

1 Drivers of cloud droplet number variability in the summertime 2 Southeast United States

3 Aikaterini Bougiatioti^{1,2}, Athanasios Nenes^{2,3,4}, Jack J. Lin^{2,a}, Charles A. Brock⁵, Joost A. de Gouw^{5,6,b}, Jin
4 Liao^{5,6,c,d}, Ann M. Middlebrook⁵, André Welti^{5,6,e}

5 ¹Institute for Environmental Research & Sustainable Development, National Observatory of Athens, P.
6 Penteli, GR-15236, Greece

7 ²School of Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA

8 ³Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental
9 Engineering, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland

10 ⁴Institute for Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, GR-
11 26504, Greece

12 ⁵Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, 80305, USA

13 ⁶Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder, CO, 80309,
14 USA

15 ^a now at: Nano and Molecular Systems Research Unit, Box 3000, FI-90014 University of Oulu, Oulu,
16 Finland

17 ^b now at: Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO, USA

18 ^c now at: Atmospheric Chemistry and Dynamic Laboratory, NASA Goddard Space Flight Center,
19 Greenbelt, MD, USA

20 ^d now at: Universities Space Research Association, GESTAR, Columbia, MD, USA

21 ^e now at: Atmospheric Composition Research Unit, Finnish Meteorological Institute, Helsinki, Finland

22 *Correspondence to:* Aikaterini Bougiatioti (abougiat@noa.gr), Athanasios Nenes
23 (athanasios.nenes@epfl.ch).

24 Abstract

25 Here we analyze regional scale data collected onboard the NOAA WP-3D aircraft during the 2013
26 Southeast Nexus (SENEX) campaign to study the aerosol-cloud droplet link and quantify the sensitivity of
27 droplet number to aerosol number, chemical composition and vertical velocity. For this, the observed
28 aerosol size distributions, chemical composition and vertical velocity distribution are introduced into a
29 state-of-the-art cloud droplet parameterization to show that cloud maximum supersaturations in the region
30 are low, ranging from 0.02 to 0.52% with an average of $0.14 \pm 0.05\%$. Based on these low values of
31 supersaturation, the majority of activated droplets correspond to particles of dry diameter 90 nm and above.
32 An important finding is that the standard deviation of the vertical velocity (σ_w) exhibits considerable diurnal
33 variability (ranging from 0.16 m s^{-1} during nighttime to over 1.2 m s^{-1} during day) and it tends to covary
34 with total aerosol number (N_a). This σ_w - N_a covariance amplifies the predicted response in cloud droplet
35 number (N_d) to N_a increases by 3 to 5 times, compared to expectations based on N_a changes alone. This
36 amplified response is important given that droplet formation is often velocity-limited, and therefore should
37 normally be insensitive to aerosol changes. We also find that N_d cannot exceed a characteristic concentration
38 that depends solely on σ_w . Correct consideration of σ_w and its covariance with time and N_a is important for
39 fully understanding aerosol-cloud interactions and the magnitude of the aerosol indirect effect. Given that

40 model assessments of aerosol–cloud–climate interactions do not routinely evaluate for overall turbulence
41 or its covariance with other parameters, datasets and analyses such as the one presented here are of the
42 highest priority to address unresolved sources of hydrometeor variability, bias, and the response of droplet
43 number to aerosol perturbations.

44 **1. Introduction**

45 Atmospheric particles (aerosols) interact with incoming solar radiation and tend to cool the Earth, especially
46 over dark surfaces such as oceans and forests (Charlson et al., 1992). Aerosols also act as cloud
47 condensation nuclei (CCN), form droplets in clouds and indirectly affect climate by modulating
48 precipitation patterns and cloud radiative properties. Aerosol–cloud interactions constitute the most
49 uncertain aspects of anthropogenic climate change (Seinfeld et al., 2016). Studies often highlight the
50 importance of constraining the aerosol size distribution, particle composition and mixing state for predicting
51 CCN concentrations (Cubison et al., 2008; Quinn et al., 2008). Model assumptions often cannot consider
52 the full complexity required to comprehensively compute CCN – which together with other emissions and
53 process uncertainties lead to CCN prediction errors that can be significant (e.g., Fanourgakis et al., 2019).
54 Owing to the sublinear response of cloud droplet number concentration (N_d) to aerosol perturbations,
55 prediction errors in CCN generally result in errors in N_d which are less than those for CCN (Fanourgakis et
56 al., 2019). The sublinear response arises because elevated CCN concentration generally increases the
57 competition of the potential droplets for water vapor; this in turn depletes supersaturation and the N_d that
58 can eventually form (Reutter et al., 2009; Bougiatioti et al., 2016; Fanourgakis et al., 2019; Kalkavouras et
59 al., 2019). A critically important parameter is the vertical velocity, as it is responsible for generation of
60 supersaturation that drives droplet formation and growth. Droplet number variability may be driven
61 primarily by vertical velocity variations (Kacarab et al., 2020; Sullivan et al., 2019). Compared to aerosols,
62 vertical velocity is much less observed, constrained and evaluated in aerosol–cloud interaction studies,
63 hence may be a source of persistent biases in models (Sullivan et al., 2019).

64 The Southeast United States (SEUS) presents a particularly interesting location for studying regional
65 climate change, as it has not considerably warmed over the past 100 years – except during the last decade
66 (Carlton et al., 2018; Yu et al., 2014; Leibensperger et al., 2012a,b). These trends are in contrast with the
67 trends observed in most locations globally (IPCC 2013), and several hypotheses have been proposed to
68 explain this regional phenomenon, including the effect of involving short-lived climate forcers such as
69 secondary aerosols combined with the enhanced humidity in the region and their impact on clouds (Carlton
70 et al., 2018; Yu et al., 2014). Here, we analyze data collected during the Southeast Nexus of Air Quality
71 and Climate (SENEX) campaign in June–July 2013, which was the airborne component led by the National
72 Oceanic and Atmospheric Administration (NOAA), of a greater measurement campaign throughout the

73 SEUS, the Southeast Atmosphere Study (SAS; Carlton et al., 2018). Here we analyze data collected onboard
74 the NOAA WP-3D and apply a state-of-the-art droplet parameterization to determine the maximum
75 supersaturation and N_d achieved in cloudy updrafts, for all science flights with available number size
76 distribution and chemical composition data. We also determine the sensitivity of droplet formation to
77 vertical velocity and aerosol, with the purpose of understanding the drivers of droplet variability in the
78 boundary layer of the SEUS by obtaining regional-scale, representative values of the relationship between
79 the driving parameters and cloud droplet number.

80

81 **2. Methods**

82 *2.1 Aircraft instrumentation*

83 The analysis utilizes airborne, in situ data collected during the June-July 2013 SENEX mission, aboard the
84 National Oceanic and Atmospheric Administration (NOAA) WP-3D aircraft (typical airspeed $\sim 100 \text{ m s}^{-1}$)
85 based in Smyrna, Tennessee ($36^{\circ}00'32''\text{N}$, $86^{\circ}31'12''\text{W}$). In total, twenty research flights were conducted.
86 Based on the availability of the relevant data described below, thirteen flights are analyzed in this work.
87 Table 1 provides a synopsis of the analyzed research flights where times are local (UTC-5). Detailed
88 information on the instrumentation and measurement strategy during the SENEX campaign is provided by
89 Warneke et al. (2016).

90 Dry particle number distributions from 4 - 7000 nm were measured using multiple condensation and optical
91 particle counters. 4-700 nm particles were measured by a nucleation mode aerosol size spectrometer
92 (NMASS; Warneke et al., 2016) and an ultra-high sensitivity aerosol spectrometer (UHSAS; Brock et al.,
93 2011), while for larger particles with dry diameters between 0.7 and 7.0 μm , a custom-built white-light
94 optical particle counter (WLOPC) was used (Brock et al., 2011).

95 Measurements of the composition of submicron ($< 0.7 \mu\text{m}$ vacuum aerodynamic diameter) non-refractory
96 particles were made with a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS; Aerodyne,
97 Billerica, Massachusetts, US) (Canagaratna et al., 2007; Kupc et al., 2018) customized for aircraft use, with
98 a 10 s time resolution (Warneke et al., 2016). Particles entering the instrument are focused and impacted
99 on a 600°C inverted-cone vaporizer. The volatilized vapors are analyzed by electron ionization mass
100 spectrometry, providing mass loadings of sulfate, nitrate, organics, ammonium and chloride. For the C-
101 ToF-AMS, the transmission efficiency of particles between 100 and 700 nm is assumed to be 100% through
102 the specific aerodynamic focusing lens used while mass concentrations are calculated using a chemical
103 composition-dependent collection efficiency (Middlebrook et al., 2012; Wagner et al., 2015). The C-ToF-
104 AMS measures only non-refractory aerosol chemical composition, therefore this analysis provides mass

105 loadings of sulfate, nitrate, ammonium and organic constituents with a 10 s time resolution and neglects the
106 contribution of black carbon (BC). The calculation of the average volume fractions from the mass loading
107 follows that of Moore et al. (2012). An average organic density of 1.4 g cm^{-3} is used, characteristic of aged
108 aerosol (Moore et al., 2011; Lathem et al., 2013) while for the inorganic species the respective densities are
109 used, assuming the aerosol to be internally mixed (Lance et al., 2009; Bougiatioti et al., 2009; Wang et al.,
110 2010)

111 The aircraft was equipped by the NOAA Aircraft Operations Center (AOC) flight facility with a suite of
112 instruments to provide information on exact aircraft position as well as numerous meteorological
113 parameters (Warneke et al., 2016). The analysis in this work makes use of vertical wind velocity, aircraft
114 pressure altitude, and ambient temperature, pressure and relative humidity (RH) provided by NOAA AOC.
115 The location of the instrumentation on the aircraft is described elsewhere (Warneke et al., 2016). For
116 measurements inside the fuselage, a low turbulence inlet (Wilson et al., 2004) and sampling system (Brock
117 et al., 2011; 2016a) was used to decelerate the sample flow to the instruments. The C-ToF-AMS was
118 connected downstream of an impactor with 50% efficiency at a $1.0 \mu\text{m}$ aerodynamic diameter (PM1) cut-
119 point (Warneke et al., 2016).

120 *2.2 Aerosol hygroscopicity parameter*

121 The aerosol hygroscopicity parameter (Petters and Kreidenweis, 2007), κ , is calculated assuming a mixture
122 of an organic and inorganic component with volume fractions ε_{org} , $\varepsilon_{\text{inorg}}$ and characteristic hygroscopicities
123 κ_{org} , κ_{inorg} , respectively ($\kappa = \varepsilon_{\text{inorg}}\kappa_{\text{inorg}} + \varepsilon_{\text{org}}\kappa_{\text{org}}$). The organic and inorganic volume fraction are derived from
124 the C-ToF-AMS data. Since throughout the summertime SEUS, aerosol inorganic nitrate mass and volume
125 fraction are very low (Weber et al., 2016; Fry et al., 2018), $\kappa_{\text{inorg}} = 0.6$, representative for ammonium sulfate,
126 is used. For the organic fraction, a hygroscopicity value of $\kappa_{\text{org}} = 0.14$ is used, based on concurrent
127 measurements conducted at the ground site of the SAS at the rural site of Centreville, Alabama (Cerully et
128 al., 2015). This value is also in accordance with the cumulative result of studies conducted in the Southeast
129 US using measurements of droplet activation diameters in subsaturated regimes, providing κ_{org} of > 0.1
130 (Brock et al., 2016a).

