and an alternative XBG derived from a distribution of samples from an adjacent 

5°×5° region. Naturally that means the SBM_alt2 ΔX value is only identical to the standard SBM ΔX 

value if both estimates for XBG are identical. Figure 3c shows an example of this method with an idealized 

background and source distribution of sampled XCO. 

 330 

SBM and the two alternative methods have been validated for two source regions in South America (see 

Sect. 3.2). The first region is located south of the Amazon river over the Brazilian state of Amazonas in 

the tropical rainforest and is dominated by deforestation fires, i.e. the practice of burning logs and debris 

that remain on the landscape after initial clearing to create new agricultural land. The second region is 

located over the central Brazilian state of Goias in an ecoregion called the Cerrado, which is a savanna-335 



 

17 
 

like fire-adapted ecosystem with frequent fires that mostly consume the grass layer but where the 

expansion of agriculture is also an important cause of fires. These two areas are shown in Fig. 4, in green 

and blue, respectively. In the 3-month dry season between July-September 2018, the parameters Xfire, XBG, 

ΔX were determined every day for XCO and XNO2 using SBM, SBM_alt1, and SBM_alt2. The latter 

method used the two adjacent background regions shown in purple in Fig. 4. These two background 340 

regions were chosen for a number of reasons. First of all, the background region for the Cerrado savanna 

fires was on average upwind of the source area. The average wind direction in the planetary boundary 

layer of the domain was predominantly from the east during the 3-month period (see Fig. 4), based on a 

WRF-CHEM simulation nudged to NCEP re-analysis boundary conditions. Moreover, the CO and NOx 

emissions from fires were about two times smaller in the background region than in the source region 345 

according to the GFED4s database (0.6 Gg CO region-1 day-1 vs. 1.1 Gg CO region-1 day-1). Similarly, we 

opted for a 'clean air' background area just northeast of the deforestation region where CO and NOx 

emissions from fires were very small during our study period. 

2.3.2 Local sampling method 

The local sampling method (LSM) is a more straightforward approach to determine local enhancements 350 

in trace gas densities in close proximity of the actual fire hotspot. This method was specifically used for 

fires in the North American boreal biome in July 2018, the Siberian boreal biome in July and August 

2018, the central Australian savanna biome in November and December 2018, and the Indonesian 

peatland biome in August and September 2018 (see Fig. 1 and 2). All events were relatively isolated from 

other fires, a prerequisite for using this method. For predefined 5°×5° and 10°×10° boxes, TROPOMI 355 

data were regridded at 0.1°×0.1° resolution. Subsequently, co-located XCO and XNO2 data each day are 
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sampled within a radius of 10 km from a location where CO and NOx was emitted according to GFED4s. 

For each fire hotspot, Xfire is defined as the average of these sampled column densities. The background 

column density XBG is determined each day by taking the average of all sampled column densities inside 

a smaller subregion upwind of the fire hotspot within the larger predefined box. The location of the 360 

background subregion was determined by visual inspection, looking at the predominant direction of the 

individual trace gas plumes. For each day, we averaged ΔXCO and ΔXNO2 over active hotspots in the 

predefined boxes, which were subsequently used to derive a daily average MDR. Days with insufficient 

data upwind of the fire hotspots were excluded from the analysis as well as days with enhanced trace gas 

levels that were advected into the region from outside. For instance, we had to filter out by visual 365 

inspection a number of days for the North American regions because high amounts of CO were advected 

from the Eurasian continent to Alaska obscuring most of the local enhancements in CO. 

 

We show in Fig. 5a and 5b an example of TROPOMI XCO and XNO2 measured over Australia for 

December 23, 2018, regridded at 0.1°×0.1° resolution. The plumes of XCO and XNO2 that start at a 370 

number of hotspots and move in westward direction are easily recognizable. The background region for 

this particular day is located in the eastern part of the domain upwind of the hotspots (shown by the purple 

box). The hotspots are positively identified as fires because their locations correspond very accurately 

with the locations of GFED4s and GFAS fire emissions (depicted by ‘+’-signs). One hotspot located in 

the most western part of the domain (west of 126°E) is not visible in TROPOMI XCO and XNO2. The 375 

fire was likely short-lived and only detected in the morning with MODIS Terra satellite (local 10:30am 

overpass), three hours before the TROPOMI overpass. For the other hotspots, Fig. 5a and 5b show a good 
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correlation between the magnitude of the trace gas enhancements, the plume distances, and the spatial 

extent and magnitude of the fire emissions. 

 380 

2.4 WRF-CHEM 

To evaluate the methodology of the joint analysis of TROPOMI XCO and XNO2, and in particular the 

SBM sampling technique, we used the Weather Research Forecasting model version 4.0 coupled with 

chemistry (WRF-CHEM). Main purpose was to investigate whether the sampling techniques can provide 

estimates of XCO, XNO2 and MDR that are distinctly different between four combustion types. Synthetic 385 

WRF-CHEM simulations were performed using a single domain located over the northern part of South 

America stretching over 6000 km in the east-west direction and 3900 km in the north-south direction (see 

Fig. 4). We used a horizontal resolution of 30×30 km2 with 32 vertical levels. We chose the ‘tropical’ 

suite of physics options that includes Yonsei University (YSU) scheme for planetary boundary layer 

physics (Hu et al., 2013), WSM 6-class scheme for microphysics (Hong and Lim, 2006), Tiedtke-scheme 390 

for cloud physics (Tiedtke, 1989), and Rapid Radiative Transfer Method (RRTM, Mlawer et al., 1997) 

for short- and longwave radiation. We included gas-phase chemistry mechanisms from the Regional Acid 

