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Abstract. The aerosol-radiation-meteorological feedback loop is the process by which aerosols interact with solar radiation

to influence boundary layer meteorology. Through this feedback, aerosols cause cooling of the surface, resulting in reduced

buoyant turbulence, enhanced atmospheric stratification and suppressed boundary layer growth. These changes in meteorology

result in the accumulation of aerosols in a shallow boundary layer, which can enhance the extent of aerosol-radiation interac-

tions. The feedback effect is thought to be important during periods of high aerosol concentrations, for example during urban5

haze. However, direct quantification and isolation of the factors and processes affecting the feedback loop has thus far been

limited to observations and low resolution modelling studies. The coupled LES-aerosol model, UCLALES-SALSA, allows for

direct interpretation on the sensitivity of boundary layer dynamics to aerosol perturbations. In this work, UCLALES-SALSA

has for the first time been explicitly set up to model the urban environment, including addition of an anthropogenic heat flux

and treatment of heat storage terms, to examine the sensitivity of meteorology to the newly coupled aerosol-radiation scheme.10

We find that: a) Sensitivity of boundary layer dynamics in the model to initial meteorological conditions is extremely high, b)

Simulations with high aerosol loading (220 µg/m3) compared to low aerosol loading (55 µg/m3) cause overall surface cooling

and a reduction in sensible heat flux, turbulent kinetic energy and planetary boundary layer height for all three days examined

and c) Initial meteorological conditions impact the vertical distribution of aerosols throughout the day.

1 Introduction15

Severe air pollution events are a major health issue for megacities worldwide, particularly in nations with large populations

and high levels of industrialisation such as India and China. Beijing, situated in the North China Plain is well known for its air

quality issues, where concentrations of PM2.5 (particulate matter with an aerodynamic diameter < 2.5 µm) frequently exceed

the World Health Organisation’s recommended hourly exposure limit of 25 µg/m3. Heavy ‘haze’ periods envelop Beijing due

to a complex combination of emission sources and unfavourable meteorology. Observations have identified the importance of20

changing synoptic conditions on the onset of haze episodes, while the longevity and intensity of the episodes are found to be

affected by aerosol-radiation interactions (Wang et al., 2019). These interactions feedback on boundary layer meteorology to
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cause unfavourable conditions such as temperature inversions, increased humidity and decreased wind speed (Dou et al., 2015;

Zhang et al., 2015, 2017; Zhong et al., 2019b).

In addition to the unfavourable meteorological conditions; heavy emissions and regional transport of pollutants into Beijing25

cause high concentrations of urban aerosol particles to accumulate. These particles can either scatter or absorb solar radiation,

depending on their composition. Observations predominantly show that aerosol particles cause net cooling at the surface and

warming in the upper atmosphere. This consequently alters the thermal profile of the atmosphere, reducing turbulence due to

buoyancy. Reduced turbulent mixing suppresses boundary layer development during the day, minimises the vertical mixing

of pollutants and increases surface aerosol concentrations. Furthermore, reduction in planetary boundary layer (PBL) height30

due to the feedback effect also increases water vapour concentrations which can result in enhanced aqueous heterogeneous

reactions, thus increasing the rate of secondary aerosol formation. If the aerosol particles are hygroscopic, increased water

vapour concentrations will also cause particle growth, resulting in stronger aerosol-radiation interactions. This positive feed-

back loop between aerosols, radiation and meteorology can lead to sustained periods of stagnation and has been found to

enhance pollution events (Figure 1) (Liu et al., 2018b; Luan et al., 2018; Petäjä et al., 2016).35

Figure 1. Schematic of the positive feedback loop between aerosols, radiation and meteorology thought to enhance pollution episodes in

Beijing

Aerosol composition and size are the main factors impacting an aerosol particle’s single scattering albedo thus impacting the

extent by which it will interact with radiation. Most aerosol particles predominately scatter radiation and thus have an overall

cooling effect, stabilising the boundary layer and allowing for further accumulation of aerosol particles. However, black carbon

(BC), an absorbing aerosol which can contribute up to 10 % of PM in Beijing (Liu et al., 2016) has the potential to have the

opposite effect, through warming of the lower atmosphere, which promotes buoyancy and destabilises the boundary layer.40
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However, depending on the vertical distribution of the BC layer, BC can also enhance stratification through causing warming

in the upper PBL (Liu et al., 2018b; Zhong et al., 2018a; Ding et al., 2016).

Research examining the feedback effect on Beijing haze episodes has thus far relied upon observations or regional modelling

studies. Liu et al. (2018b), Zhong et al. (2018b), Gao et al. (2015) and Wu et al. (2019) performed model simulations of pollu-

tion episodes using the Weather Research and Forecasting model with added chemistry (WRF-CHEM) to examine the feedback45

effect. Their results all confirm that aerosol-radiation interactions, aerosol hygroscopic growth and aqueous heterogeneous re-

actions all factor in the suppression of boundary layer development and result in increased surface PM2.5 concentrations during

polluted episodes in the North China Plain. Gao et al. (2015) suggests that aerosol-radiation interactions decrease temperature

and shortwave (SW) radiation at the surface while increasing them aloft (925 hPa). Examining the feedback from a quantita-

tive perspective, Wu et al. (2019) found that when PM2.5 increased from 50 to 200 µg/m3, maximum average boundary layer50

height decreased from 700 to 400 m. Furthermore, Zhong et al. (2019a) suggested that threshold PM2.5 concentrations of 75 –

100 µg/m3 exist in Beijing, above which the feedback effect is increasingly important and leads to aerosol accumulation and

exacerbation of pollution episodes.