131 *2.3 Cloud droplet number and maximum supersaturation*

132 Using the observed aerosol number size distribution (1 s time resolution) and the hygroscopicity derived
133 from the chemical composition measurements (10 s time resolution) and vertical velocity, we calculate the
134 (potential) cloud droplet number (N_d) and maximum supersaturation (S_{max}) that would form in clouds in the
135 airmasses sampled. Droplet number and maximum supersaturation calculations are carried out using an

136 approach similar to that of Bougiatioti et al. (2017) and Kalkavouras et al. (2019) with the sectional
137 parameterization of Nenes and Seinfeld (2003), later improved by Barahona et al. (2010) and Morales
138 Betancourt and Nenes (2014a). A sectional representation of the size distribution is used for each 1-s data
139 point (e.g. for Flight 5, n=23213 data points). Given that chemical composition is provided with a 10 s time
140 resolution, the same hygroscopicity values are used for 10 successive size distributions throughout the
141 flight. Temperature and pressure required for droplet number calculations are obtained from the NOAA
142 AOC flight facility dataset.

143 Given that vertical velocity varies considerably inside the boundary layer, we obtain a droplet number that
144 is representative of the vertical velocity distribution – the average concentration that results from integrating
145 over the distribution (probability density function, PDF) of observed updraft velocities. To accomplish this,
146 each flight is divided into segments where the aircraft flew at a constant height. For each segment, only the
147 non-negative vertical velocities are fit to the positive half of a Gaussian distribution around a mean of zero
148 and standard deviation σ_w . Only positive vertical velocities (“updrafts”) were used in this fit, as they are the
149 part of the vertical velocity spectrum that is responsible for cloud droplet formation. The σ_w values derived
150 from the level leg segments are then averaged into one single σ_w value to represent each flight. The PDF-
151 averaged droplet number concentration is then obtained using the “characteristic velocity” approach of
152 Morales and Nenes (2010), where applying the droplet parameterization at a single “characteristic” velocity,
153 $w^*=0.79\sigma_w$ (Morales and Nenes, 2010) gives directly the PDF-averaged value. The flight-averaged σ_w and
154 subsequently the respective w^* is applied to each size distribution measured. Apart from its theoretical basis,
155 this methodology has shown to provide good closure with observed droplet numbers in ambient clouds (e.g.
156 Kacarab et al., 2020).

157 In determining σ_w , we consider horizontal segments most likely to be in the boundary layer. 91% of the
158 segments are below 1000 m above sea level (mean altitude \sim 700 m; Table 2 and SP3 for all flights), within
159 the boundary layer in the summertime US (Seidel et al., 2012). Also according to Wagner et al. (2015) the
160 mixed layer height in the area during the measurements had a median of 1.2 km while during nighttime
161 values are <0.5 km (Seidel et al., 2012). The vertical velocity distributions observed gave $\sigma_w = 0.97 \pm 0.21$ m
162 s^{-1} for daytime flights, and $\sigma_w = 0.23 \pm 0.04$ m s^{-1} for nighttime flights (Table 2 and SP3).

163 Potential droplet formation is evaluated at four characteristic velocities w^* that cover the observed range in
164 σ_w , namely 0.1, 0.3, 0.6, and 1 m s^{-1} . The $\sigma_w = 0.3$ m s^{-1} case is most representative of nighttime conditions,
165 while $\sigma_w = 1$ m s^{-1} should be most representative of the daytime boundary layer (Table 3).

166 We also compute the variance of the derived N_d , estimated from the sensitivity to changes in aerosol number
167 concentration N_a , κ and σ_w , expressed by the partial derivatives $\partial N_d / \partial N_a$, $\partial N_d / \partial \kappa$ and $\partial N_d / \partial \sigma_w$ computed

168 from the parameterization using a finite difference approximation (Bougiatioti et al., 2017; Kalkavouras et
169 al., 2019) using:

170
$$\sigma^2 N_d = \left(\frac{\partial N_d}{\partial N_a} \sigma N_a \right)^2 + \left(\frac{\partial N_d}{\partial \kappa} \sigma \kappa \right)^2 + \left(\frac{\partial N_d}{\partial \sigma_w} \sigma_w \right)^2 \quad (1)$$

171

172 These sensitivities, together with the observed variance in N_a , κ , and σ_w are also used to attribute droplet
173 number variability to variations in the respective aerosol and vertical velocity parameters following the
174 approach of Bougiatioti et al. (2017) and Kalkavouras et al. (2019):

175
$$\varepsilon_{N\alpha} = \frac{\left(\frac{\partial N_d}{\partial N_a} \sigma N_a \right)^2}{\sigma^2 N_d}, \varepsilon_{\kappa} = \frac{\left(\frac{\partial N_d}{\partial \kappa} \sigma \kappa \right)^2}{\sigma^2 N_d}, \varepsilon_{\sigma_w} = \frac{\left(\frac{\partial N_d}{\partial \sigma_w} \sigma_w \right)^2}{\sigma^2 N_d} \quad (2)$$

176

177

178 **3. Results and Discussion**

179 *3.1. Particle composition and size distribution*

180 For the determination of the different aerosol species present, neutral and acidic sulfate salts are
181 distinguished by the molar ratio of ammonium to sulfate ions in the aerosol. A molar ratio higher than 2
182 indicates the presence of only ammonium sulfate, while values between 1 and 2 indicate a mixture of
183 ammonium sulfate and bisulfate (Seinfeld and Pandis, 1998). For most flights, the molar ratio of ammonium
184 versus sulfate was above 2 (mean value 2.41 ± 0.72 and median of 2.06). For the nighttime flights, the values
185 were somewhat lower (mean value 1.91 ± 0.42 and median of 1.85). Nevertheless, ammonium sulfate is
186 always the predominant sulfate salt. Organic mass fractions for the SENEX research flights are provided in
187 Table 1. Overall, organic aerosol dominated the composition during all flights, contributing 66%-75% of
188 the total aerosol volume. Most of the remaining aerosol volume consisted of ammonium sulfate, ranging
189 from 12%-39% (with a mean of $23\% \pm 6\%$). The organic mass fraction during the flights varied with height
190 (see Figure 1). This vertical variability of the chemical composition can have a strong impact on droplet
191 number within the boundary layer, as air masses from aloft may descend and interact with that underneath.
192 Figure 1 represents the organic mass fractions during Flights 6, 12 and 16, with all flights provided in the
193 supplementary material (Figure S1). The dashed line represents the boundary layer for daytime (1200 m;
194 Wagner et al., 2015) and for nighttime (500 m; Seidel et al., 2012). The lowest organic mass fractions were
195 observed during Flight 12 ($36\% \pm 10\%$ with values almost two-fold higher for altitudes >3000 m, Figure 1b)
196 while the highest organic mass fractions were observed during flights over predominantly rural areas
197 (Flights 5, 10, and 16 (Figure 1c)). During Flight 5 the organic mass fraction was high ($68\% \pm 5\%$), with the
198 highest values found in the free troposphere at altitudes >3000 m, as was the case for 4 other flights (5/3 in
199 total, Fig. S1). High organic mass fractions were also found during nighttime Flight 9 that included portions

200 of the Atlanta metropolitan area, with values up to 78%. The impact of the aerosol composition variability
201 on droplet number is discussed in section 3.2.

202 The predominance of the organic fraction is also reflected in the hygroscopicity parameter values, with an
203 overall $\kappa = 0.25 \pm 0.05$, close to the proposed global average of 0.3 (Pringle et al., 2010). The highest values
204 of κ , as expected are observed during flights exhibiting the lowest organic mass fraction, namely Flight 12
205 with a $\kappa = 0.39$ (Table 1). The rest of the κ -values are close to the overall value of 0.25, corresponding to
206 an organic mass fraction of around 0.60.

207 Median aerosol size distributions and the respective total aerosol number are obtained from the median and
208 interquartile range in each size bin from the aerosol size distribution measurements during segments where
209 the aircraft flew at a constant height. Aerosol size distributions and changes in them during each flight are
210 crucial as they are used as input for the droplet number parameterization. Overall, N_a ranged from around
211 500 to over 100000 cm⁻³ with number size distributions varying markedly over the course of a flight (Figure
212 2). Free tropospheric distributions exhibited characteristics of a bimodal distribution with a prominent broad
213 accumulation mode peak (80-200 nm) and an Aitken mode peak (30-60 nm) (Fig. 2a) while boundary layer
214 size distributions exhibited a more prominent accumulation mode (Fig. 2b). There was considerable
215 variability in the contributions of the nucleation, Aitken, and accumulation modes to total N_a , depending on
216 altitude and proximity to aerosol sources (Fig. 2c). Nevertheless, the modal diameters did not vary
217 considerably, dictating that mostly particles in the same mode will activate, depending on the developed
218 supersaturation. Distributions during nighttime flights exhibited similar total N_a and variability between
219 them; nevertheless, size distributions were more complex - exhibiting up to three distinct modes (20-40,
220 70-100 and 130-200 nm; Fig. 2d).

221 *3.2 Potential cloud droplet number and maximum supersaturation*

222 We first focus on calculation of the potential N_d and S_{max} for data from all thirteen research flights and for
223 the four prescribed values σ_w that represent the observed range. These calculations are helpful in
224 understanding the sensitivity of droplet formation to N_a and κ for all the airmasses sampled – without
225 considering the added variability induced by changes in turbulence expressed by σ_w (considered later).
226 Results from this analysis are provided in Table 3. The highest N_d were found for Flights 6 and 10, which
227 correspond to ambient conditions with the highest N_a , consistent with the sampling of the Atlanta urban
228 environment. For a given σ_w , the variance of N_d is predominantly caused by changes in N_a rather than
229 changes in hygroscopicity (i.e., chemical composition). The highest influence of κ to N_d variability is found
230 for Flight 18 (12% and 35% for 0.1 and 0.3 m s⁻¹, respectively), during which N_a was the lowest, and the
231 organic mass fraction was ~50%. The contribution of κ to the N_d variability is as high as 37% (for 0.6 m s⁻¹
232); despite this large contribution, droplet formation is usually considerably more sensitive to changes in

233 aerosol concentration than to variations in composition. Overall, the relative contribution of the
234 hygroscopicity to the variation of N_d increases from $5\pm3\%$ for $\sigma_w=0.1\text{ m s}^{-1}$, to $12.3\pm8\%$ for $\sigma_w=0.3\text{ m s}^{-1}$,
235 to $14.5\pm10\%$ for $\sigma_w=0.3\text{ m s}^{-1}$ and $16.5\pm9\%$ for $\sigma_w=1\text{ m s}^{-1}$. As σ_w increases, so does supersaturation and
236 consequently N_d . On average, N_d increases by 62% as σ_w increased from 0.1 to 0.3 m s^{-1} , 70% as σ_w
237 increased from 0.3 to 0.6 m s^{-1} and another 39% as σ_w increased from 0.6 to 1 m s^{-1} . Tripling σ_w from 0.1 to
238 0.3 m s^{-1} results in 31% increase in S_{max} , while doubling σ_w from 0.3 to 0.6 m s^{-1} results in 26.2% increase
239 in S_{max} and a further σ_w increase to 1 m s^{-1} leads to an additional 20.7% increase in S_{max} .

