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Abstract. The Tropospheric Monitoring Instrument (TROPOMI) on ESA Copernicus Sentinel-5 satellite (S5-P) measures the

carbon monoxide (CO) total column concentration as one of its primary targets. In this study, we analyse 551 TROPOMI

overpasses over Mexico City (more than 2 years of measurements) using collocated CO simulations of the regional Weather

Research and Forecasting (WRF) model to conclude on the emissions from different urban districts in the region. The WRF

simulation distinguishes the CO emissions from Tula, Pachuca, Tulancingo, Toluca, Cuernavaca, Cuautla, Tlaxcala, Puebla,5

the metropolian area of Mexico City (CDMX), and the adjoint urban area (ACDMX, CDMX surrounding municipalities from

estate of Mexico) by 10 separate tracers. Using a regularised source inversion approach, the TROPOMI observations yields

0.10 Tg/yr and 0.08 Tg/yr CO emissions from the Tula and Pachuca urban areas in the North of Mexico city. This exceeds sig-

nificantly the “Inventario Nacional de Emisiones de Contaminantes Criterio” (INEM) inventory that was adapted to the period

2017-2019 and results in an emissions <0.008 Tg/yr for both areas. For CDMX, TROPOMI estimates emissions of 0.14 Tg/yr10

CO, which is about half of the INEM emissions of 0.25 Tg/yr. ACDMX area, however, has a higher emissions with 0.29 Tg/yr

according to TROPOMI observations versus 0.14 Tg/yr as stated by the INEM inventory. The total emission of both districts is

similar (0.43 Tg/yr TROPOMI versus 0.39 Tg/yr adapted INEM emissions). Moreover, we found that the TROPOMI emission

estimates for CDMX and ACDMX follow a clear weakly cycle with a minimum during the weekend. This agrees well with

ground-based in situ measurements from the “Secretaria del Medio Ambiente” (SEDEMA) and Fourier Transform Spectrom-15

eter column measurements in Mexico City that is operated by the Network for the detection of Atmospheric Composition

Change Infrared Working Group (NDACC-IRWG). The study shows an approach to use the large amount of TROPOMI CO

data to conclude on urban emissions on sub-city scales for metropolises like Mexico City but also indicates the clear need for

further improvements of regional models like WRF, in particular with respect to the prediction of the local wind fields.

1 Introduction20

Carbon monoxide (CO) is an atmospheric trace gas emitted by incomplete combustion to the atmosphere (e.g. biomass burning,

industrial activity, and traffic). Its background concentration is relatively low with an atmospheric residence time varying from

days to month (Holloway et al., 2000) depending on the atmospheric concentration of the hydroxyl radical (Spivakovsky et al.,

1

https://doi.org/10.5194/acp-2020-238
Preprint. Discussion started: 7 April 2020
c© Author(s) 2020. CC BY 4.0 License.



2000). These characteristics established CO as a tracer for air pollution and its transport in the atmosphere (e.g. (Gloudemans

et al., 2009; Pommier et al., 2013; Schneising et al., 2019)).

The Tropospheric Monitoring Instrument (TROPOMI) launched 2017 as single payload of ESA’s Copernicus Sentinel-5

Precursor mission aims on CO as one of its primary targets. The operational CO column product is inferred from TROPOMI’s

shortwave infrared measurements with daily global coverage and a high spatial resolution of 7x7 km (Veefkind et al., 2012).5

Early in the mission, the TROPOMI CO dataset was validated with ground-based measurements of the Total Carbon Column

Observing Network (TCCON) (Borsdorff et al., 2018a), and inter-compared with the simulated CO fields of the European

Centre for Medium-Range Weather Forecasts (ECMWF) - Integrated Forecasting System (Borsdorff et al., 2018b). On 11 July

2018, it was concluded that the TROPOMI CO data quality is fully compliant with the mission requirements of 15% precision

and 10% accuracy and so it was released for public usage (https://scihub.copernicus.eu).10

