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Abstract 25 

We developed a high-resolution surface flux inversion system based on the global Lagrangian-Eulerian coupled tracer 

transport model composed of National Institute for Environmental Studies Transport Model (NIES-TM) and FLEXible 

PARTicle dispersion model (FLEXPART). The inversion system is named NTFVAR (NIES-TM-FLEXPART-variational) 

as it applies variational optimisation to estimate surface fluxes. We tested the system by estimating optimized corrections 

to natural surface CO2 fluxes to achieve best fit to atmospheric CO2 data collected by the global in-situ network, as a 30 

necessary step towards capability of estimating anthropogenic CO2 emissions. We employ the Lagrangian particle 

dispersion model (LPDM) FLEXPART to calculate the surface flux footprints of CO2 observations at a 0.1° × 0.1° spatial 
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resolution. The LPDM is coupled to a global atmospheric tracer transport model (NIES-TM). Our inversion technique uses 

an adjoint of the coupled transport model in an iterative optimization procedure. The flux error covariance operator is being 

implemented via implicit diffusion. Biweekly flux corrections to prior flux fields were estimated for the years 2010-2012 

from in-situ CO2 data included in the Observation Package (ObsPack) dataset. High-resolution prior flux fields were 

prepared using Open-Data Inventory for Anthropogenic Carbon dioxide (ODIAC) for fossil fuel combustion, Global Fire 5 

Assimilation System (GFAS) for biomass burning, the Vegetation Integrative SImulator for Trace gases (VISIT) model 

for terrestrial biosphere exchange and Ocean Tracer Transport Model (OTTM) for oceanic exchange. The terrestrial 

biospheric flux field was constructed using a vegetation mosaic map and separate simulation of CO2 fluxes at daily time 

step by the VISIT model for each vegetation type. The prior flux uncertainty for terrestrial biosphere was scaled 

proportionally to the monthly mean Gross Primary Production (GPP) by the Moderate Resolution Imaging 10 

Spectroradiometer (MODIS) MOD17 product. The inverse system calculates flux corrections to the prior fluxes in the form 

of a relatively smooth field multiplied by high-resolution patterns of the prior flux uncertainties for land and ocean, 

following the coastlines and vegetation productivity gradients. The resulting flux estimates improve fit to the observations 

at continuous observations sites, reproducing both the seasonal variation and short-term concentration variability, including 

high CO2 concentration events associated with anthropogenic emissions. The use of high-resolution atmospheric transport 15 

in global CO2 flux inversion has the advantage of better resolving the transport from the mix of the anthropogenic and 

biospheric sources in densely populated continental regions and shows potential for better separation between fluxes from 

terrestrial ecosystems and strong localised sources such as anthropogenic emissions and forest fires. Further improvements 

in the modelling system are needed as the posterior fit is better than that by the National Oceanic and Atmospheric 

Administration (NOAA) CarbonTracker only for a fraction of the monitoring sites, mostly at coastal and island locations 20 

experiencing mix of background and local flux signals. 

 

1 Introduction  

Inverse modelling of the surface fluxes is implemented by using chemical transport model simulations to match 

atmospheric observations of greenhouse gases. CO2 flux inversions studies started from addressing large scale flux 25 

distributions (Enting and Mansbridge, 1989; Tans et al., 1990; Gurney et al., 2002; Peylin et al., 2013 and others) using 

background monitoring data and global transport models at low and medium resolutions targeting extraction of the 

information on large and highly variable fluxes of carbon dioxide from terrestrial ecosystems and oceans. Merits of 

improving the resolutions of global transport simulations to 9-25 km have been also discussed by previous studies, such as 

Agusti-Panareda et al. (2019) and Maksyutov et al. (2008). However, global inverse modelling studies have never been 30 

conducted at these spatial resolutions. On the other hand, regional scale fluxes, such as national emissions of non-CO2 



 

3 

 

greenhouse gases (GHGs), have been estimated using inverse modelling tools relying on regional (mostly Lagrangian) 

transport algorithms capable of resolving surface flux contributions to atmospheric concentrations at resolutions from 1 to 

100 km (Vermeulen et al., 1999; Manning et al., 2011;  Stohl et al., 2009; Rodenbeck et al., 2009; Henne et al., 2016; He 

et al., 2018; Schuh et al., 2013; Lauvaux et al., 2016  and others). Extension of the regional Lagrangian inverse modelling 

to the global scale based on combination of three-dimensional (3-D) global Eulerian model and Lagrangian model have 5 

been implemented in several studies (Rugby et al., 2011; Zhuravlev et al., 2013; Shirai et al., 2017), which demonstrated 

an enhanced capability of resolving the regional and local concentration variability driven by fine scale surface emission 

patterns, while using inverse modeling schemes relying on regional and global basis functions that yield concentration 

responses of regional fluxes at observational sites. A disadvantage of using regional basis functions in inverse modeling is 

the flux aggregation errors as noted by Kaminski et al. (2001). This is addressed by developing grid-based inversion 10 

schemes based on variational assimilation algorithms that yield flux corrections that are not tied to aggregated flux regions 

(Rodenbeck et al., 2003; Chevallier et al., 2005; Baker et al., 2006, and others). In order to implement a grid-based inversion 

scheme suitable for optimizing surface fluxes using a high-resolution atmospheric transport capability of the Lagrangian 

model, an adjoint of a coupled Eulerian-Lagrangian model is needed, such as one reported by Belikov et al. (2016).  

In this study, we applied an adjoint of the coupled Eulerian-Lagrangian transport model, which is a revised version of 15 

Belikov et al. (2016), to the problem of surface flux inversion based on coupled transport model with a spatial resolution 

of the Lagrangian model  0.1° longitude-latitude. While global higher resolution transport runs can be tried with coupled 

Eulerian-Lagrangian models (e.g. Ganshin et al., 2012), the choice of the model resolution in our inversion system is 

dictated mostly by the availability of the prior surface CO2 fluxes.  

A practical need for running high-resolution atmospheric transport simulations at global scale is currently driven by 20 

expanding GHG observing capabilities towards quantifying anthropogenic emissions by observing CO2 at the vicinity of 

emission sources (Nassar et al., 2017; Lauvaux et al., 2020), including observations in both background and urban sites, 

with tall towers, commercial airplanes, and satellites. At the same time, the focus of inverse modeling is evolving towards 

studies of the anthropogenic emissions, with a target of making better estimates of regional and national emissions in 

support of national and regional GHG emission reporting and control measures (Manning et al., 2011; Henne et al., 2016; 25 

Lauvaux et al., 2020). In that context, global-scale high-resolution inverse modeling approaches have advantage in closing 

global budgets, while regional and national scale inverse modeling approaches with limited area models require boundary 

conditions normally provided by global model simulations with optimized fluxes. Often there is an additional degree of 

freedom introduced by allowing corrections to the boundary concentration distribution to improve a fit at the observation 

sites (Manning et al., 2011). As a result, the global total of regional emission estimates does not necessarily match the 30 

balance constrained by global mean concentration trends. A global coupled Eulerian-Lagrangian model (e.g. Ganshin et 
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al., 2012), has potential for addressing both the objectives, that is closing the global balance and operating at range of scales 

from a single city (Lauvaux et al., 2016) to large country or continental scale. Here we report developing a high-resolution 

inverse modeling technique suitable for application at a broad range of spatial scales and apply it to the problem of 

estimating the distribution of CO2 fluxes over the globe that provides best fit to the observations. In separate studies, the 

same inversion system was applied to inverse modeling of methane emissions (Wang et al., 2019; Janardanan et al., 2020).  5 

The objective of this study is optimizing the natural CO2 fluxes in order to provide a background for estimating the fossil 

CO2 emissions where the advantage of high-resolution approach is more evident. The paper is composed as follows: this 

Section 1 provides Introduction; Section 2, the transport model and its adjoint; Section 3 introduces the Prior fluxes, 

observational dataset, and gridded flux uncertainties; Section 4 gives the formulation of the inverse modeling problem and 

numerical solution; Section 5 presents simulation results and discussion, which is followed by the Summary and 10 

Conclusions. 