240 Considering the changes in vertical velocity between flights (Table 4), we observe that average σ_w during
241 daytime varied little between flights and was large, ranging between 0.85 and 1.2 m s^{-1} with a mean of
242 $0.97\pm0.21\text{ m s}^{-1}$. Under such conditions, water availability during droplet formation is aerosol-limited, so
243 that N_d is sensitive to N_a . The degree of water availability is expressed by the S_{max} , which for all the evaluated
244 SENEX data, is $0.14\pm0.05\%$. This level of maximum supersaturation activates particles of roughly $>90\text{ nm}$
245 diameter (e.g., accumulation mode particles) into cloud droplets. The highest S_{max} ranged from 0.2 to 0.3%
246 and was found during flights which exhibited large and highly variable σ_w (Flights 4, 5, 12 and 19) while
247 the lowest S_{max} was below 0.10% and was found during nighttime flights (Flights 9, 15 and 16). Contrasts
248 in droplet formation between day and nighttime conditions may be driven primarily by the total aerosol
249 number in the accumulation mode, and not be affected by ultrafine particles.

250 The large diurnal variability in σ_w (from 0.3 m s^{-1} at night to 1.0 m s^{-1} at day) contributes considerably to
251 the diurnal variability in N_d . To understand the relative importance of all parameters affecting droplet
252 formation (σ_w , N_a , κ) we estimate their contribution to the total variability in N_d based on the variances of
253 κ , N_a and σ_w and the sensitivity of droplet formation to those parameters. The results of the analysis are
254 summarized in Table 4. The σ_w variation during nighttime, although small (always less than 10%),
255 consistently remains an important contributor to N_d variability, because droplet formation tends to be in the
256 updraft velocity-limited regime. At higher values of σ_w (Table 4), the contribution of N_a variability becomes
257 a relatively dominant contributor to N_d variability.

258 Another way to express the importance of vertical velocity and aerosol number for the levels of droplet
259 number is to compare flights where aerosol number or σ_w vary in a similar way. For this, we focus on two
260 day/night flight pairs (Flights 5 and 15, and Flights 6 and 9), shown in Fig. 3. The first pair of flights were
261 conducted over a rural area under moderate aerosol number conditions, while the second pair exhibited
262 somewhat higher aerosol numbers owing to its proximity to the Atlanta metropolitan area. The size of the
263 markers in Fig.3 represents the potential number of droplets in clouds forming in each airmass sampled,
264 while their color reflects the respective total aerosol number. In both pairs of flights, σ_w varies about the
265 same between night and day (Table 4). For the Flights 5, 15 pair, the difference in N_d between day and night

266 (which is 69% higher during daytime) is driven primarily by aerosol concentrations with κ having limited
267 influence (69% by N_a and 7% from κ) and only 24% by σ_w . For nighttime (Flight 15), the majority of
268 variability in N_d is driven again by aerosol concentrations and to a limited extent by κ (51% by N_a and 7%
269 from κ) and 42% by σ_w . For the second pair of night/day flights (Flights 6, 9), N_a is on average similar, σ_w
270 varies by a factor of 4.0 between day and night and κ varies by 13%.

271 The difference in N_d between day and night (where daytime values are 72.1% higher than nighttime) is
272 almost equally driven by N_a and σ_w changes during the day (54% and 43% respectively), while
273 predominantly driven by N_a during the night (76%; Table 4). Overall, in the proximity of an urban
274 environment with higher aerosol concentrations, 57% of the N_d variability is driven by aerosol (N_a and κ)
275 during the day and 83% during the night.

276 Figure 4 shows N_d relative to N_a for flights conducted in the two aforementioned areas, during day (Flights
277 5 and 15) and night (Flights 6 and 9). For high enough N_a , N_d becomes insensitive to additional amounts of
278 aerosol and reaches a “limiting” N_d , which Kacarab et al. (2020) denotes as N_d^{lim} . This limit in N_d is reached
279 when the competition for water vapor to form droplets is high enough to inhibit the formation of droplets
280 with further increase in N_a . The intense competition for water vapor is reflected in the low value of S_{max} ,
281 which drops below 0.1% when N_d is in the vicinity of N_d^{lim} (Figure 4). The availability of water vapor during
282 droplet formation is driven by σ_w , hence droplet formation is limited by σ_w and thus by velocity, when N_d
283 approaches N_d^{lim} . Figure 5 illustrates these effects, by presenting the relationship between N_a and N_d for
284 “low” w^* ($<0.25 \text{ ms}^{-1}$; upper panel), “medium” w^* ($0.5\text{--}0.7 \text{ ms}^{-1}$; middle panel), and “high” w^* ($0.75\text{--}1 \text{ ms}^{-1}$;
285 lower panel) for all flights. Under low w^* conditions, changes in N_a do not result in a large change in
286 N_d , so its value corresponds to N_d^{lim} . When w^* increases to “medium” values (Figure 5b), then N_d becomes
287 sensitive to N_a , which is further amplified at “high” values of w^* (Figure 5c). The covariance of aerosol
288 number and vertical velocity (Figure S3) means that the latter significantly enhances the inherent response
289 of N_d to N_a , which points to the importance of constraining vertical velocity and its variance to correctly
290 capture the aerosol-cloud droplet relationship in any model. The covariance, also observed in other
291 environments (e.g., Kacarab et al., 2020) may be a result of more effective convective transfer of aerosol-
292 rich air to cloud forming regions, but requires further investigation.

293 Analysis of Figure 4 also shows that N_d^{lim} varies between 1200 cm^{-3} during day and around 350 cm^{-3} during
294 night, which points to its strong dependence on σ_w . Indeed, when the N_d^{lim} for all flights (except Flights 4,
295 12, for which insufficient aerosol is present to reach N_d^{lim}) is expressed as a function of σ_w , a remarkable
296 correlation emerges between the two parameters (Figure 6). Even more interesting is that this relationship
297 is quantitatively similar to the corresponding N_d^{lim} - σ_w relationship Kacarab et al. (2020) found for biomass
298 burning - influenced boundary layer clouds in the Southeast Atlantic. The implication of the N_d^{lim} - σ_w

299 relationship, and its potential universality, is that when N_d approaches N_d^{\lim} , its variability is a reflection of
300 vertical velocity variability alone, not variability in N_a . This opens up the possibility to infer the vertical
301 velocity distribution from the droplet number concentration in regions where considerable amounts of
302 aerosol are present.

303

304 **4. Summary and Conclusions**

305 Measurements of vertical wind velocity, ambient temperature, humidity, aerosol number size distribution
306 and composition in the SEUS obtained during the SENEX 2013 project are used to analyze the drivers of
307 droplet formation. Overall, 13 research flights are studied, covering environments over sectors with
308 different aerosol sources, aerosol number, size distribution, chemical composition and updraft velocity.
309 Aerosol volume is largely dominated by an organic fraction resulting in an estimated hygroscopicity of
310 0.25 ± 0.05 .

311 Based on the calculation of cloud droplet number concentration (N_d) and maximum supersaturation (S_{max}),
312 we find that at the regional scale, N_d variability is largely driven by fluctuations in N_a (Table 4), in
313 accordance with other recent studies (e.g., Fanourgakis et al., 2019; Kalkavouras et al., 2019; Kacarab et
314 al., 2020). Nonetheless, N_d levels are also sensitive to vertical velocity variations, σ_w ; a factor of 4.0 change
315 in σ_w on its own may lead to an almost proportional change in N_d (factor of 3.6). These responses however
316 occur over the diurnal timescale, during which N_a also changes; the covariance between σ_w with N_a enhances
317 the apparent response of N_d to changes in N_a levels by a factor of 5 (Figure 4). In “cleaner” environments
318 where total aerosol number is not impacted by local sources, the relative response of N_d to σ_w is almost
319 twice as great at night than during the day (24% for daytime Flight 5 vs. 42% for nighttime Flight 15). On
320 the other hand, the relative response of N_d to N_a is slightly lower during the night than during the day (51%
321 at night vs. 69% during the day). In environments with elevated concentrations of accumulation-mode
322 particles, the majority of N_d variations can be attributed to changes in N_a and to a lesser extent to changes
323 in σ_w . Variations in chemical composition (expressed by κ) do not contribute substantially to droplet
324 number variability in most cases. As expected, S_{max} partially mitigates the response of N_d to N_a . Overall,
325 maximum supersaturation levels remain quite low ($0.14 \pm 0.05\%$) with the lowest levels ($0.05 \pm 0.1\%$)
326 estimated closest to surface. As a result, particles with diameters >90 nm were the most substantial
327 contributors to CCN.

328 Our analysis also reveals the importance of the variance in vertical velocity as a key driver of cloud droplet
329 formation and its variability in the region. When the boundary layer turbulence is low (e.g. during
330 nighttime) and water vapor supersaturations are low, σ_w and as a consequence vertical velocity variability,
331 can be as important of a contributor to N_d as is N_a . Even for situations with both high σ_w and N_a , the large

332 σ_w enables enough water vapor availability to activate significant numbers of particles to cloud droplets.
333 On average, the two variables (N_a and σ_w) contribute almost equally to the variability in N_d and together
334 account for more than 90% of variability. This finding is consistent with recent modeling studies noting the
335 importance of vertical velocity variability as a driver of the temporal variability of global hydrometeor
336 concentration (Morales Betancourt and Nenes, 2014b; Sullivan et al., 2016). Furthermore, the N_d response
337 from changes in N_a is magnified up to 5 times by correlated changes in σ_w . A similar situation was seen in
338 marine boundary layers influenced by biomass burning in the Southeast Atlantic (Kacarab et al., 2020).
339 Finally, we identify an upper limit to the number of droplets that can form in clouds which depends only
340 on σ_w . This upper limit value tends to be achieved near the surface, where N_a tends to be higher. Whenever
341 N_d approach this upper limit, observed droplet variability is driven by σ_w and as a consequence by vertical
342 velocity changes only.

343 Many aspects of warm cloud physics and especially droplet formation have known for decades. Ensuring
344 that global models simulate N_d for the “right reasons” (i.e., aerosol variability and/or vertical velocity
345 variability) is critical for constraining aerosol–cloud–climate interactions. Our study provides important
346 constraints on the relationships between σ_w , N_a , potential N_d , and S_{\max} , and shows the importance of
347 covariance between σ_w and N_a in controlling the maximum N_d that can result from a given value of σ_w .
348 Given that global model assessments of aerosol–cloud–climate interactions do not evaluate for vertical
349 velocity or its covariance with other parameters, our work shows that this omission can lead to an
350 underappreciated source of hydrometeor variability and bias, and to a biased response of droplet number to
351 aerosol perturbations.

352

353 **Data Availability:** The data used in this study can be downloaded from the NOAA public data repository
354 at <https://www.esrl.noaa.gov/csd/projects/senex/>. The Gaussian fits used for determining σ_w and the droplet
355 parameterization used for the calculations in the study are available from athanasios.nenes@epfl.ch upon
356 request.

357

358 **Author Contributions:** AB and AN designed and initiated the study. Analysis methodology and software
359 were provided by AN. The analysis was carried out by AB and AN, with comments from JJL, CB, AMM.
360 Data curation was provided by AB, JJL, CB, JAG, JL, AMM, AW. The manuscript was written by AB and
361 AN with additional comments provided by JJL, CB, AW, AMM. All authors reviewed the manuscript.

