

1 Drivers of cloud droplet number variability in the summertime 2 Southeast United States

3 Aikaterini Bougiatioti^{1,2}, Athanasios Nenes^{2,3,4}, Jack J. Lin^{2,a}, Charles A. Brock⁵, Joost A. de Gouw^{5,6,b}, Jin
4 Liao^{5,6,c,d}, Ann M. Middlebrook⁵, André Welti^{5,6,e}

5 ¹Institute for Environmental Research & Sustainable Development, National Observatory of Athens, P.
6 Penteli, GR-15236, Greece

7 ²School of Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA

8 ³Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental
9 Engineering, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland

10 ⁴Institute for Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, GR-
11 26504, Greece

12 ⁵Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, 80305, USA

13 ⁶Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder, CO, 80309,
14 USA

15 ^a now at: Nano and Molecular Systems Research Unit, Box 3000, FI-90014 University of Oulu, Oulu,
16 Finland

17 ^b now at: Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO, USA

18 ^c now at: Atmospheric Chemistry and Dynamic Laboratory, NASA Goddard Space Flight Center,
19 Greenbelt, MD, USA

20 ^d now at: Universities Space Research Association, GESTAR, Columbia, MD, USA

21 ^e now at: Atmospheric Composition Research Unit, Finnish Meteorological Institute, Helsinki, Finland

22 *Correspondence to:* Aikaterini Bougiatioti (abougiat@noa.gr), Athanasios Nenes

23 (athanasios.nenes@epfl.ch).

24 Abstract

25 Here we analyze regional scale data collected onboard the NOAA WP-3D aircraft during the 2013
26 Southeast Nexus (SENEX) campaign to study the aerosol-cloud droplet link and quantify the sensitivity of
27 droplet number to aerosol number, chemical composition and vertical velocity. For this, the observed
28 aerosol size distributions, chemical composition and vertical velocity distribution are introduced into a
29 state-of-the-art cloud droplet parameterization to show that cloud maximum supersaturations in the region
30 are low, ranging from 0.02 to 0.52% with an average of $0.14 \pm 0.05\%$. Based on these low values of
31 supersaturation, the majority of activated droplets correspond to particles of dry diameter 90 nm and above.
32 An important finding is that the standard deviation of the vertical velocity (σ_w) exhibits considerable diurnal
33 variability (ranging from 0.16 m s^{-1} during nighttime to over 1.2 m s^{-1} during day) and it tends to covary
34 with total aerosol number (N_a). This σ_w - N_a covariance amplifies the predicted response in cloud droplet
35 number (N_d) to N_a increases by 3 to 5 times - which is important, given that droplet formation is often
36 velocity-limited, and therefore should normally be insensitive to aerosol changes. We also find that N_d
37 cannot exceed a characteristic concentration that depends solely on σ_w . Correct consideration of σ_w and its
38 covariance with time and N_a is important for fully understanding aerosol-cloud interactions and the
39 magnitude of the aerosol indirect effect. Given that model assessments of aerosol-cloud-climate

40 interactions do not routinely evaluate for overall turbulence or its covariance with other parameters, datasets
41 and analyses such as the one presented here are of the highest priority to address unresolved sources of
42 hydrometeor variability, bias, and the response of droplet number to aerosol perturbations.

43 **1. Introduction**

44 Atmospheric particles (aerosols) interact with incoming solar radiation and tend to cool the Earth, especially
45 over dark surfaces such as oceans and forests (Charlson et al., 1992; Seinfeld and Pandis, 1998). Aerosols
46 also act as cloud condensation nuclei (CCN), form droplets in clouds and indirectly affect climate by
47 modulating precipitation patterns and cloud radiative properties. Aerosol-cloud interactions constitute the
48 most uncertain aspects of anthropogenic climate change (Seinfeld et al., 2016). Studies often highlight the
49 importance of constraining the aerosol size distribution, particle composition and mixing state for predicting
50 CCN concentrations (Cubison et al., 2008; Quinn et al., 2008; Riemer et al., 2019). Model assumptions
51 often cannot consider the full complexity required to comprehensively compute CCN – which together with
52 other emissions and process uncertainties lead to CCN prediction errors that can be significant (e.g.,
53 Fanourgakis et al., 2019). Owing to the sublinear response of cloud droplet number concentration (N_d) to
54 aerosol perturbations, prediction errors in CCN generally result in errors in N_d which are less than those for
55 CCN (Fanourgakis et al., 2019). The sublinear response arises because elevated CCN concentration
56 generally increases the competition of the potential droplets for water vapor; this in turn depletes
57 supersaturation and the N_d that can eventually form (Reutter et al., 2009; Bougiatioti et al., 2016;
58 Fanourgakis et al., 2019; Kalkavouras et al., 2019). A critically important parameter is the vertical velocity,
59 as it is responsible for generation of supersaturation that drives droplet formation and growth. Droplet
60 number variability may be driven primarily by vertical velocity variations (Kacarab et al., 2020; Sullivan
61 et al., 2019). Compared to aerosols, vertical velocity is much less observed, constrained and evaluated in
62 aerosol-cloud interaction studies, hence may be a source of persistent biases in models (Sullivan et al.,
63 2019).

64 The Southeast United States (SEUS) presents a particularly interesting location for studying regional
65 climate change, as it has not considerably warmed over the past 100 years – except during the last decade
66 (Carlton et al., 2018; Yu et al., 2014; Leibensperger et al., 2012a,b). These trends are in contrast with the
67 trends observed in most locations globally (IPCC 2013), and several hypotheses have been proposed to
68 explain this regional phenomenon, including the effect of involving short-lived climate forcers such as
69 secondary aerosols combined with the enhanced humidity in the region and their impact on clouds (Carlton
70 et al., 2018; Yu et al., 2014). Here, we analyze data collected during the Southeast Nexus of Air Quality
71 and Climate (SENEX) campaign in June-July 2013, which was the airborne component led by the National
72 Oceanic and Atmospheric Administration (NOAA), of a greater measurement campaign throughout the

73 SEUS, the Southeast Atmosphere Study (SAS; Carlton et al., 2018). Here we analyze data collected onboard
74 the NOAA WP-3D and apply a state-of-the-art droplet parameterization to determine the maximum
75 supersaturation and N_d achieved in cloudy updrafts, for all science flights with available number size
76 distribution and chemical composition data. We also determine the sensitivity of droplet formation to
77 vertical velocity and aerosol, with the purpose of understanding the drivers of droplet variability in the
78 boundary layer of the SEUS by obtaining regional-scale, representative values of the relationship between
79 the driving parameters and cloud droplet number.

80

81 **2. Methods**

82 *2.1 Aircraft instrumentation*

83 The analysis utilizes airborne, in situ data collected during the June-July 2013 SENEX mission, aboard the
84 National Oceanic and Atmospheric Administration (NOAA) WP-3D aircraft (typical airspeed $\sim 100 \text{ m s}^{-1}$)
85 based in Smyrna, Tennessee ($36^{\circ}00'32''\text{N}$, $86^{\circ}31'12''\text{W}$). In total, twenty research flights were conducted.
86 Based on the availability of the relevant data described below, thirteen flights are analyzed in this work.
87 Table 1 provides a synopsis of the analyzed research flights where times are local (UTC-5). Detailed
88 information on the instrumentation and measurement strategy during the SENEX campaign is provided by
89 Warneke et al. (2016).

90 Dry particle number distributions from 4 - 7000 nm were measured using multiple condensation and optical
91 particle counters. 4-700 nm particles were measured by a nucleation mode aerosol size spectrometer
92 (NMASS; Warneke et al., 2016) and an ultra-high sensitivity aerosol spectrometer (UHSAS; Brock et al.,
93 2011), while for larger particles with dry diameters between 0.7 and 7.0 μm , a custom-built white-light
94 optical particle counter (WLOPC) was used (Brock et al., 2011).

95 Measurements of the composition of submicron ($< 0.7 \mu\text{m}$ vacuum aerodynamic diameter) non-refractory
96 particles were made with a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS; Aerodyne,
97 Billerica, Massachusetts, US) (Canagaratna et al., 2007; Kupc et al., 2018) customized for aircraft use, with
98 a 10 s time resolution (Warneke et al., 2016). Particles entering the instrument are focused and impacted
99 on a 600°C inverted-cone vaporizer. The volatilized vapors are analyzed by electron ionization mass
100 spectrometry, providing mass loadings of sulfate, nitrate, organics, ammonium and chloride. For the C-
101 ToF-AMS, the transmission efficiency of particles between 100 and 700 nm is assumed to be 100% through
102 the specific aerodynamic focusing lens used while mass concentrations are calculated using a chemical
103 composition-dependent collection efficiency (Middlebrook et al., 2012; Wagner et al., 2015). The C-ToF-
104 AMS measures only non-refractory aerosol chemical composition, therefore this analysis provides mass

105 loadings of sulfate, nitrate, ammonium and organic constituents with a 10 s time resolution and neglects the
106 contribution of black carbon (BC). The calculation of the average volume fractions from the mass loading
107 follows that of Moore et al. (2012). An average organic density of 1.4 g cm^{-3} is used, characteristic of aged
108 aerosol (Moore et al., 2011; Lathem et al., 2013) while for the inorganic species the respective densities are
109 used, assuming the aerosol to be internally mixed.

110 The aircraft was equipped by the NOAA Aircraft Operations Center (AOC) flight facility with a suite of
111 instruments to provide information on exact aircraft position as well as numerous meteorological
112 parameters (Warneke et al., 2016). The analysis in this work makes use of vertical wind velocity, aircraft
113 pressure altitude, and ambient temperature, pressure and relative humidity (RH) provided by NOAA AOC.
114 The location of the instrumentation on the aircraft is described elsewhere (Warneke et al., 2016). For
115 measurements inside the fuselage, a low turbulence inlet (Wilson et al., 2004) and sampling system (Brock
116 et al., 2011; 2016a) was used to decelerate the sample flow to the instruments. The C-ToF-AMS was
117 connected downstream of an impactor with 50% efficiency at a $1.0 \mu\text{m}$ aerodynamic diameter (PM1) cut-
118 point (Warneke et al., 2016).

119 *2.2 Aerosol hygroscopicity parameter*

120 The aerosol hygroscopicity parameter (Petters and Kreidenweis, 2007), κ , is calculated assuming a mixture
121 of an organic and inorganic component with volume fractions ε_{org} , $\varepsilon_{\text{inorg}}$ and characteristic hygroscopicities
122 κ_{org} , κ_{inorg} , respectively ($\kappa = \varepsilon_{\text{inorg}}\kappa_{\text{inorg}} + \varepsilon_{\text{org}}\kappa_{\text{org}}$). The organic and inorganic volume fraction are derived from
123 the C-ToF-AMS data. Since throughout the summertime SEUS, aerosol inorganic nitrate mass and volume
124 fraction are very low (Weber et al., 2016; Fry et al., 2018), $\kappa_{\text{inorg}} = 0.6$, representative for ammonium sulfate,
125 is used. For the organic fraction, a hygroscopicity value of $\kappa_{\text{org}} = 0.14$ is used, based on concurrent
126 measurements conducted at the ground site of the SAS at the rural site of Centreville, Alabama (Cerully et
127 al., 2015). This value is also in accordance with the cumulative result of studies conducted in the Southeast
128 US using measurements of droplet activation diameters in subsaturated regimes, providing κ_{org} of > 0.1
129 (Brock et al., 2016a).