 

2  The coupled tracer transport model, its adjoint and the implementation 

 

For simulation of the CO2 transport in the atmosphere we used a coupled Eulerian-Lagrangian model NIES-TM-15 

FLEXPART, which is a further modification of the model described by Belikov et al. (2016). Coupled transport model is 

computationally more efficient in comparison to the Eulerian model operating at the same spatial resolution. It was 

confirmed by Belikov et al, (2016) that coupled model with Lagrangian model run at resolution of 1°×1° performs similarly 

when coupled with Eulerian model at either 1.25°×1.25° or 2.5°×2.5° resolution, and only can see performance degradation 

when using 10°×10°  resolution Eulerian model. The coupled model combines NIES-TM v08.1i with horizontal resolution 20 

of 2.5° × 2.5° and 32 hybrid-isentropic vertical levels (Belikov et al., 2013) and FLEXPART model v.8.0 (Stohl et al., 

2005) run in backward mode with surface flux resolution of 0.1° × 0.1°. Both models use the Japan 25-year reanalysis 

(JRA-25)/JMA Climate Data Assimilation System (JCDAS) meteorology (Onogi et al., 2007), with 40 vertical levels 

interpolated to a 1.25° × 1.25° grid. The use of low-resolution wind fields for high resolution transport is better justified 

for cases of nearly geostrophic flow over flat terrain, as discussed by Ganshin et al., (2012). It should be useful in the future 25 

to adapt this modeling framework to using reanalyses recently made available at 0.25°-0.3° resolution, even if the tests 

with higher resolution winds by Ware et al., (2019) did not show large improvement over lower resolution.  

The coupled transport model was derived from the Global Eulerian-Lagrangian Coupled Atmospheric transport model 

(GELCA) (Ganshin et al., 2012; Zhuravlev et al., 2013; Shirai et al., 2017). To facilitate model application in our iterative 

inversion algorithm, all the components of the model – Eulerian model and the coupler are integrated in one executable 30 

(online coupling) as described in Belikov et al., (2016), while the original GELCA model implements Eulerian and 
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Lagrangian components sequentially, and then applies the coupler (off-line coupling).  The changes in the current version 

with respect to the version presented by Belikov et al. (2016) include an adjoint code derivation for model components 

using the adjoint code compiler Tapenade (Hascoet and Pascual, 2013), instead of using the TAF compiler (Giering and 

Kaminski, 2003). Additionally, the indexing and sorting algorithms for the transport matrix were revised to allow an 

efficient memory use for processing large matrices of LPDM-driven responses to surface fluxes arising in the case of high-5 

resolution surface fluxes and large number of observations, especially when using satellite data. A manually derived adjoint 

of the NIES-TM v08.1i is used as in Belikov et al. (2016), due to its computational efficiency. In the version of the model 

that includes manually coded adjoint, only the second order van Leer algorithm (van Leer, 1977) is implemented, as 

opposed to third order algorithm typically used in forward model (Belikov et al., 2013).  

 10 

3 Prior fluxes, flux uncertainties and observations 

 

Prior CO2 fluxes, were prepared as a combination of monthly-varying fossil fuel emissions by the Open-Data Inventory 

for Anthropogenic Carbon dioxide  (ODIAC), available at a global 30 arc second resolution (Oda et al., 2018), ocean-

atmosphere exchange by the Ocean Tracer Transport Model (OTTM) 4D-var assimilation system, available at a 1° 15 

resolution (Valsala and Maksyutov, 2010), daily CO2 emissions by biomass burning by Global Fire Assimilation System 

(GFAS) dataset provided by Copernicus services at a 0.1° resolution (Kaiser et al., 2012), and daily varying climatology 

of terrestrial biospheric CO2 exchange simulated by optimized Vegetation Integrative SImulator for Trace gases (VISIT) 

model (Ito, 2010; Saito et al., 2014). Figure 1 presents samples of the four prior flux components (fossil, vegetation, 

biomass burning and ocean) used in the forward simulation. 20 

3.1 Emissions from fossil fuel 

For fossil fuel CO2 emissions (emissions due to of fossil fuel combustion and cement manufacturing) we used ODIAC data 

product (Oda and Maksyutov, 2011, 2015; Oda et al., 2018) at 0.1° × 0.1° resolution on monthly basis. The version 2016 

of the ODIAC-2016 data product (ODIAC2016, Oda et al., 2018) is based on global and national emission estimates and 

monthly estimates made at monthly resolution by the Carbon Dioxide Information Analysis Center (CDIAC) (Boden et 25 

al., 2016; Andres et al., 2011). For spatial disaggregation it uses the emission data for powerplant emissions by the CARbon 

Monitoring and Action (CARMA) database (Wheeler and Ummel, 2008), while the rest of the national total emissions on 

land were distributed using spatial patterns provided by night-time lights data collected by the Defence Meteorological 

Satellite Program (DMSP) satellites (Elvidge et al., 1999). The ODIAC fluxes were aggregated to a 0.1° resolution from 
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the high-resolution ODIAC data. The ODIAC emission product is suitable for this type of studies because the global total 

emission is constrained by updated estimates while providing a high-resolution emission estimate. Thus, it can be applied 

to carbon budget problems across different scales.  

3.2 Terrestrial biosphere fluxes 

CO2 fluxes by the terrestrial biosphere at a resolution of 0.1° were constructed using a vegetation mosaic approach, 5 

combining the vegetation map data by synergetic land cover product (SYNMAP) dataset (Jung et al., 2006), available at a 

30 arc second resolution, with terrestrial biospheric CO2 exchanges simulated by optimized VISIT model (Saito et al., 

2014) for each vegetation type in every 0.5° grid at daily time step.  The area fraction of each vegetation type is derived 

from SYNMAP data for each 0.1° grid. The CO2 net ecosystem exchange (NEE) fluxes on 0.1° grid were prepared by 

combining the vegetation type-specific fluxes with vegetation area fraction data on 0.1° grid. By averaging the daily flux 10 

data for period of 2000-2005 the flux climatology was derived for use in the recent years (after 2010), when the VISIT 

model simulation based on JRA-25-JCDAS reanalysis data is not available. Although the use of climatology in place of 

original fluxes degrades the prior, the posterior fluxes show significant departures from prior, thus reducing the impact of 

missing the prior variations. The diurnal cycle was not resolved as it requires producing additionally the gross primary 

production and ecosystem respiration. To estimate the effect of excluding the diurnal cycle in the prior fluxes, for our 15 

selected time of sampling the observations, we compared CO2 concentrations simulated with diurnally varying fluxes at 

hourly time step with those made with daily mean fluxes produced by SiB model for 2002-2003 (Denning et al, 1996) as 

used in Transcom continuous intercomparison (Law et al, 2008). The results show that, for background monitoring sites 

the difference is not significant (below 0.1 ppm), same result as by Denning et al, (1996). For continental sites, the 

difference between the two simulations were combined into four seasonal values, and the data for the season with largest 20 

difference were shown in Figure A1. Positive bias by simulation with daily constant flux with respect to diurnally varying 

fluxes is in the order of 0.5 to 1 ppm, and it is larger during middle of the growing season. Inclusion of the diurnally varying 

fluxes in place of daily mean has potential to change seasonality of posterior fluxes by inversion in favourable direction, 

as there are regions where flux seasonality is somewhat stronger than expected (Section 5.2). 

3.3 Emissions from biomass burning 25 

Daily biomass burning CO2 emissions by Global Fire Assimilation System (GFAS) dataset relies on assimilating Fire 

Radiative Power (FRP) observations from the MODIS instruments onboard the Terra and Aqua satellites (Kaiser et al., 

2012). The fire emissions at 0.1° resolution are calculated from FRP with land cover-specific conversion factors compiled 



 

7 

 

from a literature survey. The GFAS system adds corrections for observation gaps in the observations, and filters spurious 

FRP observations of volcanoes, gas flares and other sources. The fluxes are input to the model at the surface, which may 

lead to underestimation of injection height for strong burning events and occasional overestimation of biomass burning 

signal simulated at surface stations. 