Borsdorff et al. (2018a, 2019) illustrated the capability of TROPOMI to detect CO emissions from pollution hot spots

of medium size to large cites (e.g. Yerevan, Tabriz, Urmia, and Tehran), industrial areas (e.g. Po valley in Italy), and even

pollution along arterial roads in Armenia. To monitor the emissions of metropolises, data interpretation of multi-annual data

sets is required. The different inversion techniques discussed by (Varon et al., 2018) for plume inversions, i.e. the source pixel

method, the mass balance method and the inversion of a Gaussian plume model are appropriate to interpret emission of point15

sources but are less suitable for flux inversion of spatially extended sources. Therefore, in this study we estimate CO emission

inverting the regional atmospheric modeling Weather Research and Forecasting (WRF) as an atmospheric tracer transport

model, which allows to simulate the CO column on the spatial resolution as TROPOMI. Possible error sources of this type of

flux inversion is the limited validity of the simulated wind fields, prior assumption on the spatial distribution of emissions, and

the simulated atmospheric dispersion.20

Mexico City is a prime example of a CO pollution hot spot that is clearly detectable by TROPOMI. It is a fast growing mega

city located at an altitude of 2240 m on the Central Plateau which is surrounded by mountains. The urban area is divided in

ten different urban districts (Tula, Pachuca, Tulancingo, Toluca, CDMX, Cuernavaca, Cuautla, Tlaxcala, Puebla, CDMX, and

ACDMX) and the metropolis has a long history of atmospheric pollution measurements. More than 29 in situ CO measurements

stations are distributed over the city operated by the “Secretaria del Medio Ambiente” (SEDEMA, Mexican Ministry of the25

Enviroment). About every 2 years, the ministry reports on the CO emission of Mexico City. Based on the bottom-up approach

using the in situ measurements, it is concluded that a major part of Mexico City’s CO emission is caused by light duty motor

vehicles. SEDEMA found a decline of the CO emissions for the Zona metropolitana del valle de Mexico (ZMVM) from 2.04

Tg/yr in 2000, 0.7 Tg/yr in 2014, to 0.28 Tg/yr in 2016 SMA-GDF (2018). Here the emission estimation changed by 0.42 Tg/yr

in only 2 years from 2014 to 2016, due to a change in the mobile emission model from ‘mobile‘ to ‘moves‘. The emission30

estimate for the total central area wich is 0.73 Tg/yr for the year 2016 splits up into 0.28 Tg/yr for CDMX, 0.43 Tg/yr for

ACDMX, and 0.02 Tg/yr for Tizayuca.

Moreover, ground-based FTIR measurements are regularly performed as part of the NDACC (Network for the detection of

Atmospheric Composition Change) - IRWG (Infrared Working Group), which provide CO total column concentrations. Using

these measurements and IASI satellite observations of CO, Stremme et al. (2013) estimated the overall annual CO emission35
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of Mexico City to be about 2.15 Tg/yr for the year 2008. TROPOMI CO observations add new possibilities for air quality

monitoring due to the regional coverage, the daily overpass combined with the high precision of the data.

In this study, we analyse more than 2 years of TROPOMI CO measurements using collocated WRF CO simulations for

Mexico to get more insight into the emission of Mexico City. Section 1 introduces the TROPOMI CO dataset and the simulation

of the WRF model. Section 2 describes our methodology to fit the WRF model to the TROPOMI data for emission estimates.5

Sections 3 discusses our finding and section 4 gives the summary and conclusion.

2 TROPOMI CO data set

This study uses the TROPOMI dataset of CO total column concentration between 14th November 2017 and 25th August 2019

over Mexico. On 5 August, 2019, the spatial sampling of the data product at satellite nadir geometry was improved from

7x7 km2 to 7x5.6 km2 due to a shorter readout time of the detectors. The data processing deploys the shortwave infrared10

CO retrieval (SICOR) algorithm that was developed for the Copernicus operational data processing (Landgraf et al., 2016a).

Algorithm settings like the spectral windows, priori profiles and auxiliary are introduced in (Landgraf et al., 2016b). The

retrieval utilizes an forward calculation accounting for atmospheric scattering that allows to retrieve effective cloud parameters

(altitude, optical thickness) together with the total column concentrations of CO and of the interfering gases H2O, HDO and

CH4 (Vidot et al., 2012). The forward calculation uses the HITRAN 2016 database for all species as described by (Borsdorff15

et al., 2019) and the inversion deploys profile scaling approach that scales a reference profile to fit the spectral measurement

(Borsdorff et al., 2014). Here, the priori profile is taken from a spatio-temporally resolved atmospheric transport simulations

of the TM5 model (Krol et al., 2005). The TROPOMI data product also provides the total column averaging kernel acol that

relates the real vertical CO profile ρtrue to the retrieved total column concentration cret following the equation

cret = acolρtrue + ε (1)20

with the noise contribution ε. In this study we limit our analysis to scenes under clear-sky and low-cloud atmospheric condi-

tions, which corresponds to the filtering of quality assurance value q > 0.5. Individual TROPOMI CO orbits show an artificial

striping in flight direction, probably due to calibration inaccuracies. For de-striping, we apply an a posteriori correction to the

retrieved CO columns as discussed in (Borsdorff et al., 2019) based on frequency filtering in the Fourier space.

