Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-225 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

Response to Anonymous Referee #1 comments

This manuscript focuses observations of aerosol and vertical velocities over the southeast US and how it impacts predicted cloud droplet number concentration. The work uses data from the 2013 field campaign SENEX with 13 flights over the Southeast US. They find that aerosol amount and vertical velocity are responsible for up to 90% of cloud droplet number variability. They stress, early in the manuscript, that most studies do not include the impact of vertical velocity. There are some edits required, though other than that it is a fell written manuscript that will be of interest for the aerosol community.

My recommendation to accept this work with revisions and modifications to figures.

Response: We thank the anonymous referee for the thoughtful review. Suggestions and comments for the modification of the tables and figures addressed in the revised manuscript.

Main comments: 1) Do you have access to actual cloud data? How do the calculated N_d values compare to the calculated N_d values presented in this paper? I find it hard to believe that there were no cloud data available. Even a simple discussion about how realistic the calculated N_d values are in comparison to what was seen in in situ observations is necessary.

Response: Unfortunately, cloud data is not available as cloud sampling was avoided (the aircraft navigating in visual flight mode most of the time). It has been shown elsewhere (e.g. Kacarab et al., 2020 and others) that our droplet number calculation methodology gives good closure with observed droplet number.

2) For figures 5 and 6 there could be additional discussion in the manuscript. When looking at Figure 5: the first thought I had was it would be nice to see a comparison of cases when the sw* was the same and you could see how droplet number and Na were related. That seems more important than looking at a range of Na and simultaneously looking at a range of w*. Maybe a three panel figure with "Low w*," "medium w*" and "high w*" like mentioned in the text but then plot Nd and Na? Secondly, for Figure 6, Could the difference in Na with w* be due to the vertical transport? Since the w* values are higher more aerosol can be brought up from the surface. *Response: These are great points. We have followed up on the reviewer's suggestion and splitting Figure 5 in three different graphs for low, medium and high w* values, the covariance of the total aerosol number with the vertical velocity becomes even more apparent; for low w* (during nighttime) changes in total aerosol number do not have a direct impact on calculated droplet number. On the other hand, for higher w* there is a direct correlation between total aerosol number and droplet number, which for the highest observed w* is even more accentuated, denoting*

the fact that the covariance of Na with w* results in a higher variance in droplet number. Indeed, differences in Na with w* can be partially due to the entrainment of more aerosol from the surface due to higher w*, and this has been added in the revised manuscript. The respective discussion has been updated in the revised version.

In addition, we have included a discussion on the "limiting" droplet number that develops under high aerosol number, and its dependence on σ_w (shown in Figure 6). The implications of these findings are also discussed and quite interesting.

Table Comments: 1) All the tables are ok, though it might be helpful to note daytime vs. nighttime in some way, either by shading or some type of annotation (sun and moon perhaps?) *Response: Good suggestion! A sun and moon symbol is now added next to the number of each flight to denote whether it was a daytime or nighttime one.*

2) For Table 4: Perhaps add a mean row at the bottom for the contributions for K, Nd and sigmaw? A quick average gives k = 4.2, Nd = 75.2 and sigmaw = 13. Nd + sigmaw = 88.2. Is this where the 90% comes from that is mentioned in lines 313-314?

Response: We added a mean row with the respective averages for dNd/Nd and the contribution of each one of kappa, chemical composition and vertical velocity to the droplet number.

Figure Comments: 1) Figure 1: The 3D flight paths are hard to see in such a small format. Perhaps just 2D would be better, or make each panel larger. How many flights look like (a) and how many flights look like (b)? Could you include statistics about this? Otherwise it looks like your cherry picking examples.

Response: We replaced the 3D flight paths with 2D ones, showing the values of the organics mass fraction at the different altitudes throughout the flight. All figures will be added as supplementary material and a discussion about the similarity (or not) between flights is now added in the revised manuscript. We also fixed one of the color scales that was accidentally in reverse.

2) Figure 2: Make all the panels larger, the legends are hard to read. Why are the words and numbers together in the legends (e.g. Flight15 pass2): : : spread them out Flight 15 pass 2. Also, in the caption Line 523: you say "flights" did you mean passes? In panel (c) you have Flight 14 pass 6 and in (b) you also have Flight 14 put pass 1. Also, on panel c) consider different colors for the lines. If someone was colorblind they would not be able to tell the difference between the pink/red lines and the greenish ones.

Response: All panels and legends are now larger and words spread within each legend. Indeed in Figure 2 we have different passes of the same flight shown in different panels; in panel (c) we have Flight 14 pass 6; in (b) Flight 14 pass 1; in panel (b) Flight 10 pass 7; in panel (c) Flight 10 pass 3; in panel (a) Flight 11 pass 6; in panel (c) Flight 11 pass 1. The transects were often made at different altitudes, thus exhibiting different characteristics each time, which were subsequently compared to other similar passes. Different colors are now used for the lines in order to make them stand out more.

3) Figure 3: Suggestion: 4) Figure 4: same comment as in Figure 3: Add annotations to the figures to label the columns "Day" and "Night" and the rows "Alabama" and "Atlanta"

Response: We would like to thank the reviewer for the suggestion, the specific annotation for the columns and the rows are now added to both figures (Figure 3 and 4).

5) Figure 5: In the caption (line 547) "shading" is mentioned but is not visible in the figure. Also, the yellow marker for Flight 15 (I think) is difficult to see.

Response: The tinted background denoting nighttime flights is now darker, thus the marker for Flight 15 is now more easily visible.

6) Figure 6: In the caption (line 552) "shading" is mentioned but is not visible in the figure. What is the "constant altitude" that is referred to in this figure? Include the altitude somehow.

Response: The tinted background denoting nighttime flights is now darker. As far as the constant altitude is concerned, is it clear from Table 2 that it is not the same even within each flight, let alone between flights. We do not see how it would be easy to include this information in the graph.

Line by line comments: Line 37: Try not to use symbols in the abstract, just describe in words (it's clearer).

Response: We have left few symbols in the abstract, because we believe it helps with conveying our message more concisely.

Line 45: remove "the" before "incoming" *Response: Amended*

Line 182: Specify Figure 1b here. Figure 1a does NOT show the significant decrease in organic mass fraction.

Response: We have changed how Figure 1 is presented along with the accompanying discussion in the text.

Line 236: how do you define what an "important contributor" is? What percentage do you consider important?

Response: Values for σ_w during daytime flights are in the range of 0.7-1.22 with standard deviations between 0.07 and 0.31, while during nighttime flights the range of σ_w is of 0.2-0.33 and standard deviations <0.04. Therefore during a whole day the variation in σ_w values is more than a factor of 3.

Line 242: Specify that the "first pair of flights" is for the Alabama flights.

Response: Amended as follows:

"The first pair of flights were conducted over a rural area under moderate aerosol number conditions..."

Line 244: Specify that the "second pair of flights" is for the Atlanta flights.

Response: Amended

"... while the second pair exhibited somewhat higher aerosol numbers owing to its proximity to the Atlanta metropolitan area."

Lines 253-256: The sentence that starts with "Figure 3" would be better up after "(see Fig 3.)" on line 240. It doesn't make sense where it is now.

Response: We would like to thank the reviewer for pointing out this inconsistency. The description of Fig. 3 is now moved to L259 where Fig. 3 was introduced.

Line 264: "characteristic", should be "characteristic,"

Response: Section 3.2 has been rewritten, and the sentence is question no longer appears in the revised text.

Line 313-314: How do you get the 90% number?

Response: When adding the contribution of N_a and σ_w to the variability of the total droplet number, for each flight this added contribution is more than 90%.

Line 319: "S.Atlantic" should be "Southeast Atlantic" *Response: Amended*

Line 523: you say "flights" did you mean passes? In panel (c) you have Flight 14 pass

6 and in (b) you also have Flight 14 put pass 1. *Response: Indeed so, amended*

Line 527: add "calculated" between "showing" and "cloud" *Response: Amended*

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-225 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

Response to Anonymous Referee #2 comments

The authors use measurements of aerosol number and composition along with updraft variability to identify the role each plays in determining simulated cloud droplet number concentrations. I have many concerns with this manuscript. The authors reference anthropogenic and biogenic aerosol precursors as a possible driver of climate over the southeast united states, however there is little to no discussion of this feedback. Also, simulations of cloud droplet concentrations are not compared to any actual measurements of cloud droplet concentrations.

Response: We thank the referee for the thoughtful and careful review. Some of the issues were also raised by Reviewer #1 and are addressed hereafter. The reference to anthropogenic and biogenic precursors was to provide the context for the SENEX campaign. The emissions-aerosol-cloud link, although very important, is not the focus of this study. Here we focus primarily on the aerosol-cloud link, and the underappreciated role of vertical velocity covariance. Unfortunately, there were no cloud data available, as the aircraft was operating in visual flight mode most of the time. However, we have shown in other studies (e.g. Kacarab et al., 2020) that our approach for calculating Nd values agree with observed droplet number in non-precipitating boundary layer clouds, therefore the conclusions are robust.

One of the major key points of the manuscript relies on comparisons of night flights and day flights however there are only 3 night flights and a total of 10 day flights. It is hard to keep track of which cases are night time and which are day, though the diuranl variability of sigmaw is a key point of the paper. This makes it hard to follow this point. You refer to several different flights, and honestly the flight number is somewhat meaningless to the reader. Referring to the flights by certain properties (I.e. night flight 1, night flight 2) would be more useful.

Response: This issue was also raised by Reviewer #1. We now more clearly distinguish between daytime and nighttime flights (sun for day and moon for night) so the diurnal variability of σw is easier to see. Finally, the added characterization of the two pairs of flights as "Urban" and "Rural" now facilitates keeping track of which flights are mentioned.

The Figure quality is inconsistent and a few figures are repetitive, showing the same result in slightly different ways. Some Figures and tables do not contain data from all cases, leaving the reader to wonder why the other cases were omitted.

Response: This was pointed out by Reviewer #1 as well, and now Supplementary material includes organics mass fractions and estimated cloud droplet number for all studied flights. Furthermore, new figures are now plotted in the revised version which point out important findings for the vertical velocity vs. aerosol limiting regimes and figures from the previous version showing similar results are now moved to the supplementary material.

It is not clear that any result came from section 3.1. Section 3.2 is confusing as it mainly involves a comparisons of individual cases and many sentences and paragraphs do not relate to one another. I was so lost that I stopped reading in this section. It is unclear what data (from tables) was used to calculate many of the numbers listed in this section.

Response: These sections have been rewritten for clarity (with additional analysis) and numbersfigures are cited in the supporting discussion.

The main result appears to be that updraft velocity and variability are higher during the day, leading to more "simulated" cloud droplets, which is not surprising or new. Comparisons to the contribution of organic mass and particle concentration is also not new. Overall, the manuscript lacks new and measurement supported results, lacks organization, contains figures of low quality, and hard to follow discussion. I am not suggesting rejects of the manuscript only because the measurements published are of high value. I suggest the manuscript be reconsidered after substantial revisions are made to the overall message and clarity of the text, and quality of the figures.

Response: Most aspects of warm cloud physics and especially droplet formation are known for decades. However, droplet formation remains at the heart of the aerosol indirect effect, so ensuring that models capture droplet number for the "right reasons" is critical for constraining aerosol-cloud-climate interactions. The latter aspect is where a huge knowledge and data gap exists – and where our study provides important constraints (vertical velocity, aerosol number, potential droplet number) and insights (covariance between σw and Na and their role on the Na-Nd relationship in the SE US). The additional insights on the limiting droplet number, and its explicit dependence on σ_w is also new and important, and offers a new possibility for remote sensing. Given that model assessments of aerosol–cloud-climate interactions do not evaluate for vertical velocity (or covariance with other parameters), our work here shows that this can lead to an unresolved source of hydrometeor variability and bias. We have made these points very clear now.

Specific comments:

Line 25: Different how? Explain how it is different before you talk about why. *Response: The abstract has been rewritten and no longer includes a reference to differing climate trends.*

Line 94: Can you provide a source for the WLOPC? *Response:* We have added Brock et al. (2011) as a source.

Line 194: I believe you meant to cite Table 1. What do you mean by "overall values"? **Response:** We thank the reviewer for pointing out this inconsistency. The overall value is the 0.25 ± 0.05 stated just before, a row has been added in Table 1 giving the average values and a clarification is added to the revised text.

Line 196: For what? It would be helpful to lead the reader more currently it is hard to see where this text is going. Are these the distributions in Figure 2? If so cite them in this sentence.

Response: Aerosol number size distributions are crucial for the calculation of the total aerosol number during each flight, as they enter as input in the droplet number parameterization. This is added as a clarification in the revised text.

