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Abstract

Here we analyze regional scale data collected onboard the NOAA WP-3D aircraft during the 2013
Southeast Nexus (SENEX) campaign to study the aerosol-cloud droplet link and quantify the sensitivity of
droplet number to aerosol number, chemical composition and vertical velocity. For this, the observed
aerosol size distributions, chemical composition and vertical velocity distribution are introduced into a
state-of-the-art cloud droplet parameterization to show that cloud maximum supersaturations in the region
are low, ranging from 0.02 to 0.52% with an average of 0.14+0.05%. Based on these low values of
supersaturation, the majority of activated droplets correspond to particles of dry diameter 90 nm and above.
An important finding is that the standard deviation of the vertical velocity (ow) exhibits considerable diurnal
variability (ranging from 0.16 m s™ during nighttime to over 1.2 m s during day) and it tends to covary
with total aerosol number (N,). This ow-N, covariance amplifies the predicted response in cloud droplet
number (N,) to N, increases by 3 to 5 times - which is important, given that droplet formation is often
velocity-limited, and therefore should normally be insensitive to aerosol changes. We also find that Ny
cannot exceed a characteristic concentration that depends solely on ovw. Correct consideration of ow and its
covariance with time and N, is important for fully understanding aerosol-cloud interactions and the

magnitude of the aerosol indirect effect. Given that model assessments of aerosol-cloud-climate
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interactions do not routinely evaluate for overall turbulence or its covariance with other parameters, datasets
and analyses such as the one presented here are of the highest priority to address unresolved sources of

hydrometeor variability, bias, and the response of droplet number to aerosol perturbations.
1. Introduction

Atmospheric particles (aerosols) interact with incoming solar radiation and tend to cool the Earth, especially
over dark surfaces such as oceans and forests (Charlson et al., 1992; Seinfeld and Pandis, 1998). Aerosols
also act as cloud condensation nuclei (CCN), form droplets in clouds and indirectly affect climate by
modulating precipitation patterns and cloud radiative properties. Aerosol-cloud interactions constitute the
most uncertain aspects of anthropogenic climate change (Seinfeld et al., 2016). Studies often highlight the
importance of constraining the aerosol size distribution, particle composition and mixing state for predicting
CCN concentrations (Cubison et al., 2008; Quinn et al., 2008; Riemer et al., 2019). Model assumptions
often cannot consider the full complexity required to comprehensively compute CCN — which together with
other emissions and process uncertainties lead to CCN prediction errors that can be significant (e.g.,
Fanourgakis et al., 2019). Owing to the sublinear response of cloud droplet number concentration (N,) to
aerosol perturbations, prediction errors in CCN generally result in errors in Ny which are less than those for
CCN (Fanourgakis et al., 2019). The sublinear response arises because elevated CCN concentration
generally increases the competition of the potential droplets for water vapor; this in turn depletes
supersaturation and the N, that can eventually form (Reutter et al., 2009; Bougiatioti et al., 2016;
Fanourgakis et al., 2019; Kalkavouras et al., 2019). A critically important parameter is the vertical velocity,
as it is responsible for generation of supersaturation that drives droplet formation and growth. Droplet
number variability may be driven primarily by vertical velocity variations (Kacarab et al., 2020; Sullivan
et al., 2019). Compared to aerosols, vertical velocity is much less observed, constrained and evaluated in
aerosol-cloud interaction studies, hence may be a source of persistent biases in models (Sullivan et al.,

2019).

The Southeast United States (SEUS) presents a particularly interesting location for studying regional
climate change, as it has not considerably warmed over the past 100 years — except during the last decade
(Carlton et al., 2018; Yu et al., 2014; Leibensperger et al., 2012a,b). These trends are in contrast with the
trends observed in most locations globally (IPCC 2013), and several hypotheses have been proposed to
explain this regional phenomenon, including the effect of involving short-lived climate forcers such as
secondary aerosols combined with the enhanced humidity in the region and their impact on clouds (Carlton
et al., 2018; Yu et al., 2014). Here, we analyze data collected during the Southeast Nexus of Air Quality
and Climate (SENEX) campaign in June-July 2013, which was the airborne component led by the National

Oceanic and Atmospheric Administration (NOAA), of a greater measurement campaign throughout the
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SEUS, the Southeast Atmosphere Study (SAS; Carlton et al., 2018). Here we analyze data collected onboard
the NOAA WP-3D and apply a state-of-the-art droplet parameterization to determine the maximum
supersaturation and N, achieved in cloudy updrafts, for all science flights with available number size
distribution and chemical composition data. We also determine the sensitivity of droplet formation to
vertical velocity and aerosol, with the purpose of understanding the drivers of droplet variability in the
boundary layer of the SEUS by obtaining regional-scale, representative values of the relationship between

the driving parameters and cloud droplet number.

2. Methods
2.1 Aircraft instrumentation

The analysis utilizes airborne, in situ data collected during the June-July 2013 SENEX mission, aboard the
National Oceanic and Atmospheric Administration (NOAA) WP-3D aircraft (typical airspeed ~100 m s™)
based in Smyrna, Tennessee (36°00°32°°N, 86°31°12”’W). In total, twenty research flights were conducted.
Based on the availability of the relevant data described below, thirteen flights are analyzed in this work.
Table 1 provides a synopsis of the analyzed research flights where times are local (UTC-5). Detailed
information on the instrumentation and measurement strategy during the SENEX campaign is provided by

Warneke et al. (2016).