130 *2.3 Cloud droplet number and maximum supersaturation*

131 Using the observed aerosol number size distribution (1 s time resolution), the hygroscopicity derived from
132 the chemical composition measurements (10 s time resolution) and vertical velocity, we calculate the
133 (potential) cloud droplet number (N_d) and maximum supersaturation (S_{max}) that would form in clouds in the
134 airmasses sampled. Droplet number and maximum supersaturation calculations are carried out using an
135 approach similar to that of Bougiatioti et al. (2016) and Kalkavouras et al. (2019) with the sectional

136 parameterization of Nenes and Seinfeld (2003), later improved by Barahona et al. (2010) and Morales
137 Betancourt and Nenes (2014a). A sectional representation of the size distribution is used for each 1-s data
138 point (e.g. for Flight 5, n=23213 data points). Given that chemical composition is provided with a 10 s time
139 resolution, the same hygroscopicity values are used for 10 successive size distributions throughout the
140 flight. Temperature and pressure required for droplet number calculations are obtained from the NOAA
141 AOC flight facility dataset.

142 Given that vertical velocity varies considerably inside the boundary layer, we obtain a droplet number that
143 is representative of the vertical velocity distribution – the average concentration that results from integrating
144 over the distribution (probability density function, PDF) of observed updraft velocities. To accomplish this,
145 each flight is divided into segments where the aircraft flew at a constant height. For each segment, the non-
146 negative vertical velocities are fit to the positive half of a Gaussian distribution with mean of zero and
147 standard deviation σ_w . Only positive vertical velocities (“updrafts”) were used in this fit, as they are the part
148 of the vertical velocity spectrum that is responsible for cloud droplet formation. The σ_w values derived from
149 the level leg segments are then averaged into one single σ_w value (and standard deviation) to represent each
150 flight. The PDF-averaged droplet number concentration is then obtained using the “characteristic velocity”
151 approach of Morales and Nenes (2010), where applying the droplet parameterization at a single
152 “characteristic” velocity, $w^*=0.79\sigma_w$ (Morales and Nenes, 2010) gives directly the PDF-averaged value.
153 The flight-averaged σ_w and subsequently the respective w^* is applied to each size distribution measured.
154 Apart from its theoretical basis, this methodology has shown to provide good closure with observed droplet
155 numbers in ambient clouds (e.g. Kacarab et al., 2020).

156 In determining σ_w , we consider horizontal segments most likely to be in the boundary layer. 91% of the
157 segments are below 1000 m above sea level (mean altitude \sim 700 m; Table 2 and SP3 for all flights), within
158 the boundary layer in the summertime US (Seidel et al., 2013). The vertical velocity distributions observed
159 gave $\sigma_w = 0.97 \pm 0.21 \text{ m s}^{-1}$ for daytime flights, and $\sigma_w = 0.23 \pm 0.04 \text{ m s}^{-1}$ for nighttime flights (Table 2 and
160 SP3).

161 Potential droplet formation is evaluated at four characteristic velocities w^* that cover the observed range in
162 σ_w , namely 0.1, 0.3, 0.6, and 1 m s^{-1} . The $\sigma_w = 0.3 \text{ m s}^{-1}$ case is most representative of nighttime conditions,
163 while $\sigma_w = 1 \text{ m s}^{-1}$ should be most representative of the daytime boundary layer.

164 We also compute the variance of the derived N_d , estimated from the sensitivity to changes in aerosol number
165 concentration N_a , κ and σ_w , expressed by the partial derivatives $\partial N_d / \partial N_a$, $\partial N_d / \partial \kappa$ and $\partial N_d / \partial \sigma_w$ computed
166 from the parameterization using a finite difference approximation (Bougiatioti et al., 2017; Kalkavouras et
167 al., 2019) using:

$$168 \quad \sigma^2 N_d = \left(\frac{\partial \overline{N_d}}{\partial N_a} \sigma N_a \right)^2 + \left(\frac{\partial \overline{N_d}}{\partial \kappa} \sigma \kappa \right)^2 + \left(\frac{\partial \overline{N_d}}{\partial \sigma_w} \sigma \sigma_w \right)^2$$

169

170 These sensitivities, together with the observed variance in N_a , κ , and σ_w are also used to attribute droplet
 171 number variability to variations in the respective aerosol and vertical velocity parameters following the
 172 approach of Bougiatioti et al. (2017) and Kalkavouras et al. (2019):

$$173 \quad \varepsilon_{N_a} = \frac{\left(\frac{\partial \overline{N_d}}{\partial N_a} \sigma N_a \right)^2}{\sigma^2 N_d}, \varepsilon_{\kappa} = \frac{\left(\frac{\partial \overline{N_d}}{\partial \kappa} \sigma \kappa \right)^2}{\sigma^2 N_d}, \varepsilon_{\sigma_w} = \frac{\left(\frac{\partial \overline{N_d}}{\partial \sigma_w} \sigma \sigma_w \right)^2}{\sigma^2 N_d}$$

174

175

176 3. Results and Discussion

177 3.1. Particle composition and size distribution

178 For the determination of the different aerosol species present, neutral and acidic sulfate salts are
 179 distinguished by the molar ratio of ammonium to sulfate ions in the aerosol. A molar ratio higher than 2
 180 indicates the presence of only ammonium sulfate, while values between 1 and 2 indicate a mixture of
 181 ammonium sulfate and bisulfate (Seinfeld and Pandis, 1998). For most flights, the molar ratio of ammonium
 182 versus sulfate was above 2 (mean value 2.41 ± 0.72 and median of 2.06). For the nighttime flights, the values
 183 were somewhat lower (mean value 1.91 ± 0.42 and median of 1.85). Nevertheless, ammonium sulfate is
 184 always the predominant sulfate salt. Organic mass fractions for the SENEX research flights are provided in
 185 Table 1. Overall, organic aerosol dominated the composition during all flights, contributing 66%-75% of
 186 the total aerosol volume. Most of the remaining aerosol volume consisted of ammonium sulfate, ranging
 187 from 12%-39% (with a mean of $23\% \pm 6\%$). The organic mass fraction during the flights varied with height
 188 (see Figure 1). This vertical variability of the chemical composition can have a strong impact on droplet
 189 number within the boundary layer, as air masses from aloft may descend and interact with that underneath.
 190 Figure 1 represents the organic mass fractions during Flights 6, 12 and 16, with all flights provided in the
 191 supplementary material (Figure S1). The lowest organic mass fractions overall were observed during Flight
 192 12 ($36\% \pm 10\%$ with values almost two-fold higher for altitudes >3000 m, Fig. 1b) while the highest organic
 193 mass fractions were observed during flights over predominantly rural areas (Flights 5, 10, and 16 (Fig. 1c)).
 194 During Flight 5 the organic mass fraction was high ($68\% \pm 5\%$), with the highest values found in the free
 195 troposphere at altitudes >3000 m, as was the case for 4 other flights (5/13 in total, Fig. S1). High organic
 196 mass fractions were also found during nighttime Flight 9 that included portions of the Atlanta metropolitan
 197 area, with values up to 78%. The impact of the aerosol composition variability on droplet number is
 198 discussed in section 3.2.

199 The predominance of the organic fraction is also reflected in the hygroscopicity parameter values, with an
200 overall $\kappa = 0.25 \pm 0.05$, close to the proposed global average of 0.3 (Pringle et al., 2010). The highest values
201 of κ , as expected are observed during flights exhibiting the lowest organic mass fraction, namely Flight 12
202 with a $\kappa = 0.39$ (Table 1). The rest of the κ -values are close to the overall value of 0.25, corresponding to
203 an organic mass fraction of around 0.60.

204 Median aerosol size distributions and the respective total aerosol number are obtained from the median and
205 interquartile range in each size bin from the aerosol size distribution measurements during segments where
206 the aircraft flew at a constant height. Aerosol size distributions and changes in them during each flight are
207 crucial as they are used as input for the droplet number parameterization. Overall, N_a ranged from around
208 500 to over 100000 cm⁻³ with number size distributions varying markedly over the course of a flight (Figure
209 2). Free tropospheric distributions exhibited characteristics of a bimodal distribution with a prominent broad
210 accumulation mode peak (80-200 nm) and an Aitken mode peak (30-60 nm) (Fig. 2a) while boundary layer
211 size distributions exhibited a more prominent accumulation mode (Fig. 2b). There was considerable
212 variability in the contributions of the nucleation, Aitken, and accumulation modes to total N_a , depending on
213 altitude and proximity to aerosol sources (Fig. 2c). Nevertheless, the modal diameters did not vary
214 considerably, dictating that mostly particles in the same mode will activate, depending on the developed
215 supersaturation. Distributions during nighttime flights exhibited similar N_a and variability between them;
216 nevertheless, size distributions were more complex - exhibiting up to three distinct modes (20-40, 70-100
217 and 130-200 nm; Fig. 2d).

218 *3.2 Potential cloud droplet number and maximum supersaturation*

219 We first focus on calculation of the potential N_d and S_{max} for data from all thirteen research flights and for
220 the four prescribed values σ_w that represent the observed range. These calculations help understand the
221 sensitivity of droplet formation to N_a and κ for all the airmasses sampled – without considering the added
222 variability induced by changes in turbulence expressed by σ_w (considered later). Results from this analysis
223 are provided in Table 3. The highest N_d were found for Flights 6 and 10, which correspond to ambient
224 conditions with the highest N_a , consistent with the sampling of the Atlanta urban environment. For a given
225 σ_w , the variance of N_d is predominantly caused by changes in N_a rather than changes in hygroscopicity (i.e.,
226 chemical composition). The highest influence of κ to N_d variability is found for Flight 18 (12% and 35%
227 for 0.1 and 0.3 m s⁻¹, respectively), during which N_a was the low, and the organic mass fraction was ~50%.
228 The contribution of κ to the N_d variability is as high as 37% (for 0.6 m s⁻¹); despite this large contribution,
229 droplet formation is usually considerably more sensitive to changes in aerosol concentration than to
230 variations in composition. Overall, the relative contribution of the hygroscopicity to the variation of N_d
231 increases from 5±3% for $\sigma_w = 0.1$ m s⁻¹, to 12.3±8% for $\sigma_w = 0.3$ m s⁻¹, to 14.5±10% for $\sigma_w = 0.3$ m s⁻¹ and

232 16.5±9% for σ_w = 1 m s⁻¹. As σ_w increases, so does supersaturation and consequently N_d . On average, N_d
233 increases by 62% as σ_w increased from 0.1 to 0.3 m s⁻¹, 70% as σ_w increased from 0.3 to 0.6 m s⁻¹ and
234 another 39% as σ_w increased from 0.6 to 1 m s⁻¹. Tripling σ_w from 0.1 to 0.3 m s⁻¹ results in 31% increase
235 in S_{max} , while doubling σ_w from 0.3 to 0.6 m s⁻¹ results in 26.2% increase in S_{max} and a further σ_w increase
236 to 1 m s⁻¹ leads to an additional 20.7% increase in S_{max} .

