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Abstract. The formation of ice in clouds is an important processes in mixed-phase and ice-phase clouds. Yet, the representation

of ice formation in numerical models is highly uncertain. In the last decade several new parameterisations for heterogeneous

freezing have been proposed. It is so far unclear what the effect of choosing one parameterisation over another is in the context

of numerical weather prediction. We conducted high-resolution simulations (∆x = 250m) of moderately deep convective

clouds (cloud top ∼ −18◦C) over the southwestern UK using several formulations of ice formation and compare the resulting5

changes in cloud field properties to the spread of an initial condition ensemble for the same case.

The strongest impact of altering the ice formation representation is found in the hydrometeor number concentration and mass

mixing ratio profiles. While change in accumulated precipitation are around 10 %, high precipitation rates (95th percentile)

vary by 20 %. Using different ice formation representations changes the outgoing short-wave radiation by about 2.9 W m−2

averaged over daylight hours. The choice of a particular representation for ice formation has always a smaller impact then10

omitting heterogeneous ice formation completely. Excluding the representation of the Hallett-Mossop process or altering the

heterogeneous freezing parameterisation has an impact of similar magnitude on most cloud macro- and microphysical variables

with the exception of the frozen hydrometeor mass mixing ratios and number concentrations.

A comparison to the spread of cloud properties in a 10-member high-resolution initial condition ensemble shows that the

sensitivity of hydrometeor profiles to the formulation of ice formation processes is larger than sensitivity to initial conditions. In15

particular, excluding the Hallet-Mossop representation results in profiles clearly different from any in the ensemble. In contrast,

the ensemble spread clearly exceeds the changes introduced by using different ice formation representations in accumulated

precipitation, precipitation rates, condensed water path, cloud fraction and outgoing radiation fluxes.
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1 Introduction

Clouds consisting of a mixture of liquid and solid particles (mixed-phase) clouds play an important role for weather and climate

at all latitudes. For example, observational data suggest that a significant fraction of surface precipitation form in mixed-phase

clouds (e.g. Field and Heymsfield, 2015). It has also been demonstrated that the representation of cloud glaciation in global25

climate models has a substantial impact on the simulated mean climate state (e.g. McCoy et al., 2016). Despite this importance

of mixed-phase clouds, for predicting weather and climate, the physical understanding of the underlying processes, most im-

portantly ice formation, is very limited. Not surprisingly the representation of mixed-phase is one key source of uncertainty in

weather and climate models (e.g. Korolev et al., 2017).

The formation of ice particles in the atmosphere has received particular attention over the last decades. Although the underly-30

ing physics of ice nucleation are still not understood, data from laboratory and field measurements has been used to suggest a

number of new parameterisations that relate the aerosol population and environmental temperature to the number of nucleating

ice crystals (e.g. DeMott et al., 2010, 2015; Niemand et al., 2012; Atkinson et al., 2013; Wilson et al., 2015). These new for-

mulations gradually replace older formulations used in numerical weather prediction models (e.g. Cooper, 1986; Meyers et al.,

1992). While it has been demonstrated that more sophisticated formulations of heterogeneous freezing, in particular its de-35

pendency on the aerosol population, is beneficial for predicting certain cloud types (e.g. Klein et al., 2009; Vergara-Temprado

et al., 2018), it is not clear what the impact of choosing one parameterisation over another parameterisation is. A recent publi-

cation by Hawker et al. (2020) suggests that the increase of ice nucleating particle number concentration per unit decrease of

temperature, i.e. the slope of the parameterisation, plays a key role in determining the impact of a specific parameterisation on

the simulated tropical deep convective cloud field.40

In addition to heterogeneous and homogeneous freezing of solution droplets, new ice particles can also be formed by so-called

secondary ice formation processes, of which the Hallett-Mossop process is the most well known (e.g. Field et al., 2017). Al-

though secondary ice formation seems to be crucial to explain observed ice crystal number concentration in many clouds, its

representation in numerical models is highly uncertain and its importance for determining cloud properties is still debated (e.g.

Field et al., 2017). Formulations for processes other than the Hallet-Mossop processes have only become available recently45

(e.g. Sullivan et al., 2018).