3.4 Oceanic exchange flux 5 

The air-sea CO2 flux component for the flux inversion used an optimized estimate of oceanic CO2 fluxes by Valsala and 

Maksyutov (2010). The dataset is constructed with a variational assimilation of the observed partial pressure of surface 

ocean CO2 (pCO2) available in Takahashi et al. (2017) database into the OTTM (Valsala et al., 2008), coupled with a 

simple one-component ecosystem model. The assimilation consists of a variational optimization method which minimizes 

the model to observation differences in the surface ocean dissolved inorganic carbon (DIC) (or pCO2) within two-month 10 

time window.  The OTTM model fluxes produced on a 1° × 1° grid at monthly time step are interpolated to a 0.1° × 0.1° 

grid, taking into account, the land fraction map derived from 1 km resolution MODIS landcover product.  

3.5 Flux uncertainties for land and ocean. 

CO2 flux uncertainties are needed for both land and ocean. Climatological, monthly-varying flux uncertainties for land 

were set to 20% of MODIS gross primary productivity (GPP) by MOD17A2 product available on a 0.05° grid at monthly 15 

resolution (Running et al., 2004). Oceanic flux uncertainties are assigned based on the standard deviation of the OTTM 

assimilated flux from climatology by Takahashi et al. (2009), plus the monthly variance of the interannually-varying OTTM 

fluxes (Valsala and Maksyutov, 2010), with a minimum value of 0.02 gCm-2day-1, in the same way as in the lower spatial 

resolution inverse model by Maksyutov et al. (2013). Oceanic flux uncertainties were first estimated on a 1° × 1° resolution 

at monthly time step, and then interpolated to a 0.1° × 0.1° grid, with the same procedure as for the oceanic fluxes. 20 

3.6 Atmospheric CO2 observations. 

We used CO2 observation data distributed as the ObsPack-CO2 GLOBALVIEWplus v2.1 (Cooperative Global 

Atmospheric Data Integration Project, 2016). The data from the flask sites were used as average concentration for a pair 

of flasks. Afternoon (15:00 to 16:00 local time) average concentrations were used for continuous observations over land 

and for remote background observation sites. For the continuous mountain top observations, we used early morning 25 

observations (05:00 to 06:00 local time). Geographical local time is used, as defined by UTC time with longitude dependent 

offset. The list of the observation locations, with ObsPack site ID, site names, data providers and data references appear in 
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the Table A1 in the Appendix, accompanied by a site map on Figure A2. Aircraft observational data collected by NOAA 

Aircraft Program at Briggsdale, Colorado (CAR), Cape May, New Jersey (CMA), Dahlen, North Dakota (DND), Homer, 

Illinois (HIL), Worcester, Massachusetts, (NHA), Poker Flats, Alaska (PFA), Rarotonga, (RTA), Charleston, South 

Carolina (SCA), Sinton, Texas (TGC) (Sweeney et al., 2015), and by the CONTRAIL project over West Pacific (CON) 

(Machida et al., 2008) were grouped into averages for each 1 km altitude bin, altitude counted from sea level. Within the 5 

1 km altitude range, the average value of both concentration and the altitude are taken. Aircraft observations were not 

assimilated, only intended for use in the validation of the results.  

 

4 Inverse modelling algorithm 

4.1 Flux optimization problem 10 

Inverse problem of atmospheric transport is formulated by Enting (2002) as finding the surface fluxes that minimize misfit 

between transport model simulation  𝑦𝑓 + 𝐻 ∙ (𝑥𝑝 + 𝑥) and the vector of observations 𝑦,  where 𝑦𝑓  is forward simulation 

without the surface fluxes,  𝑥𝑝  is known prior flux, 𝑥 is unknown flux correction, and 𝐻 represents transport model. The 

equation  𝑦 = 𝑦𝑓 + 𝐻 ∙ (𝑥𝑝 + 𝑥) has to be solved for unknown flux correction 𝑥, and 𝑥 is solved for at the transport model 

grid scale (Kaminski et al., 2001). By introducing the residual misfit vector  𝑟 = 𝑦 − (𝑦𝑓 + 𝐻 ∙ 𝑥𝑝) , the problem can be 15 

formulated as minimizing a norm of difference (𝑟 − 𝐻 ∙ 𝑥) weighted by the data uncertainties. As the observation data 

alone are not sufficient to uniquely define the solution 𝑥, additional regularization is required. By introducing additional 

constraints on the amplitude and smoothness of the solution, the inverse modelling problem is formulated (Tarantola, 2005) 

as solving for optimal value of vector  𝑥  at the minimum of a cost function 𝐽(𝑥): 

 20 

 𝐽(𝑥) =
1

2
(𝐻 ∙ 𝑥 − 𝑟)𝑇 ∙ 𝑅−1 ∙ (𝐻 ∙ 𝑥 − 𝑟) +

1

2
𝑥𝑇 ∙ 𝐵−1 ∙ 𝑥        (1) 

 

where 𝑥  is optimised flux, 𝑅 is a covariance matrix for observations and 𝐵 is a covariance matrix for surface fluxes. By 

introducing a decomposition of 𝐵 as  𝐵 = 𝐿 ∙ 𝐿𝑇   (construction of matrix  𝐿 explained in detail in Section 4.2) and a variable 

substitution 𝑥 = 𝐿 ∙ 𝑧  the second term in Eq. (1) is simplified. At the same time, by assuming that 𝑅 can be decomposed 25 

into  𝑅 = 𝜎𝑇 ∙ 𝜎  , where 𝜎  is a vector of data uncertainties, and  introducing expressions 𝑏 = 𝜎−1 ∙ (𝑟 − 𝐻 ∙ 𝑥) , and 

𝐴 = 𝜎−1 ∙ 𝐻 ∙ 𝐿, the new form of Eq. (1) is introduced: 

 𝐽(𝑧) =
1

2
((𝐴 ∙ 𝑧 − 𝑏)𝑇(𝐴 ∙ 𝑧 − 𝑏) + 𝑧𝑇 ∙ 𝑧)         (2) 
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The solution minimizing 𝐽(𝑧) can be obtained by forcing the derivative  ∂ 𝐽(𝑧) 𝜕𝑧⁄ = 𝐴𝑇(𝐴 ∙ 𝑧 − 𝑏) + 𝑧  to zero, which 

results in  

   (𝐴𝑇𝐴 + 𝐼)  ∙ 𝑧 = 𝐴𝑇𝑏           (3) 

An optimal solution 𝑧 at the minimum of the cost function 𝐽(𝑧) is found iteratively with the Broyden–Fletcher–Goldfarb–

Shanno (BGFS) algorithm (Broyden, 1969; Nocedal, 1980), as implemented by Gilbert and Lemarechal (1989). The 5 

method requires ability to accurately estimate the cost function 𝐽(𝑧) and its gradient 𝐴𝑇(𝐴 ∙ 𝑧 − 𝑏) + 𝑧 , and has modest 

memory storage demands. Given the solution 𝑧, flux correction vector 𝑥  is then found by reversing variable substitution 

as 𝑥 = 𝐿 ∙ 𝑧 . 

The convergence of the solution may be affected by accuracy of the adjoint. The result of duality test defined as norm of 

difference between NIES-TM-FLEXPART forward and adjoint modes estimated as  (< 𝑦, 𝐻 ∙ 𝑥 > −< 𝐻𝑇 ∙ 𝑦, 𝑥 >)/(<10 

𝑦, 𝐻 ∙ 𝑥 >) was found to be in the order of 10-9, while for Lagrangian component based on receptor sensitivity matrices 

prepared with FLEXPART, it is about 10-15 when double precision is used in calculations, same as in (Belikov et al., 2016). 