3 Methodology25

3.1 The WRF model

We simulate the CO column concentrations measured by TROPOMI by deploying the WRF-Chem model version 3.9.1.1. The

simulation covers the time period of TROPOMI measurements on the regional domain shown in Fig. 1. It assumes a time

invariant CO background concentration and does not account for atmospheric chemistry (Dekker et al., 2017). The spatial

resolution of the simulation is chosen to be comparable with the TROPOMI CO product sampling. Each grid cell of the30
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considered simulation domain (270x270km2) is 3x3k2. The WRF simulation employs the emission inventory “Inventario

Nacional de Emisiones de Contaminantes Criterio” (INEM) for the year 2013 but scaled by a factor of 0.48 to make it applicable

for the years 2017 to 2019. This factor was obtained when comparing the model results against surface measurements (García-

Reynoso et al., 2018). The inventory is time dependent and accounts for the diurnal, week-to-week and monthly variations of

the emissions. Moreover, the model run is constraint by NCEP North American Mesoscale (NAM) 12 km analysis wind fields5

(NCEP, 2015). Finally, WRF yields vertical CO concentration profiles for every latitude/longitude grid cell and every model

time step and tracer run. To estimate different CO emissions areas in central Mexico, the WRF simulation uses ten independent

tracer, one for Tula, Pachuca, Tulancingo, Toluca, Cuernavaca, Cuautla, Tlaxcala, Puebla, the metropolian area of Mexico City

(CDMX), and the adjoint urban area (ACDMX). Hence, the total simulated CO field is given by the sum of the simulated CO

fields of the tracer together with the spatiotemporal constant CO background. Since no atmospheric chemistry is accounted,10

the CO tracer field is linear in a scaling αi of the corresponding emissions per district,

FWRF(α1, · · · ,α10,αbg) =
10∑

i=1

kiαi + kbgαbg (2)

where ki represents the CO tracer field for the reference emission (adapted INEM data) for αi = 1. Further, the forward model

assumes linear dependence of CO background field kbg with scaling parameter αbg (Borsdorff et al., 2019).

Before contrasting the model simulations with the observations, we first interpolate the model fields to the geolocation and15

time of the TROPOMI observations and second integrate the model CO profiles to total column densities by applying the

total column averaging kernel of the TROPOMI CO retrieval following equation 2. We summarize this numerical step in the

observation operator O, which transforms the forward model into

Fsat(α1, · · · ,α10,αbg) =
10∑

i=1

O(ki)αi + kbgαbg (3)

Hence, the operator O accounts for the TROPOMI specific vertical sensitivity, which can change from measurement to mea-20

surement and so ensures that the comparison between TROPOMI and WRF is free of the null-space or smoothing error

(Rodgers, 2000; Borsdorff et al., 2014). Here the scaling factors αi per emission area are not affected by the operation.

In a next step, we transform Eq. (3) to

Fsat(E1, · · · ,E10,αbg) =
10∑

i=1

O(k̃i)Ei + kbgαbg (4)

Here, k̃i = ki

Ei,INEM
and Ei = αiEi,INEM with the corresponding emissions Ei,INEM of the INEM inventory interpolated to25

the TROPOMI overpass time.)

Finally, to improve the capability of the forward model to fit TROPOMI observations, we induce a linear altitude dependence

of the simulated CO column kelv = z− zref . Here, z is the mean elevation in the TROPOMI CO ground pixels and zref =

2240 m the reference altitude which is set to the elevation of Mexico City.

Fsat(E1, · · · ,E10,αbg) =
10∑

i=1

O(k̃i)Ei + kbgαbg + kelvαelv (5)30
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With this additional degrees of freedom the forward model can mitigate shortcomings of the WRF simulations using a spatially

constant CO background.