Deposition Model version 2 (Stockwell et al., 1990), but without aerosol chemistry. Boundary and input 

meteorological fields for September 2018 came from NCEP FNL Operational Global Analysis dataset 

prepared on a 1°×1° grid every 6 hours. Boundary and initial trace gas concentrations were taken from 395 

CAMS model and were interpolated to WRF vertical levels. GFED4s (see Sect. 2.1) provided the biomass 

burning dry matter combustion rate based on real fire events for South America in September 2018. These 

were multiplied with a set of EFs to acquire a synthetic estimate of biomass burning emissions for the 
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entire domain that is associated with a single combustion type: either boreal fires, mixed peat fires, 

tropical deforestation fires or savanna fires. For the EFs of the mixed peat fires we assumed 60% is 400 

combusted by tropical deforestation (to mimic overstory consumption) and 40% is combusted by peat 

soils. As a consequence, each of these four emission estimates carried a different (but in space constant) 

EFR between NOx and CO over the entire domain for each of the respective fire types. In addition, we 

used a spatial characterization of injection height profiles based on space-based stereo-height information 

from smoke plumes (Martin et al., 2018). 405 

 

WRF-CHEM was executed four times for September 2018 under the exact same conditions and settings 

described above, except that we used for each run one of the four modified biomass burning emissions. 

Each simulation provided hourly 3-dimensional fields of CO and NO2 concentrations for the entire month. 

Close to the center of the domain we collected within a 5°×5° region each day at 2pm local time (half an 410 

hour later than the actual TROPOMI overpass) all CO and NO2 data. These were translated into XCO and 

XNO2 column mole densities using a daily mean estimate of TROPOMI’s averaging kernel (AK) of the 

two respective species, derived from September 2018 data over the same 5°×5° collection region. This 

assured realistic differences in column sensitivity for simulated XCO and XNO2, even under cloudy 

conditions. The collection of column densities was used to derive daily ΔXCO, ΔXNO2, and MDR using 415 

the three SBM sampling methods discussed in Sect. 2.3.1.     
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3 Results 

In Sect. 3.1 we provide an overview of all retrieved MDR signatures and compare them with the regional 

patterns in EFR and with WRF-CHEM simulations. In Sect. 3.2 we present a detailed analysis of XCO 

and XNO2 data focusing on the Amazon basin. This analysis includes the errors associated with the 420 

different sampling methods, the significance of the retrieved MDR signatures in relation to the instrument 

precision of TROPOMI, and a comparison of retrieved MDR signatures between TROPOMI and two 

biomass burning datasets. 

3.1 Global fire characteristics 

By combining ΔXCO and ΔXNO2 data from all investigated regions we can identify a four-way split in 425 

regional combustion activity and efficiency (see Fig. 6a). According to the TROPOMI data, there is a 

group of boreal and peatland regions that emit relatively much CO per gram of NOx in comparison to the 

other regions and are in the literature typically characterized as smoldering fires. For these regions we 

determined MDR values ≤1.4. At the opposite end of the spectrum are the savanna regions on three 

different continents that emit relatively much NOx generated from nitrogen in the biomass and possibly 430 

from thermal decomposition of atmospheric N2 at very high combustion temperatures. The MDR values 

for savanna fires are much higher than for the boreal and peatland fires, and range between 3.6-6.2 among 

the different savanna regions and sampling methods (SBM for South America and Africa, LSM for 

Australia). In between these two extremes lie 4 different South American deforestation regions with MDR 

values that range between 1.6 and 2.5, which is less efficient than the savanna combustion but still more 435 

efficient than boreal and peat combustion. In particular for the boreal regions we observe a 3 to 6 times 

larger increase in ΔXCO relative to ΔXNO2 than for the deforestation and savanna regions. It consistently 
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translates to a much lower monthly average MDR (<1) for the boreal fires on two different continents, 

with higher MDR values over boreal North America compared to boreal Siberia. 

 440 

 

A similar four-way split in regional combustion characteristics is shown in Fig. 6b using the four synthetic 

WRF-CHEM simulations, each driven by a different set of modified biomass burning emissions to mimic 

different ecosystems with frequent occurring fires (see Sect. 2.4). The estimates in ΔXCO and ΔXNO2 

were derived with SBM and while day-to-day variability is quite substantial just like in the real 445 

TROPOMI data in Fig. 6a, it demonstrates that the SBM method can provide a robust monthly average 

estimate of MDR.  The MDR estimates and the relative differences between the four different fire types 

compare quite well with the actual derived signals in TROPOMI. The simulated savanna fires have 

consistently the highest MDRs, which are about twice as high than the simulated tropical deforestation 

fires, and 3 to 4 times as high than the simulated peatland and boreal fires, respectively.  450 

	

The pattern of combustion signatures in MDR determined with TROPOMI across the different fire types 

compare well with the spatial patterns in GFED4s EFR (see Fig. 7a). The Pearson correlation coefficient 

between estimates of MDR and EFR across the 5 continental areas implies a strong linear relationship 

exist (r=0.90). It demonstrates that the regional combustion efficiency that is detected with TROPOMI is 455 

generally consistent with the worldwide spatial distribution of EFs used by GFED4s (mostly based on 

Akagi et al., 2011). For the savanna fires we have consistently the highest estimates for MDR and EFR. 