237 Considering the changes in vertical velocity between flights (Table 4), we observe that average σ_w during
238 daytime varied little between flights and was large, ranging between 0.85 and 1.2 m s⁻¹ with a mean of
239 0.97±0.21 m s⁻¹. Under such conditions, water availability during droplet formation is aerosol-limited, so
240 that N_d is sensitive to N_a . The degree of water availability is expressed by the S_{max} , which for all the evaluated
241 SENEX data, is 0.14±0.05%. This level of maximum supersaturation activates particles of roughly >90 nm
242 diameter (e.g., accumulation mode particles) into cloud droplets. The highest S_{max} ranged from 0.2 to 0.3%
243 and was found during flights which exhibited large and highly variable σ_w (Flights 4, 5, 12 and 19) while
244 the lowest S_{max} was below 0.10% and was found during nighttime flights (Flights 9, 15 and 16). Contrasts
245 in droplet formation between day and nighttime conditions may be driven primarily by the total aerosol
246 number in the accumulation mode, and not be affected by ultrafine particles.

247 The large diurnal variability in σ_w (from 0.3 m s⁻¹ at night to 1.0 m s⁻¹ at day) contributes considerably to
248 the diurnal variability in N_d . To understand the relative importance of all parameters affecting droplet
249 formation (σ_w , N_a , κ) we estimate their contribution to the total variability in N_d based on the variances of
250 κ , N_a and σ_w and the sensitivity of droplet formation to those parameters. The results of the analysis is
251 summarized in Table 4. The σ_w variation during nighttime, although small (always less than 10%),
252 consistently remains an important contributor to N_d variability, because droplet formation tends to be in the
253 updraft velocity-limited regime. At higher values of σ_w (Table 4), the contribution of N_a variability becomes
254 a relatively dominant contributor to N_d variability.

255 Another way to express the importance of vertical velocity and aerosol number for the levels of droplet
256 number is to compare flights where aerosol number or σ_w vary in a similar way. For this, we focus on two
257 day/night flight pairs (Flights 5 and 15, and Flights 6 and 9), shown in Fig. 3. The first pair of flights were
258 conducted over a rural area under moderate aerosol number conditions, while the second pair exhibited
259 somewhat higher aerosol numbers owing to its proximity to the Atlanta metropolitan area. The size of the
260 markers in Fig.3 represents the potential number of droplets in clouds forming in each airmass sampled,
261 while their color reflects the respective total aerosol number. In both pairs of flights, σ_w varies about the
262 same between night and day (Table 4). For the Flights 5, 15 pair, the difference in N_d between day and night
263 (which is 69% higher during daytime) is driven primarily by aerosol characteristics (69% by N_a and 7%
264 from κ) and only 24% by σ_w . For nighttime (Flight 15), the variability in N_d is driven 58% by aerosol (51%

265 by N_a and 7% from κ) and 42% by σ_w . For the second pair of night/day flights (Flights 6, 9), N_a is on average
266 similar, σ_w varies by a factor of 4.0 between day and night and κ varies by 13%.

267 The difference in N_d between day and night (where daytime values are 72.1% higher than nighttime) is
268 almost equally driven by N_a and σ_w changes during the day (54% and 43% respectively), while
269 predominantly driven by N_a during the night (76%; Table 4). Overall, in the proximity of an urban
270 environment with higher aerosol concentrations, 57% of the N_d variability is driven by aerosol (N_a and κ)
271 during the day and 83% during the night. Figure 3 presents the calculated N_d for the four aforementioned
272 flights, namely Flights 5 (Fig. 3a), 15 (Fig. 3b), 6 (Fig. 3c) and 9 (Fig. 3d) using the observed σ_w . The size
273 of the markers represents the estimated number of droplets, while the color scale the respective total aerosol
274 number. Droplet number is lower during nighttime owing to the limited turbulence, i.e., lower σ_w .

275 Figure 4 shows N_d relative to N_a for flights conducted in the two aforementioned areas, during day (Flights
276 5 and 15) and night (Flights 6 and 9). For high enough N_a , N_d becomes insensitive to additional amounts of
277 aerosol and reaches a “limiting” N_d , which Kacarab et al. (2020) denotes as N_d^{\lim} . This limit in N_d is reached
278 when the competition for water vapor to form droplets is strong enough to inhibit the formation of droplets
279 with further increase in N_a . The intense competition for water vapor is reflected in the low value of S_{\max} ,
280 which drops below 0.1% when N_d is in the vicinity of N_d^{\lim} (Figure 4). The availability of water vapor during
281 droplet formation is driven by σ_w , hence droplet formation is limited by σ_w and thus by velocity, when N_d
282 approaches N_d^{\lim} . Figure 5 illustrates these effects, by presenting the relationship between N_a and N_d for
283 “low” w^* ($<0.25 \text{ ms}^{-1}$; upper panel), “medium” w^* ($0.5\text{--}0.7 \text{ ms}^{-1}$; middle panel), and “high” w^* ($0.75\text{--}1 \text{ ms}^{-1}$
284; lower panel) for all flights. Under low w^* conditions, changes in N_a does not result in an important change
285 in N_d , so its value corresponds to N_{\lim} . When w^* increases to “medium” values (Figure 5b), then N_d becomes
286 sensitive to N_a , which is further amplified at “high” values of w^* (Figure 5c). The covariance of aerosol
287 number and vertical velocity (Figure S3) means that the latter significantly enhances the inherent response
288 of N_d to N_a , which points to the importance of constraining vertical velocity and its variance to correctly
289 capture the aerosol-cloud droplet relationship in any model. The covariance, also observed in other
290 environments (e.g., Kacarab et al., 2020), may result from a more effective convective transfer of aerosol-
291 rich air to cloud forming regions, but requires further investigation.

292 Analysis of Figure 4 also shows that N_d^{\lim} varies between 1200 cm^{-3} during day and around 350 cm^{-3} during
293 night, which points to its strong dependence on σ_w . Indeed, when the N_d^{\lim} for all flights (except Flights 4,
294 12, for which insufficient aerosol is present to reach N_d^{\lim}) is expressed as a function of σ_w , a remarkable
295 correlation emerges between the two parameters (Figure 6). Even more interesting is that this relationship
296 is quantitatively similar to the corresponding N_d^{\lim} - σ_w relationship Kacarab et al. (2020) found for biomass
297 burning - influenced boundary layer clouds in the Southeast Atlantic. The implication of the N_d^{\lim} - σ_w

298 relationship, and its potential universality, is that when N_d approaches N_d^{\lim} , its variability is a reflection of
299 vertical velocity variability alone, not variability in N_a . This opens up the possibility to infer the vertical
300 velocity distribution from the droplet number concentration retrievals in regions where considerable
301 amounts of aerosol are present.

302

303 **4. Summary and Conclusions**

304 Measurements of vertical wind velocity, ambient temperature, humidity, aerosol number size distribution
305 and composition in the SEUS obtained during the SENEX 2013 project are used to analyze the drivers of
306 droplet formation. Overall, 13 research flights are studied, covering environments over sectors with
307 different aerosol sources, aerosol number, size distribution, chemical composition and updraft velocity.
308 Aerosol volume is largely dominated by an organic fraction resulting in an estimated hygroscopicity of
309 0.25 ± 0.05 .

310 Based on the calculation of cloud droplet number concentration (N_d) and maximum supersaturation (S_{max}),
311 we find that at the regional scale, N_d variability is largely driven by fluctuations in N_a (Table 4), in
312 accordance with other recent studies (e.g., Fanourgakis et al., 2019; Kalkavouras et al., 2019; Kacarab et
313 al., 2020). Nonetheless, N_d levels are also sensitive to vertical velocity variations, σ_w ; a factor of 4.0 change
314 in σ_w on its own may lead to an almost proportional change in N_d (factor of 3.6). These responses however
315 occur over the diurnal timescale, during which N_a also changes; the covariance between σ_w with N_a enhances
316 the apparent response of N_d to changes in N_a levels by a factor of 5 (Figure 4). In “cleaner” environments
317 where total aerosol number is not impacted by local sources, the relative response of N_d to σ_w is almost
318 twice as great at night than during the day (24% for daytime Flight 5 vs. 42% for nighttime Flight 15). On
319 the other hand, the relative response of N_d to N_a is slightly lower during the night than during the day (51%
320 at night vs. 69% during the day). In environments with elevated concentrations of accumulation-mode
321 particles, the majority of N_d variations can be attributed to changes in N_a and to a lesser extent to changes
322 in σ_w . Variations in chemical composition (expressed by κ) do not contribute substantially to droplet number
323 variability in most cases. As expected, S_{max} partially mitigates the response of N_d to N_a . Overall, maximum
324 supersaturation levels remain quite low ($0.14 \pm 0.05\%$) with the lowest levels ($0.05 \pm 0.1\%$) estimated closest
325 to surface. As a result, particles with diameters >90 nm were the most substantial contributors to CCN.

326 Our analysis also reveals the importance of the variance in vertical velocity as a key driver of cloud droplet
327 formation and its variability in the region. When the boundary layer turbulence is low (e.g. during
328 nighttime) and water vapor supersaturations are low, σ_w and its variability, can be as important a contributor
329 to N_d as is N_a . On average, the two variables (N_a and σ_w) contribute almost equally to the variability in N_d ,
330 accounting for more than 90% of the variability. This finding is consistent with recent modeling studies

331 noting the importance of vertical velocity variability as a driver of the temporal variability of global
332 hydrometeor concentration (Morales Betancourt and Nenes, 2014b; Sullivan et al., 2016). Furthermore, the
333 N_d response from changes in N_a is magnified up to 5 times by correlated changes in σ_w . A similar situation
334 was seen in marine boundary layers influenced by biomass burning in the Southeast Atlantic (Kacarab et
335 al., 2020). Finally, we identify an upper limit to the number of droplets that can form in clouds which
336 depends only on σ_w . This upper limit value tends to be achieved near the surface, where N_a tends to be
337 higher. Whenever N_d approaches this upper limit, observed droplet variability is driven by σ_w and as a
338 consequence by vertical velocity changes only.

339 Many aspects of warm cloud physics and especially droplet formation are known for decades. Ensuring that
340 global models simulate N_d for the “right reasons” (i.e., aerosol variability and/or vertical velocity
341 variability) is critical for constraining aerosol-cloud-climate interactions. Our study provides important
342 constraints on the relationships between σ_w , N_a , potential N_d , and S_{\max} , and shows the importance of
343 covariance between σ_w and N_a in controlling the N_d that can result from a given value of σ_w . Given that
344 global model assessments of aerosol–cloud–climate interactions do not evaluate for vertical velocity or its
345 covariance with other parameters, our work shows that this omission can lead to an underappreciated source
346 of hydrometeor variability and bias, and to a biased response and attribution of droplet number to aerosol
347 levels.

348

349 **Data Availability:** The data used in this study can be downloaded from the NOAA public data repository
350 at <https://www.esrl.noaa.gov/csd/projects/senex/>. The Gaussian fits used for determining σ_w and the droplet
351 parameterization used for the calculations in the study are available from athanasios.nenes@epfl.ch upon
352 request.