198: I don't think you need this statement twice within 10 lines of each other. *Response: The repetition in now omitted from the revised version.*

Line 203: You only chose 4 distributions for each plot in Figure 2. How did you choose which flights to include/exclude? I suggest making your y axis the same for each flight. It would be more obvious that the concentrations are different. A log scale for the y axis may be helpful if the authors choose. At the very least please use the same notation for the y axis tick labels.

Response: These are good points. Each plot represents a grouping based on e.g., passes in free tropospheric conditions (a) or nighttime flights (d). The selection of the different pass types reflects the need to represent daytime-nighttime contrasts (which is important for droplet number calculations as shown below) as well as the shape of the size distribution. As each flight had around 5 passes in a constant altitude (e.g., Table 2) presenting all average particle size distributions in one graph is cumbersome. Instead size distributions are grouped with common characteristics, and the data from 9/13 flights are represented in the figure, while the rest mostly fall in one of the represented categories. The vertical axes for the three plots are now similar (apart from the nighttime flights, which is maintained different because during nighttime the aerosol number as well as the variability was lower).

Line 205: " the modal diameters did not vary much" Why is that significant? *Response: This is important as it dictates particles of which mode will activate, depending on S*_{max}.

Line 209: You previously mentioned that the organic mass fraction was high during a night flight, but here you are saying 'contrasts between day and nighttime aerosol characteristics/variability may not be as large' Are you saying contrast in composition should be small between night and day? Are you saying the difference in accumulation mode concentration between night and day plays a bigger role in determining cloud droplet number concentration than aerosol a characteristics/variability? It is not clear and if you are saying the latter then you should reference you partial derivatives that you mentioned in line 164 to confirm. If you are going to "discuss the variability of the total aerosol number on droplet number in section 3.2" then it should probably not be mentioned here.

Response: Large part of the discussion has been revised to promote a more coherent and comprehensive flow in the text.

Line 212: It is not clear that "Cont kappa" and "Cont Na" is the partial derivative in Table 3/4. Be consistent with your abbreviations. "contribution" is listed as 'Cont' and 'Contrib' which is confusing.

Response: We sought to determine the relative contribution of aerosol composition (expressed by κ), total aerosol number and vertical velocity to variations of droplet number, using a variancebased approach. For this, we compute the partial sensitivities of droplet number to N_a , κ , σ_w (Sullivan et al., 2016; Bougiatioti et al., 2017), multiply them with their respective variance and sum as follows to obtain the droplet number variance:

$$\sigma^2 N_d = \left(\frac{\overline{\partial N_d}}{\partial N_a} \sigma N_a\right)^2 + \left(\frac{\overline{\partial N_d}}{\partial \kappa} \sigma \kappa\right)^2 + \left(\frac{\overline{\partial N_d}}{\partial \sigma_w} \sigma \sigma_w\right)^2$$

The relative contribution of $N\alpha$, κ , and σw to the droplet number variance is then estimated as follows, and their values presented in Tables 3 and 4:

$$\varepsilon_{Na} = \frac{\left(\frac{\overline{\partial N_d}}{\partial N_a} \sigma N_a\right)^2}{\sigma^2 N_d}, \varepsilon_{\kappa} = \frac{\left(\frac{\overline{\partial N_d}}{\partial \kappa} \sigma \kappa\right)^2}{\sigma^2 N_d}, \varepsilon_{\sigma w} = \frac{\left(\frac{\overline{\partial N_d}}{\partial \sigma_w} \sigma \sigma_w\right)^2}{\sigma^2 N_d}$$

This is further clarified in the revised text and all abbreviations are now consistent.

Line 217: suggest changing "chemical composition" to kappa or hygroscopicity parameter and if that is how "chemical composition" is expressed throughout the paper I suggest using one consistent term or symbol.

Response: Changes in the hygroscopicity parameter are a direct result of chemical composition changes, and we stress this point (e.g. L230 changes in hygroscopicity (i.e. chemical composition)). Keeping the composition-hygroscopicity link is important, given that variations in hygroscopicity (chemical composition) induce variability in droplet number.

Line 228: reference table/figure that identifies daytime sigma2 varies little and is large. Sigma w at night seems to vary less than during the day based on your next two sentence.

Response: This is now clarified in the text.

"The large diurnal variability in σ_w (from 0.3 m s⁻¹ at night to 1.0 m s⁻¹ at day) contributes considerably to the diurnal variability in N_{d}"

Line 231-232: Is the data used to obtain 0.23±0.04 and 0.97±0.21 in one of these tables? *Response: This is now clarified in the text.*

"The vertical velocity distributions observed gave $\sigma_w = 0.97 \pm 0.21 \text{ m s}^{-1}$ for daytime flights, and $\sigma_w = 0.23 \pm 0.04 \text{ m s}^{-1}$ for nighttime flights (Table 2 and SP3)."

Line 234: " total variability in Nd based on dNd/d_, dNd/dNa and dNd/d_w and the variances of _, Na and _w" this is repetitive.

Response: Amended

"...we estimate their contribution to the total variability in N_d based on the variances of κ , N_a and σ_w and the sensitivity of droplet formation to those parameters."

Line 241: you should state these "sectors" were in atlanta and alabama respectively. You haven't referred to sectors at all so far, making it confusing to suddenly mention them. This paragraph is hard to follow. There are several numbers compared for different cases at different time periods *Response:* Good point. They different areas are now stated. The paragraph has now been rewritten.

Line 257: these exact flights and "sectors" were discussed 2 paragraphs ago. This could be better organized.

Response: Section 3.2 has been rewritten, in response to this (and other similar) comments.

Table 2: are times in local time? Why are some flights missing from this table? Is there a reason for the order in which flights are placed in the table? (flight 12 is listed after flight 14?)

Response: The table header now clarifies that we refer to local time. The table contains the most relevant data from the flights that are used in the text. All flights with all segments and relevant characteristics (σ_w , w^* and altitude) are available in the supplementary file accompanying the manuscript. The reason flight 12 is listed after 14 is simply for aesthetic reasons.

Figure 3: your plot sizes are inconsistent. What are the hourglass markers? You should mention these are simulated droplet numbers.

Response: Thank you for pointing this out, all changes made. Additional information is also included in the supplement.

Figure 4: Add units to the y axis label *Response: Amended*.

Drivers of cloud droplet number variability in the summertime Southeast United States

Aikaterini Bougiatioti^{1,2}, Athanasios Nenes^{2,3,4}, Jack J. Lin^{2,a}, Charles A. Brock⁵, Joost A. de Gouw^{5,6,b}, Jin
 Liao^{5,6,c,d}, Ann M. Middlebrook⁵, André Welti^{5,6,e}

- ¹Institute for Environmental Research & Sustainable Development, National Observatory of Athens, P.
 Penteli, GR-15236, Greece
- ⁷ ²School of Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- ³Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil & Environmental
 ⁹Engineering, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
- ⁴Institute for Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, GR 26504, Greece
- 12 ⁵Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, 80305, USA
- ⁶Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder, CO, 80309,
 USA
- ^a now at: Nano and Molecular Systems Research Unit, Box 3000, FI-90014 University of Oulu, Oulu, Finland
- ^b now at: Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- ^c now at: Atmospheric Chemistry and Dynamic Laboratory, NASA Goddard Space Flight Center,
 Greenbelt, MD, USA
- ^d now at: Universities Space Research Association, GESTAR, Columbia, MD, USA
- 21 ^e now at: Atmospheric Composition Research Unit, Finnish Meteorological Institute, Helsinki, Finland
- 22 Correspondence to: Aikaterini Bougiatioti (abougiat@noa.gr), Athanasios Nenes
- 23 (athanasios.nenes@epfl.ch).
- 24 Abstract
- 25 The Southeast United States has experienced a different climate warming trend compared to other places
- 26 worldwide. Several hypotheses have been proposed to explain this trend, one being the interaction of
- 27 anthropogenic and biogenic aerosol precursors that synergistically promote aerosol formation, elevate cloud
- 28 droplet concentration and induce regional cooling. We examine these aerosol-cloud droplet links by
- 29 analyzingHere we analyze regional scale data collected onboard the NOAA WP-3D aircraft during the 2013
- 30 Southeast Nexus (SENEX) campaign to study the aerosol-cloud droplet link and quantify the sensitivity of
- 31 droplet number to aerosol number, chemical composition and vertical velocity on a regional scale. The. For
- 32 this, the observed aerosol size distributions, chemical composition and vertical velocity distribution
- 33 (Gaussian with standard deviation σ_{w}) are introduced into a state-of-the-art cloud droplet parameterization
- 34 to show that cloud maximum supersaturations in the region are low, ranging from 0.02 to 0.52% with an
- average of 0.14±0.05%. Based on these low values of supersaturation, the majority of activated droplets
- 36 correspond to particles of dry diameter 90 nm and above. Droplet number shows little sensitivity to total
- 37 aerosol owing to their strong competition for water vapor. Given, however, An important finding is that the
- 38 width of spectral dispersionstandard deviation of the vertical velocity (σ_w) exhibits considerable diurnal
- 39 variability (ranging from 0.16 m s⁻¹ during nighttime to over 1.2 m s⁻¹ during day), its covariance) and it

40 tends to covary with total aerosol number (N_a) during the same period). This $\sigma_w N_a$ covariance amplifies 41 the predicted response in cloud droplet number (N_d) to N_a increases by 3 to 5 times. Therefore, correct -42 which is important, given that droplet formation is often velocity-limited, and therefore should normally be insensitive to aerosol changes. We also find that N_d cannot exceed a characteristic concentration that 43 depends solely on σ_w . Correct consideration of vertical velocity σ_w and its covariance with time and aerosol 44 45 <u>amount N_a is important for fully understanding aerosol-cloud interactions and the magnitude of the aerosol</u> indirect effect. Datasets and analysis such as the one presented here can provide the required constraints for 46 47 addressing this important problem. Given that model assessments of aerosol-cloud-climate interactions do not routinely evaluate for overall turbulence or its covariance with other parameters, datasets and analyses 48 49 such as the one presented here are of the highest priority to address unresolved sources of hydrometeor variability, bias, and the response of droplet number to aerosol perturbations. 50

51

52 **1. Introduction**

Atmospheric particles (aerosols) interact with incoming solar radiation through scattering and absorption 53 processes whichand tend to cool the Earth, especially over dark surfaces such as oceans and forests 54 (BrockCharlson et al., 2016a).1992; Seinfeld and Pandis, 1998). Aerosols also act as cloud condensation 55 nuclei (CCN) and subsequently), form cloud droplets in clouds and indirectly affect climate through 56 57 modification of by modulating precipitation patterns and cloud radiative properties - an effect which constitutes one of. Aerosol-cloud interactions constitute the most uncertain aspects of anthropogenic 58 59 climate change (Seinfeld et al., 2016). Studies often highlight the importance of constraining the aerosol size distribution, particle composition and mixing state for predicting CCN concentrations (Cubison et al., 60 2008; Quinn et al., 2008).; Riemer et al., 2019). Model assumptions often cannot consider the full 61 complexity required to comprehensively compute CCN – which together with other emissions and process 62 uncertainties lead to CCN prediction errors that can be significant (e.g., Fanourgakis et al., 2019). Owing 63 to the sublinear response of cloud droplet number concentration (N_d) to aerosol perturbations, prediction 64 errors in CCN generally result in errors in N_d which are less than those for CCN (Fanourgakis et al., 2019). 65 66 The sublinear response arises because elevated CCN concentration generally increases the competition of 67 the potential droplets for water vapor; this in turn depletes supersaturation and the N_d that can eventually 68 form (Reutter et al., 2009; Bougiatioti et al., 2016; Fanourgakis et al., 2019; Kalkavouras et al., 2019). A 69 critically important parameter is the vertical velocity; so important in fact, as it is responsible for generation 70 of supersaturation that drives droplet formation and growth. Droplet number variability may be driven 71 primarily by vertical velocity variations (Kacarab et al., 2020; Sullivan et al., 2019). Compared to aerosols,

vertical velocity is much less observed, constrained and evaluated in aerosol-cloud interaction studies,
hence may be a source of persistent biases in models (Sullivan et al., 2019).