The MDR and EFR for tropical deforestation fires are about half those of savanna fires. The peatland fires 
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in turn have 3 times lower MDR and EFR. The lowest values in MDR and EFR (4 times lower than 

savanna fires), which suggest the least efficient type of biomass combustion, is shown for the North 460 

American and Siberian boreal regions. Note that the retrieved linear relationship in Fig. 7a between 

GFED4s EFR and TROPOMI MDR is similar to the linear relationship and slope found between EFR 

and MDR based on the 4 synthetic WRF-CHEM simulations. Even with the aforementioned caveat that 

these simulations are simple in design, it does demonstrate quite convincingly that satellite and ground-

based measurements of trace gas ratios are related to one another through a simple linear relationship.   465 

 

The pattern of combustion signatures in MDR is somewhat different from EFR of GFAS (see Fig. 7b), 

which is mostly based on the older set EFs from Andreae and Merlet (2001). The Pearson correlation 

coefficient between MDR and EFR is lower (r=0.49) and the slope across the different fire regions is less 

steep. One reason is that the boreal fire characteristics in GFAS were lumped together with the temperate 470 

fires into a single category called extratropical fires, which reflects a much smaller smoldering 

combustion component and thus a higher EFR (see Table 1). As a consequence, Siberian boreal NOx 

emissions are in GFAS approximately four times larger than in GFED4s. This confirms the findings in 

the CAMS validation activity: Comparisons with GOME-2 indicated largely overestimated Boreal NO2 

concentrations in the CAMS forecasts driven by GFAS (Ramonet et al., 2019). Another reason for the 475 

mismatch is that the combustion efficiency of savanna fires in GFAS is of the same order of magnitude 

as the combustion efficiency in the boreal regions, which seems less realistic given the current body of 

EFs measurements from savanna ecosystems that claim the contrary. For peatland fires in Borneo, 

Indonesia, GFAS assumes a much larger fraction of smoldering combustion than GFED4s also. This large 
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fraction of smoldering combustion would probably be more accurate during the drier years, e.g. during 480 

El Niño, than for the relatively wet year 2018.  

 

3.2 South American deforestation and savanna fire characteristics 

The joint analysis of ΔXCO and ΔXNO2 column densities in Fig. 8a-c shows a clear distinction between 

the deforestation and savanna regions during the 3-month dry season. For the deforestation burning region 485 

we observe much larger increased levels of ΔXCO (up to 0.030 mol m-2) relative to ΔXNO2 mostly in 

September indicating a substantial fraction of smoldering combustion later in the season. This is 

consistent with ground-based measurements of tropical forest fires that usually show a persistent 

smoldering phase that can continue for days, in particular when woody debris is ignited that is piled 

together	(Carvalho et al., 2001; Morton et al., 2008). The day-to-day variability in ΔXCO is large but 490 

remains quite proportional to the variability in ΔXNO2 in September, indicating that the relative amount 

of smoldering and flaming combustion remains relatively constant throughout the month. For the 

deforestation region ΔXCO and ΔXNO2 are correlated in September with a Pearson correlation 

coefficient of r=0.82, r=0.84, and r=0.68 for respectively SBM, SBM_alt1 and SBM_alt2. The estimates 

of ΔXNO2 are quite similar for the deforestation and the savanna region (between 0.005-0.05 mmol m-2). 495 

However, lower ΔXCO values (up to 0.010 mol m-2) point to a much cleaner combustion of savanna 

biomass, which is common for savanna fires where the flaming phase typically dominates (Andreae and 

Merlet, 2001). In contrast to deforestation fires, ΔXCO and ΔXNO2 for savanna fires are less correlated 

(r<0.66), i.e. the trace gases do not change consistently on a day-to-day time scale.  

 500 
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In September, at the peak of the fire season, the monthly average MDR is significantly different for the 

two fire types, irrespective of the sampling method used (see Fig. 8c). The MDR estimates for 

deforestation fires range between 1.06 and 1.55 whereas the MDR estimates for savanna fires are higher, 

ranging between 2.97 and 3.17. The separation between deforestation and savanna fires remains also quite 

robust to the different bulk sampling methods used (SBM, SBM_alt1 or SBM_alt2). For each fire type, 505 

the monthly average ΔXCO and ΔXNO2 estimates of the three sampling methods lay well within the 1σ 

uncertainty level of each method (the standard deviation of day-to-day variability in ΔXCO and ΔXNO2). 

The differences in MDR between SBM and SBM_alt1 are quite small in August and September (within 

15% for both fire types) indicating that SBM is not so sensitive to a possibly non-Gaussian shape of the 

distribution. Much larger differences in MDR exist between SBM and SBM_alt2 (up to 35% for 510 

deforestation fires), with much larger day-to-day variability in MDR using SBM_alt2. It indicates the 

background estimates of XCO and XNO2 in the adjacent regions are not necessarily consistent with the 

background densities derived with the Gaussian fit. These uncertainties can be attributed to the incorrect 

assumption that the sampled trace gases are Gaussian distributed or by the somewhat arbitrary choice of 

the background regions for SBM_alt2, which do not necessarily characterize the true background each 515 

day in September. As discussed in Sect. 2.3.1, it is not our goal to determine the best possible background 

estimate, which is difficult for these kinds of regions that are continuously surrounded by fires. Instead, 

we opted for a mathematical method that is consistent in application for both trace gases and provides a 

reasonable proxy for regional fire induced trace gas enhancements.      

 520 
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The influence of instrument precision on the ΔXCO, ΔXNO2 and MDR estimates was also quantified. 

The instrument precision of XCO under relatively clear-sky conditions is primarily a function of surface 

albedo (Landgraf et al., 2016). The low albedo of the tropical deforestation region yields an average XCO 

precision of 0.0014 mol m-2, which is two times larger than for the savanna region with an average XCO 

precision of 0.0007 mol m-2. The precision of XNO2 is around 0.011 mmol m-2 for both regions and is 525 

dominated by air mass factor uncertainties under polluted conditions (Lorente et al., 2017). The 

contribution of instrument/retrieval precision to the uncertainty in ΔXCO, ΔXNO2 and MDR was 

estimated using a synthetic distribution of daily measurements for both trace gases in September 2018. 