Here, we investigate the impact of using different heterogeneous freezing parameterisation and including a representation of

the Hallett-Mossop process on the simulated evolution of moderately deep convective clouds (cloud top temperature around

−18 ◦C) over the United Kingdom. Thereby we expand the study by Hawker et al. (2020) to a different cloud regime.

The standard approach to estimate the impact of altered cloud microphysical parameterisations is to conduct sensitivity ex-50

periments. The differences between the various experiments are interpreted as the impact of the parameterisation change.

To assess the importance of the identified sensitivity in the context of model development and improvements for numerical

weather prediction, it is, however, vital to compare the sensitivity to changes in one parameterisation to the uncertainty of

the prediction due to other deficiencies in the model formulation and the overall predictability of the considered case. The

latter is in particular important for convective situations with a small intrinsic predictability, as in these conditions any small55
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perturbation may rapidly amplify (e.g. Hohenegger and Schär, 2007; Dey et al., 2014). The relevance of taking into account

the predictability of different situations for assessing the sensitivity to parameterisation changes is gaining increasing attention

(e.g. Wang et al., 2012; Posselt et al., 2019). Quantifying the relative importance of initial condition uncertainty and uncertainty

due to the model formulation is important for identifying priorities in future model development and justifying investment in

more complex model formulations for operational weather forecasting centres. To address this issue, we place the sensitivity60

experiments in the context of a high-resolution initial condition ensemble.

The two key research questions addressed in the paper are:

– How sensitive are mixed-phase convective clouds with cloud top temperatures around−18 ◦C to the parameterisation of

ice formation (heterogeneous freezing and Hallett-Mossop process)?

– How does the sensitivity to different descriptions of ice formation compare to typical initial condition uncertainty for65

day-1 forecasts?

The paper starts with a short introduction to the investigated case and the model framework used for the simulations (section 2).

The results from the sensitivity experiments are presented in section 3 and place them in the context of the ensemble simulations

in section 4. Finally, the key findings are summarised and discussed in section 5.

2 Model and data70

Simulations were conducted for the 3rd August 2013 case from the COPE campaign Blyth et al. (2015); Leon et al. (2016);

Miltenberger et al. (2018a). The campaign took place over the Southwestern Peninsula of the British Isles and probed convec-

tive clouds forming along converging sea-breeze fronts. We use the Unified Model vn10.3 with the Cloud Aerosol Interacting

Microphysics Module (CASIM). The model set-up is identical to that described in Miltenberger et al. (2018a, b). A regional

nest with a grid spacing of 1 km resolution is nested in the global simulations, which in turn drives a second nest with a grid75

spacing of 250 m. Only data from the innermost nest is used here. The initial and lateral boundary conditions for the 1 km nest

are derived from the operational control run and nine members of the global operational ensemble forecast from the Met Office

(MOGREPS, Bowler et al. (2008)), which represent the anticipated spread of moisture and moist energy convergence over the

region of interest (see also Miltenberger et al. (2018b)). The aerosol environment is represented by using a constant profile for

initial and boundary conditions, which has been derived from aircraft observation (“standard” aerosol scenario in Miltenberger80

et al. (2018a)), and by allowing for advection of aerosols in the domain. Aerosol properties influence cloud droplet and ice

crystal formation, but the cloud microphysical processes do not alter the aerosol properties (“passive” mode in Miltenberger

et al. (2018a)). Further detail on the model set-up and the cloud microphysics parameterisation can be found in Miltenberger

et al. (2018a).

Substantial parametric and systematic structural uncertainty resides in the model representation of cloud microphysical pro-85

cesses, in particular with regard to ice formation processes. Several heterogeneous freezing parameterisations, which differ

in the used parameters and the form of the temperature dependence of ice formation (e.g. Hawker et al., 2020), have been
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suggested over the last decade. In order to investigate the implications of choosing specific schemes for numerical weather pre-

diction, a set of new simulations has been conducted: seven simulations with different heterogeneous freezing parameterisation

(“FSENS”), one simulation omitting the parameterisation of the Hallett-Mossop process (“NoHM”), and one omitting all ice-90

phase processes (“WARM”). For the FSENS experiments we used the heterogeneous freezing parameterisations by Meyers

et al. (1992) (M92), Atkinson et al. (2013) (A13), DeMott et al. (2010) (DM10), DeMott et al. (2015) (DM15), Niemand et al.