74 The Southeast United States (SEUS) presents a particularly interesting location for studying regional climate change, as it has not considerably warmed over the past 100 years - except forduring the last decade 75 76 (Carlton et al., 2018; Yu et al., 2014; Leibensperger et al., 2012b2012a,b). These trends are in contrast with 77 the trends observed in most locations globally (IPCC 2013), and several hypotheses have been proposed to explain this regional phenomenon, including the effect of involving short-lived climate forcers such as 78 79 secondary aerosols combined with the enhanced humidity in the region and their impact on clouds (Carlton 80 et al., 2018; Yu et al., 2014). Here, we analyze data collected during the Southeast Nexus of Air Quality 81 and Climate (SENEX) campaign in June-July 2013, which was the airborne component led by the National 82 Oceanic and Atmospheric Administration (NOAA), of a greater measurement campaign throughout the SEUS, the Southeast Atmosphere Study (SAS; Carlton et al., 2018). Here we analyze data collected onboard 83 84 the NOAA WP-3D and apply a state-of-the-art droplet parameterization to determine the maximum supersaturation and N_d achieved in cloudy updrafts, for all science flights with available number size 85 distribution and chemical composition data. We also determine the sensitivity of droplet formation to 86 87 vertical velocity and aerosol, with the purpose of understanding the drivers of droplet variability in the 88 boundary layer of the SEUS by obtaining regional-scale, representative values of the relationship between the driving parameters and cloud droplet number. 89

90

91 **2. Methods**

92 2.1 Aircraft instrumentation

93 The analysis utilizes airborne, in situ data collected during the June-July 2013 SENEX mission, aboard the

94 National Oceanic and Atmospheric Administration (NOAA) WP-3D aircraft (typical airspeed $\sim 100 \text{ m s}^{-1}$)

based in Smyrna, Tennessee (36°00'32''N, 86°31'12''W). In total, twenty research flights were conducted.

96 Based on the availability of the relevant data described below, thirteen flights are analyzed in this work.

97 Description<u>Table 1 provides a synopsis</u> of the analyzed research flights <u>where times</u> are provided in Table

98 <u>1.local (UTC-5).</u> Detailed information on the instrumentation and measurement strategy during the SENEX

99 campaign can be found in<u>is</u> provided by Warneke et al. (2016).

Dry particle number distributions from 4 - 7000 nm were measured using multiple condensation and optical
 particle counters. 4-700 nm particles were measured by a nucleation mode aerosol size spectrometer

102 (NMASS; Warneke et al., 2016) and an ultra-high sensitivity aerosol spectrometer (UHSAUHSAS; Brock

et al., 2011), while for larger particles with dry diameters between 0.7 and 7.0 μm, a custom-built whitelight optical particle counter (WLOPC) was used-<u>(Brock et al., 2011).</u>

105 Measurements of the composition of submicron ($\leq 0.7 \, \mu m$ vacuum aerodynamic diameter) non-refractory 106 aerosol (less than 0.7 µm diameter)particles were made with a Compact Timecompact time-of-Flight Aerosol Mass Spectrometerflight aerosol mass spectrometer (C-ToF-AMS; Aerodyne, Billerica, 107 108 Massachesetts, US) (Canagaratna et al., 2007; Kupc et al., 2018) customized for aircraft use, with a 10 s 109 time resolution (Warneke et al., 2016). Particles entering the instrument are focused and impacted on a 600 110 °C inverted-cone vaporizer. The volatilized vapors are analyzed by electron ionization mass spectrometry, providing mass loadings of sulfate, nitrate, organics, ammonium and chloride. For the C-ToF-AMS, the 111 112 transmission efficiency of particles between 100 and 700 nm is assumed to be 100% through the specific 113 aerodynamic focusing lens used while mass concentrations are calculated using a chemical compositiondependent collection efficiency (Middlebrook et al., 2012; Wagner et al., 2015). The C-ToF-AMS only 114 115 measures only non-refractory aerosol chemical composition, therefore this analysis provides mass loadings 116 of sulfate, nitrate, ammonium and organic constituents with a 10 s time resolution and neglects the contribution of black carbon (BC). The calculation of the average volume fractions from the mass loading 117 follows that of Moore et al. (2012). An average organic density of 1.4 g cm⁻³ is used, characteristic of aged 118 119 aerosol (Moore et al., 2011; Lathem et al., 2013) while for the inorganic species the respective densities are 120 used, assuming the aerosol to be internally mixed.

121 The aircraft was equipped by the NOAA Aircraft Operations Center (AOC) flight facility, incorporating with a suite of instruments to provide information on exact aircraft position as well as numerous 122 123 meteorological parameters (Warneke et al., 2016). The analysis in this work makes use of vertical wind 124 velocity, aircraft radarpressure altitude, and ambient temperature, pressure and relative humidity (RH) 125 provided by NOAA AOC. Location The location of the instrumentation on the aircraft can be found is 126 described elsewhere (Warneke et al., 2016). For measurements inside the fuselage, a low turbulence inlet (Wilson et al., 2004) and sampling system (Brock et al., 2011; 2016a) was used to decelerate the sample 127 flow to the instruments. The C-ToF-AMS was connected downstream of an impactor with 50% efficiency 128 129 at a 1.0 µm aerodynamic diameter (PM1) cut-point (Warneke et al., 2016).

130 2.2 Aerosol hygroscopicity parameter

131 The aerosol hygroscopicity parameter (Petters and Kreidenweis, 2007), κ , is calculated assuming a mixture

- 132 of an organic and inorganic component with volume $\frac{\text{fraction} fractions}{\text{fractions}} \epsilon_{\text{org}}$, ϵ_{inorg} and characteristic
- 133 hygroscopicityhygroscopicities κ_{org} , κ_{inorg} , respectively ($\kappa = \varepsilon_{inorg} \kappa_{inorg} + \varepsilon_{org} \kappa_{org}$). The organic and inorganic
- volume fraction are derived from the C-ToF-AMS data. Since throughout the summertime SEUS, aerosol

- inorganic nitrate mass and volume fraction are very low (Weber et al., 2016; Fry et al., 2018), $\kappa_{inorg} = 0.6$,
- representative for ammonium sulfate, is used. For the organic fraction, a hygroscopicity value of $\kappa_{org}=0.14$
- is used, based on concurrent measurements conducted at the ground site of the SAS at the rural site of

138 Centreville, Alabama (Cerully et al., 2015). This value is also in accordance with the cumulative result of

139 studies conducted in the Southeast US using measurements of droplet activation diameters in subsaturated

- 140 regimes, providing κ_{org} of > 0.1 (Brock et al., 2016a).
- 141 2.3 Cloud droplet number and maximum supersaturation

142 Using the observed aerosol number size distribution (1 s time resolution) and), the hygroscopicity derived 143 from the chemical composition measurements (10 s time resolution); and vertical velocity, we calculate the <u>(potential) cloud</u> droplet number (N_d) and maximum supersaturation (S_{max}) that would form in clouds in 144 145 the airmasses sampled. Droplet number and maximum supersaturation calculations are carried out at a 146 regional scale-using an approach similar to that of Bougiatioti et al. (2016) and Kalkavouras et al. (2019) 147 with the sectional parameterization of Nenes and Seinfeld (2003), later improved by Barahona et al. (2010) 148 and Morales Betancourt and Nenes (2014a). A sectional representation of the size distribution is used and 149 provided for each 1-s data point of each flight (per second, (e.g. for Flight 5, n=23213 data points). Given 150 that chemical composition is provided with a 10 s time resolution, the same hygroscopicity values are used 151 for 10 successive size distributions during eachthroughout the flight. Temperature and pressure required for 152 droplet number calculations are obtained from the NOAA AOC flight facility dataset.

153 Droplets form from activation of aerosol in cloudy updrafts, so here we use the available measurements of 154 vertical velocity together with the aerosol measurements to derive a potential cloud droplet concentration. 155 Given that vertical velocity varies considerably inside the boundary layer, we represent obtain a droplet 156 number with that is representative of the vertical velocity distribution – the average concentration that results 157 from integrating over the distribution (probability density function, PDF) of observed updraft velocities. To 158 accomplish this, each flight is divided ininto segments where the aircraft flew at a constant height. For each 159 segment, the positive non-negative vertical velocities are fit to the positive half of a Gaussian distribution 160 with mean of zero and width of spectral dispersionstandard deviation $\sigma_{\rm w}$. Positive Only positive vertical velocities ("updrafts") were used in this fit, as they are the part of the vertical velocity spectrum that is 161 162 responsible for cloud droplet formation. The $\sigma_{\rm w}$ values derived from the level leg segments are then 163 averaged into one single σ_w value (and standard deviation) to represent the each flight. Application of The PDF-averaged droplet number concentration is then obtained using the "characteristic velocity" approach 164 (of Morales and Nenes, (2010) then gives the PDF averaged droplet number concentration by calling), 165 where applying the droplet parameterization at a single "characteristic" velocity, $w^{*}=0.79\sigma_{w}$ (Morales and 166 Nenes, 2010). This calculation approach) gives directly the PDF-averaged value. The flight-averaged σ_w 167

- 168 and subsequently the respective w^* is applied to each size distribution measured. Apart from its theoretical
- basis, this methodology has shown to provide <u>good</u> closure with observed droplet numbers in ambient
- 170 clouds (e.g. Kacarab et al., 2020).
- 171 In determining σ_w , we consider <u>horizontal</u> segments that are expected most likely to be in the boundary
- 172 layer: 91-% of the segments are below 1000 m above sea level (mean altitude ~700 m; Table 2) typically
- 173 corresponding to the height of and SP3 for all flights), within the boundary layer in the summertime US
- 174 (Seidel et al., 2013). The vertical velocity distributions observed gave $\sigma_w = 0.97 \pm 0.21 \text{ m s}^{-1}$ for daytime
- flights, and $\sigma_w = 0.23 \pm 0.04 \text{ m s}^{-1}$ for nighttime flights (Table 2). Because of this strong diurnal variation in
- $\sigma_{\rm w}$, potential droplet formation is evaluated at four vertical velocities that cover the observed ranged, namely
- 177 0.1, 0.3, 0.6 and 1 m s⁻¹, and SP3).
- 178 Potential droplet formation is evaluated at four characteristic velocities w* that cover the observed range in
- 179 σ_{w} , namely 0.1, 0.3, 0.6, and 1 m s⁻¹. The $\sigma_{w} = 0.3$ m s⁻¹ case is most representative of nighttime conditions,
- 180 <u>while $\sigma_w = 1 \text{ m s}^{-1}$ should is most representative of the daytime boundary layer.</u>
- 181 We also compute the <u>sensitivity variance</u> of the derived N_d , <u>estimated from the sensitivity</u> to changes in 182 aerosol number concentration $(N_a)_{52} \kappa$ and σ_w , expressed by the partial derivatives $\partial N_d / \partial N_a$, $\partial N_d / \partial \kappa$ and 183 $\partial N_d / \partial \sigma_w$ computed from the parameterization using a finite difference approximation (Bougiatioti et al., 184 <u>2016</u>2017; Kalkavouras et al., 2019).-) using:

$$\sigma^2 N_d = \left(\frac{\overline{\partial N_d}}{\partial N_a} \sigma N_a\right)^2 + \left(\frac{\overline{\partial N_d}}{\partial \kappa} \sigma \kappa\right)^2 + \left(\frac{\overline{\partial N_d}}{\partial \sigma_w} \sigma \sigma_w\right)^2$$

185

187 These sensitivities, together with the observed variance in N_a , κ , and σ_w are also used to attribute droplet 188 number variability to variations in the respective aerosol and vertical velocity parameters following the 189 approach of Bougiatioti et al. (20162017) and Kalkavouras et al. (2019).:

$$\varepsilon_{N\alpha} = \frac{\left(\frac{\overline{\partial N_d}}{\partial N_a} \sigma N_a\right)^2}{\sigma^2 N_d}, \varepsilon_{\kappa} = \frac{\left(\frac{\overline{\partial N_d}}{\partial \kappa} \sigma \kappa\right)^2}{\sigma^2 N_d}, \varepsilon_{\sigma w} = \frac{\left(\frac{\overline{\partial N_d}}{\partial \sigma_w} \sigma \sigma_w\right)^2}{\sigma^2 N_d}$$

191

190

192

3. Results and Discussion

194 *3.1. Particle composition and size distribution*

For the determination of the different aerosol species present, neutral and acidic sulfate speciessalts are distinguished by the molar ratio of ammonium to sulfate ions in the aerosol. A molar ratio higher than 2 indicates the presence of only ammonium sulfate, while values between 1 and 2 indicate the presencea mixture of both ammonium sulfate and bisulfate (Seinfeld and Pandis, 1998). For most of the flights, the 199 molar ratio of ammonium versus sulfate was well above 2, having a (mean value of 2.41 ± 0.72 (and median 200 of 2.06). For the nighttime flights, the values were somewhat lower (mean value 1.91 ± 0.42 and median of 201 1.85, respectively). Nevertheless, ammonium sulfate is always the predominant sulfate salt. Organic mass 202 fractions for the SENEX research flights are provided in Table 1. Overall, organic aerosol was found to 203 dominated optimized optimi 204 Most of the remaining aerosol volume consists consisted of ammonium sulfate, ranging from 12%-39% 205 (with a mean of $23\%\pm6\%$). The organic mass fraction during the flights was found to varyvaried with height 206 (see Fig. Figure 1). This vertical variability of the chemical composition can have a strong impact on droplet 207 number within the boundary layer, as air masses from aloft may descend and interact with that underneath. 208 Figure 1 represents the organic mass fractions during Flights 6, 12 and 16, with all flights provided in the 209 supplementary material (Fig.Figure S1). The lowest organic mass fractions overall were observed during Flight 12 (36%±10% with values almost two-fold higher for altitudes >3000 m, Fig. 1b) while the highest 210 211 onesorganic mass fractions were observed atduring flights over predominantly rural areas (Flights 5, 10, 212 and 16 (Fig. 1c)). During Flight 5 the organic mass fraction was high (68%±5%), with the highest values found in the free troposphere at altitudes >-3000 m, as was the case for 4 other 4-flights (5/13 in total, Fig. 213 214 S1). High organic mass fractions were also found during a nighttime flight Flight 9 that included portions 215 of the Atlanta metropolitan area, with values up to 78%. The impact of the chemical aerosol composition 216 variability on droplet number is discussed in section 3.2.