Observational studies also show a link between aerosol concentrations and boundary layer meteorology. Zou et al. (2017)

studied the impact of high aerosol concentrations (PM2.5 > 75 µg/m3) on Beijing meteorology over a year long period. Their55

results demonstrate that the aerosol impact on meteorology was different depending on the season, with particularly large

reductions in sensible heat flux (SHF), PBL height and surface SW radiation reported in autumn and winter. Liu et al. (2019)

used the same PM2.5 threshold to estimate the impact of high aerosol concentrations on observed meteorological data over a

one month period where haze episodes occurred every 4-7 days. Comparing high and low aerosol periods they found that on

average surface SW radiation was 36 % lower and daily maximum PBL height was reduced from 1.3 km to 0.6 km.60

Despite an increase in research in this area, quantification of aerosol perturbations on boundary layer meteorology is still un-

certain. In WRF-CHEM, results are strongly dependent on the boundary layer scheme or parameterisation employed throughout

the simulations, while observations of this effect, although useful, only show links between the phenomena without being able

to quantify the processes or separate factors. High resolution sensitivity studies which allow for direct analysis of boundary

layer meteorology are therefore needed to be able to assimilate the major contributions to haze events.65

Large-eddy simulations (LES) can explicitly resolve large, high energy eddies while parameterising smaller eddies for

computational efficiency. This allows for direct investigation of boundary layer meteorology, turbulent fluxes and statistics,

while easily controlled conditions allow for insight into the sensitivity of aerosol interactions on PBL dynamics (Liu et al.,

2018b; Mazoyer et al., 2017). Several studies have used LES models to examine the impact of aerosols on convective boundary

layers, cumulus clouds and radiation fogs, primarily in rural or marine environments (Mukherjee et al., 2016; Tonttila et al.,70

2017; Bellon and Stevens, 2012; Sullivan and Patton, 2011; Andrejczuk et al., 2014). In this work, a novel LES with a coupled

sectional aerosol module (UCLALES-SALSA) has been developed to make it suitable for the urban environment of Beijing.

The newly coupled aerosol-radiation scheme has been tested for the first time, in order to examine the feedback effect of
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aerosol loading on boundary layer dynamics. Model description and details of set up for an urban environment are outlined in

section 2, section 3 describes the experimental set up for cases 1, 2 and 3, section 4 shows results of the simulations and section75

5 discusses the results, including sensitivity of UCLALES-SALSA to: 5.1 - Meteorological conditions, 5.2 – Aerosol loading

and 5.3- Aerosol vertical profiles.

2 Model Description

The model used in this work is UCLALES-SALSA. A comprehensive description of the model and its previous uses can be

found in the paper by Tonttila et al. (2017). The version used here can be downloaded at https://www.github.com/UCLALES-80

SALSA. A description of the model set up, validation and sensitivity to parameters are described below.

2.1 UCLALES

UCLALES is a large eddy simulation which has mainly been used in idealised cloud and fog studies. It is based on the

Smagorinsky–Lilly subgrid model and solves the Ogura–Phillips anelastic equations with an Asselin filter. Boundary conditions

are doubly periodic in the horizontal and fixed in the vertical. Momentum variables are advected with leapfrog time stepping85

and scalar variables through forward time stepping. In the standard model a two-moment warm rain microphysical scheme is

used, the vertical is spanned by a stretchable grid and a sponge layer is applied at the domain top to prevent gravity waves

being released into the boundary (Stevens et al., 2003, 2005; Tonttila et al., 2017). The surface scheme explicitly calculates

sensible (SHF) and latent heat (LHF) fluxes at each time step and is based on a coupled soil moisture and surface temperature

scheme by Ács et al. (1991) (Eq.1, 2 and 3).90

SHF = ρCp(
(Tg −Ta)

(ra)
) (1)

LHF =
(ρCp)

γ

(fhes(Tg)− ea)

(rsurf + ra)
(2)

Where ρ is air density, Cp is specific heat capacity of dry air, Tg and Ta are surface and air temperature respectively, γ is

the psychrometric constant, fh is a dimensionless function related to water volume fraction and takes the value 0.267 in our95

case. es(Tg) is saturation vapour pressure at surface temperature (Tg) and es is water vapour at 2 m height. rsurf is the surface

resistance to bare soil and is related to surface friction velocity (u*). ra is atmospheric resistance to water vapour and heat and

is dependent on atmospheric stability (Ács et al., 1991).

∆Qs = (
ωChλ

2
)

1
2 (Tg − T̄ ) (3)
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Surface parameters, which vary greatly in different environments, can be varied within the model input and largely affect the100

heat storage term (∆Qs) (Eq.3). Where Ch is volumetric heat capacity (J m−3K−1), λ is thermal conductivity (W m−1 K−1),

ω is angular frequency (s−1) and T̄ (K) is the average daily temperature in the 2 cm soil layer. The resulting parameters as well

as the overall radiation are utilised in the surface energy balance scheme detailed in (Eq. 4) where Q∗ is net all wave radiation.