(2012) (N12), and Tobo et al. (2013) (T13). The DM10 parameterisation is used in the “NoHM” simulation. In addition, two

simulations with pre-factors of 10 and 0.1 for the DM10 parameterisation are included, which represent high- and low-INP

regimes. The simulation with the DM10 parameterisation is identical to the the “control” simulation in Miltenberger et al.95

(2018b) and is referred to as “baseline” simulation in the following. Initial and lateral boundary conditions for these sensitivity

experiments are derived from the operational global control run.

The control run with the DM10 parameterisation has been compared to observational data in Miltenberger et al. (2018a), where

we could demonstrate that it successfully captures many features of the observed cloud and precipitation evolution, the thermo-

dynamic conditions and cloud microphysical parameters. Hence the set-up provides a meaningful framework for the sensitivity100

analysis presented here.

3 Sensitivity of cloud field properties to representation of ice formation

Varying the representation of primary and/or secondary ice formation has a direct impact on the number of ice crystals pro-

duced at a specific temperature, and hence ice crystal number concentrations (ICNC) vary between the different experiments.

Despite a multitude of other processes altering ICNC in a complex cloud field, systematic variations in the average ICNC105

profile appear in the different experiments (Fig. 1 c). The profiles used here are average in-cloud profiles over the time pe-

riod 10 UTC to 19 UTC. Differences are largest towards cloud top, with a spread of about one order of magnitude at 5 km

altitude. Cloud bases are located roughly at 1 km altitude, cloud tops are located at 5.5 − 6 km altitude and the 0 ◦C level

is found at around 2.6 km altitude (Miltenberger et al., 2018a). In the altitude range, where the Hallet-Mossop processes is

active (i.e. 3 − 4 km altitude corresponding to roughly−3 to − 8 ◦C), ICNC concentrations vary by about a factor 2 between110

the FSENS experiments, while ICNC concentrations in the NoHM run are about 1.5 orders of magnitude smaller than in any

FSENS experiment. Despite this clear signal of the Hallett-Mossop process in the 3 − 4 km altitude range, ICNC towards

cloud top reaches similar values as in the FSENS experiments.

The differences in ICNC can impact the occurrence of other hydrometeor species via various cloud microphysical processes

(Fig. 1): Snow crystal concentrations vary by up to a factor 2 between the different FSENS experiments and it is by a factor115

5 lower in the NoHM experiment. In contrast to the signal in ICNC, the imprint of the Hallett-Mossop processes is consistent

throughout the cloud layer. Interestingly, the variation in graupel number concentration is largest of all frozen hydrometeor

types. Again the NoHM simulation displays the lowest number concentration. Altering the representation of ice formation

also impacts the number concentration of liquid hydrometeors, particularly in the upper cloud parts: While the cloud droplet

number concentration (CDNC) in the WARM simulation is almost constant with altitude, CDNC is significantly reduced in the120
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FSENS and NoHM experiments above about 3 km. This is likely a consequence of freezing and collection by ice, snow and

graupel particles. Interestingly, FSENS experiments with a high ICNC above 5 km have a low CDNC and vice-versa, implying

a major impact of cloud droplet freezing . Variations in rain number concentrations are somewhat smaller than in CDNC. The

profiles from the NoHM experiment feature roughly in the middle of the FSENS experiments for both cloud droplet and rain

drop number concentration, i.e. the main impact of the Hallet-Mossop process is limited to frozen hydrometeor species in our125

simulations. If instead of the mean number concentration the 95th percentile is considered, the general behaviour is very simi-

lar to that just discussed for the mean profiles (SI Fig. 1). The one outstanding differences is a much larger ice crystal number

concentration in the simulation with enhanced INP concentrations (“HighDM”). This suggests that while higher INP concen-

trations result in an enhanced ice crystal formation, as is to be expected, the impact on mean ice crystal number concentration

is much smaller due to the depletion of ice crystals by other microphysical processes, such as for example conversion to snow130

or graupel.