The formulation of the minimization problem as presented by Eq. (2) is convenient for the derivation of the flux 

uncertainties, as it is possible to solve Eq. (3) via the truncated singular value decomposition (SVD) and estimate regional 

flux uncertainties based on derived singular vectors (Meirink et al., 2008). Alternatively, as mentioned by Fisher and 15 

Courtier (1995) it is also possible to use the flux increments derived at each iteration of the BFGS algorithm in place of the 

singular vectors. Although we did not use SVD for constructing the posterior covariances in this study, we tested solving 

the optimisation problem with SVD. We derived SVD of 𝐴𝑇𝐴 using a code by Wu and Simon (2000), which implements 

an algorithm by Lanczos (1950), and confirmed that we get practically the same solution as one obtained with BFGS 

algorithm. Lanczos (1950) algorithm is a commonly used SVD technique applied in case of large sparse matrix or a linear 20 

operator, when it is impractical to directly make SVD of  𝐴. A truncated SVD of 𝐴 is given by expression 𝐴 ≈ 𝑈Σ𝑉𝑇 , 

where Σ  is diagonal matrix of n singular values, while 𝑈 and 𝑉 are matrices of left and right singular vectors. Variable 

substitutions 

𝑧 = 𝑉𝑇𝑠, 𝑑 = 𝑈𝑇𝑏,             (4) 

transforms 𝑧 into a space of singular vectors 𝑠 and reduces Eq. (3) to (Σ𝑇Σ + 𝐼)  ∙ 𝑠 = Σ𝑇𝑑 , resulting in a solution 25 

  𝑠 = Σ𝑇𝑑 (Σ𝑇Σ + 𝐼)⁄ ,             (5) 

which is evaluated directly, as Σ is diagonal. In case of having only n largest singular values, the elements of solution 𝑠 are 

given by 𝑠𝑖 = 𝜆𝑖𝑑𝑖 (𝜆𝑖
2 + 1)⁄  , for all  𝑖 ≤ 𝑛 . Once the solution (5) is found, it is taken back to the space of dimensional 

fluxes 𝑧 by applying variable substitutions (4). For fluxes, we have 𝑥 = 𝐿 ∙ 𝑧, 𝑧 = 𝑉𝑇𝑠, 𝑑 = 𝑈𝑇𝑏, thus solution is provided 

by 30 
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𝑥 = 𝐿𝑉 ∙
Σ𝑇

(Σ𝑇Σ+𝐼)
∙ 𝑈𝑇𝑏.           (6) 

Another variant of SVD approach may be more memory efficient in the case of very large dimension of a flux vector, then 

applying SVD to 𝐴𝐴𝑇 instead of 𝐴𝑇𝐴 can save some memory as in a representer method (Bennett, 1992). It gives the same 

solution as SVD of 𝐴𝑇𝐴 using less intermediate memory storage when the dimension of the observation vector 𝑦 is lower 

compared to that of the flux vector 𝑥. 5 

 

The forward and adjoint mode simulations with transport model needed to implement iterative optimization are composed 

of several steps: 

1. Running the Lagrangian model FLEXPART to produce source-receptor sensitivity matrices. For each observation 

event, a backward transport simulation with FLEXPART model is implemented, to produce surface flux footprints 10 

at a 0.1° × 0.1° latitude-longitude resolution and the 3-D concentration field footprint, taken at the end of the 

backward simulation run (ending at the coupling time of 00:00 GMT). The coupling time is set to be within 2 to 

3 days before observation event. The surface flux sensitivity data are recorded in the unit of ppm(gCm-2day-1)-1. 

The flux footprints are saved at daily or hourly timestep, depending on available surface fluxes. 

2. Running the coupled transport model forward, which includes:  15 

a. Running the 3-D Eulerian model NIES-TM from the 3-D initial concentration field, with the prescribed 

surface fluxes. Sampling the 3-D field at model coupling times for each observation according to 3-D 

concentration field footprints, calculated at the first step by FLEXPART. NIES-TM reads the same 0.1° 

fluxes as Lagrangian transport model, and remaps them onto its 2.5° × 2.5° grid, before including in the 

simulation.  For each observation event, the fluxes used in Eulerian and Lagrangian components are 20 

separated by coupling time, so that there is no double counting of fluxes for same date in the coupled 

model simulation.    

b. Use two-dimensional (2-D) surface flux footprints prepared with Lagrangian model to calculate the 

surface flux contribution to the simulated concentrations for the last 3 days. 

c. Combining the concentration contributions produced by Eulerian (a) and Lagrangian (b) component to 25 

give total simulated concentration. 

3. In the inverse modelling, the transport model is run in three modes:  

a. The forward model is first run with prescribed prior fluxes, starting from the 3-D initial CO2 

concentration field, to calculate differences between the observation and the model simulation (residual 

misfit).  30 
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b. at the inverse modelling/optimization step, only flux corrections are propagated in forward model runs, 

which are optimized to fit the observation-model misfit. The prescribed prior fluxes are not used 

(switched off) at this step. The model starts from a zero 3-D initial concentration field and runs forward 

with flux corrections updated by the optimization algorithm at every iteration, to produce simulated 

concentrations. Corrections to the 3-D initial concentration field are not estimated, and not included into 5 

the control vector. Instead, the model is given three months of spin-up period before the target flux 

estimation period to adjust simulated concentration to observations. 

c. in the adjoint mode, the adjoint mode atmospheric transport is simulated backward in time starting from 

the vector of residuals to produce a gradient of the cost function (defined as eq. (1)) with respect to the 

surface fluxes. Given the gradient, the optimization algorithm provides the new flux corrections field.  10 

For convenience, the transport model and its adjoint are implemented as callable procedures suitable for 

direct communication mode. 

 

Steps 1 is carried out the same way as in other versions of the coupled transport model (Zhuravlev et al., 2013; Shirai et 

al., 2017). At steps 2 and 3 the procedure of running the forward and adjoint model is organised differently. At the beginning 15 

of the transport model runs, all the data prepared by the Lagrangian model are stored in computer memory, in order to save 

the time for reading and re-sorting the data at each iteration.  The fraction of CPU time spent on running the Eulerian 

component of the coupled transport model is 82%, on the Lagrangian component 1%, and on covariance 17%. 

To create the initial concentration field, we used a 3-D snapshot of CO2 concentration for the same day from a simulation 

of previous year, which are already optimised (usually Oct 1st, or Jan 1st)), or, when such simulation is not available, take 20 

snapshot from available year and correct it globally for the difference between years using the NOAA monthly mean data 

for South Pole as representative for the global mean concentration.  When the optimised fields are not available, the output 

of multiyear spin-up simulation is used, with same adjustment to South Pole observations. 

 

4.2 Implementation of covariance matrices L and B. 25 

We optimized surface flux fields separately for two sets of fluxes in every grid globally, for land and ocean, following the 

approaches done by Meirink et al. (2008) and Basu et al. (2013), who suggested optimizing for global surface flux fields 

separately for each optimized flux category. Separating the total flux into independent flux categories, each with its own 

flux uncertainty pattern, results in using homogenous spatial covariance matrices, significantly simplifying the coding of 

the matrix 𝐵. The matrix 𝐵 can be given as a product of a diagonal matrix of flux uncertainties and a matrix with 1.0 as 30 
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diagonal elements, while non-diagonal elements are exponentially declining with squared distance between grid points 

(Meirink et al., 2008). In practice, an extra scaling of the uncertainty is needed for balancing the constraint on fluxes with 

the data uncertainty, which also impacts the regional flux uncertainties. Several empirical methods are in use, where tuning 

parameters are horizontal scale (Meirink et al., 2008) and uncertainty multiplier (Chevallier et al., 2005; Rodenbeck, 2005). 