Dry particle number distributions from 4 - 7000 nm were measured using multiple condensation and optical
particle counters. 4-700 nm particles were measured by a nucleation mode aerosol size spectrometer
(NMASS; Warneke et al., 2016) and an ultra-high sensitivity aerosol spectrometer (UHSAS; Brock et al.,
2011), while for larger particles with dry diameters between 0.7 and 7.0 um, a custom-built white-light
optical particle counter (WLOPC) was used (Brock et al., 2011).

Measurements of the composition of submicron (< 0.7 um vacuum aerodynamic diameter) non-refractory
particles were made with a compact time-of-flight acrosol mass spectrometer (C-ToF-AMS; Aerodyne,
Billerica, Massachesetts, US) (Canagaratna et al., 2007; Kupc et al., 2018) customized for aircraft use, with
a 10 s time resolution (Warneke et al., 2016). Particles entering the instrument are focused and impacted
on a 600 °C inverted-cone vaporizer. The volatilized vapors are analyzed by electron ionization mass
spectrometry, providing mass loadings of sulfate, nitrate, organics, ammonium and chloride. For the C-
ToF-AMS, the transmission efficiency of particles between 100 and 700 nm is assumed to be 100% through
the specific aerodynamic focusing lens used while mass concentrations are calculated using a chemical
composition-dependent collection efficiency (Middlebrook et al., 2012; Wagner et al., 2015). The C-ToF-

AMS measures only non-refractory aerosol chemical composition, therefore this analysis provides mass
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loadings of sulfate, nitrate, ammonium and organic constituents with a 10 s time resolution and neglects the
contribution of black carbon (BC). The calculation of the average volume fractions from the mass loading
follows that of Moore et al. (2012). An average organic density of 1.4 g cm™ is used, characteristic of aged
aerosol (Moore et al., 2011; Lathem et al., 2013) while for the inorganic species the respective densities are

used, assuming the aerosol to be internally mixed.

The aircraft was equipped by the NOAA Aircraft Operations Center (AOC) flight facility with a suite of
instruments to provide information on exact aircraft position as well as numerous meteorological
parameters (Warneke et al., 2016). The analysis in this work makes use of vertical wind velocity, aircraft
pressure altitude, and ambient temperature, pressure and relative humidity (RH) provided by NOAA AOC.
The location of the instrumentation on the aircraft is described elsewhere (Warneke et al., 2016). For
measurements inside the fuselage, a low turbulence inlet (Wilson et al., 2004) and sampling system (Brock
et al., 2011; 2016a) was used to decelerate the sample flow to the instruments. The C-ToF-AMS was
connected downstream of an impactor with 50% efficiency at a 1.0 pm aerodynamic diameter (PM1) cut-

point (Warneke et al., 2016).

2.2 Aerosol hygroscopicity parameter

The aerosol hygroscopicity parameter (Petters and Kreidenweis, 2007), «, is calculated assuming a mixture
of an organic and inorganic component with volume fractions €org, €inorg and characteristic hygroscopicities
Korg, Kinorg, T€SpECtively (K=€inorgKinorgtEorgkorg). The organic and inorganic volume fraction are derived from
the C-ToF-AMS data. Since throughout the summertime SEUS, aerosol inorganic nitrate mass and volume
fraction are very low (Weber et al., 2016; Fry et al., 2018), xinore=0.6, representative for ammonium sulfate,
is used. For the organic fraction, a hygroscopicity value of x,,=0.14 is used, based on concurrent
measurements conducted at the ground site of the SAS at the rural site of Centreville, Alabama (Cerully et
al., 2015). This value is also in accordance with the cumulative result of studies conducted in the Southeast
US using measurements of droplet activation diameters in subsaturated regimes, providing xo of > 0.1

(Brock et al., 2016a).

2.3 Cloud droplet number and maximum supersaturation

Using the observed aerosol number size distribution (1 s time resolution), the hygroscopicity derived from
the chemical composition measurements (10 s time resolution) and vertical velocity, we calculate the
(potential) cloud droplet number (N;) and maximum supersaturation (Syqx) that would form in clouds in the
airmasses sampled. Droplet number and maximum supersaturation calculations are carried out using an

approach similar to that of Bougiatioti et al. (2016) and Kalkavouras et al. (2019) with the sectional
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parameterization of Nenes and Seinfeld (2003), later improved by Barahona et al. (2010) and Morales
Betancourt and Nenes (2014a). A sectional representation of the size distribution is used for each 1-s data
point (e.g. for Flight 5, n=23213 data points). Given that chemical composition is provided with a 10 s time
resolution, the same hygroscopicity values are used for 10 successive size distributions throughout the
flight. Temperature and pressure required for droplet number calculations are obtained from the NOAA

AOC flight facility dataset.