The average profiles of hydrometeor mass mixing ratios essentially mimic the sensitivities just discussed for the hydrometeor

number concentrations (Fig. 2). Ice, snow and graupel mass mixing ratios are consistently lower in the NoHM experiment than

in all other experiments. Differences in ice, cloud droplet and rain drop mass mixing ratios occur mainly in the upper part of

the clouds (above∼ 3.5 km), while variation in snow (graupel) mass mixing ratio are small (large) throughout the entire cloud135

layer.

Different representations of ice formation clearly impact the cloud microphysical structure of the moderately deep convective

clouds from COPE. We now investigate how these changes impact larger-scale features of the cloud field, such as accumu-

lated precipitation and top-of-the-atmosphere radiation fluxes. Accumulated surface precipitation varies by about 8 % between

FSENS experiments (Fig. 3 a). While omitting secondary ice formation leads to an increase in accumulated precipitation of140

about ∼ 6 % relative to the baseline simulation, omitting all ice formation results in a reduction of accumulated precipita-

tion by about ∼ 21 %. It is not straightforward to understand the changes in accumulated precipitation from the differences

in the cloud microphysical composition of the clouds. Therefore, we choose to investigate the cloud condensate budget as

suggested for example by Khain (2009) and Miltenberger et al. (2018a). Differences in accumulated condensate generation G

and condensate loss L are calculated relative to the baseline simulation, i.e. using DM10. In the scatterplot of ∆G against ∆L145

FSENS and NoHM experiments cluster on the one-to-one line (Fig. 4 a). Relative changes in G and L are ≤ 2 % for FSENS

experiments. In the NoHM experiments changes to G and L are larger (∼ 4 %), but balance each other resulting in a small

net change in accumulated precipitation. Combined with the much larger changes in the cloud microphysical structure, this

implies that changes in precipitation formation via a specific cloud microphysical pathways are compensated by changes in

other pathways resulting in an overall similar integrated precipitation production. The only experiment displaying a different150

behaviour is the WARM experiment: While condensate generation decreases by ∼ 5 %, condensate loss only decreases by

∼ 0.1 %. The reduction in accumulated precipitation compared to the baseline simulation is hence the result of much less con-

densate being produced in the WARM experiment. If assuming the vertical displacement of parcels does not change between

simulations and any produced supersaturation is depleted by condensate formation, this is consistent with the lower saturation

vapour pressure over ice than over water. However, without supporting evidence this remains a hypothesis. Further, a negative155
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∆G and no change in ∆L implies that the precipitation efficiency in the WARM experiment is larger than in any experiment

with ice microphysics. Precipitation efficiency is defined here as the ratio of time- and domain-integrated precipitation rate

to condensation and deposition rate. This response is contrary to what has been reported for isolated orographic clouds (e.g.

Barstad et al., 2007; Miltenberger, 2014) and the larger precipitation efficiency for more rapidly glaciating clouds in high-INP

environments found in global climate model simulations (e.g. Lohmann and Hoose, 2009). However, a reduction in precip-160

itation efficiency with an increased cloud glaciation has been also found by Levin et al. (2005) for convective clouds in the

Mediterranean.

Similar to the accumulated precipitation, the precipitation rate distribution displays only a weak sensitivity to the parame-

terisation used for the representation of primary ice formation (Fig. 3 b). Again, the only experiment with a substantially

different behaviour is the WARM experiment, which displays a shift towards more intense precipitation: High precipitation165

rates (≥ 20 mmh−1) are more frequent, while medium rain rates between 1 mmh−1 and 10 mmh−1 are about 10 % less fre-

quently. Very high precipitation rates, i.e. the 95th and 99th percentile, display the largest changes. The 95th percentile varies

by about 20 % between FSENS experiments and increases by 50 % in the WARM experiment compared to the mean of the

FSENS experiments (SI Fig. 2).

The condensed water path and the cloud fraction are other important properties of the cloud field. The difference in the con-170

densed water path between FSENS and NoHM experiments is 29 % of the water path in the baseline simulation

((CWP(t)max−CWP(t)min)/CWP(t)baseline) in the late afternoon (∼ 15 − 17 UTC), but smaller values prevail at other

times resulting in an average maximum spread between FSENS and NoHM experiments of 14 % (Fig. 5 a). In the WARM ex-

periment the condensed water path is lower than in any other experiment throughout most of the afternoon (maximum: 41 %,

mean: 16 % reduction compared to the baseline experiment). This is consistent with the smaller condensate generation and175

enhanced precipitation efficiency diagnosed for this experiment. Changes in cloud fraction between the different experiments

amount at maximum to 20% of the value in the baseline experiment (Fig. 5 b). Cloud fraction is defined as the areal fraction of

the domain with column-integrated condensed water path larger than 1 gm−2. Again, the maximum differences occur in the

late afternoon hours. Averaged over the entire time-period, the changes are much smaller (7%).