This was done as follows: assuming no systematic errors or biases, each single TROPOMI measurement 

was randomly perturbed by its precision value or decreased by its precision value or remained unchanged. 530 

Subsequently, the SBM method was applied on this distribution, yielding an uncertainty range around 

ΔXCO, ΔXNO2 and MDR values due to instrument or retrieval noise (see Fig. 9). While the XNO2 

uncertainty is quite substantial in comparison to XCO, their contribution to ΔXNO2, and in the resulting 

MDR, is actually quite small on a monthly time scale. There is barely any overlap in the range of monthly 

MDR estimates of the deforestation and savanna fires, which means that differences in combustion 535 

characteristics easily exceed the precision. Only for smaller ΔXCO and ΔXNO2 values, TROPOMI’s 

precision will become a more limiting factor in terms of signal-to-noise and could explain the lower 

correlation between daily ΔXCO and ΔXNO2 noted before for savanna fires.  

 

The September daily estimates of ΔXCO and ΔXNO2 are shown in Fig. 10a for the deforestation region, 540 

along with the smoothed estimates of the MDR, and the smoothed GFED4s and GFAS CO fire emissions. 
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In September, when the enhancements of the two trace gases and the CO emissions are at their maximum, 

the MDR is also at its lowest level around 1.5, indicating persistent less efficient combustion in the region 

(relatively less NO2 and more CO release to the atmosphere). The same set of daily estimates are also 

shown for the savanna region in Fig. 10b. The peaks in ΔXCO and ΔXNO2 correspond with peaks in the 545 

GFAS CO emissions and the MDR is quite constant between 3.0 and 3.5, i.e. about twice as high as the 

MDR for the deforestation region. 

 

It is worthwhile to note that the GFAS and GFED4s emission products do not necessarily align well in 

Fig. 10a and 10b. As mentioned in Sect. 2.1, these two products use different methods and data products 550 

to derive fire emission estimates. The difference between GFAS and GFED4s reflects the uncertainty in 

the amount of CO emitted. This is apparent for the savanna region, where the daily GFAS CO emissions 

are on average a factor of four larger than the GFED4s emissions. The 2018, GFED4s estimates are 

derived using active fire detections and their FRP and a simple relationship based on the climatological 

FRP and GFED4s ratio based on the 2003-2016 period for each 0.25°×0.25° grid cell. GFAS, on the other 555 

hand, used the FRP associated with those active fires and is tuned to match GFED3 emissions but not for 

each grid cell but for each biome (Kaiser et al., 2012). In addition, the used EFs between the two products 

are different (see Table 1). For the large deforestation fires the estimates of CO emissions from GFAS 

and GFED4s are more similar although the timing is somewhat different (see Fig. 10a).  

 560 

We also demonstrate the detection of subcontinental scale gradients in biomass burning efficiency from 

space. The September average MDR (derived with the standard SBM) is shown in Fig. 11a for 15 5°×5° 
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regions south of the Amazon river that cover the two main biomes: tropical rainforest (dominated by 

deforestation fires) and Cerrado savanna (dominated by savanna fires). For the same 15 regions we also 

derived the EFR from the monthly average GFED4s NOx and CO fire emissions shown in Fig. 11b. These 565 

emissions are essentially based on the Akagi et al. (2011) EF database that is compiled from ground and 

airborne measurements. Although the relationship is not perfect, MDR responds fairly linearly to EFR 

(r=0.59 shown in Fig. 11c). A very similar west-east relationship also exists between the 15 EFR estimates 

from GFAS and MDR (r=0.61, not shown). However, GFAS EFR values are generally lower across the 

entire domain which can be traced back to differences in EFs (see Table 1). In general, we see lower MDR 570 

and EFR values over the western part of the domain (where deforestation fires dominate) and higher MDR 

and EFR values over the eastern part of the domain (where savanna fires are more prevalent). The 

relationship becomes much more significant (r=0.89) if three outliers are excluded from the analysis. One 

of these outliers represents a mountainous region in the southwest corner of the domain, where fire activity 

was much lower than elsewhere in the domain. The other two outliers represent regions that are located 575 

in between the tropical rain forest and the Cerrado savanna (highlighted in Fig. 11a and 11b). It is possible 

that the MDR and EFR do not align well at these locations because the biome-specific EFs are not 

representative for a more complex transition region. One would expect here more diversity in burning 

practices, vegetation types and climate conditions, resulting in a mixture of different burning 

characteristics that are not accounted for in the EF in neither GFED4s nor GFAS, which are based on 580 

coarser resolution land cover data. Another factor that plays a role is atmospheric transport as it affects 

the column mole densities that are measured downwind of dominant fire type. The wind direction was 
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predominantly from the east in September (see Fig. 4) and could as well carried the savanna-like 

combustion characteristics from the most eastern regions more towards the west (see Fig. 11a). 

4 Discussion 585 

In this paper, we demonstrated the capability of new high-quality XCO and XNO2 column observations 

from the space-borne TROPOMI instrument to detect and quantify spatial variations in biomass 

combustion efficiency from a top-down perspective. The TROPOMI observations of XCO and XNO2 (a 

good proxy for NOx) and the Mole Density Ratio (MDR) between the local enhancements of the two 

species have an important advantage over ground or airborne-based measurements due to the daily global 590 

spatial coverage, and as such are complementary to bottom-up derived EFR signatures.  