Given that vertical velocity varies considerably inside the boundary layer, we obtain a droplet number that
is representative of the vertical velocity distribution — the average concentration that results from integrating
over the distribution (probability density function, PDF) of observed updraft velocities. To accomplish this,
each flight is divided into segments where the aircraft flew at a constant height. For each segment, the non-
negative vertical velocities are fit to the positive half of a Gaussian distribution with mean of zero and
standard deviation ay. Only positive vertical velocities (‘“updrafts) were used in this fit, as they are the part
of the vertical velocity spectrum that is responsible for cloud droplet formation. The oy values derived from
the level leg segments are then averaged into one single o, value (and standard deviation) to represent each
flight. The PDF-averaged droplet number concentration is then obtained using the “characteristic velocity”
approach of Morales and Nenes (2010), where applying the droplet parameterization at a single
“characteristic” velocity, w*=0.790 (Morales and Nenes, 2010) gives directly the PDF-averaged value.
The flight-averaged o, and subsequently the respective w" is applied to each size distribution measured.
Apart from its theoretical basis, this methodology has shown to provide good closure with observed droplet

numbers in ambient clouds (e.g. Kacarab et al., 2020).

In determining oy, we consider horizontal segments most likely to be in the boundary layer. 91% of the
segments are below 1000 m above sea level (mean altitude ~700 m; Table 2 and SP3 for all flights), within
the boundary layer in the summertime US (Seidel et al., 2013). The vertical velocity distributions observed
gave oy =0.97+0.21 m s™' for daytime flights, and oy =0.23+0.04 m s™' for nighttime flights (Table 2 and
SP3).

Potential droplet formation is evaluated at four characteristic velocities w* that cover the observed range in
ow, namely 0.1, 0.3, 0.6, and 1 ms™. The o, = 0.3 m s case is most representative of nighttime conditions,
while oy, = 1 m s should is most representative of the daytime boundary layer.

We also compute the variance of the derived Ny, estimated from the sensitivity to changes in aerosol number
concentration N,, x and oy, expressed by the partial derivatives ON#/ON,, ON/ Ok and ON,/Oao,, computed
from the parameterization using a finite difference approximation (Bougiatioti et al., 2017; Kalkavouras et

al., 2019) using:
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These sensitivities, together with the observed variance in N,, k, and oy are also used to attribute droplet
number variability to variations in the respective aerosol and vertical velocity parameters following the

approach of Bougiatioti et al. (2017) and Kalkavouras et al. (2019):
2 —_— 2 2

dN, N, 0N,
Greom) (5 x) (G )

I = =
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3. Results and Discussion

3.1. Particle composition and size distribution

For the determination of the different aerosol species present, neutral and acidic sulfate salts are
distinguished by the molar ratio of ammonium to sulfate ions in the aerosol. A molar ratio higher than 2
indicates the presence of only ammonium sulfate, while values between 1 and 2 indicate a mixture of
ammonium sulfate and bisulfate (Seinfeld and Pandis, 1998). For most flights, the molar ratio of ammonium
versus sulfate was above 2 (mean value 2.41+0.72 and median of 2.06). For the nighttime flights, the values
were somewhat lower (mean value 1.91+0.42 and median of 1.85). Nevertheless, ammonium sulfate is
always the predominant sulfate salt. Organic mass fractions for the SENEX research flights are provided in
Table 1. Overall, organic aerosol dominated the composition during all flights, contributing 66%-75% of
the total aerosol volume. Most of the remaining aerosol volume consisted of ammonium sulfate, ranging
from 12%-39% (with a mean of 23%+6%). The organic mass fraction during the flights varied with height
(see Figure 1). This vertical variability of the chemical composition can have a strong impact on droplet
number within the boundary layer, as air masses from aloft may descend and interact with that underneath.
Figure 1 represents the organic mass fractions during Flights 6, 12 and 16, with all flights provided in the
supplementary material (Figure S1). The lowest organic mass fractions overall were observed during Flight
12 (36%+10% with values almost two-fold higher for altitudes >3000 m, Fig. 1b) while the highest organic
mass fractions were observed during flights over predominantly rural areas (Flights 5, 10, and 16 (Fig. 1¢)).
During Flight 5 the organic mass fraction was high (68%+5%), with the highest values found in the free
troposphere at altitudes >3000 m, as was the case for 4 other flights (5/13 in total, Fig. S1). High organic
mass fractions were also found during nighttime Flight 9 that included portions of the Atlanta metropolitan
area, with values up to 78%. The impact of the aerosol composition variability on droplet number is

discussed in section 3.2.
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The predominance of the organic fraction is also reflected in the hygroscopicity parameter values, with an
overall x =0.25+0.05, close to the proposed global average of 0.3 (Pringle et al., 2010). The highest values
of k, as expected are observed during flights exhibiting the lowest organic mass fraction, namely Flight 12
with a x = 0.39 (Table 1). The rest of the k-values are close to the overall value of 0.25, corresponding to

an organic mass fraction of around 0.60.

Median aerosol size distributions and the respective total aecrosol number are obtained from the median and
interquartile range in each size bin from the aerosol size distribution measurements during segments where
the aircraft flew at a constant height. Aerosol size distributions and changes in them during each flight are
crucial as they are used as input for the droplet number parameterization. Overall, N, ranged from around
500 to over 100000 cm™ with number size distributions varying markedly over the course of a flight (Figure
2). Free tropospheric distributions exhibited characteristics of a bimodal distribution with a prominent broad
accumulation mode peak (80-200 nm) and an Aitken mode peak (30-60 nm) (Fig. 2a) while boundary layer
size distributions exhibited a more prominent accumulation mode (Fig. 2b). There was considerable
variability in the contributions of the nucleation, Aitken, and accumulation modes to total N,, depending on
altitude and proximity to aerosol sources (Fig. 2c). Nevertheless, the modal diameters did not vary
considerably, dictating that mostly particles in the same mode will activate, depending on the developed
supersaturation. Distributions during nighttime flights exhibited similar N, and variability between them;
nevertheless, size distributions were more complex - exhibiting up to three distinct modes (20-40, 70-100

and 130-200 nm; Fig. 2d).
3.2 Potential cloud droplet number and maximum supersaturation