Q∗ =H +LE+ ∆Qs (4)

2.2 SALSA105

The Sectional Aerosol Scheme for Large Scale Applications (SALSA), was developed by Kokkola et al. (2008) and has been

coupled with large eddy simulation models (UCLALES) as well as a climate model (ECHAM) (Kokkola et al., 2018; Tonttila

et al., 2017). SALSA bins aerosols according to size, allowing for a variety of aerosol sizes and compositions as well as for

aerosols to be either internally or externally mixed. (Kokkola et al., 2008) When SALSA is used in these simulations, aerosol

species included are black carbon, sulphate, organic carbon, nitrate and ammonium, with all aerosols assumed to be internally110

mixed. In terms of aerosol processes- coagulation and water vapour condensation are switched on, while nucleation, aerosol

deposition, emissions and semi-volatile condensation are not considered here for simplicity but may be considered in future

work.

Figure 2. Schematic of the size bin layout for SALSA including the internal and external mixing size bins and the cloud and rain droplet

bins (Tonttila et al., 2017)

2.3 UCLALES-SALSA

UCLALES-SALSA couples the UCLALES with SALSA and is primarily described in the paper by Tonttila et al. (2017). The115

version of UCLALES-SALSA here is a fully coupled radiation-dynamical model, whereby the aerosol-radiation interactions in

SALSA are fully coupled with the four stream radiative solver in UCLALES which feeds back on boundary layer turbulence.

This is the first time that aerosol-radiation interactions have been dynamically coupled to UCLALES and the work outlined

here examines the sensitivity of aerosol loading on these interactions and feedback.
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2.3.1 Aerosol-radiation interactions120

The solution for radiative transfer in UCLALES is based on the 4-stream method integrating over 6 shortwave bands and 12

longwave bands according to Fu and Liou (1993). In this work, the scheme has been adapted to account for the sectional size

distribution of the atmospheric aerosol. To this end we use pre-compiled look-up tables of the aerosol extinction cross-section,

asymmetry parameter and single scattering albedo, which are given as a function of the size parameter (particle diameter

divided by wavelength) and the real and imaginary parts of the refractive index. For a given aerosol constituent, the refractive125

indices are catalogued at specific wavelengths. Nearest-neighbour interpolation is used to find the values closest to the centres

of the wavelength bands used by the radiation solver. Assuming a perfect internal mixture of all aerosol constituents within one

aerosol size section, the refractive index in that size section is then calculated as a volume-weighted average of its constituents.

This yields the optical thickness, single scattering albedo and phase function parameters weighted by the actual particle size

distribution resolved by SALSA, which are then taken to the 4-stream integration.(Fu and Liou, 1993) The real and imaginary130

refractive indices for each aerosol component and their use in this simulation are based on (Bond and Bergstrom, 2006) and

are detailed for the shortwave wavelengths in the table below.

λ (nm) n (SO−
4 ) k (SO−

4 ) n (OC) k (OC) n (BC) k(BC) n (NO−
3 ) k (NO−

3 ) n (NH+
4 ) k (NH+

4 )

3460 1.361 1.4E-01 1.530 2.75E-02 1.984 8.98E-01 1.416 0.04 1.820 2.80E-01

2790 1.295 5.5E-02 1.510 7.33E-03 1.936 8.51E-01 1.177 0.124 1.440 9.51E-03

2330 1.364 2.1E-03 1.510 7.33E-03 1.917 8.12E-01 1.313 0 1.550 1.96E-03

2050 1.382 1.3E-03 1.420 4.58E-03 1.905 7.94E-01 1.333 0 1.560 1.91E-03

1780 1.393 5.1E-04 1.464 6.42E-03 1.894 7.77E-01 1.344 0 1.550 0

1460 1.406 9E-05 1.520 1.43E-02 1.869 7.40E-01 1.352 0 1.540 0

1270 1.413 7.9E-06 1.420 1.77E-02 1.1.861 7.27E-04 1.355 0 1.450 0

1010 1.422 1.3E-06 1.420 2.01E-02 1.861 7.11E-01 1.359 0 1.460 0

700 1.427 5.2E-08 1.530 1.50E-02 1.850 6.94E-01 1.361 0 1.450 0

530 1.432 1E-09 1.530 7.70E-03 1.850 7.21E-01 1.310 0 1.450 0

390 1.445 1E-09 1.530 9.75E-03 1.839 7.30E-01 1.300 0 1.470 0

300 1.450 1E-09 1.443 1.63E-02 1.839 7.59E-01 1.320 0 1.430 0

230 1.450 1E-09 1.530 5.27E-03 1.713 7.26E-01 1.350 0 1.420 0

Table 1. Real (n) and Imaginary (k) refractive indices across 13 shortwave wavelengths (λ for all aerosol components considered for aerosol-

radiation interactions in this simulation

2.3.2 Set up in an urban environment

In the past few decades, rapid urbanisation has transformed the landscape in Beijing, creating a microclimate which can be

represented by its own distinct physics. Part of this is the Urban Heat Island (UHI), which refers to the phenomenon where a city135
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is significantly warmer than its surrounding areas. This is a result of: increased SW radiation absorption, decreased longwave

(LW) radiation loss, decreased turbulent transport, increased heat storage and anthropogenic heat sources. Furthermore, urban

environments often consist of mainly impervious surfaces, and therefore the urban heat island is also often characterised by

low latent heat and comparatively higher sensible heat fluxes (Oke, 1982; Tong et al., 2017; Yang et al., 2016; Ikeda et al.,