362

363 **Funding:** This study was supported by the Environmental Protection Agency STAR Grant R835410, and
364 the European Research Council, CoG-2016 project PyroTRACH (726165) funded by H2020-EU.1.1. –
365 Excellent Science. AB also acknowledges support from the Action “Supporting of Postdoctoral
366 Researchers” of the Operational Program “Education and Lifelong Learning” (action’s beneficiary: General
367 Secretariat for Research and Technology) and is co-financed by the European Social Fund (ESF) and the
368 Greek State. CAB, JAdG, JL, AMM, and AW were supported in part by NOAA’s Health of the Atmosphere
369 and Atmospheric Chemistry, Carbon Cycle, and Climate Programs.

370

371 **Conflicts of Interest:** The authors declare no conflict of interest.

372

373 **References**

374 Barahona, D., West, R.E.L., Stier, P., Romakkaniemi, S., Kokkola, H., and Nenes, A.: Comprehensively
375 accounting for the effect of giant CCN in cloud activation parameterizations, *Atmos. Chem. Phys.*, 10,
376 2467–2473, <https://doi.org/10.5194/acp-10-2467-2010>, 2010.

377 Bougiatioti, A., Fountoukis, C., Kalivitis, N., Pandis, S. N., Nenes, A., and Mihalopoulos, N.: Cloud
378 condensation nuclei measurements in the marine boundary layer of the eastern Mediterranean:CCN
379 closure and droplet growth kinetics, *Atmos. Chem. Phys.*, 9, 7053–7066, doi:10.5194/acp-9-7053-
380 2009, 2009.

381 Bougiatioti, A., Bezantakos, S., Stavroulas, I., Kalivitis, N., Kokkalis, P., Biskos, G., Mihalopoulos, N.,
382 Papayannis, A., and Nenes, A.: Biomass-burning impact on CCN number, hygroscopicity and cloud
383 formation during summertime in the eastern Mediterranean, *Atmos. Chem. Phys.*, 16, 7389–7409,
384 <https://doi.org/10.5194/acp-16-7389-2016>, 2016.

385 Bougiatioti, A., Argyrouli, A., Solomos, S., Vratolis, S., Eleftheriadis, K., Papayannis, A., and Nenes, A.:
386 CCN activity, variability and influence on droplet formation during the HygrA-Cd campaign in
387 Athens, *Atmosphere*, 8, 108, <https://doi.org/10.3390/atmos8060108>, 2017.

388 Brock, C. A., Cozic, J., Bahreini, R., Froyd, K. D., Middlebrook, A. M., McComiskey, A., Brioude, J.,
389 Cooper, O. R., Stohl, A., Aikin, K. C., de Gouw, J. A., Fahey, D. W., Ferrare, R. A., Gao, R. S., Gore,
390 Holloway, J. S., Hübner, G., Jefferson, A., Lack, D. A., Lance, S., Moore, R. H., Murphy, D. M.,
391 Nenes, A., Novelli, P. C., Nowak, J. B., Ogren, J. A., Peischl, J., Pierce, R. B., Pilewskie, P., Quinn,
392 P. K., Ryerson, T. B., Schmidt, K. S., Schwarz, J. P., Sodemann, H., Spackman, J. R., Stark, H.,
393 Thomson, D. S., Thornberry, T., Veres, P., Watts, L. A., Warneke, C., and Wollny, A. G.:
394 Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol,

395 radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project, *Atmos. Chem. Phys.*, 11,
396 2423–2453, 2011.

397 Brock, C. A., Wagner, N. L., Anderson, B. E., Attwood, A. R., Beyersdorf, A., Campuzano-Jost, P.,
398 Carlton, A. G., Day, D. A., Diskin, G. S., Gordon, T. D., Jimenez, J. L., Lack, D. A., Liao, J., Markovic,
399 M. Z., Middlebrook, A. M., Ng, N. L., Perring, A. E., Richardson, M. S., Schwarz, J. P., Washenfelder,
400 R. A., Welti, A., Xu, L., Ziemba, L. D., and Murphy, D. M.: Aerosol optical properties in the
401 southeastern United States in summer – Part 1: Hygroscopic growth, *Atmos. Chem. Phys.*, 16, 4987–
402 5007, <https://doi.org/10.5194/acp-16-4987-2016>, 2016.

403 Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra, M. R., Zhang, Q., Onasch, T. B.,
404 Drewnick, F., Coe, H., Middlebrook, A., Delia, A., Williams, L. R., Trimborn, A. M., Northway, M.
405 J., DeCarlo, P. F., Kolb, C. E., Davidovits, P., and Worsnop, D. R.: Chemical and microphysical
406 characterization of ambient aerosols with the aerodyne aerosol mass spectrometer, *Mass Spectrom. Rev.*, 26, 185–222, 2007.

408 Carlton, A.G., J.A. de Gouw, J.L. Jimenez, J.L. Ambrose, A.R. Attwood, S. Brown, K.R. Baker, C. Brock,
409 R.C. Cohen, S. Edgerton, C. Farkas, D. Farmer, A.H. Goldstein, L. Gratz, A. Guenther, S. Hunt, L.
410 Jaeglé, D.A. Jaffe, J. Mak, C. McClure, A. Nenes, T.K.V. Nguyen, J.R. Pierce, S. de Sa, N.E. Selin,
411 V. Shah, S. Shaw, P.B. Shepson, S. Song, J. Stutz, J. Surratt, B.J. Turpin, C. Warneke, R.A.
412 Washenfelder, P.O. Wennberg, and Xianling Zhou: A synthesis of the southeast atmosphere studies:
413 coordinated investigation of fundamental atmospheric chemistry questions, *Bull. Am. Meteor. Soc.*,
414 <https://doi.org/10.1175/BAMS-D-16-0048.1>, 2018.

415 Charlson, R.J., Schwartz, S.E., Hales, J.M., Cess, J.M., Coakley Jr., J.A., Hansen, J.E., and Hofmann, D.J.:
416 Climate forcing by anthropogenic aerosol, *Science*, 225, 5043, 423-430, doi:
417 [10.1126/science.255.5043.423](https://doi.org/10.1126/science.255.5043.423), 1992.

418 Cubison, M. J., Ervens, B., Feingold, G., Docherty, K. S., Ulbrich, I. M., Shields, L., Prather, K., Hering,
419 S., and Jimenez, J. L.: The influence of chemical composition and mixing state of Los Angeles urban
420 aerosol on CCN number and cloud properties, *Atmos. Chem. Phys.*, 8, 5649-5667,
421 <https://doi.org/10.5194/acp-8-5649-2008>, 2008.

422 DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T., Aiken, A. C., Gonin, M., Fuhrer,
423 K., Horvath, T., Docherty, K. S., Bates, D. R., and Jimenez, J. L.: Field-deployable, high-resolution,
424 time-of-flight aerosol mass spectrometer, *Anal. Chem.*, 78, 8281–8289,
425 <https://doi.org/10.1021/ac061249n>, 2006.

426 Fanourgakis, G. S., Kanakidou, M., Nenes, A., Bauer, S. E., Bergman, T., Carslaw, K. S., Grini, A.,
427 Hamilton, D. S., Johnson, J. S., Karydis, V. A., Kirkevåg, A., Kodros, J. K., Lohmann, U., Luo, G.,
428 Makkonen, R., Matsui, H., Neubauer, D., Pierce, J. R., Schmale, J., Stier, P., Tsigaridis, K., van Noije,

429 T., Wang, H., Watson-Parris, D., Westervelt, D. M., Yang, Y., Yoshioka, M., Daskalakis, N., Decesari,
430 S., Gysel-Beer, M., Kalivitis, N., Liu, X., Mahowald, N. M., Myriokefalitakis, S., Schrödner, R.,
431 Sfakianaki, M., Tsimpidi, A. P., Wu, M., and Yu, F.: Evaluation of global simulations of aerosol
432 particle and cloud condensation nuclei number, with implications for cloud droplet formation, *Atmos.*
433 *Chem. Phys.*, 19, 8591–8617, <https://doi.org/10.5194/acp-19-8591-2019>, 2019.

434 Fry, J. L., Brown, S. S., Middlebrook, A. M., Edwards, P. M., Campuzano-Jost, P., Day, D. A., Jimenez,
435 J. L., Allen, H. M., Ryerson, T. B., Pollack, I., Graus, M., Warneke, C., de Gouw, J. A., Brock, C. A.,
436 Gilman, J., Lerner, B. M., Dubé, W. P., Liao, J., and Welti, A.: Secondary organic aerosol (SOA)
437 yields from NO₃ radical + isoprene based on nighttime aircraft power plant plume transects, *Atmos.*
438 *Chem. Phys.*, 18, 11663–11682, <https://doi.org/10.5194/acp-18-11663-2018>, 2018.

439 Cerully, K. M., Bougiatioti, A., Hite, Jr., J. R., Guo, H., Xu, L., Ng, N. L., Weber, R., and Nenes, A.: On
440 the link between hygroscopicity, volatility, and oxidation state of ambient and water-soluble aerosols
441 in the southeastern United States, *Atmos. Chem. Phys.*, 15, 8679–8694, 2015,
442 <https://doi.org/10.5194/acp-15-8679-2015>.

443 IPCC (Intergovernmental Panel on Climate Change): Climate Change 2013: The Physical Science Basis,
444 Summary for Policymakers, Cambridge University Press, Cambridge, UK and New York, 2013.

445 Kacarab, M., Thornhill, K. L., Dobraki, A., Howell, S. G., O'Brien, J. R., Freitag, S., Poellot, M. R., Wood,
446 R., Zuidema, P., Redemann, J., and Nenes, A.: Biomass burning aerosol as a modulator of the droplet
447 number in the southeast Atlantic region, *Atmos. Chem. Phys.*, 20, 3029–3040,
448 <https://doi.org/10.5194/acp-20-3029-2020>, 2020.

449 Kalkavouras, P., Bossioli, E., Bezantakos, S., Bougiatioti, A., Kalivitis, N., Stavroulas, I., Kouvarakis, G.,
450 Protonotariou, A. P., Dandou, A., Biskos, G., Mihalopoulos, N., Nenes, A., and Tombrou, M.: New
451 particle formation in the southern Aegean Sea during the Etesians: importance for CCN production
452 and cloud droplet number, *Atmos. Chem. Phys.*, 17, 175–192, <https://doi.org/10.5194/acp-17-175-2017>, 2017.

453 Kalkavouras, P., Bougiatioti, A., Kalivitis, N., Stavroulas, I., Tombrou, M., Nenes, A., and Mihalopoulos,
454 N.: Regional new particle formation as modulators of cloud condensation nuclei and cloud droplet
455 number in the eastern Mediterranean, *Atmos. Chem. Phys.*, 19, 6185–6203,
456 <https://doi.org/10.5194/acp-19-6185-2019>, 2019.

457 Kupc, A., Williamson, C., Wagner, N. L., Richardson, M., and Brock, C. A.: Modification, calibration, and
458 performance of the Ultra-High Sensitivity Aerosol Spectrometer for particle size distribution and
459 volatility measurements during the Atmospheric Tomography Mission (ATom) airborne campaign,
460 *Atmos. Meas. Tech.*, 11, 369–383, <https://doi.org/10.5194/amt-11-369-2018>, 2018.