In our simulation of TROPOMI CO observations, we assume that the local enhancements of CO are due to emissions of

the city districts of the same day, whereas emissions from outside the domain as well as the temporal accumulation of CO

emission of the domain is described by the background CO field. Therefore, it means that the inferred emissions Ei represents5

an emission estimate of the urban district for the particular observation day. Moreover, the effective model parameter αbg and

αelv may vary between different TROPOMI overpasses.

3.2 Inversion

The linear forward model in Eq. (5) can be written in a matrix-vector notation,

Fsat(x) = Kx (6)10

with the state vector x = (E1, · · · ,E10,αbg,αelv) and the corresponding forward model Jacobian K = (k̃1, · · · k̃10,kbg,kelv).

To fit our forward model to the observations ymeas of a single TROPOMI overpass, we use the regularized least-squares fit

as described by Rodgers (2000).

xret = min
x

{
||ymeas−Kx||2Se

− ||x−xa||2Γ
}

(7)

15

The norms are defined by ||p||2M = pT ·M−1p for a vector p and a matrix M . Vector xret is the estimated state vector and

xa is a priori estimate. Here, Se is the measurement error covariance matrix given by the TROPOMI retrieval error on the

diagonal and Γ the regularization matrix which is in our case diagonal too.

The solution of the minimization problem (Eq. 3.2) is given by

xret = G(ymeas−Kxa) + xa (8)20

with the gain matrix

G = (KT S−1
e K + Γ)−1KT S−1

e (9)

The averaging kernel relates the ’true’ state vector xtrue to xret, namely

xret = A(xtrue−x)) + xa (10)

with25

A = GK (11)

A represents the derivative Aij = ∂xret,i

∂xtrue,j
, where its diagonal elements describe the retrieval sensitivity of a state vector

element to its true value. The degree of freedom for signal

DFS = trace(A) , (12)

5
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indicates the total number of independent pieces of information.

To evaluate the fit quality for each overpass, we consider the fit residuals δj = ymeas,j −Fj(x) with j subscribing each

individual observation of an overpass. Here, F (x) represents the measurement simulation after fitting. This yields the mean

〈δ〉=
1
J

J∑

j=1

δj (13)

and the standard deviations of the residuals5

σ(δ) =
1

J − 1

J∑

j=1

(δi−〈δ〉)2 (14)

The standard deviation σ(ymeas) and σ(F(x)) of the TROPOMI CO field and the corresponding WRF forward simulation

completes our set of diagnostics.

Applying the regularization the retrieved emissions are constrained to a certain prior state xa, which can induce an overall

bias to the data product if the prior is not chosen carefully.10

3.3 Pre-fit

In a pre-fit step we determine the prior emissions from a set of TROPOMI data with highest information content, such that

the emissions can be inferred without any regularization, Γ = 0. Here, individual emission estimates may be noisy due to

non-optimized noise propagation in the inversion, however, averaging all inversions reduces noise contribution and so gives a

reliable estimate of a mean emission for the different districts. The validity of this approach depends crucially on the selected15

data set of TROPOMI overpasses. On one hand, it should be large enough to estimate mean emissions for the period of

TROPOMI observations, and the other hand strict data filtering is required to get a stable inversion with little forward model

errors.

The information content of a single overpass varies and depends on several aspects: (1) The number of useful measurements

and their cloud coverage changes between different TROPOMI overpasses. Here, clouds shield the lower troposphere, where20

atmospheric measurements are particular sensitive to the surface emissions Ei. (2) The pixel size at the swath edge is about

32 km and so about 5 times larger than at the sub-satellite point. This reduces not only the number of pixels covering a certain

area but also the sensitivity of the individual TROPOMI observations. (3) The quality of the forward model depends on the

meteorological situation, where we consider model simulations for low wind speeds more reliable. This considerations led to

the criteria of the data filtering for the pre-fit. Thus, we only select overpasses which meet all of following filter criteria:25

– 70 % of the data domain is covered by TROPOMI observations

– for all observations the across track pixel size is < 15 km.

– the average wind speed of the scene is < 4 m/s.

– The fit residuum 〈δ〉< 8ppb, and the standard deviation σ(δ)< 8ppb to limit the effect of too large forward model

errors.30
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– σ(δ)/δ(ymeas)< 0.65 to ensure that the forward model can explain the variability of the measured CO field.

– σ(F(x))> 4 ppb to ensure that the model data contain a clear pollution signatures.

– the Pearson correlation coefficient r > 0.3 between COTROPOMI and COWRF .