Finally, we also consider the sensitivity of outgoing shortwave and longwave radiation (Fig. 6). The maximum domain mean180

difference between any two FSENS/NoHM experiments is about 6 Wm−2 for the shortwave component and 0.5 Wm−2 for

the longwave component. The average over the considered time-period amounts to 2.9 Wm−2 (0.27 Wm−2) for the shortwave

(longwave) component. Similar to the other cloud field characteristics discussed so-far the largest change occurs in the WARM

experiment with a maximum (average) increase of 15 Wm−2 (5.7 Wm−2) in the shortwave component and a maximum (av-

erage) decrease of 1.4 Wm−2 (0.5 Wm−2) in the longwave component.185

Considering the temporal evolution of most cloud properties, i.e. domain-integrated precipitation (not shown), condensed wa-

ter path (Fig. 5 b) and top-of-the-atmosphere outgoing radiation (Fig. 6), the consistency in the evolution between different

experiments is noteworthy, which strongly suggests that the COPE clouds are strongly dynamically forced with little leeway

for cloud microphysics to change the overall characteristics of the cloud field.

Overall the sensitivity to the representation of ice formation found here for moderately deep convective clouds (cloud top190
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∼ −18 ◦C) is smaller than reported for tropical deep convective clouds (e.g. Hawker et al., 2020). Hawker et al. (2020) find

differences of up to 21 Wm−2 in the total outgoing radiation in a set of simulations comparable to our FSENS experiments.

The majority of the signal reported in Hawker et al. (2020) is due to changes in anvil properties. This likely explains the

smaller signal in our simulations, as the investigated convective clouds are shallower and do not produce spatially extensive

anvil clouds. In particular, in the context of numerical weather prediction, but also for deriving observational constraints on the195

cloud microphysical parameterisations, it is important to understand how these sensitivities compare to uncertainty in modelled

cloud field properties due to other factors such as initial condition uncertainty or uncertainties in the formulation of other model

components. To provide some context for the sensitivities discussed here, we compare them in the next section with the spread

of a 10-member high-resolution initial condition ensemble.

4 Comparison to sensitivity to initial condition perturbations200

The representation of ice formation has a fairly strong impact on the cloud microphysical properties of clouds and can induce

changes of between 5 − 20 % in cloud field properties, such as accumulated precipitation, cloud fraction, and outgoing ra-

diation fluxes (see section 3, summarised in Table. 1). In order to judge the significance of these variations, it is necessary to

put them into the context of other uncertainty sources for the modelled cloud properties. As forecasts of convective situations

often have a low intrinsic predictability (e.g. Hohenegger and Schär, 2007), it is particularly interesting to use ensemble simu-205

lations with perturbed initial conditions as context for sensitivity experiments regarding the model formulation. Here, we use

high-resolution ensemble simulations for the COPE case, which were already used by Miltenberger et al. (2018b) to provide

context for sensitivity experiments regarding the background aerosol concentration. We focus here on comparing the spread of

variables between the ensemble members to the spread between different sensitivity runs. The spread from ensemble runs is

indicated in all figures by the grey shaded area.210

Altering the representation of ice formation impacts the hydrometeor number, particularly that of ice crystals (ICNC) and

cloud droplets (CDNC) in the upper layers (above & 4.5 km and & 3 km, respectively). These changes are much larger than

the maximum spread in mean hydrometeor number profiles from the ensemble (Fig. 1 a and c). In contrast, the sensitivity of

rain and graupel number densities to different ice formation representations (FSENS) is comparable to the sensitivity of the

modelled clouds to perturbations in the initial conditions (Fig. 1 b and e). For snow, changes in number concentration across215

FSENS experiments are clearly smaller than the impact of perturbed initial conditions. Regarding the impact of secondary

ice formation, here in the form of the Hallett-Mossop process, it is intriguing to note that the NoHM experiments yield mean

hydrometeor profiles that are clearly outside of the ensemble spread for all frozen hydrometeor species.