In our 𝐵 matrix design, we follow Meirink et al. (2008) in representing 𝐵 matrix as multiple of non-dimensional covariance 5 

matrix 𝐶 and diagonal matrix of flux uncertainty 𝐷 as  𝐵 = 𝐷𝑇 ∙ 𝐶 ∙ 𝐷. 𝐶 matrix is commonly implemented as band matrix 

with non-diagonal elements declining as ~exp (− 𝑥2 𝑙2⁄ )   with distance 𝑥  between the grid cells, as in 2-D spline 

algorithms (Wahba and Wendelberger, 1980). Applying multiplication by matrix 𝐶 becomes computationally costly at a 

high spatial resolution in the cases when the correlation distance 𝑙 is much larger than the size of the model grid. The 

correlation distance used here is 500 km for land and ocean, and two weeks in time. The rationale of applying a correlation 10 

distance of 500 km in case of regional inversion over continental USA with model grid size of 40 km was discussed by 

Schuh et al. (2010). In that case, the use of implicit diffusion with directional splitting to approximate the Gaussian shape 

appears to be computationally more efficient than direct application of Gaussian-shaped smoothing function, as the number 

of floating-point operations per grid point do not grow with the ratio of correlation distance 𝑙  to the grid size. The 

covariance matrix based on diffusion operator is popular in many ocean data assimilation systems, as a convenient way to 15 

deal with coastlines (e.g. Derber and Rosati, 1989; Weaver and Courtier, 2001).  

The idea of using the solution of diffusion equation in place of multiplying a vector by covariance matrix can be presented 

briefly in a 1-D case. Consider a discrete problem of multiplying a vector representing a function  𝑔(𝜆) on a grid with 

spacing Δ𝜆  by a symmetric matrix which has diagonal elements equal to one, and non-diagonal ones declining as 

exp (−
1

2
(𝑖Δ𝜆)2/𝑑2)  with distance of 𝑖 points from the diagonal, where d is covariance length. Its continuous analogue is 20 

an application of a Gaussian-shaped smoother in the form 𝐺(𝜆, 𝜆′) = exp (−
1

2
(𝜆 − 𝜆′)2/𝑑2) to a function 𝑔(𝜆) as: 

�̃�(𝜆) = ∫ exp (−
1

2
(𝜆 − 𝜆′)2/𝑑2)𝑔(𝜆′)

𝑙

−𝑙
𝑑𝜆′ ,        (7) 

where smoothing window size 𝑙 should be several times larger than 𝑑. The expression in Eq. (7) looks exactly like a 

solution of a one-dimensional diffusion equation 

 
𝜕𝑔

𝜕𝑡
− 𝐷

𝜕2𝑔

𝜕𝜆2 = 0,             (8) 25 

where 𝐷 is a diffusivity. The solution of Eq. (8) is given by �́�(𝜆) =
1

√2𝜋𝑝2 ∫ exp (−
1

2
(𝜆 − 𝜆′)2/𝑝2)𝑔(𝜆′)

𝑙

−𝑙
𝑑𝜆′ , where 

𝑝2 = 2𝐷Δ𝑡 , 𝑔(𝜆) is initial distribution, and Δ𝑡  is the time step (Crank, 1975). Based on this equivalence, instead of 

multiplying a vector by covariance matrix, we solve a discrete form of Eq. (8) by backward-in-time, central-in-space 

implicit method.  
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Applying diffusion operator for the covariance matrix helps achieving the spatial homogeneity between polar and 

equatorial regions, as diffusion produces theoretically uniform effect on flux field regardless of the polar singularity. The 

diffusion operator works as a low-pass filter, selectively suppressing all the wavelengths shorter than the covariance length 

scale. As we need to construct the covariance matrix 𝐵 in the form 𝐵 = 𝐿 ∙ 𝐿𝑇 , we choose to construct 𝐿  first and then 

derive its transpose 𝐿𝑇 . The factorization of 𝐿  is given by  𝐿 = 𝑢𝐹  ∙ (𝐿𝑥𝑦 ⊗ 𝐿𝑡) ∙ 𝑚 , where 𝐿𝑡  is the one-dimensional 5 

covariance matrix for time dimension, ⊗ is a Kronecker product. We approximate the two-dimensional covariance 𝐿𝑥𝑦  by 

splitting it into two dimensions, latitude and longitude, as in Chua and Bennett, (2001), and apply several iterations of this 

process. The horizontal covariance  𝐿𝑥𝑦  is implemented in 𝑁 = 3 iterations of one-dimensional diffusion so that  𝐿𝑥𝑦 =

(𝐿𝑥 ⊗ 𝐿𝑦)𝑁, where 𝐿𝑥 and 𝐿𝑦 are covariance operators for longitude and latitude directions respectively, while 𝑢𝐹  is a 

diagonal matrix of flux uncertainty for each grid cell and each flux category (land and ocean), and 𝑚 is a diagonal matrix 10 

of map factor which is introduced to scale contributions to the cost function by model grid area, with diagonal elements 

given by 𝑚 = cos−1/2 𝜃 (where 𝜃 is latitude).  

This design of covariance operator helps preserving high-resolution structure of the resultant flux corrections, given by  

𝑥 = 𝐿 ∙ 𝑧 = 𝑢𝐹  ∙ (𝐿𝑥𝑦 ⊗ 𝐿𝑡) ∙ 𝑚 ∙ 𝑧 , as it can be factored into a multiple of uncertainty 𝑢𝐹 and scaling factor 𝑆 = (𝐿𝑥𝑦 ⊗

𝐿𝑡) ∙ 𝑚 ∙ 𝑧  as 𝑥 = 𝑢𝐹 ∙ 𝑆 . While the scaling factor 𝑆 is smoothed with covariance length of 500 km, the original structure 15 

of spatial heterogeneity of surface flux uncertainty 𝑢𝐹  is still present at original high-resolution in the optimised flux 

corrections 𝑥.  

The adjoint operators 𝐿𝑥
𝑇  ,  𝐿𝑦

𝑇  are derived by applying the adjoint code compiler Tapenade (Hascoet and Pascual, 2013) to 

the Fortran code of modules approximating operators  𝐿𝑥 and  𝐿𝑦 by implicit diffusion. 𝐿𝑡 and its transpose 𝐿𝑡
𝑇  are of lower 

dimension and are designed as in Meirink et al. (2008) by deriving a square root of the Gaussian-shaped time covariance 20 

matrix with direct SVD (Press et al., 1992).  

The important merit of the algorithm is that it makes minimal use of computer memory, avoiding allocation of the memory 

space larger than several times the dimension of observation and flux vectors, making it suitable for ingesting large amount 

of surface and space-based observations. It should be mentioned that the computer memory demand for accommodating 

surface flux sensitivity matrices for massive space-based observations can become a limiting factor as discussed by Miller 25 

et al. (2020). 

4.3 Inversion setup 
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Combination of coupled transport model NIES-TM-FLEXPART (as described in Section 2) with variational optimization 

algorithm (Sections 4.1-4.2) constitutes the inverse modeling system NIES-TM-FLEXPART-VAR (NTFVAR). We test 

the inversion algorithm presented in previous sections on a problem of finding a best fit to CO2 observations provide by 

ObsPack dataset by optimizing corrections to land and ocean fluxes. By the design of our inverse modeling system, we 

produce smoothed fields of scaling factors that are multiplied by fine resolution flux uncertainty fields to give flux 5 

corrections. We derive the surface CO2 flux corrections at 0.1° resolution and half-month time step. Our purpose is to 

demonstrate that we can optimize fluxes to improve fit to the observations using iterative optimization procedure, based 

on high-resolution coupled transport model and its adjoint. Our report is limited to technical development towards 

achieving capability of estimating anthropogenic CO2 emissions based on atmospheric observations, and we do not 

elaborate on the impact of improvement in simulating the tracer transport at high resolution on the quality of the optimized 10 

natural fluxes, which requires additional study. The flux optimization is applied in a short time-window of 18 months, for 

each optimized year, and simulation starts on October 1st, three months ahead of the target year. Three-months spin-up 

period is given to let inversion adjust the modeled concentration to the observations, so that the balance is achieved between 

fluxes, concentrations and concentration trends. The simulation is continued until reaching the limit of 45 cost function 

gradient calls, by that time M1QN3 procedure by Gilbert and Lamarechal (1989) is able to complete 30 iterations. Figure 15 

A3 in Appendix presents the cost function reduction in case of optimizing fluxes for 2011 and completing 61 gradient calls. 