353

354 **Author Contributions:** AB and AN designed and initiated the study. Analysis methodology and software
355 were developed and provided by AN. The analysis was carried out by AB and AN, with comments from
356 JJL, CB, AMM. Data curation was provided by AB, JJL, CB, JAG, JL, AMM, AW. The manuscript was
357 written by AB and AN with additional comments provided by JJL, CB, AW, AMM. All authors reviewed
358 the manuscript.

359

360 **Funding:** This study was supported by the Environmental Protection Agency STAR Grant R835410, and
361 the European Research Council, CoG-2016 project PyroTRACH (726165) funded by H2020-EU.1.1. –

362 Excellent Science. AB also acknowledges support from the Action “Supporting of Postdoctoral
363 Researchers” of the Operational Program “Education and Lifelong Learning” (action’s beneficiary: General
364 Secretariat for Research and Technology) and is co-financed by the European Social Fund (ESF) and the
365 Greek State. CAB, JAdG, JL, AMM, and AW were supported in part by NOAA’s Health of the Atmosphere
366 and Atmospheric Chemistry, Carbon Cycle, and Climate Programs.

367

368 **Conflicts of Interest:** The authors declare no conflict of interest.

369

370 **References**

371 Barahona, D., West, R.E.L., Stier, P., Romakkaniemi, S., Kokkola, H., and Nenes, A.: Comprehensively
372 accounting for the effect of giant CCN in cloud activation parameterizations, *Atmos. Chem. Phys.*, 10,
373 2467–2473, <https://doi.org/10.5194/acp-10-2467-2010>, 2010.

374 Bougiatioti, A., Bezañtakos, S., Stavroulas, I., Kalivitis, N., Kokkalis, P., Biskos, G., Mihalopoulos, N.,
375 Papayannis, A., and Nenes, A.: Biomass-burning impact on CCN number, hygroscopicity and cloud
376 formation during summertime in the eastern Mediterranean, *Atmos. Chem. Phys.*, 16, 7389–7409,
377 <https://doi.org/10.5194/acp-16-7389-2016>, 2016.

378 Bougiatioti, A., Argyrouli, A., Solomos, S., Vratolis, S., Eleftheriadis, K., Papayannis, A., and Nenes, A.:
379 CCN activity, variability and influence on droplet formation during the HygrA-Cd campaign in
380 Athens, *Atmosphere*, 8, 108, <https://doi.org/10.3390/atmos8060108>, 2017.

381 Brock, C. A., Cozic, J., Bahreini, R., Froyd, K. D., Middlebrook, A. M., McComiskey, A., Brioude, J.,
382 Cooper, O. R., Stohl, A., Aikin, K. C., de Gouw, J. A., Fahey, D. W., Ferrare, R. A., Gao, R. S., Gore,
383 Holloway, J. S., Hübner, G., Jefferson, A., Lack, D. A., Lance, S., Moore, R. H., Murphy, D. M.,
384 Nenes, A., Novelli, P. C., Nowak, J. B., Ogren, J. A., Peischl, J., Pierce, R. B., Pilewskie, P., Quinn,
385 P. K., Ryerson, T. B., Schmidt, K. S., Schwarz, J. P., Sodemann, H., Spackman, J. R., Stark, H.,
386 Thomson, D. S., Thornberry, T., Veres, P., Watts, L. A., Warneke, C., and Wollny, A. G.:
387 Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol,
388 radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project, *Atmos. Chem. Phys.*, 11,
389 2423–2453, 2011.

390 Brock, C. A., Wagner, N. L., Anderson, B. E., Attwood, A. R., Beyersdorf, A., Campuzano-Jost, P.,
391 Carlton, A. G., Day, D. A., Diskin, G. S., Gordon, T. D., Jimenez, J. L., Lack, D. A., Liao, J., Markovic,
392 M. Z., Middlebrook, A. M., Ng, N. L., Perring, A. E., Richardson, M. S., Schwarz, J. P., Washenfelder,
393 R. A., Welti, A., Xu, L., Ziembba, L. D., and Murphy, D. M.: Aerosol optical properties in the

394 southeastern United States in summer – Part 1: Hygroscopic growth, *Atmos. Chem. Phys.*, 16, 4987-
395 5007, <https://doi.org/10.5194/acp-16-4987-2016>, 2016.

396 Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra, M. R., Zhang, Q., Onasch, T. B.,
397 Drewnick, F., Coe, H., Middlebrook, A., Delia, A., Williams, L. R., Trimborn, A. M., Northway, M.
398 J., DeCarlo, P. F., Kolb, C. E., Davidovits, P., and Worsnop, D. R.: Chemical and microphysical
399 characterization of ambient aerosols with the aerodyne aerosol mass spectrometer, *Mass Spectrom. Rev.*, 26, 185–222, 2007.

400 Carlton, A.G., J.A. de Gouw, J.L. Jimenez, J.L. Ambrose, A.R. Attwood, S. Brown, K.R. Baker, C. Brock,
401 R.C. Cohen, S. Edgerton, C. Farkas, D. Farmer, A.H. Goldstein, L. Gratz, A. Guenther, S. Hunt, L.
402 Jaeglé, D.A. Jaffe, J. Mak, C. McClure, A. Nenes, T.K.V. Nguyen, J.R. Pierce, S. de Sa, N.E. Selin,
403 V. Shah, S. Shaw, P.B. Shepson, S. Song, J. Stutz, J. Surratt, B.J. Turpin, C. Warneke, R.A.
404 Washenfelder, P.O. Wennberg, and Xianling Zhou: A synthesis of the southeast atmosphere studies:
405 coordinated investigation of fundamental atmospheric chemistry questions, *Bull. Am. Meteor. Soc.*,
406 <https://doi.org/10.1175-BAMS-D-16-0048.1>, 2018.

407 Charlson, R.J., Schwartz, S.E., Hales, J.M., Cess, R.D., Coakley Jr., J.A., Hansen, J.E., and Hofmann, D.J.:
408 Climate forcing by anthropogenic aerosols, *Science*, Vol. 255, Issue 5043, 423-430,
409 <https://doi.org/10.1126/science.255.5043.423>, 1992.

410 Cubison, M. J., Ervens, B., Feingold, G., Docherty, K. S., Ulbrich, I. M., Shields, L., Prather, K., Hering,
411 S., and Jimenez, J. L.: The influence of chemical composition and mixing state of Los Angeles urban
412 aerosol on CCN number and cloud properties, *Atmos. Chem. Phys.*, 8, 5649-5667,
413 <https://doi.org/10.5194/acp-8-5649-2008>, 2008.

414 DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T., Aiken, A. C., Gonin, M., Fuhrer,
415 K., Horvath, T., Docherty, K. S., Bates, D. R., and Jimenez, J. L.: Field-deployable, high-resolution,
416 time-of-flight aerosol mass spectrometer, *Anal. Chem.*, 78, 8281–8289,
417 <https://doi.org/10.1021/ac061249n>, 2006.

418 Fanourgakis, G. S., Kanakidou, M., Nenes, A., Bauer, S. E., Bergman, T., Carslaw, K. S., Grini, A.,
419 Hamilton, D. S., Johnson, J. S., Karydis, V. A., Kirkevåg, A., Kodros, J. K., Lohmann, U., Luo, G.,
420 Makkonen, R., Matsui, H., Neubauer, D., Pierce, J. R., Schmale, J., Stier, P., Tsigaridis, K., van Noije,
421 T., Wang, H., Watson-Parris, D., Westervelt, D. M., Yang, Y., Yoshioka, M., Daskalakis, N., Decesari,
422 S., Gysel-Beer, M., Kalivitis, N., Liu, X., Mahowald, N. M., Myriokefalitakis, S., Schrödner, R.,
423 Sfakianaki, M., Tsimpidi, A. P., Wu, M., and Yu, F.: Evaluation of global simulations of aerosol
424 particle and cloud condensation nuclei number, with implications for cloud droplet formation, *Atmos.*
425 *Chem. Phys.*, 19, 8591–8617, <https://doi.org/10.5194/acp-19-8591-2019>, 2019.

426

427 Fry, J. L., Brown, S. S., Middlebrook, A. M., Edwards, P. M., Campuzano-Jost, P., Day, D. A., Jimenez,
428 J. L., Allen, H. M., Ryerson, T. B., Pollack, I., Graus, M., Warneke, C., de Gouw, J. A., Brock, C. A.,
429 Gilman, J., Lerner, B. M., Dubé, W. P., Liao, J., and Welti, A.: Secondary organic aerosol (SOA)
430 yields from NO₃ radical + isoprene based on nighttime aircraft power plant plume transects, *Atmos.*
431 *Chem. Phys.*, 18, 11663–11682, <https://doi.org/10.5194/acp-18-11663-2018>, 2018.

432 Cerully, K. M., Bougiatioti, A., Hite, Jr., J. R., Guo, H., Xu, L., Ng, N. L., Weber, R., and Nenes, A.: On
433 the link between hygroscopicity, volatility, and oxidation state of ambient and water-soluble aerosols
434 in the southeastern United States, *Atmos. Chem. Phys.*, 15, 8679–8694, 2015,
435 <https://doi.org/10.5194/acp-15-8679-2015>.

436 IPCC (Intergovernmental Panel on Climate Change): Climate Change 2013: The Physical Science Basis,
437 Summary for Policymakers, Cambridge University Press, Cambridge, UK and New York, 2013.

438 Kacarab, M., Thornhill, K. L., Dobraki, A., Howell, S. G., O'Brien, J. R., Freitag, S., Poellot, M. R., Wood,
439 R., Zuidema, P., Redemann, J., and Nenes, A.: Biomass burning aerosol as a modulator of the droplet
440 number in the southeast Atlantic region, *Atmos. Chem. Phys.*, 20, 3029–3040,
441 <https://doi.org/10.5194/acp-20-3029-2020>, 2020.

442 Kalkavouras, P., Bossioli, E., Bezantakos, S., Bougiatioti, A., Kalivitis, N., Stavroulas, I., Kouvarakis, G.,
443 Protonotariou, A. P., Dandou, A., Biskos, G., Mihalopoulos, N., Nenes, A., and Tombrou, M.: New
444 particle formation in the southern Aegean Sea during the Etesians: importance for CCN production
445 and cloud droplet number, *Atmos. Chem. Phys.*, 17, 175–192, <https://doi.org/10.5194/acp-17-175-2017>, 2017.

446 Kalkavouras, P., Bougiatioti, A., Kalivitis, N., Stavroulas, I., Tombrou, M., Nenes, A., and Mihalopoulos,
447 N.: Regional new particle formation as modulators of cloud condensation nuclei and cloud droplet
448 number in the eastern Mediterranean, *Atmos. Chem. Phys.*, 19, 6185–6203,
449 <https://doi.org/10.5194/acp-19-6185-2019>, 2019.