2012). To set up UCLALES for an urban environment, alterations to the surface energy balance equation (4) were performed.140

Studies by Oke (1982) outline two terms which can be used to represent the presence of the urban heat island. The first

is the alteration to ∆Qs or the heat storage term which alters the rate of surface absorption and re-release of heat. In an

urban environment, typically the surface has higher surface heat capacity (Ch), water fraction, soil hygroscopicity and lower

thermal conductivity (λ) compared to rural environments. This subsequently feeds back on the surface temperature and heat

fluxes (Eq.4) The second term is an additional anthropogenic heat flux (Qf ), which accounts for all activities which result in145

additional heat in a city. This can be split into heat from: buildings, industry, transport and human metabolism. Estimates of the

anthropogenic heat flux are difficult to perform and have not been done in wintertime Beijing, although a recent study gives

anthropogenic heat estimates for the summertime, which have a mean midday value of 67.2 W/m2 (Dou et al., 2019). The

anthropogenic heat flux has a distinct diurnal profile, attuned to anthropogenic activities within a given city. It is high in the

daytime and decreases at night. The additional term is included in the surface energy balance scheme for an urban environment150

as described in equation 5 (Grimmond and Oke, 1999; Hu et al., 2012; Schwarz et al., 2011; Xie et al., 2016; Yang et al., 2016).

Q∗ +Qf = SHF +LHF + ∆Qs (5)

In order to set up UCLALES-SALSA for an urban environment, alterations to the heat storage term and a simplistic addi-

tional anthropogenic heat flux were included in the surface scheme and sensitivity studies were performed for a non polluted

day in Beijing (Figure 3) Simulation results were compared with observations taken during the Air Pollution and Human Health155

(APHH) Beijing field campaign as well as with ECMWF and radiosonde meteorological profiles. The 22nd November 2016

was chosen for the initial sensitivity simulations. As a non polluted day in Beijing, observations on 22nd November are not

impacted by aerosol interactions. Potential temperature, moisture and wind profiles were taken from ECMWF ERA-5 reanal-

ysis data and surface meteorological values taken from an automatic weather station based at the Institute for Atmospheric

Physics (IAP) in Beijing. In the simulation with no adaptation to the surface scheme there was a clear discrepancy between160

modelled and measured sensible and latent heat flux and potential temperature profiles. Particularly, there was a large difference

in the lower potential temperature profiles in the evening, where the modelled simulations showed early radiative cooling when

compared to observations. Delayed and reduced radiative cooling at the surface is frequently observed in urban environments

including Beijing.

Of all surface parameters altered, the largest sensitivity the model showed was to volumetric heat capacity (Ch). Increas-165

ing this term decreased maximum SHF, noticeably delayed nocturnal radiative cooling and slightly lowered the temperature
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Figure 3. Potential temperature (θ) profiles at 8 pm (left), a) Sensible Heat Flux (SHF) and b) Latent Heat Flux (LE) diurnal profiles (right)

for no anthropogenic heat flux (A (Red) – Ch = 2x106 (J m−3K−1), B (Blue) – Ch = 7x106) and an anthropogenic heat flux (C (Green) –

Ch = 7x106) and observations. Where c) shows anthropogenic heat flux (Qf ) used in the simulation

through the profile (Figure 3). This is due to slower release of outgoing radiation, which is stored for longer in urban surfaces.

Figure 3 shows the sensitivity to varying surface volumetric heat capacity (J m−3K−1) between the initial value (2x106) and

chosen value (7x106). Higher volumetric heat capacity of the surface causes delayed nocturnal cooling, resulting in higher

sensible and latent heat flux in the evening. The surface urban energy balance is also affected by an anthropogenic heat flux170

which varies seasonally and spatially. A diurnal anthropogenic heat flux which peaks at 70 W/m2 during the daytime and re-

mains around 20 W/m2 in the evening was included in a further simulation. Inclusion of a diurnal Qf profile increased overall

temperatures as well as latent and sensible heat fluxes (Figure 3).

This sensitivity work provides the setup for UCLALES-SALSA in an urban environment and this is utilised for the remainder

of results presented below which all include a diurnal Qf profile and heat capacity (Ch) set at 7x106 Jm−3K−1 , which is a175

value typical of concrete (Takebayashi and Moriyama, 2012). The scope for variation of surface parameters within UCLALES

is extremely high, therefore we recognise that within the model framework there is a strong dependence on parameters such as

temperature, roughness, heat capacity, albedo and soil moisture. It is also likely that due to the simple homogeneous surface

scheme used, some features of the urban environment that are observed cannot be replicated in the chosen model framework.

Although the effect of these surface parameters is important to understand, the purpose of this paper is to examine the suitability180
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of using an LES model in investigating urban haze. The parameters chosen here are based on identification of the urban

measurement site’s characteristics, as well as from chosen literature values and are to the best of the authors’ knowledge a fair

representation of urban Beijing, as described in the next section.

3 Experimental Method

3.1 Observational Data185

All measurements used in this study were taken at the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences,

as part of the APHH Beijing campaign. Measurements taken include but are not limited to: NR-PM1 (non refractory PM with

a diameter < 1 µm) composition and aerosol and black carbon size and concentration measurements at the surface, as well as

meteorological measurements at 15 levels on a 320 m tower. Sensible and latent heat flux measurements were calculated and

a ceilometer was used to infer PBL height. For more information concerning the measurements taken as well as the APHH190

project and field campaign the reader is directed to the ‘Introduction to the special issue “In-depth study of air pollution sources

and processes within Beijing and its surrounding region (APHH-Beijing)’ by Shi et al. (2018).