In general the picture is very similar when hydrometeor mass mixing ratios are considered instead of their number densities

(Fig. 2). The sensitivity to the ice formation representation is larger than the initial condition ensemble spread for upper-level220

cloud droplet and ice crystal content as well as additionally the rain water content. The NoHM experiments again have profiles

outside the range from the ensemble for all hydrometeor species, but with a smaller separation from the ensemble for snow and

graupel compared to the number concentration profiles (Fig. 2 d and e). Overall it appears that the sensitivity to ice formation
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representation is larger than that to initial conditions perturbations even for the mean hydrometeor profiles.

If instead of the cloud microphysical structure the properties of the cloud field are considered the picture changes: Considering,225

for example, the accumulated surface precipitation the differences between FSENS and NoHM experiments is only very small

if compared to the spread between members in the initial condition ensemble (Fig. 3 a). The ratio between the spread from

the sensitivity experiments (FSENS & NoHM) to the spread of the ensemble is roughly 0.2. Even the difference between the

baseline and the WARM experiments is much smaller than the ensemble spread. Not surprisingly, also the differences in the

condensate budget are much larger across the initial condition ensemble compared to the sensitivity experiments (Fig. 4 b).230

However, if precipitation efficiency is considered the variability across ensemble members (0.176 − 0.256) and sensitivity ex-

periments (0.180 − 0.230) is again very similar (not shown). This suggests that the dominance of initial condition uncertainty

for the accumulated precipitation is due to the strong control of larger-scale moisture and moist static energy convergence. For

the conversion of this condensate to precipitation, however, the representation of cloud microphysical processes is at least as

important as the larger-scale meteorological conditions. In the investigated case, variability in condensate generation clearly235

exceeds the impact of the variability in precipitation efficiency and hence the former dominates the predicted spread of accu-

mulated precipitation.

Similar to accumulated precipitation, also for condensed water path, cloud fraction as well as short- and long-wave outgoing

radiation the spread between ensemble members is much larger than their sensitivity to a particular representation of ice forma-

tion (Fig. 5 & 6, spread ratios: 0.18, 0.047, 0.12, and 0.078, respectively). The spread between various sensitivity experiments240

and ensemble members is summarised in Table 1.

Our analysis suggests that, at least for the investigated case forecast uncertainty is dominated by initial condition uncertainty

for all cloud field variables, while uncertainty intrinsic to the representation of ice formation (reflected by parameterisation

choice) place only for the detailed cloud microphysical structure a dominant role.

5 Discussion and Conclusions245

We investigate the sensitivity of model predictions of a moderately deep convective cloud field to altered representations of ice

formation (different heterogeneous freezing parameterisations, representation of Hallet-Mossop process) and to initial condi-

tion uncertainty for lead times of up to 19 h. The investigated case was selected from those observed in the COPE campaign

(e.g. Leon et al., 2016). The case was already investigated in Miltenberger et al. (2018a, b) with a focus on aerosol-cloud

interactions.250

Altering the ice formation representation impacts the cloud microphysical structure, in particular the cloud droplet, ice crystal

and graupel mass mixing ratio and number concentration, as well as cloud field properties such as surface precipitation, cloud

fraction and outgoing short- and long-wave radiation. Accumulated surface precipitation varies by about 8 % (21 %) and mean

cloud fraction by about 7 % (7 %) across experiments with different descriptions of ice formation (only warm-phase cloud

microphysics). Average outgoing short-wave radiation changes by 2.9 Wm−2 (2.9 Wm−2) and outgoing long-wave radiation255

by 1.4 Wm−2 (0.5 Wm−2) in the respective set of experiments. The sensitivity to the representation of ice formation in our
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case is smaller than the sensitivity found by Hawker et al. (2020) for tropical deep convective clouds. In Hawker et al. (2020),

the anvils of convective clouds contributed significantly to the overall changes in cloud fraction and outgoing radiation com-

ponents. In contrast, to their case cloud in our case only reach up to a stable layer in the mid-troposphere (Miltenberger et al.,