450 Kupc, A., Williamson, C., Wagner, N. L., Richardson, M., and Brock, C. A.: Modification, calibration, and
451 performance of the Ultra-High Sensitivity Aerosol Spectrometer for particle size distribution and
452 volatility measurements during the Atmospheric Tomography Mission (ATom) airborne campaign,
453 *Atmos. Meas. Tech.*, 11, 369–383, <https://doi.org/10.5194/amt-11-369-2018>, 2018.

454 Lathem, T. L., Beyersdorf, A. J., Thornhill, K. L., Winstead, E. L., Cubison, M. J., Hecobian, A., Jimenez,
455 J. L., Weber, R. J., Anderson, B. E., and Nenes, A.: Analysis of CCN activity of Arctic aerosol and
456 Canadian biomass burning during summer 2008, *Atmos. Chem. Phys.*, 13, 2735–2756,
457 <https://doi.org/10.5194/acp-13-2735-2013>, 2013.

458 Leibensperger, E. M., Mickley, L. J., Jacob, D. J., Chen, W.-T., Seinfeld, J. H., Nenes, A., Adams, P. J.,
459 Streets, D. G., Kumar, N., and Rind, D.: Climatic effects of 1950–2050 changes in US anthropogenic

460

461 aerosols – Part 1: Aerosol trends and radiative forcing, *Atmos. Chem. Phys.*, 12, 3333-3348,
462 <https://doi.org/10.5194/acp-12-3333-2012>, 2012a.

463 Leibensperger, E. M., Mickley, L. J., Jacob, D. J., Chen, W.-T., Seinfeld, J. H., Nenes, A., Adams, P. J.,
464 Streets, D. G., Kumar, N., and Rind, D.: Climatic effects of 1950–2050 changes in US anthropogenic
465 aerosols – Part 2: Climate response, *Atmos. Chem. Phys.*, 12, 3349-3362, <https://doi.org/10.5194/acp-12-3349-2012>, 2012b.

466 Middlebrook, A. M., Bahreini, R., Jimenez, J. L., and Canagaratna, M. R.: Evaluation of composition-
467 dependent collection efficiencies for the Aerodyne aerosol mass spectrometer using field data, *Aerosol
468 Sci. Tech.*, 46, 258–271, doi.org/10.1080/02786826.2011.620041, 2012.

469 Moore, R. H., Bahreini, R., Brock, C. A., Froyd, K. D., Cozic, J., Holloway, J. S., Middlebrook, A. M.,
470 Murphy, D. M., and Nenes, A.: Hygroscopicity and composition of Alaskan Arctic CCN during April
471 2008, *Atmos. Chem. Phys.*, 11, 11 807–11 825, <https://doi.org/10.5194/acp-11-11807-2011>, 2011.

472 Moore, R. H., Cerully, K., Bahreini, R., Brock, C. A., Middlebrook, A. M., and Nenes, A.: Hygroscopicity
473 and composition of California CCN during summer 2010, *J. Geophys. Res.*, 117,
474 <https://doi.org/10.1029/2011JD017352>, 2012.

475 Morales, R. and Nenes, A.: Characteristic updrafts for computing distribution-averaged cloud droplet
476 number, autoconversion rate effective radius, *J. Geophys. Res.*, 115, D18220,
477 doi:10.1029/2009JD013233, 2010.

478 Morales Betancourt, R. and Nenes, A.: Droplet activation parameterization: the population-splitting
479 concept revisited, *Geosci. Model Dev.*, 7, 2345–2357, <https://doi.org/10.5194/gmd-7-2345-2014>,
480 2014a.

481 Morales Betancourt, R. and Nenes, A.: Understanding the contributions of aerosol properties and
482 parameterization discrepancies to droplet number variability in a global climate model, *Atmos. Chem.
483 Phys.*, 14, 4809-4826, <https://doi.org/10.5194/acp-14-4809-2014>, 2014b.

484 Nenes, A. and Seinfeld, J.H.: Parameterization of cloud droplet formation in global climate models, *J.
485 Geophys. Res.*, 108, 4415, doi:10.1029/2002JD002911, 2003.

486 Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud
487 condensation nucleus activity, *Atmos. Chem. Phys.*, 7, 1961–1971, doi:10.5194/acp-7-1961-2007,
488 2007.

489 Pringle, K. J., Tost, H., Pozzer, A., Pöschl, U., and Lelieveld, J.: Global distribution of the effective aerosol
490 hygroscopicity parameter for CCN activation, *Atmos. Chem. Phys.*, 10, 5241–5255,
491 <https://doi.org/10.5194/acp-10-5241-2010>, 2010.

493 Quinn, P. K., Bates, T. S., Coffman, D. J., and Covert, D. S.: Influence of particle size and chemistry on
494 the cloud nucleating properties of aerosols, *Atmos. Chem. Phys.*, 8, 1029-1042,
495 <https://doi.org/10.5194/acp-8-1029-2008>, 2008.

496 Reutter, P., Su, H., Trentmann, J., Simmel, M., Rose, D., Gunthe, S. S., Wernli, H., Andreae, M. O., and
497 Pöschl, U.: Aerosol- and updraft-limited regimes of cloud droplet formation: influence of particle
498 number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN), *Atmos. Chem.*
499 *Phys.*, 9, 7067-7080, <https://doi.org/10.5194/acp-9-7067-2009>, 2009.

500 Riemer, N., Ault, A. P., West, M., Craig, R. L., & Curtis, J. H.: Aerosol mixing state: Measurements,
501 modeling, and impacts. *Reviews of Geophysics*, 57, 187–249. <https://doi.org/10.1029/2018RG000615>,
502 2019

503 Seidel, D. J., Zhang, Y., Beljaars, A., Golaz, J.-C., Jacobson, A. R., and Medeiros, B.: Climatology of the
504 planetary boundary layer over the continental United States and Europe, *J. Geophys. Res.*, 117,
505 D17106, doi:10.1029/2012JD018143, 2013.

506 Seinfeld, J., and Pandis, S.: *Atmospheric Chemistry and Physics: From Air Pollution to Climate Change*,
507 John Wiley, Hoboken, N. J., 1998.

508 Seinfeld, J. H., Bretherton, C. S., Carslaw, K. S., Coe, H., De- Mott, P. J., Dunlea, E. J., Feingold, G., Ghan,
509 S. J., Guenther, A.B., Kahn, R. A., Kracunas, I. P., Kreidenweis, S. M., Molina, M. J., Nenes, A.,
510 Penner, J. E., Prather, K. A., Ramanathan, V., Ramaswamy, V., Rasch, P. J., Ravishankara, A. R.,
511 Rosenfeld, D., Stephens, G., and Wood R.: Improving our fundamental understanding of the role of
512 aerosol-cloud interactions in the climate system, *Proc. Nat. Acad. Sci. USA*, 113, 5781–5790,
513 <https://doi.org/10.1073/pnas.1514043113>, 2016.

514 Sullivan, S.C., Lee, D., Oreopoulos, L., and Nenes, A.: The role of updraft velocity in temporal variability
515 of cloud hydrometeor number, *Proc. Nat. Acad. Sci.*, 113, 21,
516 <https://doi.org/10.1073/pnas.1514039113>, 2016.

517 Wagner, N. L., Brock, C. A., Angevine, W. M., Beyersdorf, A., Campuzano-Jost, P., Day, D., de Gouw, J.
518 A., Diskin, G. S., Gordon, T. D., Graus, M. G., Holloway, J. S., Huey, G., Jimenez, J. L., Lack, D. A.,
519 Liao, J., Liu, X., Markovic, M. Z., Middlebrook, A. M., Mikoviny, T., Peischl, J., Perring, A. E.,
520 Richardson, M. S., Ryerson, T. B., Schwarz, J. P., Warneke, C., Welti, A., Wisthaler, A., Ziembka, L.
521 D., and Murphy, D. M.: In situ vertical profiles of aerosol extinction, mass, and composition over the
522 southeast United States during SENEX and SEAC4RS: observations of a modest aerosol enhancement
523 aloft, *Atmos. Chem. Phys.*, 15, 7085-7102, <https://doi.org/10.5194/acp-15-7085-2015>, 2015.

524 Warneke, C., Trainer, M., de Gouw, J. A., Parrish, D. D., Fahey, D. W., Ravishankara, A. R., Middlebrook,
525 A. M., Brock, C. A., Roberts, J. M., Brown, S. S., Neuman, J. A., Lerner, B. M., Lack, D., Law, D.,
526 Hübler, G., Pollack, I., Sjostedt, S., Ryerson, T. B., Gilman, J. B., Liao, J., Holloway, J., Peischl, J.,

527 Nowak, J. B., Aikin, K. C., Min, K.-E., Washenfelder, R. A., Graus, M. G., Richardson, M., Markovic,
528 M. Z., Wagner, N. L., Welti, A., Veres, P. R., Edwards, P., Schwarz, J. P., Gordon, T., Dube, W. P.,
529 McKeen, S. A., Brioude, J., Ahmadov, R., Bougiatioti, A., Lin, J. J., Nenes, A., Wolfe, G. M., Hanisco,
530 T. F., Lee, B. H., Lopez-Hilfiker, F. D., Thornton, J. A., Keutsch, F. N., Kaiser, J., Mao, J., and Hatch,
531 C. D.: Instrumentation and measurement strategy for the NOAA SENEX aircraft campaign as part of
532 the Southeast Atmosphere Study 2013, *Atmos. Meas. Tech.*, 9, 3063-3093,
533 <https://doi.org/10.5194/amt-9-3063-2016>, 2016.

534 Wilson, J. C., Lafleur, B. G., Hilbert, H., Seebaugh, W. R., Fox, J., Gesler, D. W., Brock, C. A., Huebert,
535 B. J., and Mullen, J.: Function and performance of a low turbulence inlet for sampling supermicron
536 particles from aircraft platforms, *Aerosol Sci. Tech.*, 38, 790–802, ,
537 <https://doi.org/10.1080/027868290500841>, 2004.

538 Weber RJ, Guo H, Russell AG, Nenes A.: High aerosol acidity despite declining atmospheric sulfate
539 concentrations over the past 15 years, *Nat. Geosci.*, 9, 282-285, <https://doi.org/10.1038/ngeo2665>,
540 2016.

541 Yu, S., Alapaty, K., Mathur, R., Pleim, J., Zhang, Y., Nolte, C., Eder, B., Foley, K., and Nagashima, T.:
542 Attribution of the United States “warming hole”: Aerosol indirect effect and precipitable water vapor.
543 *Sci. Rep.*, 4, 6929, <https://doi.org/10.1038/srep06929>, 2014.

544 **Table 1:** Research flights from the SENEX 2013 campaign used in this study. The symbol “⊗” next to
 545 each flight number refers to daytime flight, and “⊗” refers to a nighttime flight.