3.2 Experimental setup

The domain size for all model simulations spanned 5.4 km in the horizontal, with a resolution of 30 m and the model top was

set to 1.8 km in the vertical with a resolution of 10 m. The model uses an adaptive timestep with a maximum timestep of 1 s. A195

haze period which took place within the APHH winter campaign period from 24th - 26th November 2016 was used to examine

the sensitivity of boundary layer meteorology to varying aerosol concentrations. Meteorological data taken from ECMWF-

ERA5 reanalysis and tower meteorological data was used to initialise vertical profiles at 8am (local time) on 24/11, 25/11 and

26/11. Simulations were run from 8 am for 14 hours (10pm) including 1 hour spin up time. Simulations for all days were

considered to be cloudless. Case studies for each day were simulated and compared to each other and are described as follows:200

Case 1 – No aerosols, Case 2-High and low aerosol loading, Case 3-Aerosol vertical profiles. For case 2 aerosol vertical profiles

were constant in the column whereas case 3 examined the impact of including a varying aerosol vertical profile. Aerosol size

distribution parameters and volume fraction of aerosol components were the same for all simulations, detailed in tables 1 and

2. The values for aerosol size distribution data and composition fraction were taken from in situ measurements taken at IAP

at 8am on 24th November. In all cases, BC can be considered to be the primary absorbing aerosol, with sulphate (SO−
4 ),205

nitrate (NO−
3 ) and ammonium (NH+

4 ) strongly scattering and OC predominantly scattering with a small absorbing component.

Aerosol growth is considered through the processes of coagulation and water condensation, but semi-volatile condensation is

not considered. Both wet and dry deposition are switched off in all simulations.
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Low High

Dg (nm) 100 100

σg 1.55 1.55

N (#/mg) 10,000 40,000

PM (µg/m3) 55 220

Table 2. Size distribution parameters initialised for simulations examining measured aerosol feedback on meteorology. Dg (geometric mean

diameter), σg (geometric standard deviation), N (number concentration), as well as calculated surface PM concentration for low and high

aerosol simulations

Composition Fraction

OC 0.5

SO4 0.1

NO3 0.21

NH4 0.09

BC 0.1

Table 3. Volume fraction of aerosols included in SALSA for all simulations in case 2 and case 3

4 Results210

The results highlighted in this section aim to test the sensitivity of the newly coupled aerosol-radiation scheme in UCLALES-

SALSA to aerosol loading, using meteorological conditions, urban characteristics and simplified aerosol conditions, associated

with Beijing haze episodes. Case 1 shows boundary layer development for 24/11, 25/11 and 26/11 with no aerosols, case 2

examines the effect of high and low aerosol loading for each of the days and case 3 focuses on the impact of varying aerosol

vertical profiles.215

4.1 Case 1- No Aerosols

Simulations in case 1 examine the development of boundary layer dynamics for 24/11, 25/11 and 26/11, without aerosol-

radiation interactions. All 3 days are initialised with different meteorological vertical profiles, taken from ECMWF profiles.

On 25/11 there is a strong temperature inversion throughout the whole profile, while on 26/11 there is strong vertical wind

shear, higher surface humidity and strong stability in the lowest 300 m (Figure 4). Strong vertical wind shear causes mechanical220

turbulence, while a strong temperature inversion in the morning can suppress boundary layer development through reducing

buoyancy. Figure 4 (right) shows development of SHF, PBL height and total turbulent kinetic energy (TKE) for the three

simulated days with different meteorological conditions initialised in the morning.
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Figure 4. Left - Initial vertical profiles of Potential Temperature (θ), Wind Speed (WS) and Total Water Mixing Ratio (q) and Right - a)

Sensible Heat Flux, b) Height of maximum gradient in theta, c) Vertical integral of TKE for 24/11 (red), 25/11 (blue) and 26/11 (turquoise)

for simulations with no aerosols (Case 1)

SHF is similar in magnitude for all 3 days, while TKE and simulated PBL height is significantly lower for the 25/11

simulation. A well mixed, turbulent boundary layer forms quickly on 24/11, however, on 25/11 a shallow, weakly turbulent225

boundary layer remains throughout the day and on 26/11 a turbulent boundary layer is much slower to develop (Figure 4). The

changing conditions used here are typical for a Beijing haze episode and show that even without the consideration of aerosols,

meteorological conditions can largely affect the diurnal development of boundary layer dynamics.

4.2 Case 2- High and Low Aerosol Loading

Case 1 shows that simulated boundary layer dynamics are impacted by initial meteorological conditions. In case 2, the sen-230

sitivity of boundary layer dynamics to aerosol loading is examined, where aerosol mixing ratios were constant throughout

the profile as shown in figure 6. Table 4 shows the impact of including high and low aerosol loading on maximum SHF and

maximum PBL height between 12:00 and 16:00 LST (Local Standard Time).

