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Response to Reviewer #2 of acp-2020-232 
 

Dear Reviewer #2 (Johannes Mülmenstädt), 

 
Thank you very much for taking your time to review our paper. We think that your comments greatly 
help improve the manuscript. We have revised the manuscript according to your comments as 
explained below with point-by-point responses to your comments. We hope that the revision is enough 
to address your comments to make the manuscript now acceptable for publication in ACP. 
 
[RC]: Referee comment 
[AC]: Author comment 
 
 
Reviewer #2 (Johannes Mülmenstädt): 
[RC] I have reviewed “Snow-induced buffering in aerosol–cloud interactions” by Takuro Michibata 
et al. The authors present an interesting set of sensitivity studies that show that prognostic snowfall in 
their GCM strongly reduces ERFaci compared to diagnostic snowfall, in large part because the 
longer residence time of snow leads to greater collection of cloud water by snow, which reduces the 
relative importance of warm phase ACI. Based on my own work, I think this is a plausible mechanism. 
There are a few potential weak links in the argument, which I will point out below. I don’t think those 
should hold up publication of this potentially very useful result; after all, no paper is ever the final 
word on any topic. I recommend minor revisions to clarify the points I list below. 
[AC] We would like to thank Johannes Mülmenstädt for his carefully reading our manuscript and for 
giving insightful comments. We have revised the manuscript according to the referee comments. 
In the revised manuscript, we have added a new estimate of multi-satellite ERFaci which considers the 
retrieval error based on Ma et al. (2018), as shown in Figure R3 (see [AC3] below). Furthermore, we 
have improved the method for estimating ERFaci in MIROC through providing “clean-sky ERFaci” 
based on Ghan (2013) to preclude contamination by aerosol-radiation interaction in cloudy-sky 
condition (see [AC4] for details). 
The reply and corrections on individual comments are shown below. 
 
 
Major points 
 
[RC1] l. 110: The tuning strategy needs to be described in more detail. The worry with retuning is 
that the ERFaci difference may not be due to the change that was intentionally made, but due to the 
retuning. 
[AC1] Thank you for sharing your recent study which documents the link between tuning processes 
and ERFaci as commented in [RC7]. In our study, we primarily tuned the warm rain efficiency by 
modifying scale factor for accretion rate but not autoconversion because the latter can influence the 
magnitude of ACI due to the direct relation to droplet number (Michibata and Takemura, 2015; Jing et 
al., 2019) and thus the precipitation initiation (Mülmenstädt et al., 2020). This is effective for 
modifying SW radiation, but if needed, cloud ice and snow processes were also tuned for modifying 
LW radiation by changing scale factors for the fall speed of hydrometeors, which may be uninfluential 
on ERFaci because they are not involved directly in the hydrometeor number densities. We have 
added these statements in this paragraph. 
 
[RC2] l. 170 ff.: This is a question rather than a comment. From the conclusion of the paper, I would 
have expected the relationship between dLWP and dSWP to be the opposite – that when there is more 
snow, it would lead to more efficient removal of liquid cloud water. Would you mind making these 
plots separately for supercooled and nonsupercooled water? 
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[AC2] This is a very important point. Considering the instantaneous response, the more snow should 
result in more efficient removal of the underlying cloud water due to collection processes, as the 
reviewer pointed. However, this does not always mean that the relationship between dCLWP and 
dSWP should be negative because the increased CLWP with aerosols (dCLWP > 0) contributes to 
additional sources of rain and snow (dRWP > 0; dSWP > 0), which would make the positive 
relationship in the monthly mean scale. Although the increased response of CLWP with aerosols 
through PI to PD is basically the same for both DIAG and PROG due to the cloud lifetime effect, the 
precipitation-driven collection of cloud droplets in PROG buffers the dCLWP (not mean negative) and 
thus the magnitude of ACI. The significant buffering of ACI can be seen when the model prognoses 
snow (Fig. 4) particularly over anthropogenic regions where snow is abundant, which does not conflict 
the positive relationship between dCLWP and dSWP. 
To understand how the dCLWP-dSWP relation depends on the cloud regime, we further looked at the 
plot for supercooled and nonsupercooled regimes separately (Figure R6). The relationship between 
dCLWP and dSWP is more robust in the supercooled regime than in the nonsupercooled regime, 
implying that the mixed-phase cloud microphysics is a key driver to the snow-induced ACI buffering. 
Although we did not obtain a negative correlation between dCLWP and dSWP from this analysis, a 
theoretical approach and idealized process modeling should be required for future study to solidify the 
process-level understanding of snow-induced buffering hypothesis. 
We have added the following sentence in the revised manuscript (Line 238): “Furthermore, a 
theoretical approach (Glassmeier and Lohmann, 2016) and idealized process modeling (Glassmeier et 
al., 2019) are also required urgently to solidify the process-level understanding of snow-induced 
buffering hypothesis, which are our important future work beyond the present study.” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure R6. Relationship between the change in annual mean CLWP (nonsupercooled in blue and supercooled in 
cyan) and that in annual mean SWP, from the change in aerosols from PI to PD conditions, simulated using the 
PROG scheme. The correlation coefficients (r) are given in the figure. 
 