Flight	Date	Local Time (UTC-5)	Hygroscopicity Parameter κ	Organic mass fraction
4⊗	10/6	09:55-16:30	0.23±0.02	0.62±0.11
5⊗	11/6	11:30-17:57	0.20±0.00	0.68±0.05
6⊗	12/6	09:48-15:31	0.21±0.01	0.68±0.07
9⊗	19/6	17:30-23:29	0.24±0.01	0.66±0.06
10⊗	22/6	10:01-17:09	0.21±0.02	0.68±0.08
11⊗	23/6	10:08-17:22	0.25±0.03	0.58±0.07
12⊗	25/6	10:18-17:25	0.39±0.02	0.35±0.18
14⊗	29/6	10:26-17:39	0.22±0.03	0.62±0.07
15⊗	2/7	20:08-02:51	0.28±0.05	0.55±0.09
16⊗	3/7	19:56-02:55	0.22±0.05	0.67±0.09
17⊗	5/7	09:52-16:24	0.23±0.05	0.59±0.14
18⊗	6/7	09:19-16:18	0.31±0.02	0.52±0.08
19⊗	8/7	10:11-16:44	0.23±0.04	0.62±0.08
Average			0.25±0.05	0.60±0.09

546

547

548

549 **Table 2:** Flight number, time interval, standard deviation of vertical wind velocity (σ_w) and characteristic
 550 vertical velocity $w^*=0.79\sigma_w$ during flight segments where the aircraft flew at a constant altitude.

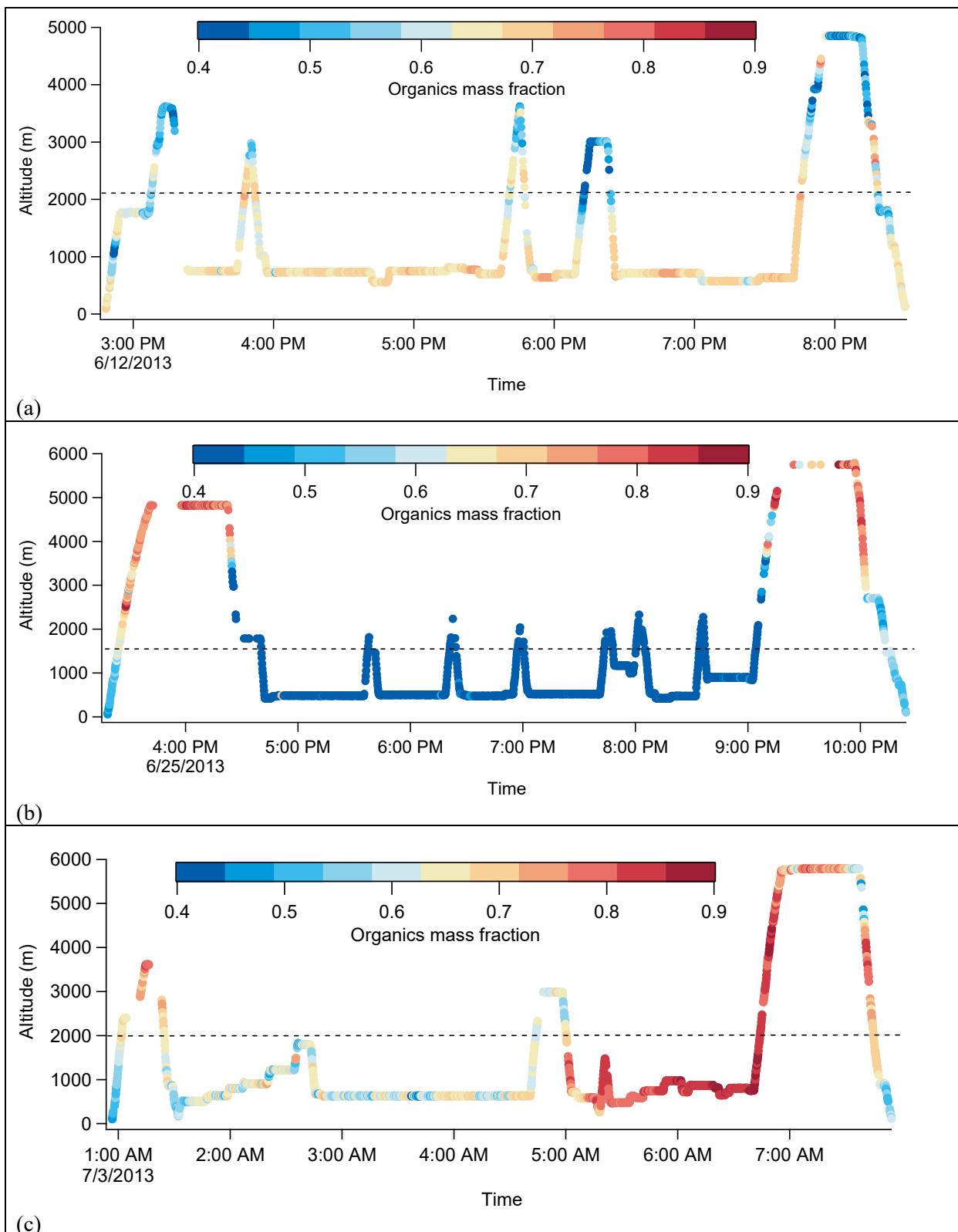
Flight (pass)	Time Interval (Local Time)	σ_w (m s ⁻¹)	w^* (m s ⁻¹)	Altitude a.s.l. (m)	Flight (pass)	Time Interval (Local Time)	σ_w (m s ⁻¹)	w^* (m s ⁻¹)	Altitude a.s.l. (m)
5 (1)	12:31-12:58	1.02	0.81	549± 58	9 (1)	18:44-18:58	0.25	0.20	797±2.01
5 (2)	13:16-13:29	0.82	0.65	982±11	9 (2)	19:20-19:29	0.25	0.2	740±1.23
5 (3)	13:34-13:50	1.01	0.80	502±13	9 (3)	19:33-19:48	0.22	0.17	740±1.23
5 (4)	13:53-14:08	1.03	0.81	614±27	9 (4)	19:51-20:25	0.22	0.17	776±1.22
5 (5)	14:20-15:00	0.91	0.72	603±40	9 (5)	20:34-20:39	0.23	0.18	597±1.19
5 (6)	15:35-15:41	0.87	0.69	533±18	9 (7)	20:56-21:10	0.20	0.16	773±1.11
5 (7)	16:17-16:30	0.77	0.61	638±23	9 (8)	21:31-21:45	0.19	0.15	725±1.18
5 (8)	16:31-16:39	0.55	0.44	559±18	9 (9)	22:24-22:31	0.26	0.20	745± 1.36
5 (9)	17:10-17:22	0.53	0.42	686±40	9 (10)	22:48-22:54	0.22	0.17	804± 1.37
14 (1)	12:34-12:49	0.94	0.75	558±2	15 (1)	21:09-21:52	0.24	0.19	505±6.64
14 (2)	13:57-14:17	0.97	0.77	658±3	15 (2)	22:19-22:31	0.30	0.24	633±1.21
14 (3)	14:22-14:46	0.95	0.75	737±3	15 (3)	22:42-22:54	0.25	0.20	600±1.17
14 (4)	14:58-15:33	0.55	0.43	746±23	15 (4)	23:26-23:37	0.33	0.26	908±1.56
14 (5)	15:55-16:08	0.57	0.45	714±3	15 (5)	00:02-00:19	0.30	0.23	1208±1.23
14 (6)	16:11-16:21	0.77	0.61	801±3	15 (6)	00:43-1:08	0.25	0.20	592±1.37
14 (7)	16:33-16:41	0.45	0.35	793± 2	15 (7)	1:10-1:24	0.28	0.22	676±1.02
					15 (8)	1:37-2:02	0.21	0.16	713±19.5
12 (1)	11:50-12:34	0.96	0.75	484±3	19 (1)	11:20-11:41	0.62	0.49	1014±2.27
12 (2)	12:48-13:18	1.09	0.86	503±3	19 (2)	12:09-12:23	1.20	0.95	652±3.34
12 (3)	13:34-13:50	1.12	0.88	894±3	19 (3)	12:51-13:10	0.87	0.69	537±2.51
12 (4)	14:06-14:40	1.04	0.82	479±4	19 (4)	13:22-13:49	1.29	1.02	518±22.6
12 (5)	15:21-15:32	1.10	0.87	521±3	19 (5)	14:44-14:57	1.36	1.07	528±3.26
12 (6)	15:43-16:02	0.99	0.78	475±3	19 (6)	15:04-16:06	0.90	0.71	524±2.8

551

552

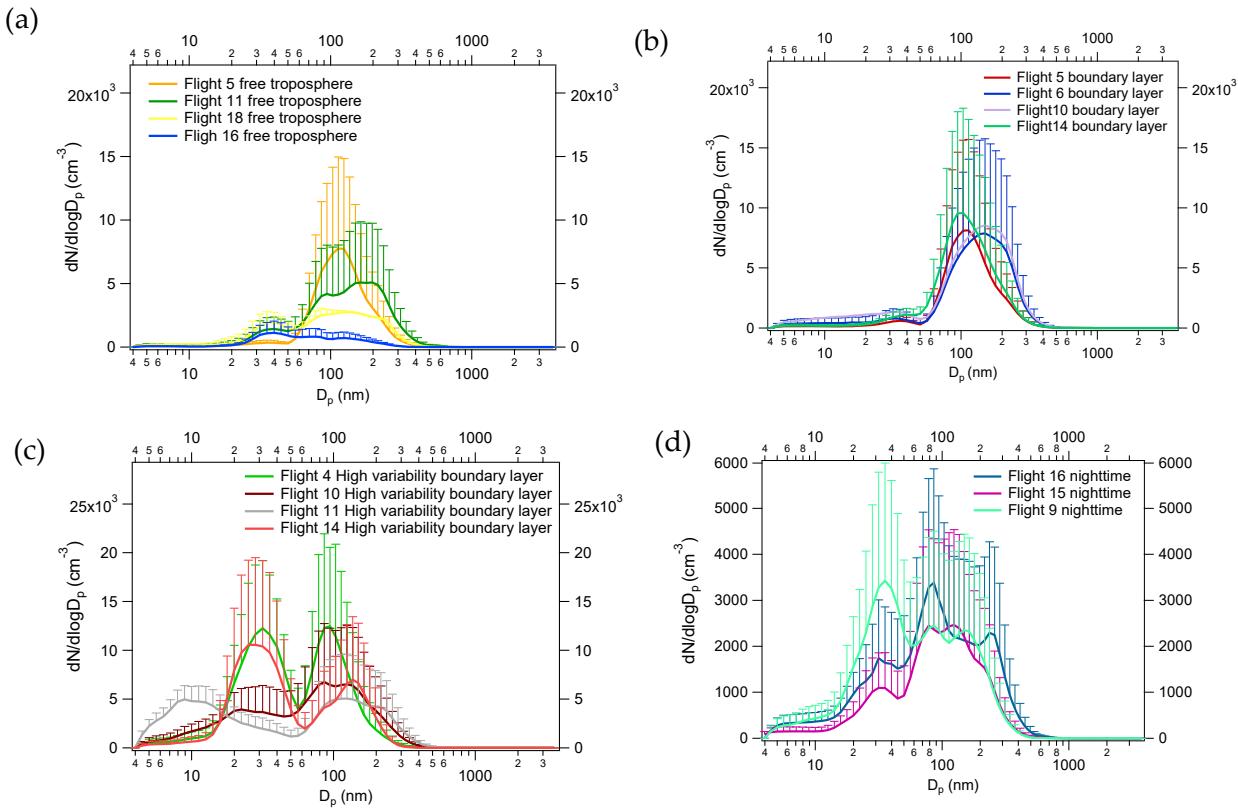
553 **Table 3:** Derived cloud parameters (maximum supersaturation, droplet number) and relative contribution of chemical composition and total
 554 aerosol number for different vertical velocities. Numbers in parentheses indicate standard deviation values. The symbol “⊗” next to each flight
 555 number refers to daytime flight, and “⊗” refers to a nighttime flight.