The cost function reduction declines nearly exponentially, by almost 3 times for each 10 gradient calls completed. Relative 

improvement between 41 and 61 gradient calls is 1.5% of the total reduction from the first to the 61 gradient calls.  We 

optimize fluxes for three years from 2010 to 2012, and analyze simulated concentration fit at the observation sites. The 

average root mean squared misfits (RMSE) between optimized concentration and observations are compared between 20 

forward simulation with prior fluxes and optimized simulation, while for evaluation, we use statistics of optimized 

simulations by the operational CarbonTracker inverse modeling system 

(ObsPack_co2_1_CARBONTRACKER_CT2017_2018-05-02; Peters et al., 2007). 

5 Results and discussion. 

5.1 Analysis of the posterior model fit to the observations 25 

We compared the results of forward simulation with prior and optimized fluxes with the processed observations for ground 

observation sites, as shown in Table A1, and for airborne vertical profiles, used for independent validation (Table A2). 

Figure 2 shows the observations with forward (prior) and optimized simulations at Barrow (BRW), Jungfraujoch (JFJ), 

Wisconsin (LEF), Pallas (PAL), Yonagunijima (YON), and Syowa (SYO). Optimization leads to improved seasonal 
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variation of the simulated concentration, including phase and amplitude at most sites. At SYO we find synoptic scale 

variations with amplitude in the order of few tenths of a ppm that were to a large extent captured by the model. Plots for 

BRW and JFJ show the ability of the inversion to correct the seasonal cycle, while the difference between model and 

observations in the southern hemisphere (SYO) is contributed by interannual variations of the carbon cycle. The model-

observation mismatch (RMSE) for surface sites included in the ObsPack is presented in Figure 3 for forward and optimized 5 

simulation and mean bias for optimized data. The model was able to reduce the model to observation mismatch for most 

background sites, where the seasonal cycle is affected mostly by natural terrestrial and oceanic fluxes, while average 

reduction of the mismatch from forward to optimized simulation is 14%, defined as mean ratio of optimized mismatch to 

forward mismatch taken for each site. The reason for relatively small reduction is the addition of climatological flux 

corrections to the prior, estimated by inverse modeling of two years of data, 2009 and 2010. As a result, the inversion starts 10 

from the initial flux distributions already adjusted to fit the seasonal cycle of observed concentration. The correction for 

difference in global concentration trend between years is not made, thus there are visible differences between prior and 

optimized simulations in southern hemispheric background sites.  At most of the Antarctic sites, the mean posterior (after 

optimization) mismatch (reported as RMSE) is at the level of 0.2 ppm. Over the land, closer to anthropogenic sources, 

there is less relative reduction of mismatch on average at annual mean scale. One of the reasons for seeing little 15 

improvement is keeping fossil CO2 emissions fixed and optimizing only the natural fluxes (while the strong signal from 

fossil emission is not affected by flux corrections). Another possible contributor to the large mismatch over land is 

neglecting the diurnal cycle under assumption of using only observations at well mixed condition, and also the limited 

ability of the low-resolution reanalysis dataset to capture frontal processes in extratropical continental atmosphere, as 

discussed by Parazzoo et al. (2011). The mean mismatch is reduced from 2.60 ppm to 2.42 ppm by flux optimization, while 20 

the mean mismatch to uncertainty ratio decreases after optimization by 19% from 0.94 to 0.78. The mean correlation 

between modelled and observed data improves from r2 =0.43 (r2 - coefficient of determination) for simulation driven by 

prior fluxes to r2 =0.59 for optimized simulation. To remove the effect of interannual CO2 growth on CO2 variability the 

mean growth trend was subtracted from data before estimating the r2. 

Figure 3 also shows, for comparison, the statistics of the average misfit for optimized simulation by CarbonTracker, for 25 

the same period and same monitoring stations. The comparison is useful for understanding the strength and weaknesses of 

the inversion system presented here. Over the background monitoring sites, the high-resolution model does not show 

advantage over CarbonTracker in terms of the fit between optimized model simulation and observations, which may 

indicate a better performance by the Eulerian model TM5 used in CarbonTracker. On the other hand, several sites where 

the high-resolution model shows better fits to observations over CarbonTracker are located inland or near the coast, closer 30 

to anthropogenic and biogenic sources. Lower misfit is achieved by high-resolution model at Key Biscaine (KEY), Baring 
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Head (BHD), Marianna island (GMI) and Cape Kumukahi (KUM ), among others, which can be attributed to coastal/island 

locations, while there is little or no advantage at mountain sites like Mauna Loa (MLO) or Jungfraujoch (JFJ). This result 

may be influenced by differences in the model physics between NIES-TM-FLEXPART and TM5 in the lower troposphere, 

near the top of the boundary layer and in shallow cumuli. The mismatch (RMSE) between our optimized model and 

observations for the 102 sites used in the inversion is only 4% lower on average than that by CarbonTracker. It is not yet 5 

clear if there is a systematic advantage of one or another system in any particular site category, other than for coastal/island 

sites mentioned above. For average misfit comparison, all data, both assimilated and not assimilated, are included for sites 

shown in Figure 3. The results for CGO were not counted, due to the use of different datasets, as our system used only 

NOAA flask data, which underwent background selection (by wind direction) at the time of sampling.  

For independent validation, a comparison of the unoptimized and optimized simulation to the vertical profile data is shown 10 

in Figure 4. For each vertical profile site, the observations were grouped according to altitude range, at 1 km steps. Altitude 

code (e.g. 005, 015, 025, 035, …) to be added to site the identifier is constructed as altitude of midlevel multiplied by 10. 

The observations at PFA (Poker Fat Alaska) between surface and 1 km are grouped as PFA005 (mid altitude 0.5 km), while 

those in 5 to 6 km range are designated as PFA055 (mid altitude 5.5 km). As for optimized surface data in Figure 3, we 

show RMSE for forward simulation with prior fluxes, optimized simulation and CarbonTracker, and mean bias for 15 

optimized data. CarbonTracker shows better fit at most altitudes except for the lowest 1 km where the results shown by the 

two systems are similar. Concurrently, mean correlation between modelled and observed data does not improve from prior 

(r2 =0.70) to optimized simulation (r2 =0.63), while mean RMSE declines a little from 1.86 ppm to 1.85 ppm. Comparison 

to CarbonTracker (CT2017), with mean RMSE of 1.53 ppm, suggests that free tropospheric performance can be improved 

by implementing more detailed vertical mixing processes in the Lagrangian and Eulerian component models.  20 

5.2 Comparison of prior and posterior fluxes 

As mentioned in section 4.2, the flux corrections estimated by the inverse model appear as high-resolution despite using 

large covariance length, because those are made of the high-resolution data uncertainty multiplied by the smooth fields of 

scaling factor, estimated separately for each of the optimized flux categories - land biosphere and ocean. Examples of the 

flux correction and posterior fluxes (excluding fossil emissions) are presented on Figure 5. The flux corrections and fluxes 25 

are shown on Figure 5 for one month (Aug 2011) as illustration and are not representative of a seasonal or climatological 

mean. The sign of the flux correction changes from positive (source) in the eastern side (continental China) to negative 

(sink) over Russian coast and Japanese islands, while the posterior fluxes show terrestrial sink all over the area. The flux 

adjustment is driven by the fit to nearby observations made over Korea and Japan. 
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To illustrate the change of fluxes from prior to posterior estimate by inversion at the scale of large regions, the monthly 

mean fluxes (excluding fossil emissions) averaged for 3 years 2010-2012 are plotted in Figure 6 for eight selected Transcom 

regions (as defined by Gurney et al. 2002, see map in Figure A2). The plots include prior, optimized and, for reference, 

optimized fluxes by CarbonTracker (CT2017). For some regions, the posterior is close to prior, which is often the case 

when there are too few observations in the region to drive the corrections to prior fluxes. Boreal North America (region 1), 5 

Temperate North America (2), and Europe (11) are better constrained by observations, while North Africa (5), South Africa 

(6), Temperate Asia (8), South-East Asia (9) and Boreal Asia (7) are less constrained. The optimized flux is similar to the 

prior for Africa (5, 6), South-East Asia (10) and Temperate Asia (8), while there is substantial adjustment for Boreal Asia 

(7), which seems to be adjusted to fit the observations outside the region. For both boreal regions the prior flux seasonality 

appears weaker than in both posterior and CarbonTracker, which could indicate a problem with vegetation type mapping 10 

in higher resolution version of prior flux model. For regions 1, 6, 7 and 11, the corrected fluxes are closer to CarbonTracker, 

and for Temperate North America, Temperate Asia and North Africa the amplitude of flux seasonality is estimated to be 

stronger, which can be caused by stronger vertical/horizontal mixing in transport model as compared to the transport in 

CarbonTracker. More detailed comparison with other inverse model results and independent estimates (e.g. by Jung et al., 

2020) should be made after improving the inversion setup, notably, improving the transport model meteorology, seasonality 15 

and diurnal cycle in prior fluxes and seasonality in prior flux uncertainties. 