The filter criteria reduce the original set of 551 overpasses to 148, which we consider to be sufficient to estimate the overall

average emission rate per district, yielding the prior state vector xa. For this we use the median instead of the mean because of5

its robustness against outliers. With the same reasoning we define the percentile difference

δPj = |Pj(84.1)−Pj(15.9)
2

| (15)

, to describe scattering in the data, which corresponds to the standard deviation of normal distributed parameters. Finally, we

calculate the error of the mean using the percentile difference.

3.4 Final-fit10

Subsequently, the final data reduction steps is performed. To reduce the noise propagation in the inversion and to become

independent on the prior data selection, we regularize the inversion to the prior state determined by the pre-fit. Here, we choose

Γ to be a diagonal matrix with

diagΓ = [γ1,γ2, · · · ,γ10,0,0] (16)

such that the elements of the state vector αbg and αelv are not regularized. Obviously, the regularization parameter γi must15

be well-chosen to optimize the balance between minimum error propagation on the fit parameter and maximum information

content inferred from the measurement. If γi is chosen too small, the propagation of the TROPOMI measurement noise as

well as retrieval biases and forward model errors dominates the inversion. If γi is chosen too large, the estimated state vector

reproduces the prior estimate without appropriate use the information content of the measurement. For our application, we

fix the regularization parameter γi for i= 1, · · · ,10 to constant values such that the scatter of the retrieved emissions stays20

within predefined boundaries. Considering the temporal variation of the INEM emissions to be about 40%, we adjusted the

regularization parameter γ1, · · · ,γ10 such that the retrieved emissions vary with 60% around their average. This puts a moderate

constraints on the inversion ensuring on one hand a stable inversion and on the other hand a realistic variation of the retrieved

emissions around the priori.

A great advantage of the Final-fit compared to the Pre-fit is that the retrieved emissions can be filtered with respect to the25

information provided by the TROPOMI measurements. We filter on the information for each tracer emission Ei individually,

considering inferred emissions with (AK(i, i)> 0.3). This form of data mining optimizes the data use, keeping in mind that

TROPOMI overpasses may be appropriate to determine one specific source but not all sources simultaneously. In this manner,

noise propagation in the inversion can be minimized. This concept of information content based filtering turned out to be very

useful. The filter criteria of the Pre-fit are not required anymore for the Final-fit to achieve a very similar performance. A30

filtering like this is not possible for the Pre-fit since the averaging kernel of an regularized retrieval is by definition (AK(i, i) =

1).
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4 Results

Fig. 2 shows the fitted CO background concentration and its annual cycle. Here, the biomass burning season between February

and June causes the corresponding CO enhancement, whereas lower CO concentrations are observed during the rain season

between June and November.The extremely high CO column values on the 15th May 2019 are due to the transport of CO

enriched air from wild fires in the South-West of Mexico in to the model domain. Figure 3 shows the CO concentration in the5

state of Mexico under normal conditions and after the fires, which caused a serious health hazard in Mexico City. These type

of fires outside the model domain create an inhomogeneous background CO field over Mexico City, which cannot be described

by our forward model. Only fitting a scaling to a constant background field is not sufficient in this extreme cases and so during

the fire season many data cannot be considered.

Figure 4 shows three examples of TROPOMI overpasses, which includes a pixel resolution of 7x7 km2 (panel (a), (b), and10

(c)) and the enhanced spatial resolution of 7x5.6 km2 (panel (d)), where latter is the TROPOMI instrument baseline since the

6th of August 2019. Focusing on the dry season, the TROPOMI instrument can detect distinct CO enhancements over the

different emission areas in Central Mexico with the retrievals from single orbit overpasses (see left column of Fig. 4). After

fitting our forward model to the TROPOMI measurements, as part of the Final-fit, brings simulated data and observations into

good agreement as illustrated in Fig. 4. Particular for low wind speed conditions in Fig. 4(a), TROPOMI and WRF show distinct15

CO enhancements over the different emission areas of Mexico. Furthermore, the transport of CO enhanced air form Mexico

City towards the South following the mountain orography and the accumulation of CO in the South is seen by TROPOMI in

agreement with the WRF simulation (4(c). This clearly shows that regional models like WRF have a great potential for the

interpretation and analysis of TROPOMI data. However, we also found clear localized residuals in the difference δj between

observations and forward model. (right column of Fig. 4). For atmospheric conditions under high wind speeds the WRF20

simulations can deviate more from the TROPOMI measurements as shown in Fig. 4 (c). Here, the plume of CO enriched

air extending from Mexico City towards the North is simulated very narrow compared to the more dispersed plume seen by

TROPOMI. This points to an possible underestimation of the atmospheric dispersion in the WRF simulation. A very prominent

residual between TROPOMI and WRF is shown in 4 (d) but also present in 4 (a) and (b). Here TROPOMI measures a strong

CO enhancement in the North of Mexico City that is not reproduced by the WRF model. This points at a deficient spatial25

distribution of INEM emissions.