556


Flight	N_a	Std $Dev N_a$	$\sigma_w=0.1 \text{ m s}^{-1}$				$\sigma_w=0.3 \text{ m s}^{-1}$				$\sigma_w=0.6 \text{ m s}^{-1}$				$\sigma_w=1.0 \text{ m s}^{-1}$			
			S_{max}	N_d	Contrib κ	Contrib N_a	S_{max}	N_d	Contrib κ	Contrib N_a	S_{max}	N_d	Contrib κ	Contrib N_a	S_{max}	N_d	Contrib κ	Contrib N_a
4⊗	6118	4520	0.11 (0.06)	122 (41)	0.08	0.92	0.16 (0.09)	315 (114)	0.20	0.80	0.21 (0.12)	520 (212)	0.23	0.77	0.26 (0.17)	737 (321)	0.2	0.8
5⊗	4324	2598	0.08 (0.04)	139 (31)	0.09	0.91	0.1 (0.06)	388 (104)	0.15	0.85	0.14 (0.08)	712 (216)	0.17	0.83	0.17 (0.1)	1063 (360)	0.21	0.79
6⊗	4958	3054	0.07 (0.07)	151 (24)	0.03	0.97	0.08 (0.04)	422 (70)	0.11	0.89	0.1 (0.06)	773 (171)	0.08	0.92	0.13 (0.07)	1162 (302)	0.07	0.93
9⊗	4271	3095	0.07 (0.02)	152 (18)	0.05	0.95	0.12 (0.04)	367 (68)	0.17	0.83	0.16 (0.05)	533 (115)	0.17	0.83	0.19 (0.06)	680 (126)	0.12	0.88
10⊗	6286	7201	0.07 (0.03)	158 (24)	0.02	0.98	0.1 (0.05)	422 (86)	0.02	0.98	0.14 (0.07)	748 (180)	0.04	0.96	0.18 (0.08)	1063 (295)	0.09	0.91
11⊗	5969	7271	0.04 (0.01)	137 (19)	0.01	0.99	0.06 (0.01)	381 (61)	0.04	0.96	0.08 (0.02)	695 (134)	0.03	0.97	0.10 (0.02)	1025 (226)	0.03	0.97
12⊗	3154	5150	0.06 (0.03)	110 (45)	0.03	0.97	0.1 (0.04)	274 (117)	0.05	0.95	0.14 (0.04)	404 (179)	0.08	0.92	0.17 (0.05)	486 (207)	0.07	0.93
14⊗	5564	5891	0.07 (0.02)	118 (41)	0.05	0.95	0.10 (0.03)	328 (125)	0.17	0.83	0.13 (0.04)	590 (240)	0.25	0.75	0.16 (0.05)	842 (361)	0.27	0.73
15⊗	2328	1428	0.05 (0.01)	135 (22)	0.03	0.97	0.09 (0.02)	339 (67)	0.12	0.88	0.12 (0.02)	557 (137)	0.21	0.79	0.16 (0.03)	717 (203)	0.3	0.7
16⊗	3440	4507	0.08 (0.06)	158 (37)	0.03	0.97	0.12 (0.1)	403 (120)	0.06	0.94	0.17 (0.13)	670 (235)	0.07	0.93	0.23 (0.16)	917 (374)	0.1	0.9
17⊗	3813	4645	0.05 (0.02)	129 (41)	0.06	0.94	0.07 (0.03)	342 (130)	0.1	0.9	0.1 (0.04)	593 (248)	0.06	0.94	0.13 (0.05)	841 (371)	0.06	0.94
18⊗	1925	983	0.08 (0.04)	90 (58)	0.12	0.88	0.12 (0.05)	233 (157)	0.35	0.65	0.15 (0.06)	379 (262)	0.37	0.63	0.19 (0.07)	499 (346)	0.27	0.73
19⊗	4323	7261	0.06 (0.02)	121 (33)	0.02	0.98	0.08 (0.02)	314 (96)	0.06	0.94	0.12 (0.03)	526 (177)	0.11	0.89	0.15 (0.03)	670 (249)	0.13	0.87

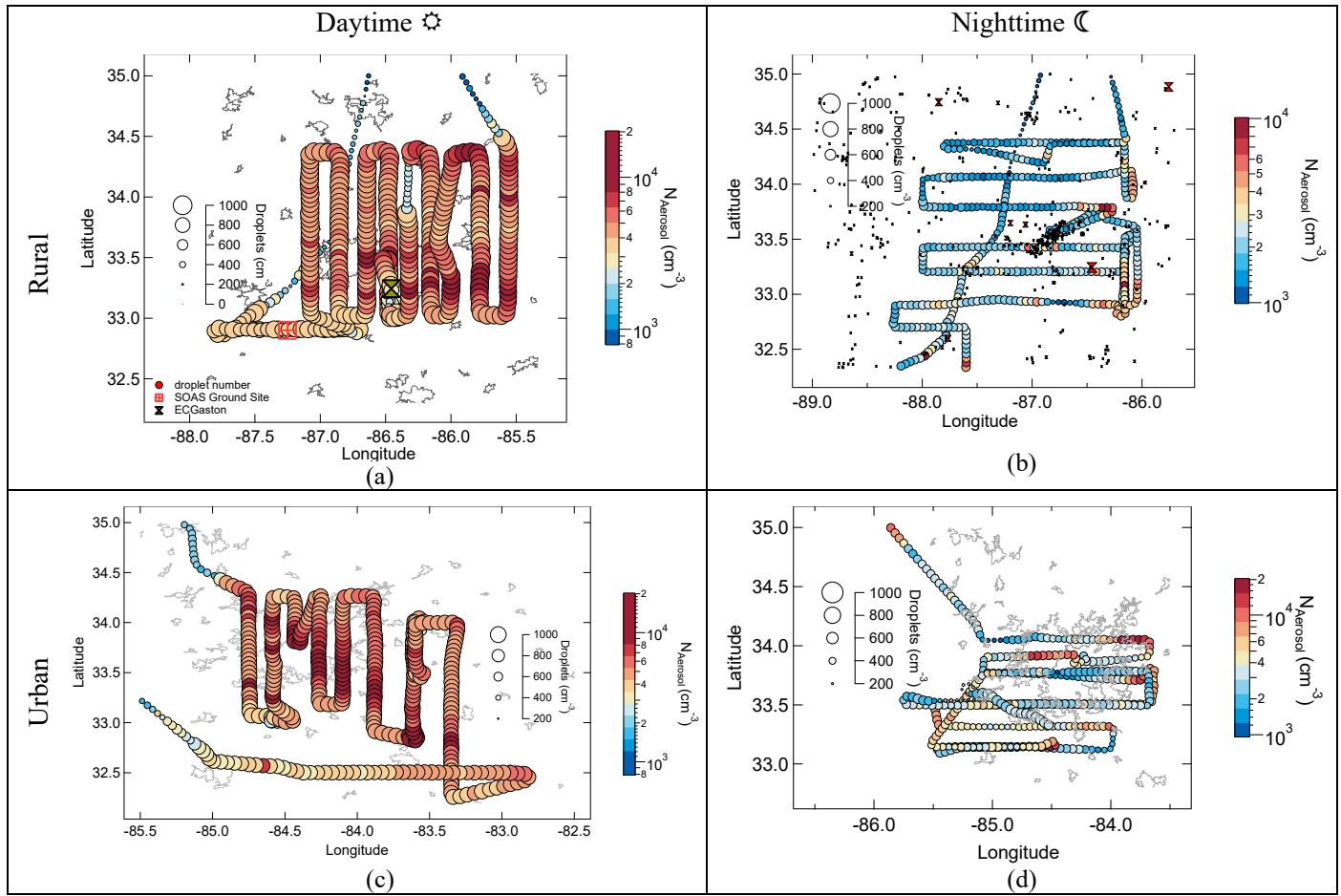
557

558


559 **Table 4:** Derived S_{max} , N_d , σ_w for all research flights along with the estimated contribution of each
 560 parameter to the variability of the droplet number. The symbol “⊗” next to each flight number refers to
 561 daytime flight, and “⌚” refers to a nighttime flight.

Flight	σ_w (m s^{-1})	$\frac{\Delta\sigma_w}{\sigma_w}$	S_{max} (%)	N_d (cm^{-3})	$\frac{\Delta N_d}{N_d}$	Contrib. κ	Contrib. N_a	Contrib. σ_w
4⊗	1.03±0.25	0.243	0.29±0.19	707±343	0.485	4%	79%	17%
5⊗	0.97±0.1	0.103	0.17±0.10	1040±350	0.337	7%	69%	24%
6⊗	0.94±0.18	0.191	0.13±0.07	1108±283	0.255	3%	54%	43%
9⌚	0.23±0.02	0.043	0.10±0.03	309±51	0.165	7%	76%	17%
10⊗	1.22±0.11	0.090	0.12±0.03	1177±271	0.230	1%	90%	9%
11⊗	1.08±0.04	0.037	0.11±0.03	1082±242	0.224	1%	83%	16%
12⊗	1.05±0.07	0.067	0.18±0.05	495±210	0.424	2%	96%	2%
14⊗	0.85±0.2	0.024	0.15±0.04	761±321	0.422	9%	72%	19%
15⌚	0.28±0.04	0.143	0.08±0.02	321±63	0.196	7%	51%	42%
16⌚	0.20±0.04	0.200	0.10±0.08	289±79	0.273	2%	65%	33%
17⊗	0.71±0.26	0.366	0.15±0.11	742±280	0.377	1%	71%	28%
18⊗	0.90±0.06	0.067	0.31±0.18	538±325	0.604	7%	83%	10%
19⊗	0.99±0.31	0.313	0.15±0.03	699±248	0.355	4%	88%	8%
Average					0.334	4%	75.2%	20.6%

563 **Figure 1:** Altitude as a function of time (UTC) colored by organic mass fraction. Spatial and vertical
564 distribution of the organics mass fraction (a) for Flight 6, (b) for Flight 12 and (c) for Flight 16, denoting


565 the difference in chemical composition, which in turn, may influence cloud droplet number concentration.
566 The dashed line represents the boundary layer height.