The predominance of the organic fraction is also reflected in the hygroscopicity parameter values, with an overall $\kappa = 0.25\pm0.05$, which is close to the proposed global average of 0.3 (Seinfeld and Pandis, 1998).Pringle et al., 2010). The highest values areof κ , as expected, for are observed during flights exhibiting the lowest organic mass fraction, namely Flight 12 with a $\kappa = 0.39$ (Table 21). The rest of the κ values are close to the overall values, as the value of 0.25, corresponding to an organic mass fractions are fraction of around 0.6560.

223 Median aerosol size distributions and the respective total aerosol number are obtained from the median and 224 interquartile range in each size bin from the aerosol size distribution measurements during segments where 225 the aircraft flew at a constant height. The impact of Aerosol size distributions and changes in them during 226 each flight are crucial as they are used as input for the variability of the total aerosol number on droplet number is discussed in detail further in section 3.2 parameterization. Overall, number concentrations N_a 227 ranged from around 500 to over 100000 cm⁻³ with number size distributions varying markedly over the 228 229 course of a flight. In general, free (Figure 2). Free tropospheric distributions exhibited characteristics of a 230 bimodal distribution with a prominent broad accumulation mode peak (80-200 nm) and an Aitken mode 231 peak (30-60 nm) (Fig. 2a) while boundary layer size distributions exhibited a more prominent accumulation mode (Fig. 2b). There was considerable variability in the contributions of the nucleation, Aitken, and 232

233 accumulation modes to the total aerosol number N_q , depending on altitude and proximity to aerosol sources 234 (Fig. 2c). Nevertheless, the modal diameters did not vary much-considerably, dictating that mostly particles 235 in the same mode will activate, depending on the developed supersaturation. Distributions during nighttime flights exhibited similar total aerosol number N_a and variability between them; nevertheless, size 236 237 distributions were more complex - exhibiting evenup to three different distinct modes (20-40, 70-100 and 130-200 nm; Fig. 2d). Considering that mostly particles in the accumulation mode activate into cloud 238 droplets (particles with diameters >90 nm), contrasts between day and nighttime aerosol 239 characteristics/variability may not be as large, and driven primarily by the total aerosol number in the 240 241 accumulation mode.

242 3.2 Potential cloud droplet number <u>and maximum supersaturation</u>

The We first focus on calculation of the potential N_d and S_{max} , was carried out for data from all thirteen 243 244 research flights- and for the four prescribed values σ_w that represent the observed range. These calculations help understand the sensitivity of droplet formation to N_a and κ for all the airmasses sampled – without 245 considering the added variability induced by changes in turbulence expressed by σ_w (considered later). 246 Results from this analysis are given in Tab. 3 for the four different values (0.1, 0.3, 0.6 and 1 m s⁻¹) of σ_{w} . 247 Overall it can be seen that for all flight provided in Table 3. The highest N_d were found for Flights 6 and 10, 248 which correspond to ambient conditions and for low σ_w , N_d shows a low variance (mean of 132±20 for 0.1 249 m s⁴ and 350±100 for 0.3 m s⁴) with the highest N_a , consistent with the sampling of the Atlanta urban 250 <u>environment</u>. For a given σ_w , the variance of N_d is predominantly attributed to relative caused by changes in 251 252 N_a rather than changes in the <u>hygroscopicity (i.e., chemical composition</u> (expressed by changes in the hygroscopicity parameter, k). The highest relative contribution of the chemical composition). The highest 253 influence of κ to N_d variability is found for Flight 18 (12% and 35% for 0.1 and 0.3 m s⁻¹, respectively) to 254 the variation of N_{d} is found for Flight 18,), during which the total aerosol number was the lowest. Indicative 255 of a "cleaner" environment; Na was the low, and the organic mass fraction was relatively lower and the 256 hygroscopicity parameter was higher. Even though the lowest organics mass fraction and highest κ were 257 258 observed during Flight 12, droplet formation \sim 50%. The contribution of κ to the N_d variability is much as high as 37% (for 0.6 m s⁻¹); despite this large contribution, droplet formation is usually considerably more 259 260 sensitive to changes in aerosol concentration than to variations in composition. Overall, the relative contribution of the hygroscopicity to the variation of N_d increases from 5±3% for $\sigma_w = 0.1 \text{ m s}^{-1}$, to 12.3±8% 261 for $\sigma_w = 0.3 \text{ m s}^{-1}$, to 14.5±10% for $\sigma_w = 0.3 \text{ m s}^{-1}$ and 16.5±9% for $\sigma_w = 1 \text{ m s}^{-1}$. 262

As the vertical velocity σ_w increases, so does supersaturation and consequently the droplet number (N_d . On average, N_d increases by 62% as σ_w increased from 0.1 to 0.3 m s⁻¹, 70% as σ_w increased from 0.3 to 0.6 m s⁻¹ and another 39% from 0.6 to 1 m s⁻¹). The relative contribution of the chemical composition to the

variation of cloud droplet number increases from 5±3% for 0.1 m s⁻¹, to 12.3±8% for 0.3 m s⁻¹, to 14.5±10% 266 for 0.3 m s⁺ and 16.5±9% for 1 m s⁺. The highest droplet numbers are estimated for Flights 6 and 10, which 267 268 included urban environments during daytime (Atlanta). Overall during daytime, when σ_w varies little and is large, and N_{d} is high, the relative contribution of N_{d} to the variation of N_{d} is the highest (more than 90%) 269 270 while the relative contribution of κ is limited (less than 10%) (see Table 3, Flights 10, 11, 12, 17 and 19). Turbulence is limited during nighttime when $\sigma_{\rm w}$ is the lowest (0.23±0.04); therefore, the $\sigma_{\rm w}$ = 0.3 m s⁻¹ case 271 is most representative of nighttime conditions. During daytime, when σ_w is high (0.97±0.21), $\sigma_w = 1 \text{ m s}^+$ 272 should be considered as most representative as σ_w increased from 0.6 to 1 m s⁻¹. Tripling σ_w from 0.1 to 0.3 273 m s⁻¹ results in 31% increase in S_{max} , while doubling σ_w from 0.3 to 0.6 m s⁻¹ results in 26.2% increase in 274 S_{max} and a further $\sigma_{\rm w}$ increase to 1 m s⁻¹ leads to an additional 20.7% increase in S_{max} . 275

276 As $\sigma_{\rm w}$ varies considerably throughout the day (more than a factor of 3), we estimate its contribution together 277 with variations in N_{d} and κ , to the total variability in N_{d} based on $\partial N_{d}/\partial \kappa$, $\partial N_{d}/\partial N_{e}$ and $\partial N_{d}/\partial \sigma_{w}$ and the 278 variances of κ , N_a and σ_w (Table 4). Considering the changes in vertical velocity between flights (Table 4), we observe that average σ_w during daytime varied little between flights and was large, ranging between 279 280 0.85 and 1.2 m s⁻¹ with a mean of 0.97±0.21 m s⁻¹. Under such conditions, water availability during droplet formation is aerosol-limited, so that N_d is sensitive to N_a . The degree of water availability is expressed by 281 the S_{max} , which for all the evaluated SENEX data, is 0.14±0.05%. This level of maximum supersaturation 282 activates particles of roughly >90 nm diameter (e.g., accumulation mode particles) into cloud droplets. The 283 highest Smax ranged from 0.2 to 0.3% and was found during flights which exhibited large and highly variable 284 $\sigma_{\rm w}$ (Flights 4, 5, 12 and 19) while the lowest S_{max} was below 0.10% and was found during nighttime flights 285 (Flights 9, 15 and 16). Contrasts in droplet formation between day and nighttime conditions may be driven 286 primarily by the total aerosol number in the accumulation mode, and not be affected by ultrafine particles. 287 The large diurnal variability in σ_w (from 0.3 m s⁻¹ at night to 1.0 m s⁻¹ at day) contributes considerably to 288 289 the diurnal variability in N_d . To understand the relative importance of all parameters affecting droplet 290 formation (σ_w , N_a , κ) we estimate their contribution to the total variability in N_d based on the variances of κ , N_a and σ_w and the sensitivity of droplet formation to those parameters. The results of the analysis is 291 292 summarized in Table 4. The σ_w variation during nighttime, although small (always less than 10%), consistently remains an important contributor to N_d variability, because droplet formation tends to be in the 293

- updraft velocity-limited regime. At higher values of σ_w (Table 4), the contribution of $\sigma_w N_a$ variability
- 295 <u>becomes a relatively dominant contributor</u> to N_d variability is reduced and dominated by N_a variability.

296 <u>To explore Another way to express</u> the importance of <u>vertical velocity and aerosol compared number for the</u> 297 <u>levels of droplet number is to updraft velocity compare flights where aerosol number or σ_w vary in a similar 298 way. For this, we focus on two day/night flight pairs of flights (Flights 5 and 15, and Flights 6 and 9), shown</u> 299 in Fig. 3. The first pair of flights were conducted in two sectors (Alabama and over a rural area under 300 moderate aerosol number conditions, while the second pair exhibited somewhat higher aerosol numbers owing to its proximity to the Atlanta regions), from each sector one during day- and one during night-time 301 302 (see Fig.3), where the N_d were calculated using the observed σ_{w} -metropolitan area. The size of the markers 303 in Fig.3 represents the potential number of droplets in clouds forming in each airmass sampled, while thetheir color scalereflects the respective total aerosol number. In both pairs of flights (Flight 5 and 15, and 304 Flight 6 and 9), σ_w varies about the same between night and day (Table 4). For the first Flights 5, 15 pair 305 306 of flights (Alabama), the daytime variability difference in N_d between day and night (which is 69%)% 307 <u>higher during daytime</u>) is to within 75% driven primarily by aerosol characteristics (69% by N_a and 7% from κ) and only 24% by σ_w . For nighttime, (Flight 15), the variability in N_d is driven 58% by aerosol (51%) 308 by N_a and 7% from κ) and 42% of the variability is driven by by σ_w . For the second pair of night/day flights 309 (AtlantaFlights 6, 9), N_a is on average similar, σ_w varies by a factor of 4.0 between day and night and κ 310 varies by 13%. Attribution calculations suggest that the diurnal variability The difference in N_d (between 311 day and night (where daytime values are 72.1% higher than nighttime) is $\frac{3,54}{54}$ and $\frac{43\%}{56}$ for κ , N_{d} and σ_{w} . 312 respectively during day and 7, 76, and 17% almost equally driven by κ , N_a and σ_{w} , changes during the day 313 (54% and 43% respectively-during night (Table 4). In the second sector, 57% of the variability in N_d is), 314 315 while predominantly driven by $\frac{1}{2} \frac{1}{2} \frac{1}{2$ urban environment with higher aerosol concentrations, 57% of the N_d variability is driven by aerosol (N_a 316 317 and κ) during the day and 83% during the night. Figure 3 presents the calculated N_d for the four 318 aforementioned flights, namely Flights 5 (Fig. 3a), 15 (Fig. 3b), 6 (Fig. 3c) and 9 (Fig. 3d) using the 319 observed $\sigma_{\rm w}$. The size of the markers represents the estimated number of droplets, while the color scale the respective total aerosol number. Droplet number is lower during nighttime owing to the limited turbulence, 320 321 i.e., lower $\sigma_{\rm w}$.