Fig. 5 (a) shows for each tracer doamin the averaged emissions of the Final-fit derived from the TROPOMI data Ei in

comparison to the ones of the Pre-Fit and the priori emission used for the WRF simulation (adapted INEM inventory). We

find significant differences between the emissions of the priori and the Final-fit. The retrieved emissions of the Final-fit from

the urban districts Tula (0.10 Tg/yr) and Pachuca (0.08 Tg/yr) in the North of Mexico city seem to be underestimated by the30

emission inventory (both were less then 0.008 Tg/yr). Furthermore we found that the emission of the central part of Mexico

city (CDMX) is assumed too high in the priori emissions (0.25 Tg/yr). The TROPOMI measurements indicate lower values for

CDMX (0.14 Tg/yr) which come along with higher values for the district ACDMX (0.29 Tg/yr). The sum of both emissions

(0.43 Tg/yr) is similar to the priori emissions (0.39 Tg/yr). This may mean that the total emissions of the domain including
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CDMX and ACDMX is well represented in the emission inventory but only the spatial distribution of the source intensity is

unrealistic.

In General, the retrieved emissions of the Final-fit are in good agreement with the one of the Pre-fit. The explanation for this

is simple, the retrieved emission of the Pre-fit are used as priori for the regularized inversion of the Final-fit as described in

Sec 3.4. The scatter of the individual retrievals of the Pre-fit is high and in most cases exceeds 100% (see Fig. 5 (b)). This is5

most probably caused by forward model errors as discussed before. Furthermore, non-uniform variation of the background CO

concentration can be a additional reason for this scatter (as shown in Fig. 3). However, the average of the individual retrievals

of the Pre-fit is more trustworthy (see error bars in Fig. 5 (a)) and by that is our best estimate of an unbiased emission priori

for the Final fit. The regularization of the Final-Fit succeeds to reduce the scatter of the individual retrieval as shown in 5 (b)).

In Fig. 6, the averaging kernel of the examples cases shows high values on the diagonal indicating that the Final-fit even10

using the regularization can distinguish emissions of the different urban districts of Mexico. Moreover, the averaging kernel

shows that the Final-fit inversion is insensitive to deviations of the Tulancingo emission from the prior estimate. Whereas

the Pre-fit inversion estimates very small emissions for this district, the subsequent regularization changes the emission only

marginally. Furthermore, the regularization of the Final-fit imposes cross-correlations e.g. between CDMX and ACDMX as

can be seen in panel (d) of Fig. 6, which are still small compared the diagonal. In general, for a correct interpretation of the15

retrieved emissions the averaging kernels shown in Fig. 6 needs to be taken in account when ever possible. So, one can filter the

emission product with respect to the information provided by the TROPOMI measurements. Hence, for the Final-fit, we filter

on the information for each tracer emission Ei individually. This results in different number of coincidences for the different

districts (panel (c) of Fig 5). This form of data mining optimizes the data use, keeping in mind that TROPOMI overpasses may

be appropriate to determine one specific source but not all sources simultaneously. In this manner, noise propagation in the20

inversion can be minimized.

Due to the reduced scatter and the higher data amount of the Final-fit for the suburbs CDMX and ACDMX, the Final-

fit allows to conclude on the time dependent variability of emission in Mexico City. Figure 7 (a) shows the time series of

the emission for CDMX and ACDMX, which vary around the priori value. This temporal variation is determined from the

measurements as all prior information is assumed to be time invariant. Panel (b) of the figure shows relatively high values25

of the diagonal elements of the averaging kernel for the emissions of the two urban districts. Finally, panel (c) of the figure

indicates a clear weakly CO cycle in the data with low values during weekends. During the week the CO emissions of the

two districts do not differ significantly due to the error estimates and more TROPOMI data is required to further constrain the

weekly cycle.