2018a) and no anvils are present. This likely explains the smaller sensitivity to ice formation representation.260

The importance of the observed sensitivity to ice formation representation for numerical weather forecasting depends on how

it compares to other sources of uncertainty for predicting the cloud field evolution, including initial condition uncertainty and

parametric or systematic uncertainty in other model components. In the present work, we use a high-resolution initial con-

dition ensemble to provide context for the sensitivity experiments. From comparing the ensemble spread to the differences

between sensitivity experiments it becomes clear that for bulk cloud field properties such as accumulated precipitation, cloud265

fraction and outgoing radiation initial condition uncertainty clearly exceeds the sensitivity to the formulation of ice forma-

tion. However, for the mean hydrometeor profiles, in particular cloud droplet, ice crystal and graupel mass mixing ratios and

number concentration, initial condition uncertainty is less important than the choice in ice formation parameterisation. The

impact of the Hallett-Mossop process is particularly evident as the mean profiles in simulations without a representation of the

Hallett-Mossop processes are clearly outside of the ensemble spread. While this may indicate a significant role of secondary270

ice formation in this cloud type, the representation of secondary ice formation in clouds is itself highly uncertain and this

uncertainty has not been explored here. The large impact of initial and boundary conditions on the bulk cloud field properties

derives from the strong control of moisture and moist static energy convergence on these. Combined with the clearly different

cloud microphysical structure of the clouds, this implies that altering the chosen ice formation parameterisations impacts the

pathway of precipitation formation, albeit with a small impact on the larger-scale cloud properties, i.e. suggesting the consid-275

ered mixed-phase cloud systems maintains its large scale properties regardless of changes in the balance of the microphysical

pathways.

It would be interesting to compare the sensitivity to ice formation parameterisation with the impact of other parametric un-

certainties in the model. In a previous study, we have investigated the sensitivity of the same case to alterations of the aerosol

background concentration (factor 10 increase and decreases, respectively) (Miltenberger et al., 2018a, b). We found that the280

cloud field is also less sensitive to changes in aerosol conditions than to perturbations of initial conditions, at least if larger-

scale properties such as accumulated precipitation, cloud fraction and radiative fluxes are considered. In sum, this suggests

that COPE-type clouds are strongly controlled by meteorological conditions with comparatively little leeway for cloud micro-

physics to modify cloud field properties.

Of course the question arises, whether this dominance of initial condition uncertainty is a special feature of the chosen case.285

To date only few studies combine an ensemble approach with sensitivity experiments (e.g. Seifert et al., 2012) and most of

these focus on idealised cases (e.g. Grabowski et al., 1999; Morrison, 2012; Wang et al., 2012; Posselt et al., 2019; Wellmann

et al., 2019). Nevertheless, the overall findings are compatible with the present study, in that bulk properties such as radiative

fluxes and accumulated precipitation, are strongly influenced by larger-scale meteorological conditions and to a lesser degree

by perturbations to the cloud microphysical scheme, be it perturbations to the aerosol environment (e.g. Seifert et al., 2012;290

Grabowski et al., 1999; Morrison, 2012) or to the formulation of cloud microphysical processes (e.g. Wang et al., 2012; Posselt
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et al., 2019; Wellmann et al., 2019). Recently, several studies ventured to systematically investigate the joint impact of multiple

uncertain parameters in the cloud microphysics representation, although again these studies have been largely focussed on

idealised case (e.g. Johnson et al., 2015; Glassmeier et al., 2019). For idealised simulations of deep convection, Johnson et al.

(2015) found a small impact of parameters in the immersion freezing parameterisation on accumulated precipitation compared295

to the impact of other parameters in the cloud microphysical parameterisation, such as collection efficiencies and aerosol num-

ber concentration, which is consistent with our COPE studies.

In summary, the simulations show that differences in ice formation parameterisation primarily impact the cloud microphysical

structure with less impact on cloud field properties. Although broadly consistent with previous work, the study presented here

has some shortcomings, which we plan to address in future work. Mainly it would be desirable to repeat the full ensemble300

simulations with the changes to the cloud microphysics representation, to investigate number of joint parameter perturbations,

to test the sensitivity to the choice of the domain (e.g. White et al., 2018), and to repeat the analysis for different cases.
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Table 1. Maximum difference between mean cloud droplet number concentration (CDNC), ice crystal number concentration (ICNC), cloud

mass mixing ration (qc), frozen hydrometeor mass mixing ratio (qf ), accumulated surface precipitation (P), condensed water path (TWP),

cloud fraction, and outgoing short-wave (OSR) as well as long-wave (OSR) radiation.