462 Lance, S., Nenes, A., Mazzoleni, C., Dubey, M. K., Gates, H., Varutbangkul, V., Rissman, T. A., Murphy,
463 S. M., Sorooshian, A., Flagan, T. A., Seinfeld, J. H., Feingold, G., and Jinsson, H.: Cloud condensation
464 nuclei activity, closure, and droplet growth kinetics of Houston aerosol during the Gulf of Mexico
465 Atmospheric Composition and Climate Study (GoMACCS), *J. Geophys. Res.*, 114, D00F15,
466 doi:10.1029/2008JD011699, 2009.

467 Lathem, T. L., Beyersdorf, A. J., Thornhill, K. L., Winstead, E. L., Cubison, M. J., Hecobian, A., Jimenez,
468 J. L., Weber, R. J., Anderson, B. E., and Nenes, A.: Analysis of CCN activity of Arctic aerosol and
469 Canadian biomass burning during summer 2008, *Atmos. Chem. Phys.*, 13, 2735-2756,
470 <https://doi.org/10.5194/acp-13-2735-2013>, 2013.

471 Leibensperger, E. M., Mickley, L. J., Jacob, D. J., Chen, W.-T., Seinfeld, J. H., Nenes, A., Adams, P. J.,
472 Streets, D. G., Kumar, N., and Rind, D.: Climatic effects of 1950–2050 changes in US anthropogenic
473 aerosols – Part 1: Aerosol trends and radiative forcing, *Atmos. Chem. Phys.*, 12, 3333-3348,
474 <https://doi.org/10.5194/acp-12-3333-2012>, 2012a.

475 Leibensperger, E. M., Mickley, L. J., Jacob, D. J., Chen, W.-T., Seinfeld, J. H., Nenes, A., Adams, P. J.,
476 Streets, D. G., Kumar, N., and Rind, D.: Climatic effects of 1950–2050 changes in US anthropogenic
477 aerosols – Part 2: Climate response, *Atmos. Chem. Phys.*, 12, 3349-3362, <https://doi.org/10.5194/acp-12-3349-2012>, 2012b.

479 Middlebrook, A. M., Bahreini, R., Jimenez, J. L., and Canagaratna, M. R.: Evaluation of composition-
480 dependent collection efficiencies for the Aerodyne aerosol mass spectrometer using field data, *Aerosol
481 Sci. Tech.*, 46, 258–271, doi.org/10.1080/02786826.2011.620041, 2012.

482 Moore, R. H., Bahreini, R., Brock, C. A., Froyd, K. D., Cozic, J., Holloway, J. S., Middlebrook, A. M.,
483 Murphy, D. M., and Nenes, A.: Hygroscopicity and composition of Alaskan Arctic CCN during April
484 2008, *Atmos. Chem. Phys.*, 11, 11 807–11 825, <https://doi.org/10.5194/acp-11-11807-2011>, 2011.

485 Moore, R. H., Cerully, K., Bahreini, R., Brock, C. A., Middlebrook, A. M., and Nenes, A.: Hygroscopicity
486 and composition of California CCN during summer 2010, *J. Geophys. Res.*, 117,
487 <https://doi.org/10.1029/2011JD017352>, 2012.

488 Morales, R. and Nenes, A.: Characteristic updrafts for computing distribution-averaged cloud droplet
489 number, autoconversion rate effective radius, *J. Geophys. Res.*, 115, D18220,
490 doi:10.1029/2009JD013233, 2010.

491 Morales Betancourt, R. and Nenes, A.: Droplet activation parameterization: the population-splitting
492 concept revisited, *Geosci. Model Dev.*, 7, 2345–2357, <https://doi.org/10.5194/gmd-7-2345-2014>,
493 2014a.

494 Morales Betancourt, R. and Nenes, A.: Understanding the contributions of aerosol properties and
495 parameterization discrepancies to droplet number variability in a global climate model, *Atmos. Chem.*
496 *Phys.*, 14, 4809–4826, <https://doi.org/10.5194/acp-14-4809-2014>, 2014b.

497 Nenes, A. and Seinfeld, J.H.: Parameterization of cloud droplet formation in global climate models, *J.*
498 *Geophys. Res.*, 108, 4415, doi:10.1029/2002JD002911, 2003.

499 Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud
500 condensation nucleus activity, *Atmos. Chem. Phys.*, 7, 1961–1971, doi:10.5194/acp-7-1961-2007,
501 2007.

502 Pringle, K. J., Tost, H., Pozzer, A., Pöschl, U., and Lelieveld, J.: Global distribution of the effective aerosol
503 hygroscopicity parameter for CCN activation, *Atmos. Chem. Phys.*, 10, 5241–5255,
504 <https://doi.org/10.5194/acp-10-5241-2010>, 2010.

505 Quinn, P. K., Bates, T. S., Coffman, D. J., and Covert, D. S.: Influence of particle size and chemistry on
506 the cloud nucleating properties of aerosols, *Atmos. Chem. Phys.*, 8, 1029–1042,
507 <https://doi.org/10.5194/acp-8-1029-2008>, 2008.

508 Reutter, P., Su, H., Trentmann, J., Simmel, M., Rose, D., Gunthe, S. S., Wernli, H., Andreae, M. O., and
509 Pöschl, U.: Aerosol- and updraft-limited regimes of cloud droplet formation: influence of particle
510 number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN), *Atmos. Chem.*
511 *Phys.*, 9, 7067–7080, <https://doi.org/10.5194/acp-9-7067-2009>, 2009.

512 Seidel, D. J., Zhang, Y., Beljaars, A., Golaz, J.-C., Jacobson, A. R., and Medeiros, B.: Climatology of the
513 planetary boundary layer over the continental United States and Europe, *J. Geophys. Res.*, 117,
514 D17106, doi:10.1029/2012JD018143, 2012.

515 Seinfeld, J., and Pandis, S.: *Atmospheric Chemistry and Physics: From Air Pollution to Climate Change*,
516 John Wiley, Hoboken, N. J., 1998.

517 Seinfeld, J. H., Bretherton, C. S., Carslaw, K. S., Coe, H., De- Mott, P. J., Dunlea, E. J., Feingold, G., Ghan,
518 S. J., Guenther, A.B., Kahn, R. A., Kracunas, I. P., Kreidenweis, S. M., Molina, M. J., Nenes, A.,
519 Penner, J. E., Prather, K. A., Ramanathan, V., Ramaswamy, V., Rasch, P. J., Ravishankara, A. R.,
520 Rosenfeld, D., Stephens, G., and Wood R.: Improving our fundamental understanding of the role of
521 aerosol-cloud interactions in the climate system, *Proc. Nat. Acad. Sci. USA*, 113, 5781–5790,
522 <https://doi.org/10.1073/pnas.1514043113>, 2016.

523 Sullivan, S.C., Lee, D., Oreopoulos, L., and Nenes, A.: The role of updraft velocity in temporal variability
524 of cloud hydrometeor number, *Proc. Nat. Acad. Sci.*, 113, 21,
525 <https://doi.org/10.1073/pnas.1514039113>, 2016.

526 Wagner, N. L., Brock, C. A., Angevine, W. M., Beyersdorf, A., Campuzano-Jost, P., Day, D., de Gouw, J.
527 A., Diskin, G. S., Gordon, T. D., Graus, M. G., Holloway, J. S., Huey, G., Jimenez, J. L., Lack, D. A.,

528 Liao, J., Liu, X., Markovic, M. Z., Middlebrook, A. M., Mikoviny, T., Peischl, J., Perring, A. E.,
529 Richardson, M. S., Ryerson, T. B., Schwarz, J. P., Warneke, C., Welti, A., Wisthaler, A., Ziembka, L.
530 D., and Murphy, D. M.: In situ vertical profiles of aerosol extinction, mass, and composition over the
531 southeast United States during SENEX and SEAC4RS: observations of a modest aerosol enhancement
532 aloft, *Atmos. Chem. Phys.*, 15, 7085-7102, <https://doi.org/10.5194/acp-15-7085-2015>, 2015.

533 Wang, J., Cubison, M. J., Aiken, A. C., Jimenez, J. L., and Collins, D. R.: The importance of aerosol mixing
534 state and size-resolved composition on CCN concentration and the variation of the importance with
535 atmospheric aging of aerosols, *Atmos. Chem. Phys.*, 10, 7267–7283, doi:10.5194/acp-10-7267-2010,
536 2010.

537 Warneke, C., Trainer, M., de Gouw, J. A., Parrish, D. D., Fahey, D. W., Ravishankara, A. R., Middlebrook,
538 A. M., Brock, C. A., Roberts, J. M., Brown, S. S., Neuman, J. A., Lerner, B. M., Lack, D., Law, D.,
539 Hübner, G., Pollack, I., Sjostedt, S., Ryerson, T. B., Gilman, J. B., Liao, J., Holloway, J., Peischl, J.,
540 Nowak, J. B., Aikin, K. C., Min, K.-E., Washenfelder, R. A., Graus, M. G., Richardson, M., Markovic,
541 M. Z., Wagner, N. L., Welti, A., Veres, P. R., Edwards, P., Schwarz, J. P., Gordon, T., Dube, W. P.,
542 McKeen, S. A., Brioude, J., Ahmadov, R., Bougiatioti, A., Lin, J. J., Nenes, A., Wolfe, G. M., Hanisco,
543 T. F., Lee, B. H., Lopez-Hilfiker, F. D., Thornton, J. A., Keutsch, F. N., Kaiser, J., Mao, J., and Hatch,
544 C. D.: Instrumentation and measurement strategy for the NOAA SENEX aircraft campaign as part of
545 the Southeast Atmosphere Study 2013, *Atmos. Meas. Tech.*, 9, 3063-3093,
546 <https://doi.org/10.5194/amt-9-3063-2016>, 2016.

547 Wilson, J. C., Lafleur, B. G., Hilbert, H., Seebaugh, W. R., Fox, J., Gesler, D. W., Brock, C. A., Huebert,
548 B. J., and Mullen, J.: Function and performance of a low turbulence inlet for sampling supermicron
549 particles from aircraft platforms, *Aerosol Sci. Tech.*, 38, 790–802, ,
550 <https://doi.org/10.1080/027868290500841>, 2004.

551 Weber RJ, Guo H, Russell AG, Nenes A.: High aerosol acidity despite declining atmospheric sulfate
552 concentrations over the past 15 years, *Nat. Geosci.*, 9, 282-285, <https://doi.org/10.1038/ngeo2665>,
553 2016.

554 Yu, S., Alapaty, K., Mathur, R., Pleim, J., Zhang, Y., Nolte, C., Eder, B., Foley, K., and Nagashima, T.:
555 Attribution of the United States “warming hole”: Aerosol indirect effect and precipitable water vapor.
556 *Sci. Rep.*, 4, 6929, <https://doi.org/10.1038/srep06929>, 2014.

557 **Table 1:** Research flights from the SENEX 2013 campaign used in this study. The symbol “⊗” next to
 558 each flight number refers to daytime flight, and “⊗” refers to a nighttime flight.