6 Summary and conclusions 

A grid-based flux inversion system was developed, which is suitable for inverse estimation of the surface fluxes at biweekly 

time step and 0.1° spatial resolution. To implement the high-resolution capability, several developments were completed. 

High-resolution prior fluxes were prepared for three surface flux categories: fossil emissions by ODIAC dataset are based 20 

on point source database and nightlights, biomass burning emissions (GFAS) are based on MODIS observations of fire 

radiative power and biosphere exchange is based on mosaic representation of landcover and process-based VISIT model 

simulation. High-resolution transport for global set of observations is achieved by combining short-term simulations with 

high-resolution Lagrangian model FLEXPART with global three-dimensional simulation with medium-resolution Eulerian 

model NIES-TM. Use of variational optimization with a gradient-based method in the inversion helps avoiding the need 25 

to invert large matrices with dimensions dictated by the number of optimized grid fluxes or the number of the observations. 

Accordingly, the adjoint of the coupled transport model was developed to apply the variational optimization. 

Computationally efficient implementation of flux error covariance operator is achieved by using implicit diffusion 

algorithm. Overall, the presented algorithm demonstrates feasibility of high-resolution inverse modeling at global scale, 
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extending the capabilities achieved by regional high-resolution modeling approaches used for estimating the national 

greenhouse gas emissions for comparison to the national greenhouse gas inventories. Comparison of the optimized 

simulation to the observations shows some improvement over lower resolution CarbonTracker model for some continental 

and coastal observation sites, located closer to anthropogenic emissions and strong biospheric fluxes, but also demonstrates 

the need for further improvement of the inverse modeling system components. Transport model errors can be reduced by 5 

improving transport modeling algorithms in Eulerian and Lagrangian model and using combination of recent higher 

resolution reanalysis data with high-resolution wind data simulations by regional models in the regions of interest. Inverse 

modeling algorithm can be improved by tuning the uncertainty scaling, and spatial and temporal covariance distances. Prior 

fluxes can be improved by developing high-resolution diurnally varying biospheric fluxes, developing a more detailed 

fossil emission inventory, and developing updates to biomass burning and oceanic fluxes. 10 
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Appendix 15 

Table A1. List of the observation site included in the ObsPack dataset 

 

Site ID Lat Lon. Site name Lab name Sampling Reference 

ALT 82.45 -62.51 Alert EC insitu Worthy et al. 2003  

ALT 82.45 -62.51 Alert NOAA flask Conway et al. 1994  

AMS -37.8 77.54 Amsterdam Island LSCE insitu Gaudry et al. 1991  

AMT 45.03 -68.68 Argyle NOAA insitu Andrews et al. 2014  

ARA -23.86 148.47 Arcturus CSIRO flask Francey et al. 2003  

ASC -7.97 -14.40 Ascension Island NOAA flask Conway et al. 1994  

ASK 23.26 5.63 Assekrem NOAA flask Conway et al. 1994  

AZR 38.77 -27.38 Terceira Island NOAA flask Conway et al. 1994  

BAO 40.05 -105.00 Boulder Atmospheric Observatory NOAA insitu Andrews et al. 2014  

BCK -116.1 62.80 Bechoko EC insitu Worthy et al. 2003  

BHD -41.41 174.87 Baring Head Station NOAA flask Conway et al. 1994  
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BHD -41.41 174.87 Baring Head Station NIWA insitu Brailsford et al. 2012  

BMW 32.27 -64.88 Tudor Hill NOAA flask Conway et al. 1994  

BRA 51.2 -104.7 Bratt's Lake Saskatchewan EC insitu Worthy et al. 2003  

BRW 71.32 -156.61 Barrow NOAA flask Conway et al. 1994  

BRW 71.32 -156.61 Barrow NOAA insitu Peterson et al. 1986 

CBA 55.21 -162.72 Cold Bay NOAA flask Conway et al. 1994  

CES 51.97 4.93 Cesar ECN insitu Vermeulen et al. 2011 

CGO -40.68 144.69 Cape Grim NOAA flask Conway et al. 1994  

CHL 58.75 -94.07 Churchill EC insitu Worthy et al. 2003  

CHR 1.70 -157.15 Christmas Island NOAA flask Conway et al. 1994  

CIB 41.81 -4.93 Centro de Investigacion de la Baja 

Atmosfera 

NOAA flask Conway et al. 1994  

CPT -34.35 18.49 Cape Point NOAA flask Conway et al. 1994  

CPT -34.35 18.49 Cape Point SAWS insitu Brunke et al. 2004  

CRI 15.08 73.83 Cape Rama CSIRO flask Francey et al. 2003  

CRZ -46.43 51.85 Crozet Island NOAA flask Conway et al. 1994  

CYA -66.28 110.52 Casey CSIRO flask Francey et al. 2003  

DRP -59.12 -63.63 Drake Passage NOAA ship flask Conway et al. 1994  

EGB 44.23 -79.78 Egbert EC insitu Worthy et al. 2003  

EIC -27.15 -109.45 Easter Island NOAA flask Conway et al. 1994  

ESP 49.38 -126.54 Estevan Point EC insitu Worthy et al. 2003  

EST 51.66 -110.21 Esther EC insitu Worthy et al. 2003  

ETL 54.35 -104.98 East Trout Lake EC insitu Worthy et al. 2003  

FSD 49.88 -81.57 Fraserdale EC insitu Worthy et al. 2003  

GMI 13.39 144.66 Mariana Islands NOAA flask Conway et al. 1994  

GPA -12.25 131.04 Gunn Point CSIRO flask Francey et al. 2003  

HBA -75.61 -26.21 Halley Station NOAA flask Conway et al. 1994  

HDP 40.56 -111.65 Hidden Peak (Snowbird) NCAR insitu Stephens et al. 2011  

HPB 47.80 11.02 Hohenpeissenberg NOAA flask Conway et al. 1994  

HUN 46.95 16.65 Hegyhatsal HMS insitu Haszpra et al. 2001  
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HUN 46.95 16.65 Hegyhatsal NOAA flask Conway et al. 1994  

INX -86.02 39.79 INFLUX (Indianapolis Flux 

Experiment) 

NOAA flask Conway et al. 1994  

IZO 28.31 -16.50 Izana NOAA flask Conway et al. 1994  

IZO 28.31 -16.50 Izana AEMET insitu Gomez-Pelaez et al. 

2011 

JFJ 46.55 7.99 Jungfraujoch KUP insitu Uglietti et al. 2011  

KAS 49.23 19.98 Kasprowy Wierch AGH insitu Necki et al. 2003 

KEY 25.66 -80.16 Key Biscayne NOAA flask Conway et al. 1994  

KUM 19.52 -154.82 Cape Kumukahi NOAA flask Conway et al. 1994  

LEF 45.95 -90.27 Park Falls NOAA insitu Andrews et al. 2014  

LJO 32.87 -117.26 La Jolla SIO flask Keeling et al. 2005 

LLB 54.95 -112.45 Lac La Biche EC insitu Worthy et al. 2003  

LLB 54.95 -112.45 Lac La Biche NOAA flask Conway et al. 1994  

LMP 35.52 12.62 Lampedusa NOAA flask Conway et al. 1994  

LUT 53.4 6.35 Lutjewad RUG insitu van der Laan et al. 