We first focus on calculation of the potential NV, and Sy..x for data from all thirteen research flights and for
the four prescribed values o, that represent the observed range. These calculations help understand the
sensitivity of droplet formation to N, and « for all the airmasses sampled — without considering the added
variability induced by changes in turbulence expressed by o, (considered later). Results from this analysis
are provided in Table 3. The highest N; were found for Flights 6 and 10, which correspond to ambient
conditions with the highest N,, consistent with the sampling of the Atlanta urban environment. For a given
ow, the variance of N, is predominantly caused by changes in N, rather than changes in hygroscopicity (i.e.,
chemical composition). The highest influence of x to Ny variability is found for Flight 18 (12% and 35%
for 0.1 and 0.3 m s, respectively), during which N, was the low, and the organic mass fraction was ~50%.
The contribution of x to the N, variability is as high as 37% (for 0.6 m s™); despite this large contribution,
droplet formation is usually considerably more sensitive to changes in aerosol concentration than to
variations in composition. Overall, the relative contribution of the hygroscopicity to the variation of Ny

increases from 5+3% for ¢, =0.1 m s', to 12.3+8% for ¢, =0.3 m s™!, to 14.5+£10% for ¢, =0.3 m s and
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16.5+9% for o, =1 m s'. As g, -increases, so does supersaturation and consequently N,. On average, N,
increases by 62% as o, increased from 0.1 to 0.3 m s™, 70% as o, increased from 0.3 to 0.6 m s and
another 39% as g, increased from 0.6 to 1 m s™. Tripling o, from 0.1 to 0.3 m s results in 31% increase
in Syax, while doubling o, from 0.3 to 0.6 m s™ results in 26.2% increase in Sy and a further o, increase

to 1 m s leads to an additional 20.7% increase in Spax.

Considering the changes in vertical velocity between flights (Table 4), we observe that average oy during
daytime varied little between flights and was large, ranging between 0.85 and 1.2 m s with a mean of
0.97+0.21 m s™'. Under such conditions, water availability during droplet formation is aerosol-limited, so
that N, is sensitive to N,. The degree of water availability is expressed by the Sy.qx, which for all the evaluated
SENEX data, is 0.14+0.05%. This level of maximum supersaturation activates particles of roughly >90 nm
diameter (e.g., accumulation mode particles) into cloud droplets. The highest S, ranged from 0.2 to 0.3%
and was found during flights which exhibited large and highly variable oy (Flights 4, 5, 12 and 19) while
the lowest Sy« was below 0.10% and was found during nighttime flights (Flights 9, 15 and 16). Contrasts
in droplet formation between day and nighttime conditions may be driven primarily by the total aerosol

number in the accumulation mode, and not be affected by ultrafine particles.

The large diurnal variability in oy (from 0.3 m s™ at night to 1.0 m s at day) contributes considerably to
the diurnal variability in N; To understand the relative importance of all parameters affecting droplet
formation (ow, N, k) We estimate their contribution to the total variability in Ny based on the variances of
k, N, and oy and the sensitivity of droplet formation to those parameters. The results of the analysis is
summarized in Table 4. The o, variation during nighttime, although small (always less than 10%),
consistently remains an important contributor to Ny variability, because droplet formation tends to be in the
updraft velocity-limited regime. At higher values of o, (Table 4), the contribution of N, variability becomes

a relatively dominant contributor to N, variability.

Another way to express the importance of vertical velocity and aerosol number for the levels of droplet
number is to compare flights where aerosol number or oy, vary in a similar way. For this, we focus on two
day/night flight pairs (Flights 5 and 15, and Flights 6 and 9), shown in Fig. 3. The first pair of flights were
conducted over a rural area under moderate aerosol number conditions, while the second pair exhibited
somewhat higher aerosol numbers owing to its proximity to the Atlanta metropolitan area. The size of the
markers in Fig.3 represents the potential number of droplets in clouds forming in each airmass sampled,
while their color reflects the respective total aerosol number. In both pairs of flights, oy varies about the
same between night and day (Table 4). For the Flights 5, 15 pair, the difference in N; between day and night
(which is 69% higher during daytime) is driven primarily by aerosol characteristics (69% by N, and 7%
from x) and only 24% by oy. For nighttime (Flight 15), the variability in N, is driven 58% by aerosol (51%
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by N, and 7% from x) and 42% by ow. For the second pair of night/day flights (Flights 6, 9), N, is on average

similar, o, varies by a factor of 4.0 between day and night and « varies by 13%.

The difference in Ny between day and night (where daytime values are 72.1% higher than nighttime) is
almost equally driven by N, and oy changes during the day (54% and 43% respectively), while
predominantly driven by N, during the night (76%; Table 4). Overall, in the proximity of an urban
environment with higher aerosol concentrations, 57% of the Ny variability is driven by aerosol (N, and x)
during the day and 83% during the night. Figure 3 presents the calculated Ny for the four aforementioned
flights, namely Flights 5 (Fig. 3a), 15 (Fig. 3b), 6 (Fig. 3c) and 9 (Fig. 3d) using the observed ay. The size
of the markers represents the estimated number of droplets, while the color scale the respective total aerosol

number. Droplet number is lower during nighttime owing to the limited turbulence, i.e., lower o.