 

We found distinct spatial patterns in MDR across different regions and continents which signify very 

different combustion efficiency characteristics. Irrespective of the utilized sampling method, these 

patterns in MDR compare well with EFR signatures around the world from existing fire emission datasets. 595 

In principle, these findings are not new but confirm from a remote sensing perspective the general spatial 

distribution of combustion efficiency of the current body of EF measurements. Based on the TROPOMI 

measurements of just one year we derived a first (but still preliminary) linear relationship between 

TROPOMI column observations of CO and NO2, and EFs of CO and NOx near the fire source (see Fig. 

7). This approach provides an additional anchor to help constrain combustion characteristics and can for 600 

instance be used to estimate and quantify the spatiotemporal variability of combustion efficiency around 
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the world, even over regions where there is a deficiency of detailed information on fuel load, combustion 

practice and EFs. 

 

The combustion in all savanna regions in South America, Africa and Australia were consistently cleaner 605 

and more efficient (i.e. highest MDR) than for all the other regions investigated. The MDR for Australia 

was determined by studying individual fire plumes with LSM and yielded the highest MDR estimate, but 

also the largest day-to-day uncertainty. The other three savanna regions were determined with SBM and 

yielded smaller MDR values but were still significantly larger than the MDRs derived for the other fire 

types. The LSM method may be inclined to higher MDRs because ΔXNO2 is derived from mole density 610 

measurements in close proximity of the actual fire sources where XNO2 is at its highest level before any 

significant removal with OH occurs. On the other hand, the area sampled was very arid and mostly 

consisted of grasses. Therefore, smoldering combustion products like CO and CH4 tend to be lower (Hurst 

et al., 1994). Our study also shows a relatively clean combustion process for the Northern and Southern 

African savanna fires, in agreement with the current EF datasets. In contrast to Zheng et al. (2018), we 615 

did not find evidence of a seasonal transition from flaming to smoldering combustion for the different 

African regions. They inverted multi-year XCO column measurements from the MOPITT instrument and 

found that GFED4s significantly underestimates the CO emissions by 12 to 62% later in the fire season. 

They partly attributed this outcome to the static EFs that are currently in use that omit seasonal variations 

in burning conditions. We therefore argue that the underestimation of GFED4s CO emissions is more 620 

likely the result of missing burned area detections in the late dry season. 
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In comparison to the savanna fires, lower MDR values were derived for the South American deforestation 

regions, indicating a larger contribution from smoldering combustion of organic soils and woody debris 

that is piled together at the surface. These spatial differences in combustion efficiency between 625 

deforestation and savanna fires agree with the study of Silva and Arellano (2017), however, a one-on-one 

comparison between the two studies is difficult. They derived estimates of MDR based on the ratio of 

ΔXCO/ΔXNO2 (instead of ΔXNO2/ΔXCO), and they did their analysis for a different year, probably 

under somewhat different meteorological and chemistry regimes.  

 630 

The least efficient type of combustion with the lowest MDR values were detected for the Indonesian 

peatland fires and boreal fires of North America and Siberia. In Indonesia, peatland fires are a recurring 

seasonal phenomenon that generates severe atmospheric pollution and impacts public health (Marlier et 

al., 2013). In many lowland regions, forest clearing occurs along with drainage of peat-swamp forest 

exposing peat to fire. During the dry season, the boreal forest fires consume large amounts of above- and 635 

especially belowground biomass, including the burning of organic soils, peat, and woody debris (Ottmar 

and Sandberg, 2003; French et al., 2004). Typically, such ecosystems burn by residual smoldering 

combustion which can continue long after the initial flaming phase of the fires (Akagi et al. 2011). 

The difference in MDR between the North American and Siberian boreal fires in Fig. 6a suggest different 

fire dynamics between the two boreal regions. These differences do not appear in the EFR estimates of 640 

GFAS and GFED4s because the EF datasets lack spatial and temporal variability for each fire type. The 

lower average MDR value for Siberia indicates generally more smoldering combustion (less NOx, more 

CO) than the combustion in North America. This result supports independently the findings of Wooster 
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and Zhang (2004) and Rogers et al. (2015), who found compelling evidence for smaller fire intensity and 

burn severity in the Siberian boreal forests across multiple satellite datasets (but not TROPOMI) and 645 

forest inventories. Rogers et al. (2015) related the differences in fire dynamics between these two regions 

to their dominant tree species. Pine trees in Eurasia have evolved to resist and suppress crown fires. 

Therefore, the fires in these areas are usually reported as surface fires, which burn mostly in the 

smoldering phase.	The trees in the northern parts of North America have evolved to spread and be 

consumed by more intense crown fires, killing most trees. Yet, we remain cautious to fully attribute the 650 

detected differences between the North American and Siberian MDR to the burning characteristics of 

specific tree species until we have analyzed multiple years of TROPOMI data. The uncertainties in MDR 

for 2018 (based on day-to-day variability) are still quite substantial for the boreal regions as is shown in 

Fig. 6a. 

 655 

Our estimates of MDR across the world compared most favorably with the spatial distribution of biomass 

burning efficiency prescribed in GFED4s, where the proxy of efficiency is carried through the EFs of CO 

and NOx. The remotely sensed measurements confirm the addition of a dedicated boreal forest fire type 

as a key improvement that was implemented in the more recent Akagi et al. (2011) EF database (used by 

GFED4s). It underlines the need for EFs that reflect a large component of smoldering combustion of 660 

organic soils and boreal peat in this part of the world (Yokelson et al., 1997; Bertschi et al., 2003). This 

was specifically done in the Akagi et al. (2011) EF dataset where they applied an equal weighting scheme 

for the boreal region airborne measurements (which have a bias towards flaming fires) and ground-based 

measurements (which have a bias towards smoldering fires). Our MDR estimate for the two Indonesian 
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peatland regions is lower than MDR for deforestation fires but higher than the MDR for boreal fires. 665 

Therefore, it is likely that it represents a combination of peat soil combustion (usually consumed almost 

entirely by smoldering) and overstory combustion of tropical forests, grasslands, and agriculture (usually 

consumed by flaming and smoldering). This relative pattern is in agreement with a more mixed 

combustion efficiency prescribed in GFED4s for Indonesia (both for Borneo and Sumatra). The Borneo 

fires in GFAS exhibited a much larger smoldering component, which may be more common during El 670 

Niño years when fires spread out of control, consuming a significant portion of the underlying peat soils. 