As expected, droplet number (N_{el}) and maximum supersaturation (S_{max}) increases as σ_w becomes larger. The highest S_{max} are around 0.2–0.3% and found for flights which exhibited large and highly variable σ_w (Flights 4, 5, 12 and 19) while the lowest S_{max} are around 0.10% and found for the nighttime flights (Flights 9, 15 and 16). All other flights yield similar S_{max} , which are around 0.13%. Based on the calculated S_{max} for every flight, the majority of the activated droplets correspond to particles of 90 nm diameter and above.

Figure 4 shows N_d relative to N_d for flights conducted in two sectors, during day and night (Flights 5 & 15, and Flights 6 & 9, respectively). It can be seen that throughout these flights, N_d reaches a plateau, where any additional aerosol does not translate to any significant increase in N_d . This plateau is caused by strong water vapor limitations and is different for day and night. S_{max} is lower during night because vertical wind velocity, ambient T and RH are lower. The same factors cause that for Flight 6 & 9 (Fig. 4c & d) where N_d

was almost the same, N_d is almost 3.5 times lower during night (Flight 9). For the whole dataset (13 flights), 332 results are summarized in Figure 5, where droplet numbers are calculated based on the observed σ_w and the 333 respective "characteristic", mean velocities, w*. Under low w* conditions, N_# variability does not result in 334 335 an important change in N_d . On the contrary, when w* tends to increase and N_d increases, as is characteristic 336 of polluted regions, during daytime, then the impact on droplet number is more notable. This point is evident in Figure 6, comprising the different segments of the flights when the aircraft sampled at practically the 337 same altitude within the boundary layer. It can be seen that N_a is enhanced as w* increases. The lowest w* 338 values (shaded area) correspond to the segments of the flights during nighttime. 339

Overall, S_{max} of clouds from all the evaluated SENEX data, is 0.14±0.05%. Tripling σ_w from 0.1 to 0.3 m s⁻ 340 ⁺ results in 31% increase in S_{max}, while doubling from 0.3 to 0.6 m s⁻⁺ results in 26.2% increase in S_{max} and 341 a further σ_{w} increase to 1 m s⁻¹ leads to an additional 20.7% increase in S_{max}. Overall effect of updraft 342 velocity on calculated N_d : tripling σ_w from 0.1 to 0.3 m s⁻¹ results in a 61.9% increase in N_d , doubling from 343 0.3 to 0.6 m s⁻¹ results in a 40.5% N_d increase; increasing σ_w to 1 m s⁻¹ leads to an additional 26.9% increase 344 in N_{d} . Furthermore, for a given σ_{w} , despite of the presence or not of a large number of aerosol (e.g. Flight 345 10 where N_{a} is 2.7 times higher than N_{a} in Flight 15) the difference in calculated N_{d} for 0.6 m s⁻¹ is only 1.3 346 times higher for Flight 10 than Flight 15. This highlights the relative insensitivity of N_d to variations in N_a 347 348 for constant σ_{w} .

Figure 4 shows N_d relative to N_a for flights conducted in the two aforementioned areas, during day (Flights 349 5 and 15) and night (Flights 6 and 9). For high enough N_a , N_d becomes insensitive to additional amounts of 350 aerosol and reaches a "limiting" N_d , which Kacarab et al. (2020) denotes as N_d^{lim} . This limit in N_d is reached 351 when the competition for water vapor to form droplets is strong enough to inhibit the formation of droplets 352 with further increase in N_a . The intense competition for water vapor is reflected in the low value of S_{max_a} 353 which drops below 0.1% when N_d is in the vicinity of N_d^{lim} (Figure 4). The availability of water vapor during 354 droplet formation is driven by σ_w , hence droplet formation is limited by σ_w and thus by velocity, when N_d 355 approaches $N_{\rm d}^{\rm lim}$. Figure 5 illustrates these <u>effects</u>, by presenting the relationship between $N_{\rm a}$ and $N_{\rm d}$ for 356 "low" w^* (<0.25 ms⁻¹; upper panel), "medium" w^* (0.5-0.7 ms⁻¹; middle panel), and "high" w^* (0.75-1 ms⁻¹) 357 ¹; lower panel) for all flights. Under low w^* conditions, changes in N_a does not result in an important change 358 in N_d , so its value corresponds to N_{lim} . When w^* increases to "medium" values (Figure 5b), then N_d becomes 359 sensitive to N_a , which is further amplified at "high" values of w^* (Figure 5c). The covariance of aerosol 360 number and vertical velocity (Figure S3) means that the latter significantly enhances the inherent response 361 362 of $N_{\rm d}$ to $N_{\rm a}$, which points to the importance of constraining vertical velocity and its variance to correctly 363 capture the aerosol-cloud droplet relationship in any model. The covariance, also observed in other

364 <u>environments (e.g., Kacarab et al., 2020), may result from a more effective convective transfer of aerosol-</u>
 365 <u>rich air to cloud forming regions, but requires further investigation.</u>

- 366 Analysis of Figure 4 also shows that N_d^{lim} varies between 1200 cm⁻³ during day and around 350 cm⁻³ during
- 367 <u>night, which points to its strong dependence on σ_{w} . Indeed, when the N_d^{lim} for all flights (except Flights 4,</u>
- 368 <u>12, for which insufficient aerosol is present to reach N_{d}^{lim} is expressed as a function of σ_{w_2} a remarkable</u>
- 369 correlation emerges between the two parameters (Figure 6). Even more interesting is that this relationship
- is quantitatively similar to the corresponding N_d^{lim} σ_w relationship Kacarab et al. (2020) found for biomass
- burning influenced boundary layer clouds in the Southeast Atlantic. The implication of the N_d^{lim} σ_w
- relationship, and its potential universality, is that when N_d approaches N_d^{lim} , its variability is a reflection of
- 373 vertical velocity variability alone, not variability in N_{a} . This opens up the possibility to infer the vertical
- 374 <u>velocity distribution from the droplet number concentration retrievals in regions where considerable</u>
- amounts of aerosol are present.
- 376

377 4. Summary and Conclusions

Measurements of <u>vertical</u> wind velocity, ambient conditions (*T, RH*),temperature, humidity, aerosol number size distribution and composition in the SEUS obtained during the SENEX 2013 project are used to analyze the drivers of droplet formation. Overall, 13 research flights are studied, covering environments over sectors with different aerosol sources, impacting total aerosol number, size distribution and, chemical compositionand updraft velocity. Aerosol volume is largely dominated by an organic fraction resulting in <u>a calculatedan</u> estimated hygroscopicity of 0.25±0.05.

Based on the calculation of cloud droplet number concentration (N_d) and maximum supersaturation (S_{max}) , 384 we find that on at the regional scale, most of the N_d variability of N_d is due to the largely driven by 385 fluctuations in N_a (Table 4), in accordance with other recent studies (e.g., Fanourgakis et al., 2019); 386 Kalkavouras et al., 2019; Kacarab et al., 2020). Nonetheless, N_d levels are also sensitive to fluctuations 387 invertical velocity variations, σ_w , as a variation by; a factor of 4.0 change in σ_w on its own may lead to an 388 N_d variation of almost a proportional change in N_d (factor of 3.6 and at). These responses however occur 389 over the same timediurnal timescale, during which N_a also changes; the N_{d} -covariance between σ_w with N_a 390 391 enhances the apparent response of N_d to different changes in N_a levels may be enhanced by a factor of 5 (Figure 4). S_{max} changes in response to aerosol concentration, in a way that tends to partially mitigate N_d 392 393 responses to aerosol. Overall, maximum supersaturation levels remain quite low (0.14±0.05%) with 394 predicted levels being much lower in lower altitudes (0.05±0.1%). Because of the strong competition for water vapor (expressed by the low Smar), cloud droplet number exhibits enhanced sensitivity to aerosol 395 396 number variations throughout the flights, regardless of aerosol composition. On the other hand, droplet 397 concentration especially within the boundary layer approaches a "plateau" that is strongly driven by vertical 398 velocity (turbulence) and the resulting supersaturation, but also aerosol concentration. In "cleaner" 399 environments where total aerosol number is lowernot impacted by local sources, the relative 400 contribution response of vertical velocity N_d to cloud droplet number σ_w is almost half during nighttime (24%) vs. 42% twice as great at night than during the day (24% for daytime) while Flight 5 vs. 42% for nighttime 401 402 Flight 15). On the other hand, the relative contribution of N_a to the variance in response of N_d to N_a is somewhat higher (69% vs. 51% slightly lower during daytime) even though N_a is 2-fold lower the night than 403 during night. On the contrary, in the day (51% at night vs. 69% during the day). In environments with 404 405 elevated concentrations of accumulation-mode particles, the majority of cloud droplet number N_d variations (54% during nighttime vs. 76% during daytime) can be attributed to changes in total aerosol number N_a and 406 to a lesser extent to vertical velocity (43% during nighttime vs. 17% during daytime). The relative 407 contribution of the total aerosol number to the cloud droplet number dominates over variationschanges in 408 σ_w . Variations in chemical composition (expressed by κ). There are cases however where chemical 409 410 composition) do not contribute substantially to droplet number variability contributes a non negligible (-9%) contribution to droplet number variability. in most cases. As expected, Smax partially mitigates the 411 response of N_d to N_a . Overall, maximum supersaturation levels remain quite low (0.14±0.05%) with the 412 413 lowest levels $(0.05\pm0.1\%)$ estimated closest to surface. As a result, particles with diameters >90 nm were 414 the most substantial contributors to CCN.

415 Overall, our results show that atmospheric dynamics is Our analysis also reveals the importance of the 416 variance in vertical velocity as a key driver of cloud droplet formation and its variability in the region. Especially in cases when When the boundary layer turbulence is low (e.g. during nighttime);) and water 417 vapor supersaturations are low vertical velocity, generating only small supersaturation, $\sigma_{\rm w}$ and its 418 variability, can be as important a contributor to droplet number variability as aerosol number. For cases 419 with high vertical velocities and high aerosol number concentration, it is the aerosol concentration that 420 dominates the variability in cloud droplet number. N_d as is N_a . On average, the two variables (N_a and σ_w) 421 contribute almost equally to the variability in cloud droplet number concentration (N_d) and together 422 423 $\frac{\text{account}N_d}{\text{accounting}}$ for more than 90% of the variability. This finding is consistent with recent modeling 424 studies noting the importance of vertical velocity variability as a driver of the temporal variability of global 425 hydrometeor concentration (Morales Betancourt and Nenes, 2014b; Sullivan et al., 2016). Furthermore, the 426 N_d enhancementresponse from changes in N_a is magnified up to 5 times from concurrent by correlated 427 changes in σ_w . A similar situation has also been observed was seen in smoke-influenced marine boundary 428 layers influenced by biomass burning in the Southeast Atlantic (Kacarab et al., 2020). Altogether, these 429 findings carry Finally, we identify an upper limit to the number of droplets that can form in clouds which depends only on σ_w . This upper limit value tends to be achieved near the surface, where N_a tends to be 430

431 <u>higher. Whenever N_d approaches this upper limit, observed droplet variability is driven by σ_w and as a 432 <u>consequence by vertical velocity changes only.</u></u>

433 Many aspects of warm cloud physics and especially droplet formation are known for decades. Ensuring that 434 global models simulate N_d for the "right reasons" (i.e., aerosol variability and/or vertical velocity 435 variability) is critical for constraining aerosol-cloud-climate interactions. Our study provides important implications for constraints on the relationships between σ_w , N_a , potential N_d , and S_{max} , and shows the 436 importance of covariance between σ_w and N_a in controlling the N_d that can result from a given value of σ_w . 437 438 Given that global model assessments of aerosol-indirect climate forcing (e.g., Leibensperger et al., 2012a) and aerosol-cloud interaction studies using remote sensing, as patterns of cooling (although consistent-439 440 cloud-climate interactions do not evaluate for vertical velocity or its covariance with aerosol and cloud fields) may omit the covariance of vertical velocity with aerosol number, therefore neglecting this important 441 driver other parameters, our work shows that this omission can lead to an underappreciated source of 442 hydrometeor variability- and bias, and to a biased response and attribution of droplet number to aerosol 443 444 levels.

445

446 **Data Availability:** The data used in this study can be downloaded from the NOAA public data repository 447 at https://www.esrl.noaa.gov/csd/projects/senex/. The Gaussian fits used for determining σ_w and the droplet 448 parameterization used for the calculations in the study are available from athanasios.nenes@epfl.ch upon 449 request.