Figure 4 shows Ny relative to IV, for flights conducted in the two aforementioned areas, during day (Flights
5 and 15) and night (Flights 6 and 9). For high enough N,, Ns becomes insensitive to additional amounts of
aerosol and reaches a “limiting” Ny, which Kacarab et al. (2020) denotes as Ng"™. This limit in N is reached
when the competition for water vapor to form droplets is strong enough to inhibit the formation of droplets
with further increase in N,. The intense competition for water vapor is reflected in the low value of Smax,
which drops below 0.1% when Ny is in the vicinity of Ng"™ (Figure 4). The availability of water vapor during
droplet formation is driven by ow, hence droplet formation is limited by ow and thus by velocity, when Ny
approaches N4'™. Figure 5 illustrates these effects, by presenting the relationship between N, and Ny for
“low” w" (<0.25 ms'; upper panel), “medium” w" (0.5-0.7 ms™'; middle panel), and “high” w" (0.75-1 ms"
' lower panel) for all flights. Under low w* conditions, changes in N, does not result in an important change
in N, so its value corresponds to Njim. When w" increases to “medium” values (Figure 5b), then Ny becomes
sensitive to N,, which is further amplified at “high” values of w" (Figure 5c). The covariance of aerosol
number and vertical velocity (Figure S3) means that the latter significantly enhances the inherent response
of N4 to N,, which points to the importance of constraining vertical velocity and its variance to correctly
capture the aerosol-cloud droplet relationship in any model. The covariance, also observed in other
environments (e.g., Kacarab et al., 2020), may result from a more effective convective transfer of aerosol-

rich air to cloud forming regions, but requires further investigation.

Analysis of Figure 4 also shows that N¢"™ varies between 1200 cm™ during day and around 350 cm™ during

night, which points to its strong dependence on oy Indeed, when the Ng"™ for all flights (except Flights 4,

12, for which insufficient aerosol is present to reach N4'™) is expressed as a function of oy, a remarkable

correlation emerges between the two parameters (Figure 6). Even more interesting is that this relationship
lim

is quantitatively similar to the corresponding Nq'™ - oy, relationship Kacarab et al. (2020) found for biomass

burning - influenced boundary layer clouds in the Southeast Atlantic. The implication of the Ny'™ - gy
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relationship, and its potential universality, is that when Ny approaches N4'™, its variability is a reflection of
vertical velocity variability alone, not variability in N,. This opens up the possibility to infer the vertical
velocity distribution from the droplet number concentration retrievals in regions where considerable

amounts of aerosol are present.

4. Summary and Conclusions

Measurements of vertical wind velocity, ambient temperature, humidity, aerosol number size distribution
and composition in the SEUS obtained during the SENEX 2013 project are used to analyze the drivers of
droplet formation. Overall, 13 research flights are studied, covering environments over sectors with
different aerosol sources, aerosol number, size distribution, chemical composition and updraft velocity.
Aerosol volume is largely dominated by an organic fraction resulting in an estimated hygroscopicity of

0.25+0.05.

Based on the calculation of cloud droplet number concentration (N,) and maximum supersaturation (Syax),
we find that at the regional scale, N, variability is largely driven by fluctuations in N, (Table 4), in
accordance with other recent studies (e.g., Fanourgakis et al., 2019; Kalkavouras et al., 2019; Kacarab et
al., 2020). Nonetheless, N, levels are also sensitive to vertical velocity variations, ow; a factor of 4.0 change
in g, on its own may lead to an almost proportional change in Ny (factor of 3.6). These responses however
occur over the diurnal timescale, during which N, also changes; the covariance between oy with N, enhances
the apparent response of N, to changes in N, levels by a factor of 5 (Figure 4). In “cleaner” environments
where total aerosol number is not impacted by local sources, the relative response of N, to oy, is almost
twice as great at night than during the day (24% for daytime Flight 5 vs. 42% for nighttime Flight 15). On
the other hand, the relative response of Ny to N, is slightly lower during the night than during the day (51%
at night vs. 69% during the day). In environments with elevated concentrations of accumulation-mode
particles, the majority of Ny variations can be attributed to changes in N, and to a lesser extent to changes
in o, Variations in chemical composition (expressed by x) do not contribute substantially to droplet number
variability in most cases. As expected, Syqx partially mitigates the response of Ny to N,. Overall, maximum
supersaturation levels remain quite low (0.14+0.05%) with the lowest levels (0.05+0.1%) estimated closest

to surface. As a result, particles with diameters >90 nm were the most substantial contributors to CCN.