2009 

MAA -67.62 62.87 Mawson Station CSIRO flask Francey et al. 2003  

MEX 18.98 -97.31 High Altitude Global Climate 

Observation Center 

NOAA flask Conway et al. 1994  

MHD 53.33 -9.9 Mace Head NOAA flask Conway et al. 1994  

MHD 53.33 -9.9 Mace Head LSCE insitu Ramonet et al. 2010 

MID 28.21 -177.38 Sand Island NOAA flask Conway et al. 1994  

MLO 19.54 -155.58 Mauna Loa NOAA flask Conway et al. 1994  

MLO 19.54 -155.58 Mauna Loa NOAA insitu Thoning et al. 1989 

MNM 24.28 153.98 Minamitorishima JMA insitu Tsutsumi et al. 2005 

MQA -54.48 158.97 Macquarie Island CSIRO flask Francey et al. 2003  

NAT -5.51 -35.26 Farol De Mae Luiza Lighthouse NOAA flask Conway et al. 1994  

NMB -23.58 15.03 Gobabeb NOAA flask Conway et al. 1994  

NWR 40.05 -105.59 Niwot Ridge NOAA flask Conway et al. 1994  
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NWR 40.05 -105.59 Niwot Ridge NCAR insitu Stephens et al. 2011  

OTA -38.52 142.82 Otway CSIRO flask Francey et al. 2003  

OXK 50.03 11.81 Ochsenkopf NOAA flask Conway et al. 1994  

PAL 67.97 24.12 Pallas-Sammaltunturi NOAA flask Conway et al. 1994  

PAL 67.97 24.12 Pallas-Sammaltunturi FMI insitu Hatakka et al. 2003 

POC   Pacific Ocean Cruise NOAA flask Conway et al. 1994  

PSA -64.92 -64 Palmer Station NOAA flask Conway et al. 1994  

RPB 13.16 -59.43 Ragged Point NOAA flask Conway et al. 1994  

RYO 39.03 141.82 Ryori JMA insitu Tsutsumi et al. 2005 

SCT 33.41 -81.83 Beech Island NOAA insitu Andrews et al. 2014  

SEY -4.68 55.53 Mahe Island NOAA flask Conway et al. 1994  

SGP 36.8 -97.5 Southern Great Plains NOAA flask Conway et al. 1994  

SHM 52.72 174.1 Shemya Island NOAA flask Conway et al. 1994  

SMO -14.25 -170.56 Tutuila NOAA flask Conway et al. 1994  

SMO -14.25 -170.56 Tutuila NOAA insitu Halter et al. 1988 

SNP 38.62 -78.35 Shenandoah National Park NOAA insitu Andrews et al. 2014  

SPL 40.45 -106.73 Storm Peak Laboratory (Desert 

Research Institute) 

NCAR insitu Stephens et al. 2011  

SPO -89.98 -24.8 South Pole NOAA flask Conway et al. 1994  

SPO -89.98 -24.8 South Pole NOAA insitu Gillette et al. 1987 

STR 37.76 -122.45 Sutro Tower NOAA flask Andrews et al. 2014  

SUM 72.6 -38.42 Summit NOAA flask Conway et al. 1994  

SYO -69.01 39.59 Syowa Station NOAA insitu Morimoto et al. 2003  

TAP 36.73 126.13 Tae-ahn Peninsula NOAA flask Conway et al. 1994  

THD 41.05 -124.15 Trinidad Head NOAA flask Conway et al. 1994  

USH -54.85 -68.31 Ushuaia NOAA flask Conway et al. 1994  

UTA 39.9 -113.72 Wendover NOAA flask Conway et al. 1994  

UUM 44.45 111.1 Ulaan Uul NOAA flask Conway et al. 1994  

WAO 52.95 1.12 Weybourne UEA insitu Forster and Bandy, 

2006 
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WBI 41.73 -91.35 West Branch NOAA insitu Andrews et al. 2014  

WGC 38.27 -121.49 Walnut Grove NOAA insitu Andrews et al. 2014  

WIS 30.86 34.78 Weizmann Institute of Science NOAA flask Conway et al. 1994  

WKT 31.32 -97.33 Moody NOAA insitu Andrews et al. 2014  

WLG 36.29 100.9 Mt. Waliguan NOAA flask Conway et al. 1994  

WSA 43.93 -60.02 Sable Island EC insitu Worthy et al. 2003  

YON 24.47 123.02 Yonagunijima JMA insitu Tsutsumi et al. 2005 

ZEP 78.91 11.89 Ny-Alesund NOAA flask Conway et al. 1994  

 

 

Table A2. Validation sites. Aircraft data collected by NOAA/ESRL (Sweeney et al., 2015) and NIES (Machida et al., 

2008) 

 5 

Site ID Lat. Lon. Site/project name Territory Lab name 

ACG 68 -165 Alaska Coast Guard Alaska NOAA 

CAR 41 -104 Briggsdale Colorado NOAA 

CMA 39 -74 Offshore Cape May New Jersey NOAA 

CON 
 

  CONTRAIL  West Pacific NIES 

DND 47 -99 Dahlen North Dakota NOAA 

ESP 49 -127 Estevan Point  British Columbia NOAA 

ETL 54 -105 East Trout Lake Saskatchewan NOAA 

INX 40 -86 Indianapolis Flux Experiment Indianapolis NOAA 

LEF 46 -90 Park Falls Wisconsin NOAA 

HIL 40 -88 Homer Illinois NOAA 

NHA 43 -71 Offshore Portsmouth  New Hampshire NOAA 

PFA 65 -148 Poker Flat Alaska NOAA 

RTA -21 -160 Rarotonga Rarotonga NOAA 

SCA 33 -79 Offshore Charleston South Carolina NOAA 

SGP 37 -98 Southern Great Plains Oklahoma NOAA 

TGC 28 -97 Offshore Corpus Christi Texas NOAA 
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Figures 

 

 

Figure 1: Examples of prior CO2 fluxes (unit: gCm-2day-1): a) emissions from fossil fuel burning by ODIAC (Jan 2011), b)  fluxes 5 

from terrestrial biosphere by optimized VISIT model (day 160, Jun 9), c) emissions from biomass burning by GFAS in Africa 

(Jan 10, 2011), d) fluxes due to ocean-atmosphiere exchange by the OTTM assimilation model (Jan 2011) 

b) 

c) d) 

a) 
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Figure 2: Time series of simulated and observed concentrations (blue - observed, plum -forward (unoptimized), green – 

optimized) at Barrow (BRW), Jungfraujoch (JFJ), Wisconsin (LEF), Pallas (PAL), Syowa (SYO), and Yonagunijima (YON).  
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Figure 3: RMS difference between model and observations and absolute bias in 2010-2012 for (surface) sites included in 

inversion (blue – prior, pink – optimized, orange – CT2017, green – absolute value of mean difference (bias)) 
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Figure 4: RMS difference between model and observations and absolute bias in 2010-2012 for aircraft sites, not included in 

inversion (blue – prior, orange – optimized, magenta – CT2017, green – absolute value of mean difference (bias)) 

 

 5 
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Figure 5: Optimized flux correction (left) and posterior flux (right) maps for August 2011 (units gCm-2day-1, fossil emissions 

excluded) 

 

Figure 6: Monthly mean regional fluxes (fossil emissions excluded), average for 2010-2012. Prior, optimized and CarbonTracker 

for selected Transcom-3 regions (units gCm-2day-1). 5 

 

Appendix figures. 
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Figure A1: Simulated diurnal cycle bias, 3-month mean in the growing season (units ppm). 
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Figure A2: Map of observations sites and Transcom regions (triangles - surface flask sites, squares -continuous, circles – aircraft). 

 

Figure A3: Rate of cost function decline with gradient calls for extended year 2011 inversion and reduction relative to 61 gradient 

calls. 5 
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