A similar weakly cycle is observed by Mexico City situ measurements provided by 29 SEDEMA ground stations. For each30

of the sites, we use data from 2017 to 2018 for the overpass time of TROPOMI (12h-15h local time), calculated an weakly

cycle and group the data in the stations located in the CDMX urban area and those located in the wider area of the metropolis.

Figure 8a depicts the median of all weakly cycles and the standard error of the mean with a clear minimum during weekends.

The error bars indicate that the overall shape of the weekly cycles for the remaining days vary a lot from station to station.
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The lower CO concentrations during the weekend are also detectable with column retrievals from ground-based FTIR mea-

surements in Mexico City 2280 m.a.s.l 19.32◦N and -99.18◦E at the campus of the national University by the atmospheric

science center (CCA). The used spectra are recorded in the mid infrared with a resolution of 0.075 cm−1 (Bezanilla et al.,

2014; Plaza-Medina et al., 2017) and the CO column and profile is retrieved using the standard NDACC retrieval strategy

(García-Franco et al., 2018; Borsdorff et al., 2018a). Figure 8b shows the averaged weakly cycle with standard error derived5

from the column measurements. Due to the low data density at weekends we used the full time range from the 5th Decem-

ber 2010 to the 10th September 2019 without filtering for the overpass time of TROPOMI. These independent ground based

measurements confirm the weekly CO cycle found in the TROPOMI data.

5 Conclusions

In this study, we analyzed TROPOMI CO retrieval from 551 overpasses of the instrument over Central Mexico, which corre-10

sponds to about 2-years of measurements starting from the 14th November 2017 until the 25th August 2019. We found that the

TROPOMI CO data allows pollution monitoring by single overpasses with a high spatial resolution of 7x7 km2 that is enhanced

to 7x5.6 km2 from the 6th of August 2019 onwards. The high signal-to-noise ratio of the measurements allows to distinguish

distinct CO enhancements over the various urban districts of Central Mexico using single orbit overpasses of TROPOMI.

With a dedicated WRF tracer simulation for the full time range of the current TROPOMI data record, we could distinguish15

the contribution of ten urban districts Tula, Pachuca, Tulancingo, Toluca, Cuernavaca, Cuautla, Tlaxcala, Puebla, CDMX, and

ACDMX. The model data was collocated with the TROPOMI measurements and convolved with the total column averaging

kernel to account for the vertical sensitivity of the instrument. The WRF tracer simulation does not account for atmospheric

chemistry and so the simulated CO tracer fields is linear in the emission rates of the different districts.

The CO emissions are determined in two steps. First we apply a unregularized least squares fit of the model to the TROPOMI20

observations to determine the averaged emission per district. A strict data screening based on the measurements and WRF

model simulation reduced the TROPOMI data set from 551 to 148 overpasses. For this data set, the fit quality is good after

introducing two auxiliary fit parameters for the background variability with time and the dependency of the simulated column

on terrain height. However, the individual emission rates show a high scatter exceeding 100% of the averaged emissions. When

averaging the filtered emissions, the averaged emissions for the various urban districts of Mexico deviates from emission25

estimates of the “Inventario Nacional de Emissions de Contaminantes Criterio” (INEM) inventory adapted to the period 2017-

2019. The TROPOMI emissions from the urban districts Tula (0.10 Tg/yr) and Pachuca (0.08 Tg/yr) in the Norther of Mexico

city deviate significantly from the INEM inventory with 0.008 Tg/yr for both areas. For the emission of the central part of

Mexico city (CDMX), TROPOMI indicate 0.14 Tg/yr versus 0.25 Tg/yr INEM emissions and 0.29 Tg/yr versus 0.14 Tg/yr

INMEN emissions for the district ACDMX. Together, both districts have similar emissions with 0.43 Tg/yr seen by TROPOMI30

versus 0.39 Tg/yr from the inventory, pointing to a different relative distribution of the CO emissions seen by TROPOMI.

Finally, in a second retrieval, we regularize the inversion towards the mean emission estimate, determined in the first step.