Our analysis also reveals the importance of the variance in vertical velocity as a key driver of cloud droplet
formation and its variability in the region. When the boundary layer turbulence is low (e.g. during
nighttime) and water vapor supersaturations are low, ¢,, and its variability, can be as important a contributor
to Ng as is NV,. On average, the two variables (V, and a,,) contribute almost equally to the variability in Ng,

accounting for more than 90% of the variability. This finding is consistent with recent modeling studies
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noting the importance of vertical velocity variability as a driver of the temporal variability of global
hydrometeor concentration (Morales Betancourt and Nenes, 2014b; Sullivan et al., 2016). Furthermore, the
Ngq response from changes in &V, is magnified up to 5 times by correlated changes in o,,. A similar situation
was seen in marine boundary layers influenced by biomass burning in the Southeast Atlantic (Kacarab et
al., 2020). Finally, we identify an upper limit to the number of droplets that can form in clouds which
depends only on ay. This upper limit value tends to be achieved near the surface, where N, tends to be
higher. Whenever N; approaches this upper limit, observed droplet variability is driven by o,, and as a

consequence by vertical velocity changes only.

Many aspects of warm cloud physics and especially droplet formation are known for decades. Ensuring that
global models simulate N; for the “right reasons” (i.e., aerosol variability and/or vertical velocity
variability) is critical for constraining aerosol-cloud-climate interactions. Our study provides important
constraints on the relationships between oy, N,, potential Ny and Smax, and shows the importance of
covariance between o,, and N, in controlling the N, that can result from a given value of o,,. Given that
global model assessments of aerosol-cloud-climate interactions do not evaluate for vertical velocity or its
covariance with other parameters, our work shows that this omission can lead to an underappreciated source
of hydrometeor variability and bias, and to a biased response and attribution of droplet number to aerosol

levels.

Data Availability: The data used in this study can be downloaded from the NOAA public data repository
at https://www.esrl.noaa.gov/csd/projects/senex/. The Gaussian fits used for determining o,, and the droplet
parameterization used for the calculations in the study are available from athanasios.nenes@epfl.ch upon

request.
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Table 1: Research flights from the SENEX 2013 campaign used in this study. The symbol “¥” next to

each flight number refers to daytime flight, and “Q” refers to a nighttime flight.

Flight = Date Local Time Hygroscopicity Organic mass

(UTC-5) Parameter fraction

4% 10/6 09:55-16:30 0.23+0.02 0.62+0.11
5% 11/6 11:30-17:57 0.20+0.00 0.68+0.05
6% 12/6 09:48-15:31 0.21+0.01 0.68+0.07
9¢ 19/6 17:30-23:29 0.24+0.01 0.66+0.06
10%3 22/6 10:01-17:09 0.21+0.02 0.68+0.08
1153 23/6 10:08-17:22 0.25+0.03 0.58+0.07
1243 25/6 10:18-17:25 0.39+0.02 0.35+0.18
143 29/6 10:26-17:39 0.224+0.03 0.62+0.07
15¢ 2/7 20:08-02:51 0.28+0.05 0.55+0.09
16C 3/7 19:56-02:55 0.22+0.05 0.67+0.09
1752 5/7 09:52-16:24 0.23+0.05 0.59+0.14
18%% 6/7 09:19-16:18 0.31+0.02 0.52+0.08
1943 8/7 10:11-16:44 0.23+0.04 0.62+0.08
Average 0.25+0.05 0.60+0.09
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Table 2: Flight number, time interval, standard deviation of vertical wind velocity (o) and characteristic
vertical velocity w*=0.79¢,, during flight segments where the aircraft flew at a constant altitude.