 
Minor points 
 
[RC3] l. 39 ff.: I don’t think this argument is logically consistent. First, the authors say ERFaci in 
GCMs is “too negative” compared to satellite studies (I would prefer “more negative”, since satellite 
studies have their own problems). But then they cite a (problematic) satellite study with a very 
negative SW ERFaci to argue that the problem is with the models’ LW ERFaci. The rest of the 
paragraph is fine, but I would suggest removing the first two sentences. 
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[AC3] Yes, satellite retrievals also include uncertainties which may underestimate ERFaci because 
satellites undersample the weak-aerosol regime, where the cloud sensitivity to aerosol is largest (Ma et 
al., 2018). In the revised manuscript, we have added multi-satellite ERFaci which considers the 
retrieval errors based on Ma et al. (2018) as shown in Michibata and Suzuki (2020), but the DIAG 
scheme still shows more negative ERFaci (Figure R3). This implies that there might be unknown 
compensating aerosol warming effects that are missing in current GCMs, possibly through 
mixed-phase clouds (Lohmann and Hoose, 2009). 
We therefore have remained the sentences but modified slightly as follows (Lines 39-42): “As a 
consequence of the challenges described above, GCMs tend to show more negative ERFaci than that 
inferred from satellite retrievals (Quaas et al., 2009; Chen et al., 2014) even though retrieval errors 
(Ma et al., 2018) are considered (Michibata and Suzuki, 2020). This suggests that current GCMs may 
be missing a compensating warming effect caused by aerosols.”. 
 
[RC4] l. 111: Didn’t Ghan (2013) show that the change in cloud radiative effect is not a good 
estimate of ERFaci because it contains pieces of ERFaci and ERFari? 
[AC4] In the revised manuscript, we have improved the method for estimating ERFaci in MIROC 
through providing “clean-sky ERFaci” based on Ghan (2013) to preclude contamination by 
aerosol-radiation interaction in cloudy-sky condition. This revision changes Figures 1, 2, and 4. We 
have also added a new estimate of multi-satellite ERFaci which considers the retrieval error based on 
Ma et al. (2018), as presented in Michibata and Suzuki (2020) (please see also [AC3] above). 
 
[RC5] l. 130: It might be worth pointing out that the Heyn et al. (2017) behavior is present in the 
zonal mean distribution (wherever SW ERFaci becomes stronger [weaker], LW ERFaci also becomes 
stronger [weaker]), but not in the global mean. 
[AC5] The following sentence has been added in this paragraph (Line 128): “The zonal distribution 
shows that stronger (weaker) LW ERFaci accompanies stronger (weaker) SW ERFaci, which is in line 
with Heyn et al. (2017).”. 
 
[RC6] Fig. 3: The legend should say what the aggregation is, i.e., are the box and whiskers calculated 
based on monthly mean grid boxes? Also, in my mind, “susceptibility” implies susceptibility to a 
measure of aerosol; I would call the LWP, RWP, and SWP changes dLWP etc. 
[AC6] The following explanation has been added in the caption: “Box-whisker plots represent the 
10th, 25th, 50th (black “+”), 75th, and 90th percentiles of the data within each bin based on the annual 
mean.”. The figure legend uses dCLWP, dRWP, and dSWP, instead of “susceptibility”. 
 
[RC7] l. 190: See my comment about retuning above. For example, in Mülmenstädt et. al. (2020), 
https://doi.org/10.1126/sciadv.aaz6433, we found that ERFaci is fairly insensitive to the cloud droplet 
number exponent but very sensitive to the liquid water mixing ratio exponent and the overall 
normalization in the Khairoutdinov and Kogan (2000) autoconversion scheme. If the retuning strategy 
for the change in Nc exponent involves changing other parts of the autoconversion, that may result in 
an overly strong apparent ERFaci change. Of course, which parameters ERFaci is sensitive will vary 
between models. 
[AC7] Thank you for your very important comment. We have added a more detailed description of the 
tuning (Section 2.2) as answered in [AC1]. We have also modified the sentence citing the suggested 
work. 
 
[RC8] l. 210: Is this list complete? E3SM has prognostic snow (Rasch et al., 2019), and I believe 
GISS Model E3 does too. HadGEM3 may do so as well. 
[AC8] Thank you for the information. The authors have contacted several modeling centers to know 
the latest model spec on the treatment of precipitation. Some replies suggested that now more GCMs 
include two-moment prognostic precipitation with snow radiative effect (e.g., E3SM, GISS-Model E3). 
In the revised paper (Lines 210 and 230), this sentence has been slightly changed citing a relevant 
paper (Li et al., 2020) which overviews the latest model status in CMIP6. 
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Thank you very much again for reviewing our paper. 
 
Sincerely yours, 
 
Takuro Michibata 