However, 2018 was not an El Niño year, and evidence of excessive smoldering combustion was not found 

in the TROPOMI data (see Fig. 6a). In fact, the TROPOMI data suggest more complete combustion 

efficiency in Borneo than in Sumatra (1.43 vs. 0.94 MDR).   

 675 

The day-to-day variations in MDR (shown in Fig. 6a) point to a considerable amount of uncertainty. An 

important source of this uncertainty is first of all the SBM sampling method. Estimates of ΔXCO and 

ΔXNO2 can deviate substantially on a daily basis depending on how much the sampled data is skewed to 

either side of the scale, away from a perfect Gaussian normal distribution. It was demonstrated for South 

American fires (see Fig. 8) that the SBM and the two alternative sampling methods can produce quite a 680 

range in MDR. Similarly, the instrument/retrieval precision of TROPOMI’s XNO2 was also a small 

source for uncertainty in MDR (see Fig. 9). However, regardless of the sampling method or precision, we 

were still able to distinguish clearly the deforestation fires from savanna fires using the monthly 

aggregated ΔXCO and ΔXNO2 data. The alternative sampling methods were also used to derive MDR 
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from the synthetic WRF-CHEM simulations, and similarly, it did not deteriorate our ability to distinguish 685 

the four different fire types (not shown in paper).  

 

Another source of uncertainty in MDR is the difference in surface sensitivity of TROPOMI’s XCO and 

XNO2 measurements. A comparison of the column averaging kernel (AK) of both species shows that 

tropospheric XNO2 measurements are generally less sensitive to sources in the planetary boundary layer 690 

than XCO measurements. From the surface to approximately 800hPa is the sensitivity of XNO2 smaller 

than for XCO but increases from the mid-troposphere to tropopause (800-200hPa).  This is one of the 

reasons why our daily estimates of ΔXNO2 are biased low. Potentially, it has an effect on most of our 

MDR estimates because it has been demonstrated, using stereo-height measurements of smoke plumes, 

that most fires are typically emitted inside the planetary boundary layer (Martin et al., 2018). The 695 

estimates of ΔXCO, ΔXNO2 and MDR derived from the simulated XCO and XNO2 column data (WRF-

CHEM experiments in Fig. 6b and 7) were calculated with a daily region-average AK for September 

2018. This provided more realistic column estimates for both species (and thus a more realistic MDR 

estimate) that allowed a better one-to-one comparison to TROPOMI MDR estimates, even under cloudy 

conditions (Borsdorff et al. 2018b). Not using the AKs to derive MDR with WRF-CHEM, and instead 700 

simply using the simulated total XCO and the tropospheric XNO2 column densities, would yield higher 

MDR estimate. This is because simulated XNO2 enhancements from surface fire sources are, in 

comparison to TROPOMI’s limited measurement sensitivity in the PBL, unrealistically overrepresented 

in WRF-CHEM.  

 705 
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In general, a large part of the biases in ΔXNO2 (and thus in MDR), either caused by the sampling 

techniques or the precision and sensitivity, were in all likelihood somewhat similar in magnitude in the 

regions we studied. Hence, we believe it did not impair the detection of differences in fire characteristics. 

The uncertainty related to chemistry and transport may have played a larger role region-to-region as it 

affected tropospheric NO2 more differently than CO, and thus our ability to derive a robust MDR. In 710 

particular, on shorter day-to-day time scales the MDR estimates can vary greatly.  The amount of OH 

radicals in the atmosphere acts as the primary daytime sink of NO2 and can vary substantially depending 

on the amount of tropospheric O3, water vapor and incoming sunlight (source of OH), and the presence 

of other chemical species such as volatile organic compounds (sink of OH). Overall, it reduces the lifetime 

of NO2 to several hours, much shorter than the lifetime of CO. As a consequence, daily estimates of 715 

ΔXNO2 will always be biased low. In addition, daily variations in ΔXNO2 that are driven by transport 

and chemistry are naturally exacerbated in ΔXNO2/ΔXCO ratio-space. Therefore, to interpret MDR, it is 

currently necessary to collect multiple days of data (e.g. for an entire month) to retrieve a more robust 

combustion efficiency signature that cancels out some of the day-to-day variations in transport and 

chemistry. Potentially we could minimize these variations retroactively by inverting the measured MDR 720 

back to a daily EFR estimate, where we take the removal of NO2 into account. This could provide a more 

direct top down estimate of EFR and could improve the detection of seasonal (and maybe even daily) 

changes in fire characteristics. For instance, the transition from flaming to the more smoldering fires, as 

suggested to occur in the African savanna (Zheng et al., 2018) or the supposed differences between North 

American and Siberian boreal fires (Rogers et al., 2015) might be detected more easily that way. Future 725 

research could explore this but requires a more elaborate analysis for each region separately, with 
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emphasis on acquiring a better understanding of the daily variations of regional OH content, windspeed 

and direction, and the chemical rate constant of NO2 removal.  