This reduces the scatter of the retrieved emissions to about 60% of the median for all urban districts. For data interpretation and
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screening, the use of the averaging kernel is of great advantage. It allows to diagnose cross correlations between the inferred

emission rates, which in general is weak for our application. Moreover, the a posteriori data screening uses the averaging kernel

to optimize data selection per emission source. This filter concept is very powerful and allows us to distill from the data set a

weakly cycle of CO emission at the districts CDMX and ACDMX with a clear minimum during weekends. This finding is in

agreement with in situ observations and ground-based FTIR measurement in the metropolis.5

Our study shows the need and the potential of regional atmospheric transport modeling for the interpretation of TROPOMI

CO data over metropolitan areas like Mexico City. Here, the CO pollution is a composite of emissions from different districts

and its transport leads to complex CO enhancement patterns in the atmosphere. The WRF tracer model could simulate the

TROPOMI measurement to a great extend, however model errors are still significant and further improvement is required to

fully explore the TROPOMI CO observations over mega-cities.10

6 Data availability

The TROPOMI CO data set of this study is available for download at ftp://ftp.sron.nl/open-access-data-2/TROPOMI/tropomi/

co/. The in situ measurements in Mexico City were downloaded from http://www.aire.cdmx.gob.mx. The ground-based FTIR

measurements in Mexico can be downloaded http://www.epr.atmosfera.unam.mx/ftir_data/UNAM/CO/VERTEX/v1/.
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Figure 1. Urban districts surrounding Mexico City. For each of the color coded domains a separate WRF tracer run was performed based on

the emissions within the polygons. The elevation map in the background is under copyright © Esri, Airbus DS, USGS, NGA, NASA, CGIAR,

N Robinson, NCEAS, NLS, OS, NMA, Geodatastyrelsen, Rijkswaterstaat, GSA, Geoland, FEMA, Intermap and the GIS user community.
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Figure 2. Background CO concentration for the domain shown in Fig. 1 estimated by fitting the WRF simulation to the TROPOMI data. (a)

background CO for individual collocations from the 9th of November 2017 to the 25th of August 2019. (b) Monthly mean background CO

based on the individual collocations. The error bars are the standard error of the mean and the light blue line time invariant prior used in the

fit.
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Figure 3. TROPOMI CO data over Mexico City averaged on a 0.1 by 0.1 degree lat/lon grid. (a) averaged from 12 to 18 of April 2019

showing undisturbed background CO levels. (b) averaged from 12 - 18 of May 2019 showing high CO concentrations in Mexico City caused

by fires in the South-East. The street map in the background is under copyright © 2009 ESRI, AND, TANA, ESRI Japan, UNEP-WCMC.
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Figure 4. Example cases for fitting the WRF simulation to the TROPOMI data deploying the “Final-fit” approach for (a) the 20th of

September, (b) the 7th of November, (c) the 19th of November 2018 and (d) the 17th of August 2019. TROPOMI CO retrievals (left column),

WRF simulation fitted to the TROPOMI data (middle column), and the residual (right column, TROPOMI - WRF).
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Figure 5. Statistics of CO emissions averaged from the 9th of November 2017 to the 25th of August 2019 for the tracer domains shown in

Fig. 1. (a) Median of the priori emissions (adapted INEM inventory) used for the WRF simulation (grey) and retrieved from the TROPOMI

data (Pre-fit in blue, Final-fit in green). The error bars indicate the standard error of the mean calculated from the delta percentiles (b) used

as a robust estimation of the standard deviation and the number of collocations (c). The number of collocation of the Pre-fit is the same for

all tracer domains (blue line) but in the Final-fit it is changing due to the information content filtering.
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Figure 6. Averaging kernel matrices showing the sensitivity and cross-sensitivities for the scaling of the different tracer fields. The same

cases as in Fig. 4 are shown for the dates (a) the 20th of September, (b) the 7th of November, (c) the 19th of November 2018 and (d) the 17th

of August 2019 but deploying the regularized retrieval.
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Figure 7. Retrieved CO Emissions from the TROPOMI data for the tracers CDMX (left panel) and ACDMX (right panel). (a) Time series of

individual retrieved CO emissions. The error bars indicate the error of the fit and the black line is the time invariant priori used in the fit. (b)

degree of freedom of the scaling factor for the tracer field. Only data with dofs > 0.3 is accounted for. (c) Weekly cycle of the CO emissions.

Median values are shown and the error bars are the standard error of the mean deploying the delta percentile as a robust estimation of the

standard deviation.
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Figure 8. Weekly cycle of the CO concentration. (a) based on 29 in situ measurements station operated by SEDEMA. (b) ground-based

FTIRs vertical column measurements of an instrument located in Mexico. Median values are shown and the error bars are the standard error

of the mean deploying the delta percentile as a robust estimation of the standard deviation.
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