Flight	Date	Local Time (UTC-5)	Hygroscopicity Parameter κ	Organic mass fraction
4⊗	10/6	09:55-16:30	0.23±0.02	0.62±0.11
5⊗	11/6	11:30-17:57	0.20±0.00	0.68±0.05
6⊗	12/6	09:48-15:31	0.21±0.01	0.68±0.07
9⊗	19/6	17:30-23:29	0.24±0.01	0.66±0.06
10⊗	22/6	10:01-17:09	0.21±0.02	0.68±0.08
11⊗	23/6	10:08-17:22	0.25±0.03	0.58±0.07
12⊗	25/6	10:18-17:25	0.39±0.02	0.35±0.18
14⊗	29/6	10:26-17:39	0.22±0.03	0.62±0.07
15⊗	2/7	20:08-02:51	0.28±0.05	0.55±0.09
16⊗	3/7	19:56-02:55	0.22±0.05	0.67±0.09
17⊗	5/7	09:52-16:24	0.23±0.05	0.59±0.14
18⊗	6/7	09:19-16:18	0.31±0.02	0.52±0.08
19⊗	8/7	10:11-16:44	0.23±0.04	0.62±0.08
Average			0.25±0.05	0.60±0.09

559

560

561

562 **Table 2:** Flight number, time interval, standard deviation of vertical wind velocity (σ_w) and characteristic
 563 vertical velocity $w^*=0.79\sigma_w$ during flight segments where the aircraft flew at a constant altitude.

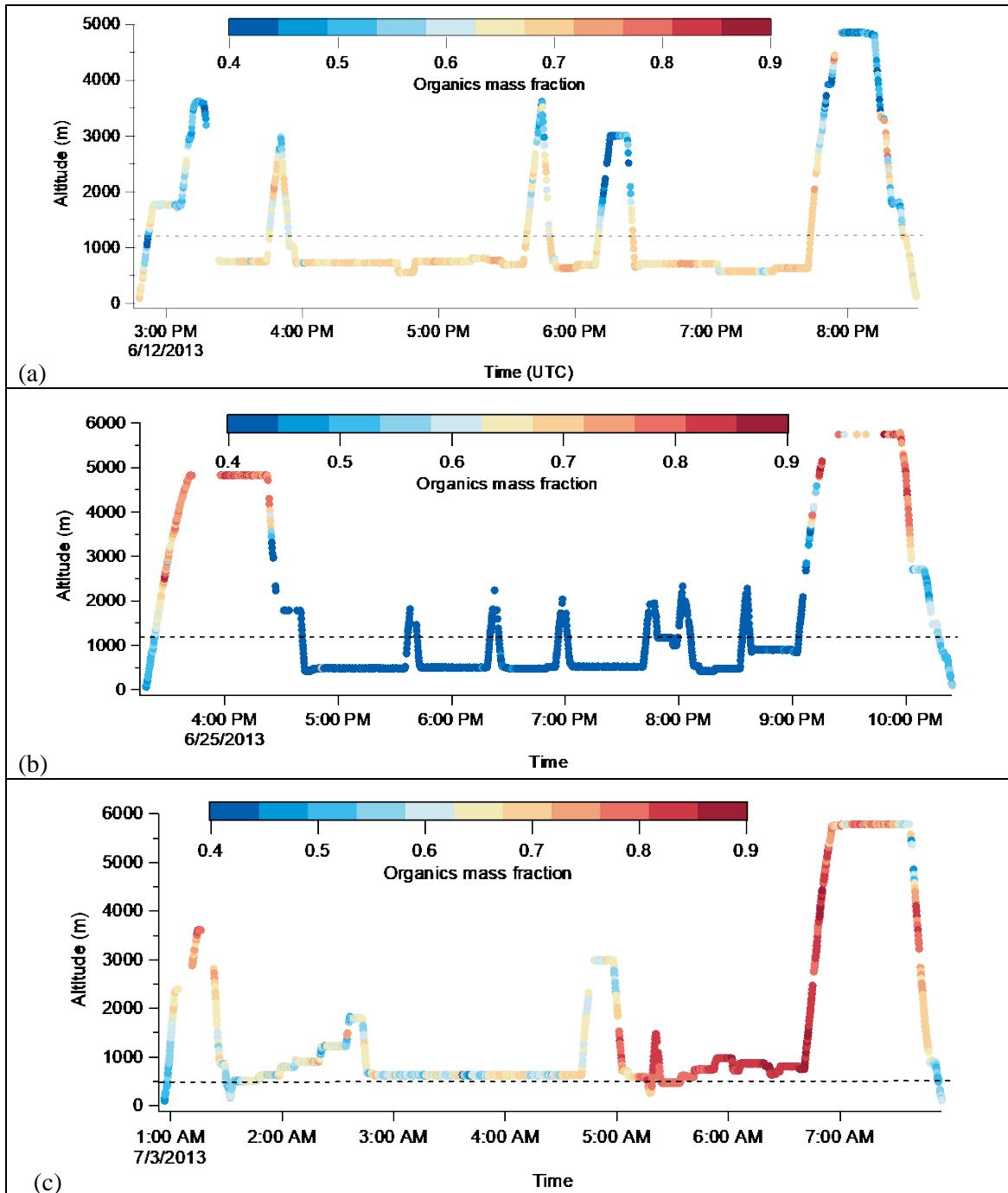
Flight (pass)	Time Interval (Local Time)	σ_w (m s ⁻¹)	w^* (m s ⁻¹)	Altitude a.s.l. (m)	Flight (pass)	Time Interval (Local Time)	σ_w (m s ⁻¹)	w^* (m s ⁻¹)	Altitude a.s.l. (m)
5 (1)	12:31-12:58	1.02	0.81	549± 58	9 (1)	18:44-18:58	0.25	0.20	797±2.01
5 (2)	13:16-13:29	0.82	0.65	982±11	9 (2)	19:20-19:29	0.25	0.2	740±1.23
5 (3)	13:34-13:50	1.01	0.80	502±13	9 (3)	19:33-19:48	0.22	0.17	740±1.23
5 (4)	13:53-14:08	1.03	0.81	614±27	9 (4)	19:51-20:25	0.22	0.17	776±1.22
5 (5)	14:20-15:00	0.91	0.72	603±40	9 (5)	20:34-20:39	0.23	0.18	597±1.19
5 (6)	15:35-15:41	0.87	0.69	533±18	9 (6)	20:44-20:52	0.16	0.12	484±1.14
5 (7)	16:17-16:30	0.77	0.61	638±23	9 (7)	20:56-21:10	0.20	0.16	773±1.11
5 (8)	16:31-16:39	0.55	0.44	559±18	9 (8)	21:31-21:45	0.19	0.15	725±1.18
5 (9)	17:10-17:22	0.53	0.42	686±40	9 (9)	22:24-22:31	0.26	0.20	745± 1.36
					9 (10)	22:48-22:54	0.22	0.17	804± 1.37
14 (1)	12:34-12:49	0.94	0.75	558±2	15 (1)	21:09-21:52	0.24	0.19	505±6.64
14 (2)	13:57-14:17	0.97	0.77	658±3	15 (2)	22:19-22:31	0.30	0.24	633±1.21
14 (3)	14:22-14:46	0.95	0.75	737±3	15 (3)	22:42-22:54	0.25	0.20	600±1.17
14 (4)	14:58-15:33	0.55	0.43	746±23	15 (4)	23:26-23:37	0.33	0.26	908±1.56
14 (5)	15:55-16:08	0.57	0.45	714±3	15 (5)	00:02-00:19	0.30	0.23	1208±1.23
14 (6)	16:11-16:21	0.77	0.61	801±3	15 (6)	00:43-1:08	0.25	0.20	592±1.37
14 (7)	16:33-16:41	0.45	0.35	793± 2	15 (7)	1:10-1:24	0.28	0.22	676±1.02
					15 (8)	1:37-2:02	0.21	0.16	713±19.5
12 (1)	11:50-12:34	0.96	0.75	484±3	19 (1)	11:20-11:41	0.62	0.49	1014±2.27
12 (2)	12:48-13:18	1.09	0.86	503±3	19 (2)	12:09-12:23	1.20	0.95	652±3.34
12 (3)	13:34-13:50	1.12	0.88	894±3	19 (3)	12:51-13:10	0.87	0.69	537±2.51
12 (4)	14:06-14:40	1.04	0.82	479±4	19 (4)	13:22-13:49	1.29	1.02	518±22.6
12 (5)	15:21-15:32	1.10	0.87	521±3	19 (5)	14:44-14:57	1.36	1.07	528±3.26
12 (6)	15:43-16:02	0.99	0.78	475±3	19 (6)	15:04-16:06	0.90	0.71	524±2.8

564

565

566 **Table 3:** Derived cloud parameters (maximum supersaturation, droplet number) and relative contribution (Equation 2) of chemical composition
 567 and total aerosol number for different vertical velocities. Numbers in parentheses indicate standard deviation values. The symbol “ \diamond ” next to each
 568 flight number refers to daytime flight, and “ \mathbb{C} ” refers to a nighttime flight.

569


Flight	N_a	Std $Dev N_a$	$\sigma_w=0.1 \text{ m s}^{-1}$				$\sigma_w=0.3 \text{ m s}^{-1}$				$\sigma_w=0.6 \text{ m s}^{-1}$				$\sigma_w=1.0 \text{ m s}^{-1}$			
			S_{max}	N_d	Contrib κ	Contrib N_a	S_{max}	N_d	Contrib κ	Contrib N_a	S_{max}	N_d	Contrib κ	Contrib N_a	S_{max}	N_d	Contrib κ	Contrib N_a
4 \diamond	6118	4520	0.11 (0.06)	122 (41)	0.08	0.92	0.16 (0.09)	315 (114)	0.20	0.80	0.21 (0.12)	520 (212)	0.23	0.77	0.26 (0.17)	737 (321)	0.2	0.8
5 \diamond	4324	2598	0.08 (0.04)	139 (31)	0.09	0.91	0.1 (0.06)	388 (104)	0.15	0.85	0.14 (0.08)	712 (216)	0.17	0.83	0.17 (0.1)	1063 (360)	0.21	0.79
6 \diamond	4958	3054	0.07 (0.07)	151 (24)	0.03	0.97	0.08 (0.04)	422 (70)	0.11	0.89	0.1 (0.06)	773 (171)	0.08	0.92	0.13 (0.07)	1162 (302)	0.07	0.93
9 \mathbb{C}	4271	3095	0.07 (0.02)	152 (18)	0.05	0.95	0.12 (0.04)	367 (68)	0.17	0.83	0.16 (0.05)	533 (115)	0.17	0.83	0.19 (0.06)	680 (126)	0.12	0.88
10 \diamond	6286	7201	0.07 (0.03)	158 (24)	0.02	0.98	0.1 (0.05)	422 (86)	0.02	0.98	0.14 (0.07)	748 (180)	0.04	0.96	0.18 (0.08)	1063 (295)	0.09	0.91
11 \diamond	5969	7271	0.04 (0.01)	137 (19)	0.01	0.99	0.06 (0.01)	381 (61)	0.04	0.96	0.08 (0.02)	695 (134)	0.03	0.97	0.10 (0.02)	1025 (226)	0.03	0.97
12 \diamond	3154	5150	0.06 (0.03)	110 (45)	0.03	0.97	0.1 (0.04)	274 (117)	0.05	0.95	0.14 (0.04)	404 (179)	0.08	0.92	0.17 (0.05)	486 (207)	0.07	0.93
14 \diamond	5564	5891	0.07 (0.02)	118 (41)	0.05	0.95	0.10 (0.03)	328 (125)	0.17	0.83	0.13 (0.04)	590 (240)	0.25	0.75	0.16 (0.05)	842 (361)	0.27	0.73
15 \mathbb{C}	2328	1428	0.05 (0.01)	135 (22)	0.03	0.97	0.09 (0.02)	339 (67)	0.12	0.88	0.12 (0.02)	557 (137)	0.21	0.79	0.16 (0.03)	717 (203)	0.3	0.7
16 \mathbb{C}	3440	4507	0.08 (0.06)	158 (37)	0.03	0.97	0.12 (0.1)	403 (120)	0.06	0.94	0.17 (0.13)	670 (235)	0.07	0.93	0.23 (0.16)	917 (374)	0.1	0.9
17 \diamond	3813	4645	0.05 (0.02)	129 (41)	0.06	0.94	0.07 (0.03)	342 (130)	0.1	0.9	0.1 (0.04)	593 (248)	0.06	0.94	0.13 (0.05)	841 (371)	0.06	0.94
18 \diamond	1925	983	0.08 (0.04)	90 (58)	0.12	0.88	0.12 (0.05)	233 (157)	0.35	0.65	0.15 (0.06)	379 (262)	0.37	0.63	0.19 (0.07)	499 (346)	0.27	0.73
19 \diamond	4323	7261	0.06 (0.02)	121 (33)	0.02	0.98	0.08 (0.02)	314 (96)	0.06	0.94	0.12 (0.03)	526 (177)	0.11	0.89	0.15 (0.03)	670 (249)	0.13	0.87