In all cases inclusion of aerosols causes cooling in the lower planetary boundary layer, and warming above it. This is due

to the aerosols absorbing and scattering incoming SW radiation to reduce the amount of solar radiation reaching the surface.235

Where there are high concentrations of aerosols through the column, this severely reduces the amount of radiation reaching

the surface and consequently causes cooling. Aerosols, specifically black carbon, in the upper layer of the boundary layer

will absorb radiation, which causes warming. Including high aerosol concentrations (220 µg/m3) compared to low aerosol
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concentrations (55 µg/m3) maximised this effect, leading to enhanced temperature inversions and suppressed PBL development

on all 3 days (Table 4).240

Figure 5. Potential temperature profiles at 5pm for 24/11, 25/11 and 26/11, with no aerosols (red), low aerosol loading (blue) and high

aerosol loading(turquoise)

Day 24/11 25/11 26/11

Max PBL height (None) 1240 695 1424

Max PBL height (Low) 1088 592 1169

Max PBL height (High) 915 475 391

% decrease in PBL height (High-Low) 16% 20% 67%

Max SHF (None) 148 123 129

Max SHF (Low) 126 97 100

Max SHF (High) 82 64 55

% Decrease in SHF (High-Low) 35% 34% 45%

Table 4. Change in maximum PBL height (taken as the height between 12 and 4pm with a maximum gradient in potential temperature) and

SHF for all 3 days with high and low aerosol loading
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For the case of 25/11, the PBL is already low due to synoptic conditions, and aerosols from the previous day causing strong

temperature inversions in the morning. Therefore, even though the aerosols cause cooling in the PBL to the same amount on

26/11 and 25/11, a strong temperature inversion exists already on 25/11 and so the PBL is low even without the inclusion of

aerosols.245

Figure 6. Potential Temperature (θ), Wind Speed (WS) and Aerosol Mass Concentration (PM) profiles on 26/11 for low (red) and high (blue)

aerosol concentrations at 5pm (9 hours of simulation)

4.3 Case 3- Aerosol Vertical Profiles

To assess the sensitivity of the model to a varied aerosol vertical profile, case 3 uses the same set up as case 2 but varies

the aerosol mass mixing ratio with altitude, as shown in figure 7. This is to assess the impact of high aerosol concentrations

aloft in case 2 simulations which may magnify the aerosol-radiation effect, due to higher total loading increasing the total

column aerosol optical depth (AOD). In case 3 simulations, total aerosol mass loading throughout the column is ∼ 22 % less250

than for case 2 simulations for both high and low aerosol simulations. The aerosol profile was chosen so that at the first time

step, aerosol mass mixing ratio at the surface was the same as those with a constant profile and decreased above the PBL in

accordance with the potential temperature profiles, while composition and size remained constant throughout. It should be

noted from the varied aerosol vertical profile simulations that total aerosol mass mixing ratio decreases by about 5 % over the
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course of the day. This is despite dry deposition not being included in these simulations. This is a result of UCLALES-SALSA255

using the Ogura-Philips anelastic approximation for filtering out acoustic waves. The approximation assumes that there are only

small variations in pressure and density from static reference values over time. Throughout the day, surface fluxes increase air

temperature, while subsidence of air at the model top decreases density (Ogura and Phillips, 1962; Pressel et al., 2015; Byun,

1999). The limitations of the anelastic approximation mean that these changes do not fully feed back to change pressure, and

fixed boundary conditions mean that volume remains constant. As the model holds to constant volume rather then constant260

mass, when SALSA aerosol mass tracers are pulled downward, the total air mass increases while the mass of aerosols remain

the same, this causes the apparent decrease in aerosol mass mixing ratio (Figure 7). We consider this to be a limitation of

using a meteorological model for air quality analysis, however as the relative reduction is the same for different meteorological

conditions, comparisons between different cases can still be performed.

Figure 7. Aerosol mass mixing ratio vertical profiles for low and high aerosol loading simulations on 26/11, for constant aerosol profile (red)

and vertically varying aerosol profiles (blue) at initial timestep (solid) and after 9 hours simulation (dashed). For the case of the constant

vertical profiles (red lines), aerosol mass mixing ratio remains constant through time and so the dashed red lines are hidden behind the solid

red

Figure 8 shows simulation results of potential temperature and aerosol number mixing ratio at 5pm (9 hours of simulation)265

for constant and varied aerosol vertical profiles at high concentrations for 24/11 and 26/11. When a varied aerosol profile is

included, vertical mixing of aerosol occurs, resulting in a difference in the aerosol vertical profile on each day at 5pm due to the

difference in meteorology. The difference between the aerosol profiles over time shows the modelled meteorological feedback

on aerosol mixing ratios.
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Figure 8. Number mixing ratio (solid) and potential temperature (dashed) vertical profiles at 5pm for constant vertical aerosol profiles on

24/11 (Blue) and 26/11 (Turquoise) and varied aerosol vertical profiles on 24/11 (Red) and 26/11 (Green). The mixing ratio for constant

aerosol vertical profiles (Blue and Turquoise) remain constant in time for both simulations, the solid blue line is equivalent to the solid

turquoise line

Figure 9 compares the variance in vertical velocity (σ2
w) for low and high aerosol loading throughout the profile and at high270

aerosol loading at the surface only for 24/11 and 26/11 simulation. Showing that high aerosol loading both throughout the

column and at the surface, decreases σ2
w at 500 - 750 m in the afternoon of both 24/11 and 26/11. It also shows the effect of

high aerosol loading throughout the column, which causes an increase in σ2
w close to the model top, with the varied aerosol

vertical profiles minimising this effect as the aerosols increase vertical velocity, through creating a turbulent layer. This is due to

aerosol warming aloft close to model top causing stratification of the layer. Reduced aerosol concentrations in the entire column275

means that more solar radiation reaches the surface in the varied vertical aerosol profile case, increasing buoyant turbulence

and vertical velocity at lower altitudes.
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Figure 9. Variance in vertical velocity (σ2
w) on 24/11 and 26/11 for case 2 low and high aerosol loading and case 3 high aerosol loading
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5 Discussions