450

451	Author Contributions: conceptualization, A.B.AB and A.N.; AN designed and initiated the study.
452	Analysis methodology, A.B. and A.N.; software, A.N.; formal were developed and provided by AN. The
453	analysis, A.B. and A.N.; investigation, A.B., A.N. and J.J.L.; data was carried out by AB and AN, with
454	comments from JJL, CB, AMM. Data curation, A.B., J.J.L., C.B., J.A.G., J.L., A.M.M., A.W.; writing
455	original draft preparation, A.B. and A.N.; writing review was provided by AB, JJL, CB, JAG, JL, AMM,
456	AW. The manuscript was written by AB and editing, A.B., A.N., J.J.L., C.B., A.W., AN with additional
457	comments by A.M.M.; visualization, A.B. A.N. and J.J.L.; supervision, A.N.; project administration, A.N.;
458	funding acquisition, A.Nprovided by JJL, CB, AW, AMM. All authors reviewed the manuscript.
459	
160	Funding: This study was supported by the Environmental Protection Agency STAP Grant P825410 and

Funding: This study was supported by the Environmental Protection Agency STAR Grant R835410, and
 the European Research Council, CoG-2016 project PyroTRACH (726165) funded by H2020-EU.1.1. ___

462 <u>Excellent Science</u>. AB also acknowledges support from the Action "Supporting of Postdoctoral

463 Researchers" of the Operational Program "Education and Lifelong Learning" (action's beneficiary: General

464 Secretariat for Research and Technology) and is co-financed by the European Social Fund (ESF) and the

465 Greek State. We also acknowledge funding from the European Research Council, CoG-2016 project

466 PyroTRACH (726165) funded by H2020-EU.1.1. CAB, JAdG, JL, AMM, and AW were supported in part

467 by NOAA's Health of the Atmosphere and Atmospheric Chemistry, Carbon Cycle, and Climate Programs.

468 <u>— Excellent Science.</u>

- 469 Conflicts of Interest: The authors declare no conflict of interest.
- 470

471 References

- Barahona, D., West, R.E.L., Stier, P., Romakkaniemi, S., Kokkola, H., and Nenes, A.: Comprehensively
 accounting for the effect of giant CCN in cloud activation parameterizations, Atmos. Chem. Phys., 10,
 2467–2473, https://doit.org/10.5194/acp-10-2467-2010, 2010.
- Bougiatioti, A., Bezantakos, S., Stavroulas, I., Kalivitis, N., Kokkalis, P., Biskos, G., Mihalopoulos, N.,
 Papayannis, A., and Nenes, A.: Biomass-burning impact on CCN number, hygroscopicity and cloud
 formation during summertime in the eastern Mediterranean, Atmos. Chem. Phys., 16, 7389–7409,
 https://doi.org/10.5194/acp-16-7389-2016, 2016.
- Bougiatioti, A., Argyrouli, A., Solomos, S., Vratolis, S., Eleftheriadis, K., Papayannis, A., and Nenes, A.:
 CCN activity, variability and influence on droplet formation during the HygrA-Cd campaign in
 Athens, Atmosphere, 8, 108, https://doi.org/10.3390/atmos8060108, 2017.
- Brock, C. A., Cozic, J., Bahreini, R., Froyd, K. D., Middlebrook, A. M., McComiskey, A., Brioude, J.,
 Cooper, O. R., Stohl, A., Aikin, K. C., de Gouw, J. A., Fahey, D. W., Ferrare, R. A., Gao, R. S., Gore,
 W., Holloway, J. S., Hübler, G., Jefferson, A., Lack, D. A., Lance, S., Moore, R. H., Murphy, D. M.,
 Nenes, A., Novelli, P. C., Nowak, J. B., Ogren, J. A., Peischl, J., Pierce, R. B., Pilewskie, P., Quinn,
- 486 P. K., Ryerson, T. B., Schmidt, K. S., Schwarz, J. P., Sodemann, H., Spackman, J. R., Stark, H.,
- Thomson, D. S., Thornberry, T., Veres, P., Watts, L. A., Warneke, C., and Wollny, A. G.:
 Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol,
 radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project, Atmos. Chem. Phys., 11,
 2423–2453, 2011.
- 491 Brock, C. A., Wagner, N. L., Anderson, B. E., Attwood, A. R., Beyersdorf, A., Campuzano-Jost, P.,
- 492 Carlton, A. G., Day, D. A., Diskin, G. S., Gordon, T. D., Jimenez, J. L., Lack, D. A., Liao, J., Markovic,
- 493 M. Z., Middlebrook, A. M., Ng, N. L., Perring, A. E., Richardson, M. S., Schwarz, J. P., Washenfelder,

- R. A., Welti, A., Xu, L., Ziemba, L. D., and Murphy, D. M.: Aerosol optical properties in the
 southeastern United States in summer Part 1: Hygroscopic growth, Atmos. Chem. Phys., 16, 49875007, https://doi.org/10.5194/acp-16-4987-2016, 2016a2016.
- Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra, M. R., Zhang, Q., Onasch, T. B.,
 Drewnick, F., Coe, H., Middlebrook, A., Delia, A., Williams, L. R., Trimborn, A. M., Northway, M.
 J., DeCarlo, P. F., Kolb, C. E., Davidovits, P., and Worsnop, D. R.: Chemical and microphysical
 characterization of ambient aerosols with the aerodyne aerosol mass spectrometer, Mass Spectrometry
 Reviews, Spectrom. Rev., 26, 185–222, 2007.
- Carlton, A.G., J.A. de Gouw, J.L. Jimenez, J.L. Ambrose, A.R. Attwood, S. Brown, K.R. Baker, C. Brock,
 R.C. Cohen, S. Edgerton, C. Farkas, D. Farmer, A.H. Goldstein, L. Gratz, A. Guenther, S. Hunt, L.
 Jaeglé, D.A. Jaffe, J. Mak, C. McClure, A. Nenes, T.K.V. Nguyen, J.R. Pierce, S. de Sa, N.E. Selin,
 V. Shah, S. Shaw, P.B. Shepson, S. Song, J. Stutz, J. Surratt, B.J. Turpin, C. Warneke, R.A.
 Washenfelder, P.O. Wennberg, and Xianling Zhou: A synthesis of the southeast atmosphere studies:
 coordinated investigation of fundamental atmospheric chemistry questions, Bulletin of the American
- 508 Meteorological Society, doi: Bull. Am. Meteor. Soc., https://doi.org/10.1175-BAMS-D-16-0048.1,
 509 2018.
- <u>Charlson, R.J., Schwartz, S.E., Hales, J.M., Cess, R.D., Coakley Jr., J.A., Hansen, J.E., and Hofmann, D.J.:</u>
 <u>Climate forcing by anthropogenic aerosols, Science, Vol. 255, Issue 5043, 423-430,</u>
 <u>https://doi.org/10.1126/science.255.5043.423, 1992.</u>
- Cubison, M. J., Ervens, B., Feingold, G., Docherty, K. S., Ulbrich, I. M., Shields, L., Prather, K., Hering,
 S., and Jimenez, J. L.: The influence of chemical composition and mixing state of Los Angeles urban
 aerosol on CCN number and cloud properties, Atmos. Chem. Phys., 8, 5649-5667,

https://doi.org/10.5194/acp-8-5649-2008, 2008.

- 517 DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T., Aiken, A. C., Gonin, M., Fuhrer,
 518 K., Horvath, T., Docherty, K. S., Bates, D. R., and Jimenez, J. L.: Field-Deployable, High-Resolution,
 519 Timedeployable, high-resolution, time-of-Flight Aerosol Mass Spectrometerflight aerosol mass
 520 spectrometer, Anal. Chem., 78, 8281–8289, https://doi.org/doi:8210.1021/ac061249n, 2006.
- 521 Fanourgakis, G. S., Kanakidou, M., Nenes, A., Bauer, S. E., Bergman, T., Carslaw, K. S., Grini, A.,
- Hamilton, D. S., Johnson, J. S., Karydis, V. A., Kirkevåg, A., Kodros, J. K., Lohmann, U., Luo, G.,
 Makkonen, R., Matsui, H., Neubauer, D., Pierce, J. R., Schmale, J., Stier, P., Tsigaridis, K., van Noije,
- 524 T., Wang, H., Watson-Parris, D., Westervelt, D. M., Yang, Y., Yoshioka, M., Daskalakis, N., Decesari,
- 525 S., Gysel-Beer, M., Kalivitis, N., Liu, X., Mahowald, N. M., Myriokefalitakis, S., Schrödner, R.,
- 526 Sfakianaki, M., Tsimpidi, A. P., Wu, M., and Yu, F.: Evaluation of global simulations of aerosol

- 527 particle and cloud condensation nuclei number, with implications for cloud droplet formation, Atmos.
- 528 Chem. Phys., 19, 8591–8617, https://doi.org/10.5194/acp-19-8591-2019, 2019.
- 529 Fry, J. L., Brown, S. S., Middlebrook, A. M., Edwards, P. M., Campuzano-Jost, P., Day, D. A., Jimenez,
- 530 J. L., Allen, H. M., Ryerson, T. B., Pollack, I., Graus, M., Warneke, C., de Gouw, J. A., Brock, C. A.,
- 531 Gilman, J., Lerner, B. M., Dubé, W. P., Liao, J., and Welti, A.: Secondary organic aerosol (SOA)
- 532 yields from NO3 radical + isoprene based on nighttime aircraft power plant plume transects, Atmos.
- 533 Chem. Phys., 18, 11663-11682, https://doi.org/10.5194/acp-18-11663-2018, 2018.
- Cerully, K. M., Bougiatioti, A., Hite, Jr., J. R., Guo, H., Xu, L., Ng, N. L., Weber, R., and Nenes, A.: On
 the link between hygroscopicity, volatility, and oxidation state of ambient and water-soluble aerosols
 in the southeastern United States, Atmospheric Chemistry and Physics, Atmos. Chem. Phys., 15, 8679–
 8694, 2015, https://doi.org/10.5194/acp-15-8679-2015.
- 538 IPCC (Intergovernmental Panel on Climate Change): Climate Change 2013: The Physical Science Basis,
 539 Summary for Policymakers, Cambridge University Press, Cambridge, UK and New York, 2013.
- 540 Kacarab, M., Thornhill, K. L., Dobracki, A., Howell, S. G., O'Brien, J. R., Freitag, S., Poellot, M. R., Wood,
- R., Zuidema, P., Redemann, J., and Nenes, A.: Biomass burning aerosol as a modulator of the droplet
 number in the southeast Atlantic region, Atmos. Chem. Phys., 20, 3029–3040,
 https://doi.org/10.5194/acp-20-3029-2020, 2020.
- Kalkavouras, P., Bossioli, E., Bezantakos, S., Bougiatioti, A., Kalivitis, N., Stavroulas, I., Kouvarakis, G.,
 Protonotariou, A. P., Dandou, A., Biskos, G., Mihalopoulos, N., Nenes, A., and Tombrou, M.: New
 particle formation in the southern Aegean Sea during the Etesians: importance for CCN production
 and cloud droplet number, Atmos. Chem. Phys., 17, 175-192, https://doi.org/10.5194/acp-17-1752017, 2017.
- Kalkavouras, P., Bougiatioti, A., Kalivitis, N., Stavroulas, I., Tombrou, M., Nenes, A., and Mihalopoulos, 549 550 N.: Regional new particle formation as modulators of cloud condensation nuclei and cloud droplet 551 number in the eastern Mediterranean, Atmos. Chem. Phys., 19, 6185-6203, https://doi.org/10.5194/acp-19-6185-2019, 2019. 552
- Kupc, A., Williamson, C., Wagner, N. L., Richardson, M., and Brock, C. A.: Modification, calibration, and
 performance of the Ultra-High Sensitivity Aerosol Spectrometer for particle size distribution and
 volatility measurements during the Atmospheric Tomography Mission (ATom) airborne campaign,
 Atmos. Meas. Tech., 11, 369–383, https://doi.org/10.5194/amt-11-369-2018, 2018.
- Lathem, T. L., Beyersdorf, A. J., Thornhill, K. L., Winstead, E. L., Cubison, M. J., Hecobian, A., Jimenez,
 J. L., Weber, R. J., Anderson, B. E., and Nenes, A.: Analysis of CCN activity of Arctic aerosol and
 Canadian biomass burning during summer 2008, Atmos. Chem. Phys., 13, 2735-2756,
 https://doi.org/10.5194/acp-13-2735-2013, 2013.