570

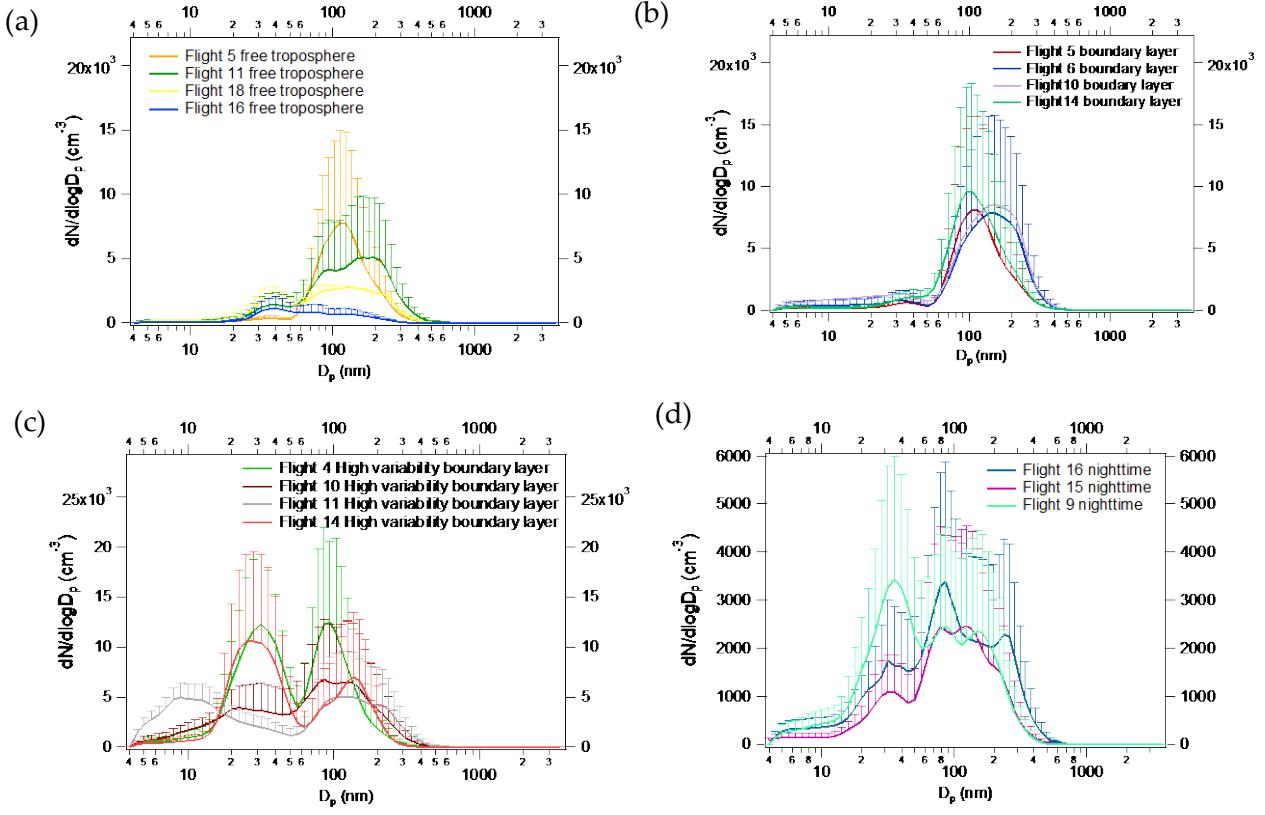
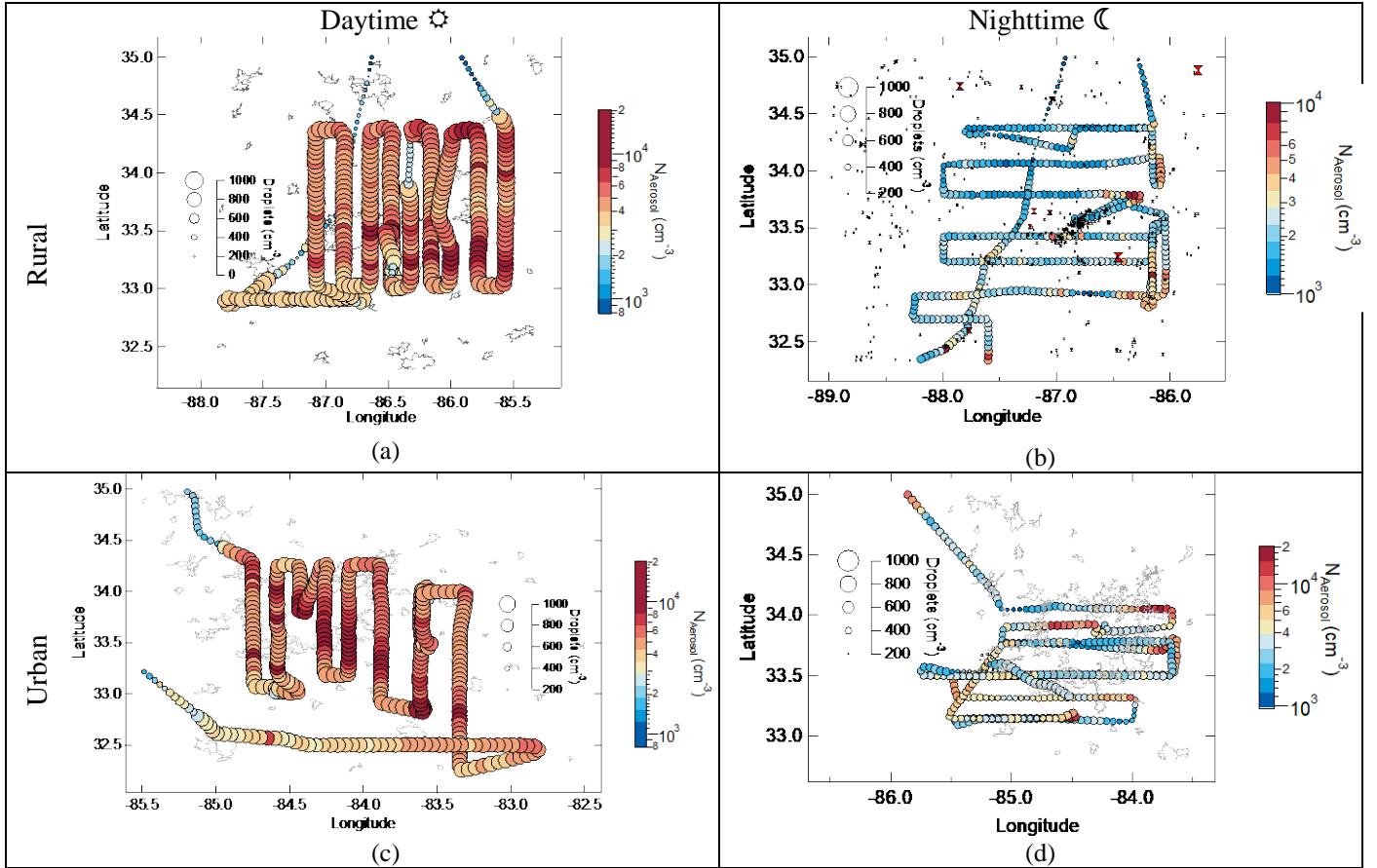
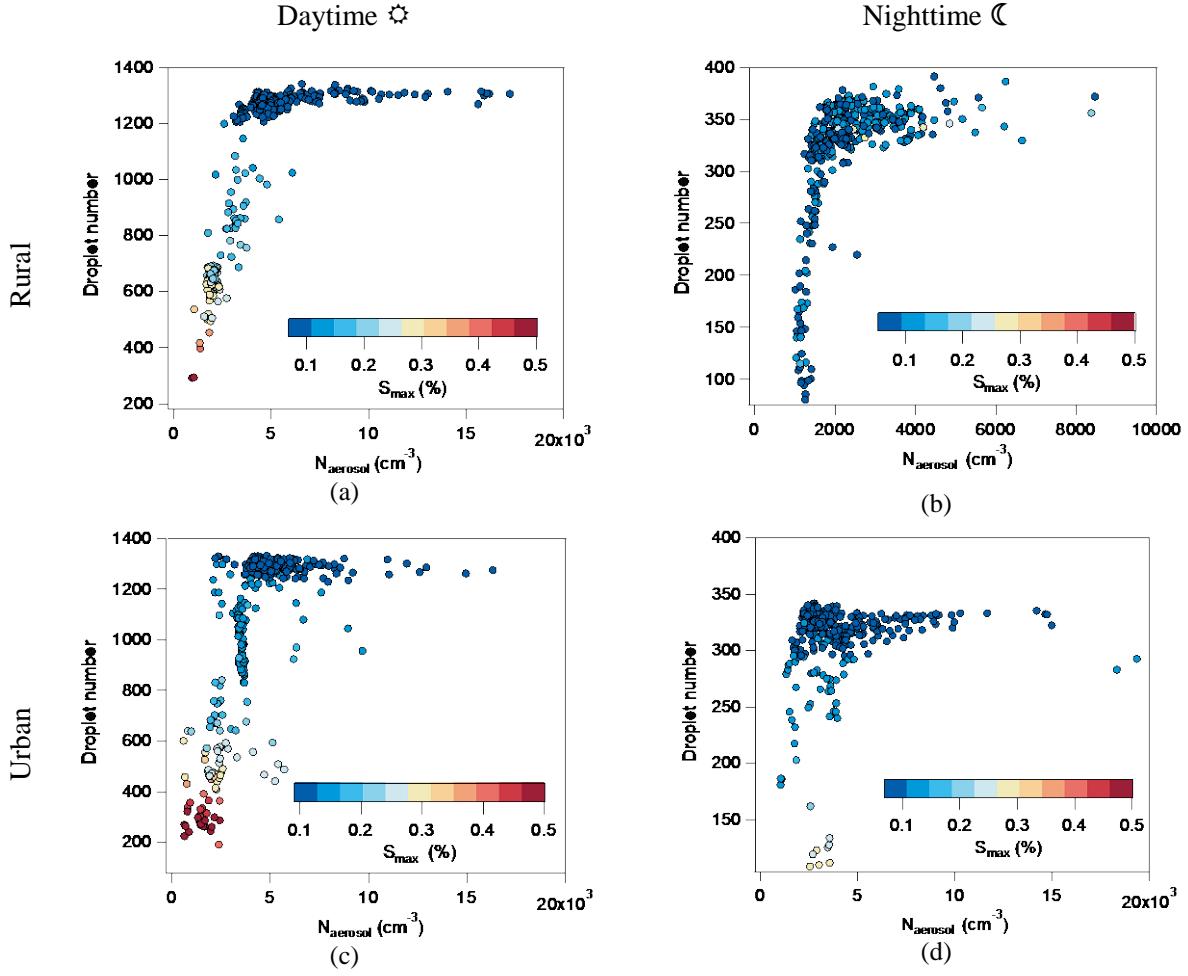
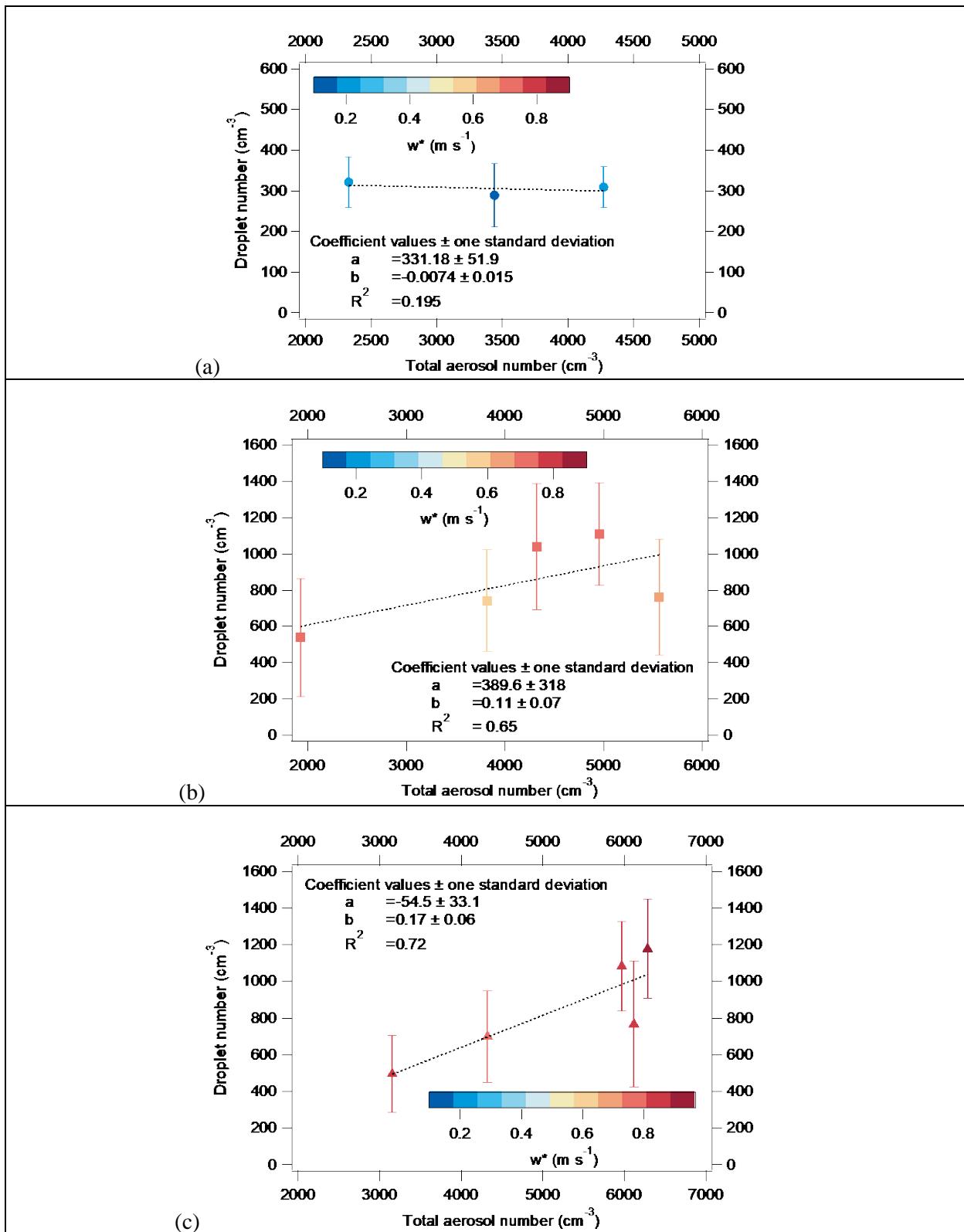