Variable ensemble (max-min) FSENS (max-min) FSENS, DM10 (max-min) baseline - NoHM baseline - WARM

log10(CDNC) (> 4.5 km) 0.751 0.987 0.266 -0.118 -1.22

log10(ICNC) (> 4.5 km) 0.421 1.02 0.519 0.307 -

log10(ICNC) (< 4.5 km) 0.280 0.619 0.155 1.05 -

log10(qc) (> 4.5 km) 0.979 1.04 0.486 -0.377 -1.29

log10(qf) (> 4.5 km) 0.424 0.244 0.120 0.325 -

log10(qf) (< 4.5 km) 0.258 0.126 0.106 0.279 -

P [109 kg] 20.0 2.71 0.863 -2.02 7.12

TWP [kgm−2] 5.17 0.861 0.543 0.463 1.15

cloud fraction 0.159 0.842 · 10−2 0.506 · 10−2 0.255 · 10−2 0.420 · 10−2

OSR [Wm−2] 23.0 2.89 1.46 1.79 -4.87

OLR [Wm−2] 3.75 0.270 0.139 0.143 0.487

14

https://doi.org/10.5194/acp-2020-253
Preprint. Discussion started: 8 June 2020
c© Author(s) 2020. CC BY 4.0 License.



(a) (b)

(c) (d) (e)

Figure 1. Average profiles of in-cloud number concentrations of (a) cloud droplets, (b) rain drops, (c) ice crystals, (d) snow and (e) graupel.

Different coloured lines show the profiles from simulations with different heterogeneous freezing parameterisations, different INP number

concentrations, without a parameterisation of the Hallet-Mossop process and with warm cloud microphysics only (colours according to

legend). The grey shading shows the spread of the average profiles in the 10-member high-resolution ensemble with the DeMott et al. (2010)

heterogeneous freezing parameterisation and a representation of the Hallett-Mossop process. The 0 ◦C level is located at about 2.6 km

altitude.
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(a) (b)

(c) (d) (e)

Figure 2. Same as Fig. 1 but for hydrometeor mass mixing ratios.
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(a) (b)

Figure 3. (a) Time series of accumulated surface precipitation. (b) Precipitation rate distribution (excluding non-raining grid-points). The

dark grey shading shows the spread of the 10 ensemble members with perturbed initial conditions. The grey line represents the ensemble

mean and the various coloured lines simulations with different heterogeneous freezing parameterisation, pure warm-phase microphysics and

no Hallett-Mossop process (colours according to legend).
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(a) (b)

Figure 4. Scatterplot of change in condensate gain ∆G and condensate loss ∆L relative to the simulation with the DeMott et al. (2010)

heterogeneous freezing parameterisation and a representation of the Hallett-Mossop process (baseline simulation). The condensate gain in

the baseline simulation is 137.0 109 kg and the condensate loss 107.3 109 kg. The grey symbols in panel (b) represent the 9 meteorological

ensemble members other than the baseline simulation. The blue and red dashed lines indicate relative changes in precipitation of 0.1, 5, 10 %

in (a) and 10, 20, 30 % in (b).
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(a) (b)

Figure 5. Time series of (a) the average condensed water path and (b) the cloud fraction. The dark grey shading in both panels shows the

spread of the 10 ensemble members with perturbed initial conditions. The grey line represents the ensemble mean and the various coloured

lines simulations with different heterogeneous freezing parameterisation, pure warm-phase microphysics and no Hallett-Mossop process

(colours according to legend).
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(a) (b)

Figure 6. Domain-average time series of outgoing (a) shortwave and (b) longwave radiation at the top of atmosphere. The dark grey shading

shows the spread of the 10 ensemble members with perturbed initial conditions. The grey line represents the ensemble mean and the various

coloured lines simulations with different heterogeneous freezing parameterisation, pure warm-phase microphysics and no Hallett-Mossop

process.
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