The results highlighted above show the use of a novel coupled LES-aerosol radiation model to investigate haze in the urban

environment of Beijing. Simulated sensitivity to urban surface parameters is high and these will be different for other urban280

locations. It is therefore necessary to evaluate and tune these parameters to observations in specific environments in order to

use an LES model to fully explore boundary layer dynamic sensitivities. Aerosol-radiation interactions were tested for the first

time in the model framework and showed that sensitivity of boundary layer meteorology and turbulence to aerosol loading was

strong while also being dependent on initial meteorological conditions.

5.1 Sensitivity to meteorology285

Case 1 identifies the importance of meteorological conditions on boundary layer dynamics throughout the day. Many obser-

vations in Beijing found that meteorological conditions are a main driver on both the onset and longevity of haze. Large scale

synoptic conditions such as southerly winds and low pressure often preempt pollution episodes which tend to occur every 4-7

days in Beijing wintertime (Liu et al., 2018a; Wang et al., 2019). These conditions are associated with the beginning of ‘haze’

as the switch in meteorological conditions from strong northwesterly to southerly winds advects pollution from surrounding290

provinces into Beijing. This change is also associated with a low pressure field within the city, where stagnant air becomes

trapped and the dispersion of pollutants is inhibited (Gao et al., 2016).

The initial meteorological profiles for the simulations on 24/11 are taken prior to the onset of the haze and are associated

with clean conditions. This is likely the reason for the quick turbulent boundary layer development along with high TKE and

SHF throughout the day. Observations show that aerosol concentrations begin to build up around midday on 24/11 and remain295

constant until the afternoon of 25/11 when concentrations build up rapidly, peaking overnight on 25/11 and remaining high

until the afternoon of 26/11. Therefore, the initial conditions used in the simulation of 25/11 will have been slightly affected

by aerosol-radiation interactions of the previous evening. Aerosol-radiation interactions reduce the amount of solar radiation

reaching the surface which causes cooling, simultaneously black carbon aerosols will absorb radiation at PBL top. Although

absorption by black carbon (BC) occurs throughout the column, several studies have shown that due to the higher incidence300

of solar radiation and lower density of air, BC causes warming at PBL top to a greater extent than at the surface (Ding et al.,

2016). Overall, this causes a temperature inversion during periods where pollution is high and causes a shallow PBL to form

during the day. This leads to stagnant conditions and can affect the meteorology of the next day, particularly when aerosols are

suppressed in a shallow PBL. However, frequently in Beijing wintertime, changes in pressure can cause warm polluted air to

converge with cold clean air to create a layer of cold air under a layer of warm air. These conditions often pre-empt pollution305

episodes in Beijing and favour the accumulation of pollutants in a shallow boundary layer. A combination of these factors

explains the strong temperature inversion in the morning and results in a shallow turbulent boundary layer forming in these

simulations, with lower turbulent kinetic energy compared to the 24/11 simulation (Figure 4).
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5.2 Sensitivity to aerosol loading

Aerosol-radiation interactions cause a reduction in SHF, surface SW radiation and TKE resulting in a reduction in the daily310

maximum PBL height for all three days examined. In these simulations, the aerosols interact with radiation to cause heating

and cooling in different layers which perturbs the temperature profile of the PBL and decreases the sensible heat flux term.

The aerosols also take up water to a small extent which decreases latent heat. These effects lead to decreased turbulence in the

PBL. High aerosol concentrations enhance this effect due to an increased number of aerosols interacting with radiation.This

leads to a reduction in maximum SHF of 44, 33 and 45 W/m2 for high compared to low aerosol loading simulations on 24/11,315

25/11 and 26/11 respectively. However, results from case 2 show a variation in the magnitude of the aerosol-radiation effect

with a larger impact on maximum PBL height for high aerosol simulations on 26/11 compared to 24/11 and 25/11 (Table 3).

Including high aerosols on 26/11 causes > 1 oC of daytime cooling in the lowest 300m compared to 0.3 oC of cooling on 24/11

(Figure 6). The larger degree of cooling on 26/11 leads to a larger reduction in buoyant turbulence and prevents the full growth

of a deeply turbulent boundary layer to a larger extent on 26/11.320

High aerosol concentrations are known to stabilise the boundary layer through the reduction of vertical transport of mo-

mentum to the surface (Jacobson and Kaufman, 2006). This can reduce wind speeds at lower altitudes and thus decrease wind

shear and the shear component of TKE. In case 2, high aerosol loadings reduce surface wind speeds, wind shear and surface

frictional velocity (u*) for all 3 days, with a greater reduction on 26/11 compared to 24/11 and 25/11. High aerosol loading also

causes a reduction in the variance of vertical velocity (σ2
w), which can be considered a measure of turbulence (Stull, 2015). On325

both 24/11 and 26/11, simulations with high aerosol loading caused a reduction in the magnitude of σ2
w particularly between

500-800 m. On 24/11, the decrease at the surface at σ2
w is ∼ 40 %, while on 26/11 the reduction is 75 %. In the case of 26/11,

this is accompanied by increased values of σ2
w in the upper layers close to model top, which results in two turbulent layers

forming separated by a stable layer. (Figure 9).