5 Conclusion 

We have investigated regional biomass burning characteristics and efficiency using the new space-based 730 

TROPOMI measurements of XCO and XNO2. The mole density ratios (MDR) between regional 

enhancements of XNO2 and XCO have been quantified using different sampling techniques, which have 

been tested using WRF-CHEM simulations accounting for realistic atmospheric transport, chemistry and 

the limited instrument sensitivity to the lower atmosphere. TROPOMI provides independent support for 

the more recent Akagi et al. (2011) set of EFs used in fire emission products like GFED4s. We have found 735 

spatial variations in combustion efficiency that match the ground and airborne measurements of EFs quite 

accurately. Generally, boreal fires show a much larger fraction of smoldering combustion than savanna 

grassland and tropical deforestation fires (boreal ecosystem cause a 3 to 6 larger increase in ΔXCO than 

ΔXNO2). On smaller spatial scales of a thousand kilometers, we also found gradients in combustion 

characteristics from west to east over Brazil. In the state of Amazonas, the practice of tropical 740 

deforestation, where woody debris after initial clearing is ignited during the dry season, is clearly 

distinguishable from fires in the savanna-like ecosystem in central Brazil, where fires mostly consume 

the grass-layer by flaming combustion. We have found deforestation fires to cause a 1.5 to 2 times larger 

increase in ΔXCO relatively to ΔXNO2 than the savanna fires, mainly because these fires reflect a larger 

fraction of surface smoldering combustion. The detected differences interregional (e.g. boreal vs. 745 
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savanna) and intraregional (e.g. North America vs. Eurasia boreal region) underline that TROPOMI can 

provide new top-down constraints on biomass burning characteristics and EFs. 

 

Data availability 

TROPOMI measurements of NO2 and CO can be downloaded from https://s5phub.copernicus.eu; 750 
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Table 1: Emission factors for NOx (emitted as NO) and CO used by GFED4s (mostly based on Akagi et al., 2011 and a few other 
sources) and GFAS (mostly based Andreae and Merlet. 2001 with additional updates) for different types of biomass burning. The 
final two columns on the right show the ratio between EFNOx and EFCO (EFR) for the two emission databases. The original units [g 
kg-1] are converted to [mmol kg-1] and [mol kg-1] for EFNOx and EFCO, respectively, to make units of EFR equal to TROPOMI mole 995 
density ratios. 

 

 

EFNOx [mmol kg-1] EFCO [mol kg-1] EFR = EFNOx/EFCO 

GFED4s GFAS GFED4s GFAS GFED4s GFAS 

Peat fires 33.33 33.33 7.50 7.50 4.44 4.44 

Boreal forest fires 30.00 - 4.54 - 6.61 - 

Temperate forest fires 64.00 - 3.14 - 20.38 - 

Extratropical fires - 113.33 - 3.79 - 29.90 

Tropical deforestation fires 85.00 82.14 3.32 3.61 25.60 22.75 

Agricultural waste burning 103.67 82.14 3.64 3.29 28.48 24.97 

Savanna fires 130.00 70.00 2.25 2.18 57.78 32.11 
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Table 2: For each region the average mole density ratio (MDR) derived from TROPOMI and WRF-CHEM data and the ratio 
between EFNOx and EFCO (EFR) for the GFED4s and GFAS emission databases. The MDR 1σ standard deviation depicts day-to-
day variability.  
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Type fire Region 

 

MDR TROPOMI 

XNO2/XCO 

EFR  

EFNOx/EFCO 

(GFED4s) 

EFR  

EFNOx/EFCO 

(GFAS) 