- 561 Leibensperger, E. M., Mickley, L. J., Jacob, D. J., Chen, W.-T., Seinfeld, J. H., Nenes, A., Adams, P. J.,
- Streets, D. G., Kumar, N., and Rind, D.: Climatic effects of 1950–2050 changes in US anthropogenic
 aerosols Part 1: Aerosol trends and radiative forcing, Atmos. Chem. Phys., 12, 3333-3348,
 https://doi.org/10.5194/acp-12-3333-2012, 2012a.
- Leibensperger, E. M., Mickley, L. J., Jacob, D. J., Chen, W.-T., Seinfeld, J. H., Nenes, A., Adams, P. J.,
- Streets, D. G., Kumar, N., and Rind, D.: Climatic effects of 1950–2050 changes in US anthropogenic
 aerosols Part 2: Climate response, Atmos. Chem. Phys., 12, 3349-3362, https://doi.org/10.5194/acp-
- 568
 12-3349-2012, 2012b.
- Middlebrook, A. M., Bahreini, R., Jimenez, J. L., and Canagaratna, M. R.: Evaluation of Composition Dependent Collection Efficienciescomposition-dependent collection efficiencies for the Aerodyne
 Aerosol Mass Spectrometeraerosol mass spectrometer using Field Datafield data, Aerosol Sci. Tech.,
 46, 258–271, doi.org/10.1080/02786826.2011.620041, 2012.
- Moore, R. H., Bahreini, R., Brock, C. A., Froyd, K. D., Cozic, J., Holloway, J. S., Middlebrook, A. M.,
 Murphy, D. M., and Nenes, A.: Hygroscopicity and composition of Alaskan Arctic CCN during April
 2008, Atmos. Chem. Phys., 11, 11 807–11 825, https://doi.org/10.5194/acp-11-11807-2011, 2011.
- Moore, R. H., Cerully, K., Bahreini, R., Brock, C. A., Middlebrook, A. M., and Nenes, A.: Hygroscopicity
 and composition of California CCN during summer 2010, J. Geophys. Res., 117, Res., 117, https://doi.org/10.1029/2011JD017352, 2012.
- Morales, R. and Nenes, A.: Characteristic updrafts for computing distribution-averaged cloud droplet
 number, autoconversion rate effective radius, J. Geophys. Res., 115, D18220,
 doi:10.1029/2009JD013233, 2010.
- Morales Betancourt, R. and Nenes, A.: Droplet activation parameterization: the population-splitting
 concept revisited, Geosci. Model Dev., 7, 2345–2357, https://doi.org/10.5194/gmd-7-2345-2014,
 2014a.
- Morales Betancourt, R. and Nenes, A.: Understanding the contributions of aerosol properties and
 parameterization discrepancies to droplet number variability in a global climate model, Atmos. Chem.
 Phys., 14, 4809-4826, https://doi.org/10.5194/acp-14-4809-2014, 2014b.
- 588 Nenes, A. and Seinfeld, J.H.: Parameterization of cloud droplet formation in global climate models, J.
- 589 Geophys. Res, 108, 4415, doi:10.1029/2002JD002911, 2003.
- Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud
 condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, doi:10.5194/acp-7-1961-2007,
 2007.

- 593 <u>Pringle, K. J., Tost, H., Pozzer, A., Pöschl, U., and Lelieveld, J.: Global distribution of the effective aerosol</u>
 594 <u>hygroscopicity parameter for CCN activation, Atmos. Chem. Phys., 10, 5241–5255,</u>
 595 <u>https://doi.org/10.5194/acp-10-5241-2010, 2010.</u>
- Quinn, P. K., Bates, T. S., Coffman, D. J., and Covert, D. S.: Influence of particle size and chemistry on
 the cloud nucleating properties of aerosols, Atmos. Chem. Phys., 8, 1029-1042,
 https://doi.org/10.5194/acp-8-1029-2008, 2008.
- Reutter, P., Su, H., Trentmann, J., Simmel, M., Rose, D., Gunthe, S. S., Wernli, H., Andreae, M. O., and
 Pöschl, U.: Aerosol- and updraft-limited regimes of cloud droplet formation: influence of particle
 number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN), Atmos. Chem.
- 602 Phys., 9, 7067-7080, https://doi.org/10.5194/acp-9-7067-2009, 2009.
- <u>Riemer, N., Ault, A. P., West, M., Craig, R. L., & Curtis, J. H.: Aerosol mixing state: Measurements,</u>
 <u>modeling, and impacts. Reviews of Geophysics, 57, 187–249. https://doi.org/10.1029/2018RG000615,</u>
 <u>2019</u>
- Seidel, D. J., Zhang, Y., Beljaars, A., Golaz, J.-C., Jacobson, A. R., and Medeiros, B.: Climatology of the
 planetary boundary layer over the continental United States and Europe, J. Geophys. Res., 117,
 D17106, doi:10.1029/2012JD018143, 2013.
- 609 Seinfeld, J., and Pandis, S.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change,
 610 John Wiley, Hoboken, N. J., 1998.
- 611 Seinfeld, J. H., Bretherton, C. S., Carslaw, K. S., Coe, H., De-Mott, P. J., Dunlea, E. J., Feingold, G., Ghan,
- 612 S. J., Guenther, A.B., Kahn, R. A., Kracunas, I. P., Kreidenweis, S. M., Molina, M. J., Nenes, A.,
- 613 Penner, J. E., Prather, K. A., Ramanathan, V., Ramaswamy, V., Rasch, P. J., Ravishankara, A. R.,
- 614 Rosenfeld, D., Stephens, G., and Wood R.: Improving Our Fundamental Understandingour
- 615 <u>fundamental understanding</u> of the <u>Rolerole</u> of <u>Aerosol-Cloud Interactions</u>aerosol-cloud interactions in
- 616 the Climate System, Pclimate system, Proc. Nat. Acad. Sci. USA, 113, 5781–5790,
 617 https://doi.org/10.1073/pnas.1514043113, 2016.
- Sullivan, S.C., Lee, D., Oreopoulos, L., and Nenes, A.: The role of updraft velocity in temporal variability
 of cloud hydrometeor number, Proc. Nat. Acad. Sci, 113, 21, <u>https://doi-.org/10.1073/pnas.1514039113, 2016.</u>
- Wagner, N. L., Brock, C. A., Angevine, W. M., Beyersdorf, A., Campuzano-Jost, P., Day, D., de Gouw, J.
 A., Diskin, G. S., Gordon, T. D., Graus, M. G., Holloway, J. S., Huey, G., Jimenez, J. L., Lack, D. A.,
- 623 Liao, J., Liu, X., Markovic, M. Z., Middlebrook, A. M., Mikoviny, T., Peischl, J., Perring, A. E.,
- 624 Richardson, M. S., Ryerson, T. B., Schwarz, J. P., Warneke, C., Welti, A., Wisthaler, A., Ziemba, L.
- D., and Murphy, D. M.: In situ vertical profiles of aerosol extinction, mass, and composition over the

- southeast United States during SENEX and SEAC4RS: observations of a modest aerosol enhancement
 aloft, Atmos. Chem. Phys., 15, 7085-7102, https://doi.org/10.5194/acp-15-7085-2015, 2015.
- 628 Warneke, C., Trainer, M., de Gouw, J. A., Parrish, D. D., Fahey, D. W., Ravishankara, A. R., Middlebrook,
- A. M., Brock, C. A., Roberts, J. M., Brown, S. S., Neuman, J. A., Lerner, B. M., Lack, D., Law, D.,

630 Hübler, G., Pollack, I., Sjostedt, S., Ryerson, T. B., Gilman, J. B., Liao, J., Holloway, J., Peischl, J.,

- 631 Nowak, J. B., Aikin, K. C., Min, K.-E., Washenfelder, R. A., Graus, M. G., Richardson, M., Markovic,
- 632 M. Z., Wagner, N. L., Welti, A., Veres, P. R., Edwards, P., Schwarz, J. P., Gordon, T., Dube, W. P.,
- 633 McKeen, S. A., Brioude, J., Ahmadov, R., Bougiatioti, A., Lin, J. J., Nenes, A., Wolfe, G. M., Hanisco,
- 634 T. F., Lee, B. H., Lopez-Hilfiker, F. D., Thornton, J. A., Keutsch, F. N., Kaiser, J., Mao, J., and Hatch,
- 635 C. D.: Instrumentation and measurement strategy for the NOAA SENEX aircraft campaign as part of
- 636 the Southeast Atmosphere Study 2013, Atmos. Meas. Tech., 9, 3063-3093,
 637 https://doi.org/10.5194/amt-9-3063-2016, 2016.
- Wilson, J. C., Lafleur, B. G., Hilbert, H., Seebaugh, W. R., Fox, J., Gesler, D. W., Brock, C. A., Huebert, 638 B. J., and Mullen, J.: Function and performance of a low turbulence inlet for sampling supermicron 639 640 particles from aircraft platforms, Aerosol Sci. Tech., 38, 790-802, 641 https://doi.org/10.1080/027868290500841, 2004.
- Weber RJ, Guo H, Russell AG, Nenes A.: High aerosol acidity despite declining atmospheric sulfate
 concentrations over the past 15 years, Nat. Geosci., 9, 282-285,
 2016.https://doi.org/10.1038/ngeo2665, 2016.
- 645 Yu, S., Alapaty, K., Mathur, R., Pleim, J., Zhang, Y., Nolte, C., Eder, B., Foley, K., and Nagashima, T.:
- Attribution of the United States "warming hole": Aerosol indirect effect and precipitable water vapor.
- 647 Sci. Rep., 4, 6929, https://doi.org/10.1038/srep06929, 2014.

Table 1: Research flights from the SENEX 2013 campaign used in this study. The symbol "\$\$\vec{\$\phi\$}" next to
 each flight number refers to daytime flight, and "€" refers to a nighttime flight.

Flight	Date	Local Time	#<u>Hygroscopicity</u>	Organic mass
		(CDT, UTC-5	<u>Parameter <i>K</i></u>	fraction
		hrs)		
4\$	10/6	09:55-16:30	0.23±0.02	0.62 ± 0.11
5¢	11/6	11:30-17:57	0.20±0.00	$0.68{\pm}0.05$
6\$	12/6	09:48-15:31	0.21±0.01	$0.68{\pm}0.07$
9 C	19/6	17:30-23:29	0.24±0.01	0.66 ± 0.06
10\$	22/6	10:01-17:09	0.21±0.02	$0.68{\pm}0.08$
11\$	23/6	10:08-17:22	0.25±0.03	$0.58{\pm}0.07$
12\$	25/6	10:18-17:25	0.39±0.02	0.35±0.18
14\$	29/6	10:26-17:39	0.22±0.03	$0.62{\pm}0.07$
15€	2/7	20:08-02:51	0.28±0.05	0.55±0.09
16 C	3/7	19:56-02:55	0.22±0.05	0.67±0.09
17\$	5/7	09:52-16:24	0.23±0.05	0.59±0.14
18\$	6/7	09:19-16:18	0.31±0.02	$0.52{\pm}0.08$
19\$	8/7	10:11-16:44	0.23±0.04	$0.62{\pm}0.08$
Average			<u>0.25±0.05</u>	<u>0.60±0.09</u>

Table 2: Flight number, time interval, <u>spectral dispersionstandard deviation</u> of vertical wind velocity (σ_w) and characteristic vertical velocity $w^*=0.79\sigma_w$ during flight segments where the aircraft flew at a constant altitude.