In these simulations, aerosol profiles are constant through the column and high aerosol concentrations aloft. Figure 8 shows330

that high aerosol throughout the column causes warming in the upper layers and cooling in the lower layers, which causes

strong stability throughout the profile. In reality, aerosols tend to be concentrated closer to the surface and within the boundary

layer, although occasionally in Beijing regional transport can lead to higher aerosol concentrations aloft. Therefore, case 3

investigated the effect of limiting pollution to the surface by including aerosol vertical varying profiles.

5.3 Vertical profiles335

Case 3 examined the impact of meteorological feedback on aerosol vertical mixing for high and low aerosol loading simulations

by including aerosol vertical profiles on 24/11 and 26/11. Simulations with a varied vertical aerosol profile had the same aerosol

concentrations at the surface as the high aerosol simulations in case 2 but reduced concentrations at higher altitudes (Figure

7). This resulted in a small increase in maximum SHF (∼ 7 W/m2) on both 24/11 and 26/11. For 26/11, limiting high aerosol

loading to the surface results in an afternoon increase in turbulence up to 500 m. Furthermore, the effect of high aerosols340
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throughout the column (case 2) resulted in a highly turbulent layer at model top and a large reduction in surface wind speed on

26/11 (Figure 9). As this turbulent layer is significantly reduced with lower aerosols aloft, this effect may be considered to be

an artefact of aerosol loading at high altitudes which is not often observed in poor air quality events during wintertime in China.

However, overall the contribution of the shear term to turbulence is minimal compared to the buoyancy term, which is greatly

reduced by high aerosol loading in both case 2 and case 3. The high aerosol loading in case 2 has a larger effect on boundary345

layer development than the effect of varying the aerosol vertical profile in case 3. Therefore, we can consider that the change

in the thermal profile of the atmosphere, due to high concentrations of aerosols increasing aerosol-radiation interactions, to be

the prominent cause of the reduction in SHF and PBL height (Table 3).

The large degree of cooling on 26/11 compared to 24/11 is due to the effects of initial meteorology feeding back on aerosol-

radiation interactions. Figure 8 shows potential temperature and aerosol number mixing ratio vertical profiles for each case350

(after 9 hours of simulation) under high aerosol loading at the surface only (red and green lines) and throughout the profile

(blue and turquoise lines). After 9 hours of simulation (5pm LST) surface aerosol concentrations on 26/11 are higher than

on 24/11. This is due to aerosol-radiation interactions and initial meteorological conditions on 26/11 resulting in a shallower

PBL (Table 3). This shows the ability of UCLALES-SALSA to simulate the aerosol-radiation-meteorological feedback loop

and that the feedback effect can have a significant impact on aerosol surface concentrations, which will consequently feedback355

further on atmospheric stability.

6 Conclusions

UCLALES-SALSA was set up to model an urban environment for the first time, in order to investigate the impact of aerosol-

radiation interactions on urban haze. During set up, sensitivity to urban surface parameters was shown to be high, and accounted

for the slower release of heat throughout the day as observed in urban Beijing. Inclusion of a diurnal anthropogenic heat flux in360

simulations resulted in a warmer environment typical of an urban heat island. Given the sensitivity to such parameters, accurate

measurements of these properties can be considered paramount in order to improve modelling of the urban environment.

Turbulent motion throughout the day in each simulation is further impacted by initial meteorological profiles. Conditions

associated with clean periods in Beijing allow for the development of a highly turbulent boundary layer, while strong morning

temperature inversions prevent the growth of a turbulent boundary layer throughout the day. Aerosol-radiation interactions in365

all cases decreases SHF, TKE and PBL height, as well as causing cooling at the surface and reducing surface wind speeds. All

simulations also show large sensitivity to aerosol loading, with more than a third reduction in SHF due to high aerosol loading

in all simulations. Through comparing simulations with and without aerosol vertical profiles (case 3) we observe that on 26/11

the simulated development of a turbulent boundary layer in the afternoon is impacted by high aerosol loading aloft (case 2)

This is due to aerosols at high altitudes reducing mechanical shear as well as the reduction in buoyancy. However, overall370

the effect of including a vertical aerosol profile is minimal compared to the effect of overall aerosol loading which suggests a

higher effect of surface aerosols.
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The sensitivity work outlined above aims to isolate the aerosol and dynamical effects on pollution episodes through using

a specific period with varying meteorological conditions and simplified aerosol conditions. LES models are limited in their

ability to represent changing synoptic conditions without additionally forcing or nudging simulated profiles with mesoscale375

model results or through observations. However, these simulations do show the sensitivity to and importance of meteorological

conditions on the development of boundary layer turbulence in Beijing. As well as assessing the importance of aerosol loading

on the aerosol-meteorology feedback loop and the impact on PBL turbulent statistics. The aerosol feedback loop is thought to

have the largest impact on haze episodes during the cumulative and dissipation stages of the pollution episode. Future work will

focus particularly on these stages and the impact of aerosol-radiation-meteorology interactions. As aerosol optical properties380

play an important role in the feedback, future work will also take advantage of the SALSA framework to vary aerosol optical

properties in a case study of Beijing haze.
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