Savanna fires 

Australia 6.20 ± 3.78 57.78 32.24 

South America 3.58 ± 1.13 48.35  26.82 

Northern Africa 4.15 ± 1.07 55.27  31.62 

Southern Africa 4.33 ± 1.60 56.34  31.64 

 WRF-CHEM 4.47 ± 3.67 57.78 

Deforestation fires 

South America 1  1.55 ± 0.44 30.29  20.87 

South America 2  1.90 ± 0.94 40.29  22.13 

South America 3  1.93 ± 0.52 30.89  20.87 

South America 4  2.47 ± 0.84 37.68 23.01 

 WRF-CHEM 2.26 ± 1.74 25.60 

Peatland fires 
Sumatra 0.94 ± 0.37 15.67 14.30 

Borneo 1.43 ± 0.92 9.75 4.70 

 WRF-CHEM 1.38 ± 1.27 12.89 

Boreal fires 
North America 0.73 ± 0.20 6.47 30.11 

Siberia 0.48 ± 0.18 6.53 30.11 

 WRF-CHEM 0.95 ± 1.05 6.61 
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Figure 1: Emission factor ratio between NOx and CO (EFR) for GFED4s (a) and GFAS (b). In panel (a) the range of EFR values 1030 
are subdivided into three aggregated fire type categories: (1) peat and boreal fires (PEAT/BOR: <10), (2) temperate forest, 
deforestation and agricultural fires (TEMP/DEFOR/AGRI: between 10 and 50) and (3) savanna fires (SAV: >50). In panel (b) the 
range of EFR values subdivided along a different classification (see Sect. 2.1): (1) peat fires (PEAT: <10), (2) extratropical forest, 
tropical deforestation and agricultural fires (ETF/DEFOR/AGRI: between 10 and 30), and (3) savanna fires (SAV: >30). Regions of 
interest are highlighted by the red boxes. 1035 
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Figure 2: Maps of monthly average XCO [mol m-2], XNO2 [mmol m-2], and GFED4s CO emissions [GgCO grid-1 month-1] for South 
America (panels a-c), for Northern Africa (panels d-f), and for Southern Africa (panels g-i). Maps of daily average XCO, XNO2 and 
GFED4s CO emissions are shown for Australia for December 23, 2018 (panels j-l). Regions of interest are highlighted by the red 1040 
boxes. 
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Figure 3: Three types of the statistical bulk method (SBM) are applied to an idealized distribution of XCO samples [mol m-2]. In 1050 
panel (a) the standard SBM where ΔXCO (XCOfire – XCOBG) is equal to 2σXCO around the distribution mean μXCO. In panel (b) the 
first alternative SBM (SBM_alt1) where ΔXCO is equal to the difference between the 84.1 percentile rank and the 15.9 percentile 
rank around the median MXCO. The estimates for ΔXCO from SBM and SBM_alt1 are only equal if the distributions are perfectly 
Gaussian. In panel (c) the second alternative SBM (SBM_alt2) where ΔXCO is equal to the difference between XCOfire from the 
standard SBM and XCOBG derived from the mean concentration of another XCO distribution sampled upwind of the fire region 1055 
(dashed distribution). The estimates for ΔXCO from SBM and SBM_alt2 are only equal if XCOBG are the same.  
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Figure 4: Location of the deforestation 5°×5° sampling region (green), the savanna 5°×5° sampling region (blue) and two background 
regions adjacent to the two source regions (purple). The WRF-CHEM domain and the predominant wind direction in the PBL 
during the 2018 fire season are superimposed. The location of the green region is also used to sample XCO and XNO2 data from 
four WRF-CHEM simulations (see Sect 2.4).  1075 
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Figure 5: The column density XCO [mol m-2] in panel (a) and XNO2 [mmol m-2] in panel (b) measured with TROPOMI on December 1090 
23, 2018 over central Australia. The background region is depicted by the purple frame and is located upwind of multiple fire 
plumes. The locations of the GFED4s/GFAS fire emissions are depicted by the magenta plus-signs.  
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Figure 6: In panel (a), the relationship between daily ΔXCO [mol m-2] and ΔXNO2 [mmol m-2] from TROPOMI combined for all 
regions of this study. The region average relationship between ΔXCO and ΔXNO2 is depicted by the big markers together with error 1105 
bars to indicate the 1σ day-to-day variability. The four regression slopes with intercept at zero signifies the different groupings of 
combustion efficiency. The legend includes the average MDR and 1σ day-to-day variability estimates for each region. For the South 
American deforestation regions, we used data in September, at the height of the 2018 fire season. In panel (b), the relationship 
between daily ΔXCO and ΔXNO2, and the monthly average MDR from four different synthetic WRF-CHEM simulations (see Sect. 
2.4). 1110 

 

 

 



 

57 
 

 

Figure 7: The relationship between the average MDR and EFR from GFED4s is shown in panel (a), and between the average MDR 1115 
and EFR from GFAS in panel (b). The different colored symbols correspond with regions listed in the legend of Fig. 6a. The linear 
regression derived from the MDR-EFR data is shown for both panels (black solid and dashed lines). The MDR-EFR relationship 
from the four WRF-CHEM simulations is shown by the colored open circles and the linear regression through these four markers 
is shown by the red dashed line. The slope, Pearson correlation coefficient and the two-sided p-value (for a hypothesis test whose 
null hypothesis is that the slope is zero) is reported for each regression line.  1120 
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Figure 8: The relationship between daily ΔXCO [mol m-2] and ΔXNO2 [mmol m-2] from TROPOMI for the South American 1125 
deforestation (green) and savanna (blue) region for three consecutive months in 2018: July in panel (a), August in panel (b) and 
September in panel (c). For each month estimates are shown for three different sampling methods: SBM (solid circles), SBM_alt1 
(open circles), and SBM_alt2 (open squares). In addition, the monthly average relationship between ΔXCO and ΔXNO2 is depicted 
by the bigger markers together with error bars to indicate the 1σ day-to-day variability. The legend of each panel includes monthly 
average MDR and 1σ day-to-day variability estimates for each region and sampling method.  1130 
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Figure 9: The relationship between daily ΔXCO [mol m-2] and ΔXNO2 [mmol m-2] from TROPOMI for the South American 
deforestation (green) and savanna (blue) region for September 2018 using SBM. The error bars depict the range in ΔXCO and 
ΔXNO2 estimates induced by the instrument measurement precision. The range in ΔXNO2 is larger than ΔXCO because relatively, 
the XNO2 instrument precision is less accurate than XCO. The legend reports the range of values in the monthly average MDR for 1140 
both regions.     
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Figure 10: September 2018 daily estimates of ΔXCO [mol m-2] and ΔXNO2 [mmol m-2] from TROPOMI derived with SBM, together 1155 
with smoothed estimates of the MDR (colored dashed line), and smoothed CO emission estimates [GgCO region-1 day-1] from 
GFED4s (black solid line) and GFAS (black dashed line). Panel (a) shows the results for the South American deforestation region 
and panel (b) for the South American savanna region. 
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 1160 

Figure 11: In panel (a) the spatial pattern of the September average MDR determined with TROPOMI for 15 5°×5° regions using 
SBM. In panel (b) for the same 15 regions the spatial pattern of the September average EFR determined from the ratio between NOx 
and CO emissions from GFED4s. Panel (c) shows the relationship between the 15 MDR and EFR estimates, including the dashed 
linear regression line and the Pearson correlation coefficient. The three largest outliers are identified with a black square symbol 
and are highlighted by the black frames in panels (a) and (b). The linear regression line without the outliers is shown by the solid 1165 
line in panel (c). 

 

 

 

 1170 

 

 

 

 

 1175 

 

 

 