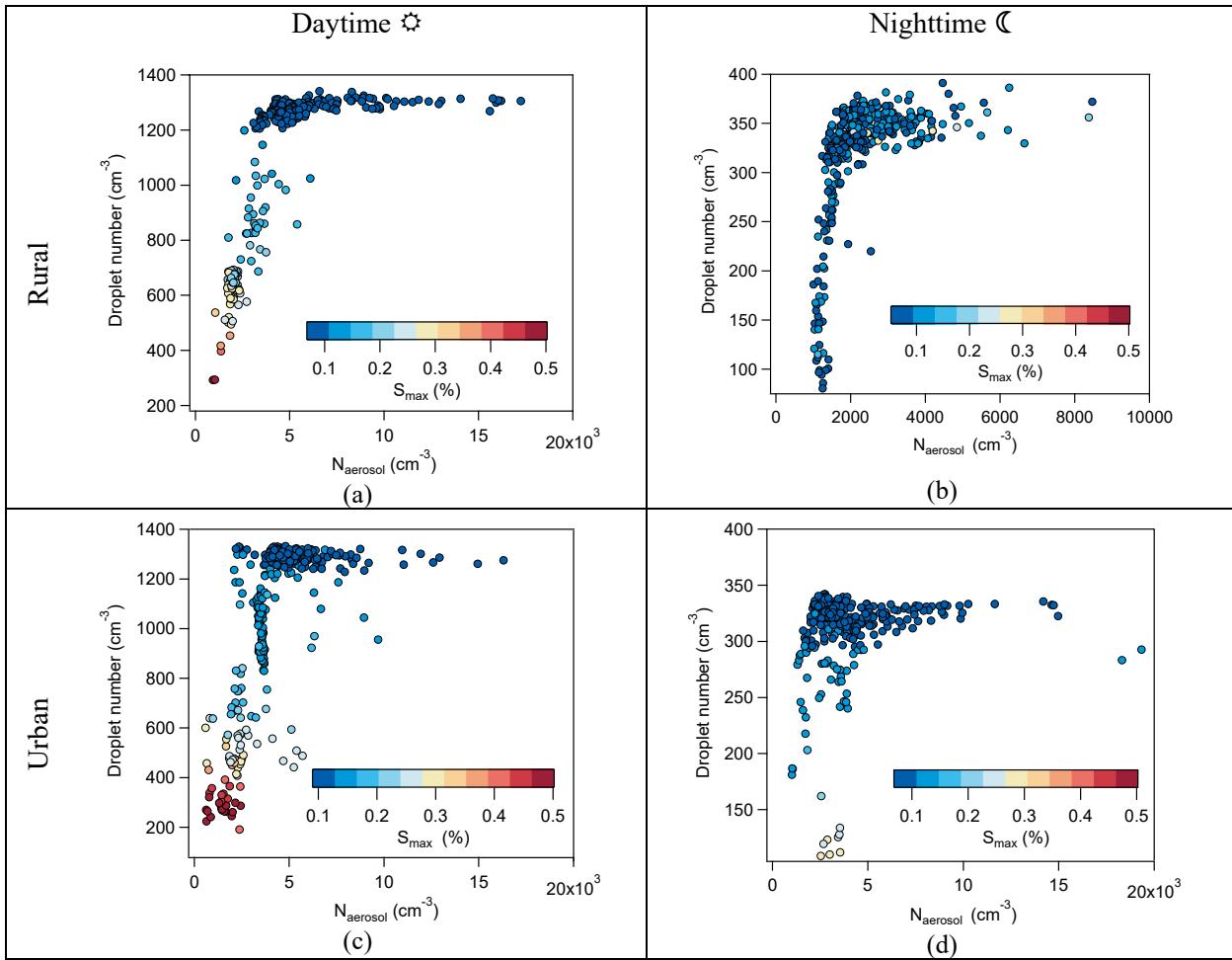
567

568 **Figure 2:** Average particle number size distributions for: (a) free tropospheric conditions, (b) within the
 569 boundary layer, (c) during segments with high variability in total aerosol number, and (d) during nighttime
 570 passes. Error bars represent the 75th percentile of the distributions within each segment.

571

572

573 **Figure 3:** Map of aircraft flight track showing calculated cloud droplet number (indicated by marker size
 574 (cm^{-3})) and total aerosol number (indicated by marker color) for the observed characteristic vertical velocity
 575 (w^*). (a) for the rural sector during daytime (Flight 5) and (b) nighttime (Flight 15). (c) for urban Atlanta
 576 during daytime (Flight 6) and (d) nighttime (Flight 9). Note that the data are plotted at less than 1 Hz in
 577 order to better show the size and color of the markers.

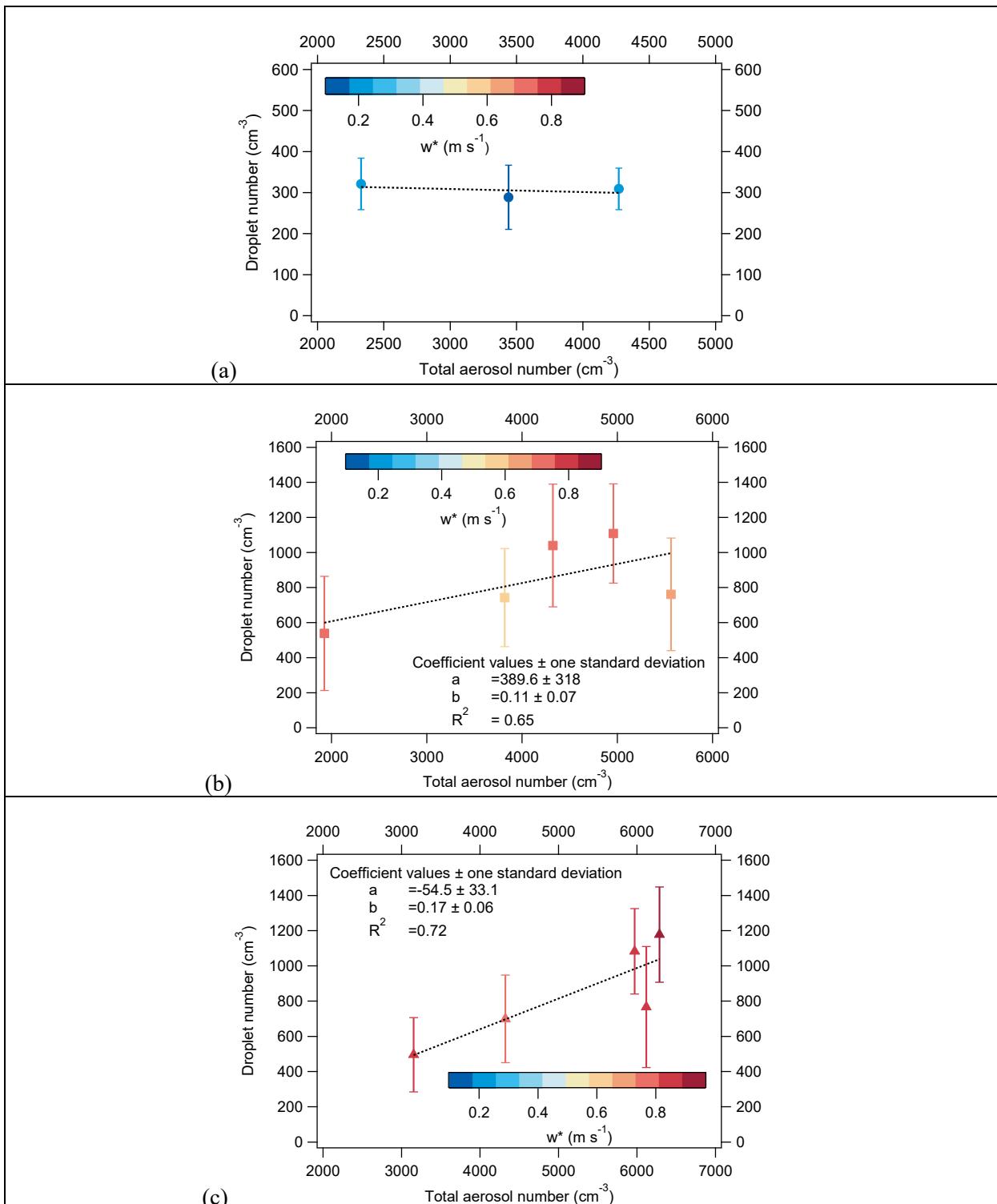

578

579

580

581

582

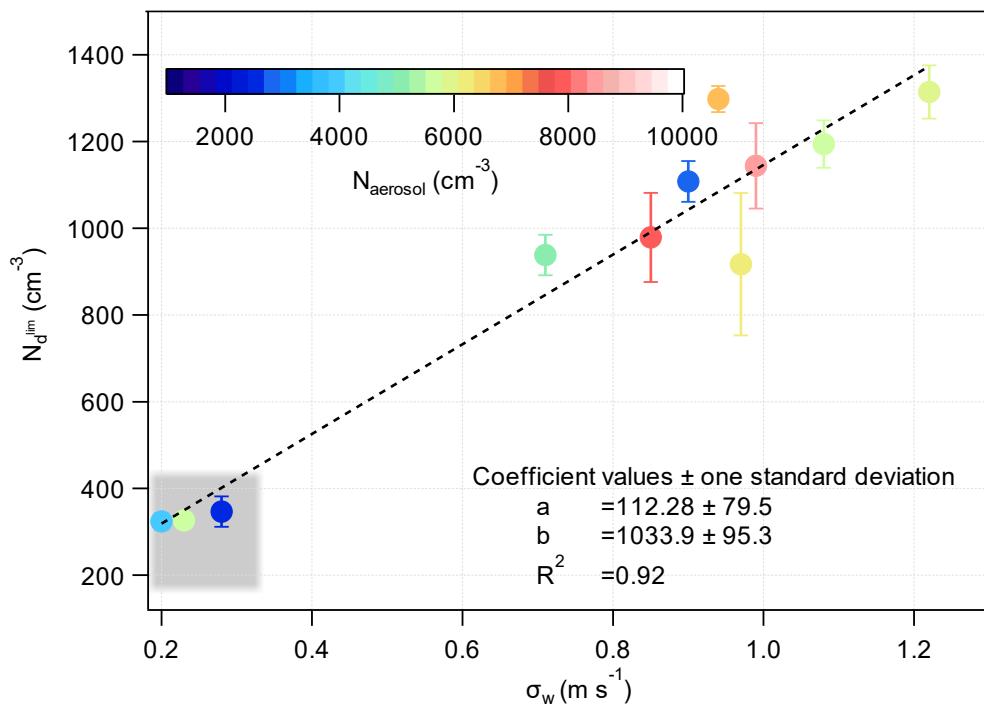

583

584 **Figure 4:** Cloud droplet number vs. total aerosol number for the derived characteristic vertical velocity
 585 (w^*) of each flight (Table 4). (a) for the rural sector during daytime (Flight 5) and (b) nighttime (Flight 15).
 586 (c) for urban Atlanta during daytime (Flight 6) and (d) nighttime (Flight 9). Data are colored by maximum
 587 supersaturation.

588

589

590



591

592 **Figure 5:** Average cloud droplet number vs. total aerosol number, colored by characteristic velocity w^*
 593 for each flight. Error bars represent the standard deviation of cloud droplet number during each flight.

594

595

596

597 **Figure 6:** Limiting droplet number vs. standard deviation of vertical velocity during flights where a
 598 velocity-limited regime is reached (all except Flights 4, 12). The shaded area represents the segments of the
 599 flights conducted during nighttime while color scale denotes total aerosol number levels.

600