571

Table 4: Derived S_{max} , N_d , σ_w for all research flights along with the estimated contribution of each parameter to the variability of the droplet number. The symbol “⊗” next to each flight number refers to daytime flight, and “⊗” refers to a nighttime flight.


Flight	σ_w (m s^{-1})	$\frac{\Delta \sigma_w}{\sigma_w}$	S_{max} (%)	N_d (cm^{-3})	$\frac{\Delta N_d}{N_d}$	Contrib. κ	Contrib. N_a	Contrib. σ_w
4⊗	1.03±0.25	0.243	0.29±0.19	707±343	0.485	4%	79%	17%
5⊗	0.97±0.1	0.103	0.17±0.10	1040±350	0.337	7%	69%	24%
6⊗	0.94±0.18	0.191	0.13±0.07	1108±283	0.255	3%	54%	43%
9⊗	0.23±0.02	0.043	0.10±0.03	309±51	0.165	7%	76%	17%
10⊗	1.22±0.11	0.090	0.12±0.03	1177±271	0.230	1%	90%	9%
11⊗	1.08±0.04	0.037	0.11±0.03	1082±242	0.224	1%	83%	16%
12⊗	1.05±0.07	0.067	0.18±0.05	495±210	0.424	2%	96%	2%
14⊗	0.85±0.2	0.024	0.15±0.04	761±321	0.422	9%	72%	19%
15⊗	0.28±0.04	0.143	0.08±0.02	321±63	0.196	7%	51%	42%
16⊗	0.20±0.04	0.200	0.10±0.08	289±79	0.273	2%	65%	33%
17⊗	0.71±0.26	0.366	0.15±0.11	742±280	0.377	1%	71%	28%
18⊗	0.90±0.06	0.067	0.31±0.18	538±325	0.604	7%	83%	10%
19⊗	0.99±0.31	0.313	0.15±0.03	699±248	0.355	4%	88%	8%
Average					0.334	4%	75.2%	20.6%


Figure 1: Altitude as a function of time (UTC) colored by organic mass fraction. Spatial and vertical distribution of the organics mass fraction (a) for Flight 6, (b) for Flight 12 and (c) for Flight 16, denoting the difference in chemical composition, which in turn, may influence cloud droplet number concentration. The dashed line represents the boundary layer height, derived from Wagner et al., (2015) for daytime (1200 m) and from Seidel et al., (2012) for nighttime (500 m).


Figure 2: Average particle number size distributions for: (a) free tropospheric conditions, (b) within the boundary layer, (c) during segments with high variability in total aerosol number, and (d) during nighttime passes. Error bars represent the 75th percentile of the distributions within each segment.

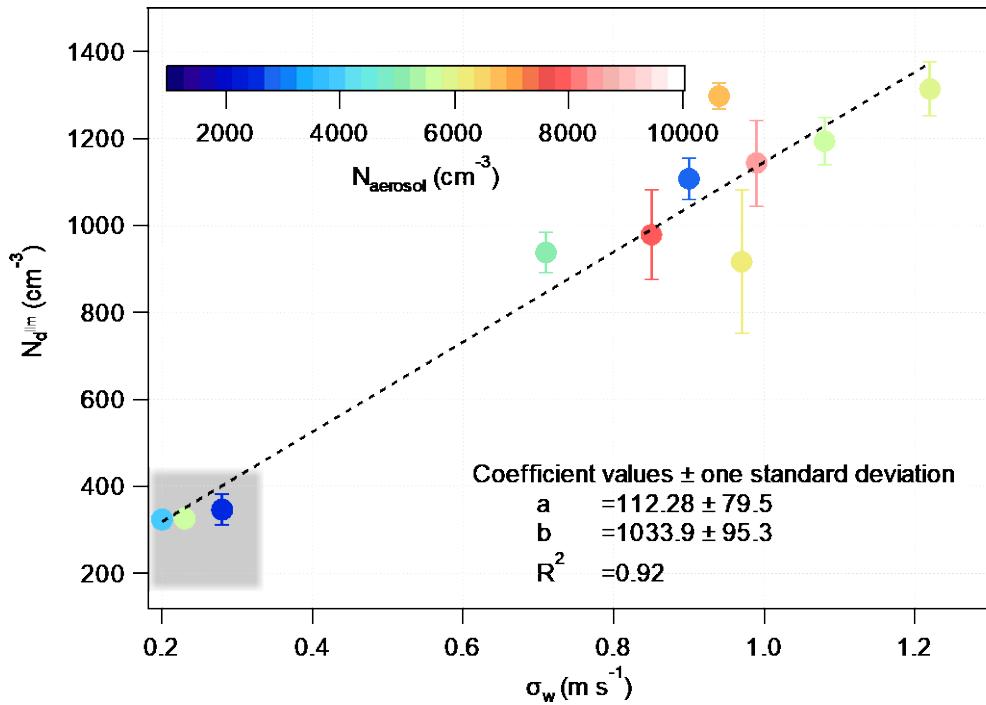

Figure 3: Map of aircraft flight track showing calculated cloud droplet number (indicated by marker size (cm^{-3})) and total aerosol number (indicated by marker color) for the observed characteristic vertical velocity (w^*). (a) for the rural sector during daytime (Flight 5) and (b) nighttime (Flight 15). (c) for urban Atlanta during daytime (Flight 6) and (d) nighttime (Flight 9). Note that the data are plotted at less than 1 Hz in order to better show the size and color of the markers.

Figure 4: Cloud droplet number vs. total aerosol number for the derived characteristic vertical velocity (w^*) of each flight (Table 4). (a) for the rural sector during daytime (Flight 5) and (b) nighttime (Flight 15). (c) for urban Atlanta during daytime (Flight 6) and (d) nighttime (Flight 9). Data are colored by maximum supersaturation.

Figure 5: Average cloud droplet number vs. total aerosol number, colored by characteristic velocity w^* for each flight. Error bars represent the standard deviation of cloud droplet number during each flight.

Figure 6: Limiting droplet number vs. standard deviation of vertical velocity during flights where a velocity-limited regime is reached (all except Flights 4, 12). The shaded area represents the segments of the flights conducted during nighttime while color scale denotes total aerosol number levels.