Flight Time Interval ow w* Altitude Flight Time Interval Ow w* Altitude a.s.l.
(pass) (Local Time) | (ms) | (msh as.l (m) (pass) (Local Time) | (msh | (ms? (m)
5(1) | 12:31-12:58 | 1.02 | 0.81 | 549+ 58 9(1) | 18:44-18:58 | 025 | 020 | 797+2.01
5(12) 13:16-13:29 | 0.82 0.65 982+11 9(2) 19:20-19:29 | 0.25 0.2 740+1.23
503) 13:34-13:50 | 1.01 0.80 502+13 9(3) 19:33-19:48 | 0.22 0.17 740+1.23
5(4) | 13:53-14:08 | 1.03 | 0.81 | 614427 94) |19:51-20:25 | 022 | 0.17 | 776+1.22
50) 14:20-15:00 | 0.91 0.72 603+40 9(5) 20:34-20:39 | 0.23 0.18 597+1.19
5(6) 15:35-15:41 0.87 0.69 533+18 9(7) 20:56-21:10 | 0.20 0.16 773x1.11
5(7) | 16:17-16:30 | 0.77 | 0.61 | 63823 9(8) |21:31-21:45 | 0.19 | 0.15 | 725+1.18
5(8) | 16:31-16:39 | 0.55 | 044 | 559+18 9(9) |22:24-22:31| 026 | 020 | 745+1.36
50) 17:10-17:22 | 0.53 0.42 686+40 9(10) | 22:48-22:54 | 0.22 0.17 | 804+ 1.37
14 (1) | 12:34-12:49 | 0.94 0.75 558+2 15(1) | 21:09-21:52 | 0.24 0.19 505+6.64
14 (2) | 13:57-14:17 | 0.97 0.77 65843 15(2) | 22:19-22:31 | 030 0.24 633£1.21
14 (3) | 14:22-14:46 | 0.95 0.75 737+£3 15(3) | 22:42-22:54 | 0.25 0.20 600+1.17
14 (4) | 14:58-15:33 | 0.55 0.43 74623 15(4) | 23:26-23:37 | 0.33 0.26 908+1.56
14 (5) | 15:55-16:08 | 0.57 0.45 714+3 15(5) | 00:02-00:19 | 0.30 0.23 | 1208+1.23
14 (6) | 16:11-16:21 0.77 0.61 801+3 15 (6) 00:43-1:08 0.25 0.20 592+1.37
14 (7) | 16:33-16:41 0.45 0.35 793£2 15(7) 1:10-1:24 0.28 0.22 676+1.02
1508) | 1:37-2:02 | 021 | 0.16 | 713+19.5
12 (1) | 11:50-12:34 | 0.96 0.75 484+3 19 (1) 11:20-11:41 | 0.62 0.49 | 1014+2.27
12 (2) | 12:48-13:18 1.09 0.86 50343 19 (2) 12:09-12:23 | 1.20 0.95 652+3.34
12.(3) | 13:34-13:50 | 1.12 0.88 894+3 19 (3) 12:51-13:10 | 0.87 0.69 537+2.51
12 (4) | 14:06-14:40 1.04 0.82 479+4 19 (4) 13:22-13:49 | 1.29 1.02 518+22.6
12 (5) | 15:21-15:32 | 1.10 0.87 52143 19 (5) 14:44-14:57 | 1.36 1.07 528+3.26
12 (6) | 15:43-16:02 | 0.99 0.78 475+3 19 (6) 15:04-16:06 | 0.90 0.71 524+2.8
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553 Table 3: Derived cloud parameters (maximum supersaturation, droplet number) and relative contribution of chemical composition and total
554  aerosol number for different vertical velocities. Numbers in parentheses indicate standard deviation values. The symbol “%¥” next to each flight
555  number refers to daytime flight, and “Q refers to a nighttime flight.
556
Flight =~ N. Std v=0.1 m 5! 6,=0.3 m s’! 6,=0.6 m s’! ov=1.0 ms!
Dev N, Stmax Nua Contrib Contrib Smax Nu Contrib | Contrib Stmax Nua Contrib | Contrib Stmax Na Contrib | Contrib
ey [Nq
K Na K Na K Na K Na
433 6118 4520 0.11 122 0.08 0.92 0.16 315 0.20 0.80 0.21 520 0.23 0.77 0.26 737 0.2 0.8
0.06)  (41) 0.09)  (114) 0.12)  (212) 0.17) | (321)
5% 4324 | 2598 0.08 139 0.09 091 0.1 388 0.15 0.85 0.14 712 0.17 083 0.17 1063 0.21 0.79
0.04) (31 (0.06) = (104) 0.08)  (216) 0.1) | (360)
6% 4958 3054 0.07 151 0.03 0.97 0.08 422 0.11 0.89 0.1 773 0.08 0.92 0.13 1162 0.07 0.93
0.07)  (24) 0.04)  (70) 0.06) = (171) 0.07) | (302)
9C 4271 3095 0.07 152 0.05 0.95 0.12 367 0.17 0.83 0.16 533 0.17 0.83 0.19 680 0.12 0.88
0.02) | (18) 0.04) | (68) (0.05) | (115) 0.06) | (126)
103 6286 | 7201 0.07 158 0.02 0.98 0.1 422 0.02 0.98 0.14 748 0.04 0.96 0.18 1063 0.09 091
0.03)  (24) (0.05)  (86) 0.07) = (180) (0.08) | (295)
115 5969 7271 0.04 137 0.01 0.99 0.06 381 0.04 0.96 0.08 695 0.03 0.97 0.10 1025 0.03 0.97
0.01)  (19) 0.01)  (61) 0.02) = (134) 0.02) | (226)
1253 3154 5150 0.06 110 0.03 0.97 0.1 274 0.05 0.95 0.14 404 0.08 0.92 0.17 486 0.07 0.93
0.03)  (45) 0.04) = (117) 0.04)  (179) (0.05) | (207)
145 5564 5891 0.07 118 0.05 0.95 0.10 328 0.17 0.83 0.13 590 0.25 0.75 0.16 842 0.27 0.73
0.02)  (41) (0.03) = (125) (0.04) = (240) (0.05) | (361)
15C 2328 1428 0.05 135 0.03 0.97 0.09 339 0.12 0.88 0.12 557 0.21 0.79 0.16 717 03 0.7
0.01) (22 0.02)  (67) 0.02) = (137) (0.03) | (203)
16C 3440 | 4507 0.08 158 0.03 0.97 0.12 403 0.06 0.94 0.17 670 0.07 0.93 0.23 917 0.1 09
0.06)  (37) 0.1) | (120) (0.13) = (235) 0.16) | (374)
173% 3813 4645 0.05 129 0.06 0.94 0.07 342 0.1 09 0.1 593 0.06 0.94 0.13 841 0.06 0.94
0.02) | (41) (0.03) | (130) (0.04) | (248) 0.05) | (371)
181 1925 983 0.08 90 0.12 0.88 0.12 233 0.35 0.65 0.15 379 0.37 0.63 0.19 499 0.27 0.73
0.04) | (58) (0.05) | (157) 0.06)  (262) 0.07) | (346)
191 4323 7261 0.06 121 0.02 0.98 0.08 314 0.06 0.94 0.12 526 0.11 0.89 0.15 670 0.13 0.87
0.02) | (33) 0.02) | (96) 0.03) | (177) (0.03) | (249)
557
558
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559
560
561

562

Table 4: Derived Suax, Na, ow for all research flights along with the estimated contribution of each
parameter to the variability of the droplet number. The symbol “£*” next to each flight number refers to
daytime flight, and “Q” refers to a nighttime flight.