	Flight (pass)	Time Range Interval			Altitude a.s.l. (m)	Flight (pass)	Time Range			Altitude <u>a.s.l.</u> (m)
	u /	<u>(Local Time)</u>	σ_w (m s ⁻¹)	w* (m s ⁻¹)			Interval (Local Time)	σ_w (m s ⁻¹)	w* (m s ⁻¹)	
	5(1)	12:31-12:58			549 ± 58	9(1)	18:44-18:58	0.255	0. 202	797±2.01
			1.02	0.81				<u>25</u>	<u>20</u>	
	5 (2)	13:16-13:29	0.82	0.65	982±11	9 (2)	19:20-19:29	0. 249	0. 197	740±1.23
-	5 (3)	13.34-13.50	0.82	0.03	502+13	9 (3)	10.33_10.48	0.217	$\frac{4}{0.171}$	740+1.23
	5 (5)	15.54-15.50	1.01	0.80	502±15	9(3)	17.33-17.40	<u>22</u>	<u>17</u>	/40±1.23
	5 (4)	13:53-14:08			614±27	9 (4)	19:51-20:25	0. 218	0.173	776±1.22
-	- (-)		1.03	0.81	(0.0.10			<u>22</u>	<u>17</u>	
	5 (5)	14:20-15:00	0.91	0.72	603±40	9 (5)	20:34-20:39	$0.\frac{232}{23}$	$0.\frac{183}{18}$	597±1.19
	5 (6)	15:35-15:41			533±18	9 (7)	20:56-21:10	0. 201	0. 158	773±1.11
_			0.87	0.69				<u>20</u>	<u>16</u>	
	5 (7)	16:17-16:30	0.77	0.61	638±23	9 (8)	21:31-21:45	0. 191 <u>19</u>	0. 151 <u>15</u>	725±1.18
	5 (8)	16:31-16:39			559±18	9 (9)	22:24-22:31	0.257	0. 203	745±1.36
-	5 (0)	12.10.12.00	0.55	0.44	(0() 10	0 (10)	22 40 22 54	<u>26</u>	<u>20</u>	004:107
	5 (9)	17:10-17:22	0.53	0.42	686±40	9 (10)	22:48-22:54	0.221 22	0. 175 <u>17</u>	804± 1.37
	14(1)				558±2	15(1)	21:09-21:52	0. 236	0. 186	505±6.64
-		12:34-12:49	0.94	0.75				<u>24</u>	<u>19</u>	
	14 (2)	13:57-14:17	0.97	0.77	658±3	15 (2)	22:19-22:31	0. 301 30	0. 238 24	633±1.21
-	14 (3)		,		737±3	15 (3)	22:42-22:54	0.255	0.202	600±1.17
		14:22-14:46	0.95	0.75				<u>25</u>	<u>20</u>	
	14 (4)	14 50 15 22	0.55	0.42	746±23	15 (4)	23:26-23:37	0. 329	0. 260	908±1.56
-	14 (5)	14:58-15:33	0.55	0.43	714+2	15 (5)	00.02 00.10	<u>33</u>	<u>26</u>	1208+1.22
	14 (3)	15:55-16:08	0.57	0.45	/14±3	15(5)	00:02-00:19	$\frac{0.297}{30}$	$\frac{0.233}{23}$	1208±1.23
	14 (6)				801±3	15 (6)	00:43-1:08	0.253	0. 199	592±1.37
-		16:11-16:21	0.77	0.61				<u>25</u>	<u>20</u>	(= ()))
	14 (7)	16:33-16:41	0.45	0.35	793±2	15 (7)	1:10-1:24	$0.\frac{276}{28}$	0.218 22	676±1.02
						15 (8)	1:37-2:02	0. 207	0. 164	713±19.5
								<u>21</u>	<u>16</u>	
	12 (1)	11:50-12:34	0.96	0.75	484±3	19(1)	11:20-11:41	0. 622 62	0.4 92 49	1014±2.27
	12 (2)				503±3	19 (2)	12:09-12:23	1. 203		652±3.34
	~ /	12:48-13:18	1.09	0.86				<u>20</u>	0.95	
	12 (3)	10.04.10.50	1.10	0.00	894±3	19 (3)	12:51-13:10	0. 873	0. 689	537±2.51
		13:34-13:50	1.12	0.88				87	<u>69</u>	

12 (4)				479±4	19 (4)	13:22-13:49	1. 294	1. 022	518±22.6
	14:06-14:40	1.04	0.82				<u>29</u>	<u>02</u>	
12 (5)				521±3	19 (5)	14:44-14:57	1. 361	1. 075	528±3.26
	15:21-15:32	1.10	0.87				<u>36</u>	<u>07</u>	
12 (6)				475±3	19 (6)	15:04-16:06	0. 896	0. 708	524±2.8
	15:43-16:02	0.99	0.78				<u>90</u>	<u>71</u>	

Table 3: Derived cloud parameters (maximum supersaturation, droplet number) and relative contribution of chemical composition and total

aerosol number for different vertical velocities. Numbers in parentheses indicate standard deviation values. <u>The symbol "\$" next to each flight</u> <u>number refers to daytime flight, and "(" refers to a nighttime flight.</u>

661

Flight	Na	<u>Std</u>		$\sigma_w=0.1 \text{ m}$	s ⁻¹		$\sigma_{w}=0.3 \text{ m s}^{-1}$			$\sigma_{\rm W}=0.6 {\rm ~m~s^{-1}}$				$\sigma_w = 1.0 \text{ m s}^{-1}$				
0		Day N	Smax	Nd	Contrib	Contrib	Smax	Nd	Contrib	Contrib	Smax	Nd	Contrib	Contrib	Smax	Nd	Contrib	Contrib
		<u>Dev</u> Iva			κ	Na			κ	Na			κ	Na			κ	Na
		variab																
40	6118	4520	0.11	122	0.08	0.92	0.16	315	0.20	0.80	0.21	520	0.23	0.77	0.26	737	0.2	0.8
			(0.06)	(41)			(0.09)	(114)			(0.12)	(212)			(0.17)	(321)		
5₽	4324	2598	0.08	139	0.09	0.91	0.1	388	0.15	0.85	0.14	712	0.17	<u>0.8308</u>	0.17	1063	0.21	0.79
			(0.04)	(31)			(0.06)	(104)			(0.08)	(216)		<u>3</u>	(0.1)	(360)		
6\$	4958	3054	0.07	151	0.03	0.97	0.08	422	0.11	0.89	0.1	773	0.08	0.92	0.13	1162	0.07	0.93
			(0.07)	(24)			(0.04)	(70)			(0.06)	(171)			(0.07)	(302)		
9⊄	4271	3095	0.07	152	0.05	0.95	0.12	367	0.17	0.83	0.16	533	0.17	0.83	0.19	680	0.12	0.88
			(0.02)	(18)			(0.04)	(68)			(0.05)	(115)			(0.06)	(126)		
10\$	6286	7201	0.07	158	0.02	0.98	0.1	422	0.02	0.98	0.14	748	0.04	0.96	0.18	1063	0.09	0.91
			(0.03)	(24)			(0.05)	(86)			(0.07)	(180)			(0.08)	(295)		
110	5969	7271	0.04	137	0.01	0.99	0.06	381	0.04	0.96	0.08	695	0.03	0.97	0.10	1025	0.03	0.97
			(0.01)	(19)			(0.01)	(61)			(0.02)	(134)			(0.02)	(226)		
12\$	3154	5150	0.06	110	0.03	0.97	0.1	274	0.05	0.95	0.14	404	0.08	0.92	0.17	486	0.07	0.93
			(0.03)	(45)			(0.04)	(117)			(0.04)	(179)			(0.05)	(207)		
140	5564	5891	0.07	118	0.05	0.95	0.10	328	0.17	0.83	0.13	590	0.25	0.75	0.16	842	0.27	0.73
176	0000	1.420	(0.02)	(41)	0.02	0.07	(0.03)	(125)	0.10	0.00	(0.04)	(240)	0.01	0.70	(0.05)	(361)	0.0	0.7
150	2328	1428	0.05	135	0.03	0.97	0.09	339	0.12	0.88	0.12	557	0.21	0.79	0.16	(202)	0.3	0.7
1(8	2440	4507	(0.01)	(22)	0.02	0.07	(0.02)	(67)	0.06	0.04	(0.02)	(137)	0.07	0.02	(0.03)	(203)	0.1	0.0
164	3440	4507		158	0.03	0.97	0.12	403	0.06	0.94	0.1/	6/0	0.07	0.93	0.23	(274)	0.1	0.9
17.5	2012	1615	(0.06)	(37)	0.06	0.04	(0.1)	(120)	0.1	0.0	(0.13)	(233)	0.06	0.04	(0.10)	(3/4)	0.06	0.04
1/₩	3813	4043	(0.03)	(41)	0.06	0.94	(0.07)	34Z (120)	0.1	0.9	(0.04)	393 (249)	0.00	0.94	(0.13)	(271)	0.00	0.94
10.0	1025	083	(0.02)	(41)	0.12	0.66	(0.03)	(130)	0.25	0.65	0.15	270	0.27	0.62	0.10	(371)	0.27	0.72
10₩	1923	905	(0.08)	90	0.12	0.00	(0.12)	233 (157)	0.55	0.05	(0.13)	(262)	0.57	0.05	(0.19)	(346)	0.27	0.75
1075	1322	7261	0.04)	121	0.02	0.08	0.03	(137) 314	0.06	0.94	0.12	526	0.11	0.80	0.15	670	0.13	0.87
177	1525	/201	(0.02)	(33)	0.02	0.70	(0.02)	(96)	0.00	0.74	(0.03)	(177)	0.11	0.07	(0.03)	(249)	0.15	0.07

662

Table 4: Derived S_{max} , N_d , σ_w for all research flights along with the estimated contribution of each parameter to the variability of the droplet number. The symbol "\$" next to each flight number refers to daytime flight, and "C" refers to a nighttime flight.

Flight	$\sigma_{ m w}$	$\Delta \sigma_w$	S _{max}	N_d	ΔN_d	Contrib.	Contrib.	Contrib.
	(m s ⁻¹)	σ_w	(%)	(cm ⁻³)	N _d	К	N_a	σ_w
4\$	1.03±0.25	0.243	0.29±0.19	707±343	0.485	4%	79%	17%
5¢	0.97±0.1	0.103	.103 0.17±0.10 1040±350 0.337 7% 69%		69%	24%		
6¢	0.94±0.18	0.191	0.13±0.07	1108±283	0.255	3%	54%	43%
9⊄	0.23±0.02	0.043	0.10±0.03	309±51	0.165	7%	76%	17%
10\$	1.22±0.11	0.090	0.12±0.03	3 1177±271 0.230 1% 90%		90%	9%	
11\$	1.08±0.04	0.037	037 0.11±0.03 1082±242 0.224 1%		83%	16%		
12\$	1.05±0.07	0.067	0.18±0.05	495±210	0.424	2%	96%	2%
14\$	0.85±0.2	0.024	0.15±0.04	761±321	0.422	0.422 9% 72%		19%
15 C	0.28±0.04	0.143	0.08±0.02	321±63	0.196	7%	51%	42%
16 C	0.20±0.04	0.200	0.10±0.08	D.10±0.08 289±79 0.273 2% 65%		65%	33%	
17 \$	0.71±0.26	0.366	.366 0.15±0.11 742±280 0.377 1% 71%		71%	28%		
18\$	0.90±0.06	0.067	0.31±0.18	-0.18 538±325 0.604 7% 83%		83%	10%	
19\$	0.99±0.31	0.313	13 0.15±0.03 699±248 0.355 4%		88%	8%		
AvgAverage					0.334	4%	75.2%	20.6%

Figure 1: Figure 1: Altitude as a function of time (UTC) colored by organic mass fraction. Spatial and vertical distribution of the organics mass fraction (a) for Flight 6, (b) for Flight 12 and (c) for Flight 16, denoting the difference in chemical composition, which in turn, may influence cloud droplet number concentration. The color scale denotes the percentage of the organics mass fraction. The dashed line represents the boundary layer height.

- Figure 2: Average particle number size distributions for: (a) free tropospheric conditions, (b) within the
- boundary layer, (c) during <u>passessegments</u> with high variability in total aerosol number, and (d) during nighttime passes. Error bars represent the 75th percentile of the distributions within each <u>passsegment</u>.

Figure 3: Flight trajectories Map of aircraft flight track showing calculated calculated cloud droplet number (indicated by marker size (cm⁻³)) and total aerosol number (indicated by marker color) for the observed characteristic vertical velocity (w*). (a) for the Alabamarural sector during daytime (Flight 5) and (b) nighttime (Flight 15). (c) for urban Atlanta during daytime (Flight 6) and (d) nighttime (Flight 9). Note that the data are plotted at less than 1 Hz in order to better show the size and color of the markers.

Figure 4: Cloud droplet number vs. total aerosol number for the derived characteristic vertical velocity $(w^{*})^{*}$ of each flight (Table 4). (a) for the <u>Alabamarural</u> sector during daytime (Flight 5) and (b) nighttime (Flight 15). (c) for <u>Atlantaurban Altanta</u> during daytime (Flight 6) and (d) nighttime (Flight 9). Data are colored by maximum supersaturation.

Figure 5: Average cloud droplet number vs. total aerosol number, colored by characteristic velocity
 during the 13 research flights, colored by total aerosol number. w* for each flight. Error bars represent the
 standard deviation of cloud droplet number during each flight. The shaded area represents the flights
 conducted during nighttime.

Figure 6: Total aerosolLimiting droplet number vs. characteristicstandard deviation of vertical velocity
 during the segments of the flights when the aircraft remained at a constant altitude within the boundary
 layer, colored by relative humidity.flights where a velocity-limited regime is reached (all except Flights 4,
 The shaded area represents the segments of the flights conducted during nighttime while color scale
 denotes total aerosol number levels.