Flight Ow Nﬂ Smax Ny % Contrib. | Contrib. | Contrib.
msy | v %) emy | N * N "
4% 1.03+0.25 | 0.243 | 0.29+0.19 | 707+343 | 0.485 4% 79% 17%
5% 0.97+0.1 | 0.103 | 0.17+0.10 | 1040+350 | 0.337 7% 69% 24%
6%x 0.94+0.18 | 0.191 | 0.13£0.07 | 1108+283 | 0.255 3% 54% 43%
9¢ 0.23+0.02 | 0.043 | 0.10+0.03 | 309+51 | 0.165 7% 76% 17%
103 1.22+0.11 | 0.090 | 0.12+0.03 | 1177271 | 0.230 1% 90% 9%
11£x | 1.08+0.04 | 0.037 | 0.11+0.03 | 1082+242 | 0.224 1% 83% 16%
128 1.05+0.07 | 0.067 | 0.18+£0.05 | 495+210 | 0.424 2% 96% 2%
1432 0.85+0.2 | 0.024 | 0.15+0.04 | 761+£321 | 0.422 9% 72% 19%
15C | 0.28+0.04 | 0.143 | 0.08+0.02 | 32163 | 0.196 7% 51% 42%
16C 0.20+0.04 | 0.200 | 0.10+£0.08 | 289+79 | 0.273 2% 65% 33%
178 | 0.71£0.26 | 0.366 | 0.15+0.11 | 742+280 | 0.377 1% 71% 28%
188 | 0.90+0.06 | 0.067 | 0.31+0.18 | 538+325 | 0.604 7% 83% 10%
198 | 0.99+0.31 | 0.313 | 0.15+0.03 | 699+248 | 0.355 4% 88% 8%
Average 0.334 4% 75.2% 20.6%
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Figure 1: Altitude as a function of time (UTC) colored by organic mass fraction. Spatial and vertical
distribution of the organics mass fraction (a) for Flight 6, (b) for Flight 12 and (c) for Flight 16, denoting
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565  the difference in chemical composition, which in turn, may influence cloud droplet number concentration.
566  The dashed line represents the boundary layer height.

23



567

568
569
570

571

(a) 10 100 1000

A T R N A A Y N S - ATY B S
3| Flight 5 free troposphere L 3
20x10 —— Flight 11 free troposphere 20x10
Flight 18 free troposphere
. —— Fligh 16 free troposphere
o _ L
£ 15 15
o
o
%
3 10 — 10
R
zZ
°
-5
=0
2
10 0
(©) 450, 2 346, zadse,) 23
—— Flight 4 High variability boundary layer
3 —— Flight 10 High variability boundary layer
25x10" Flight 11 High variability boundary layer [~ 25x10
—— Flight_14 High variability boundary layer
¢ 20+ I 20
£
C2
o 15 15
j2]
o
]
> 104 ~ 10
©
5 ~5
0 - =t 0

(d)

dN/diogD, (om””)

1200 b Y R S S A Y B S
—— Flight 5 boundary layer
3 3
20x10" — Flight 6 boundary layer [~ 20x10
Flight10 boudary layer
—— Flight14 boundary layer
?_ 15 ~15
§
o
5
8 10 ~10
el
P4
°
54 -5
0= T T T 0
456 3456 456
10 100 1000
Dy (nm)
10 100 1000
$.8.0 P800 % 8% 2
6000 — — 6000
— Flight 16 nighttime
— Flight 15 nighttime
5000 J Flight 9 nighttime [~ 5000
4000 4 l %EP I 4000
3000 + — 3000
2000 — 2000
1000 — — 1000
0- F=r=—10

Figure 2: Average particle number size distributions for: (a) free tropospheric conditions, (b) within the
boundary layer, (c¢) during segments with high variability in total aerosol number, and (d) during nighttime
passes. Error bars represent the 75™ percentile of the distributions within each segment.
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573  Figure 3: Map of aircraft flight track showing calculated cloud droplet number (indicated by marker size
574  (cm™))and total aerosol number (indicated by marker color) for the observed characteristic vertical velocity
575  (w*). (a) for the rural sector during daytime (Flight 5) and (b) nighttime (Flight 15). (c) for urban Atlanta
576  during daytime (Flight 6) and (d) nighttime (Flight 9). Note that the data are plotted at less than 1 Hz in
577  order to better show the size and color of the markers.
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583

584  Figure 4: Cloud droplet number vs. total aerosol number for the derived characteristic vertical velocity
585  (w*) of each flight (Table 4). (a) for the rural sector during daytime (Flight 5) and (b) nighttime (Flight 15).
586  (c) for urban Altanta during daytime (Flight 6) and (d) nighttime (Flight 9). Data are colored by maximum
587  supersaturation.
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592  Figure 5: Average cloud droplet number vs. total aerosol number, colored by characteristic velocity w*
593  for each flight. Error bars represent the standard deviation of cloud droplet number during each flight.
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597  Figure 6: Limiting droplet number vs. standard deviation of vertical velocity during flights where a
598  velocity-limited regime is reached (all except Flights 4, 12). The shaded area represents the segments of the
599  flights conducted during nighttime while color scale denotes total acrosol number levels.
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