Supporting Information

Rapid mass growth and enhanced light extinction of atmospheric aerosols during the heating season haze episodes in Beijing revealed

by aerosol-chemistry-boundary layer interaction

Zhuohui Lin¹, Yonghong Wang², Feixue Zheng¹, Ying Zhou¹, Yishuo Guo¹, Zemin Feng¹, Chang Li¹, Yusheng Zhang¹, Simo Hakala², Tommy Chan², Chao Yan², Kaspar R. Daellenbach², Biwu Chu³, Lubna Dada², Juha Kangasluoma^{1,2}, Lei Yao², Xiaolong Fan¹, Wei Du², Jing Cai², Runlong Cai², Tom V. Kokkonen^{2,4}, Putian Zhou², Lili Wang⁵, Tuukka Petäjä^{2,4}, Federico Bianchi^{1,2}, Veli-Matti Kerminen^{2,4}, Yongchun Liu¹, and Markku Kulmala^{1,2,4}

¹Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China ²Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki, Finland

³Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, China

⁴Joint international research Laboratory of Atmospheric and Earth SysTem sciences (JirLATEST), Nanjing University, Nanjing, China

⁵State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of

Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

Corresponding author: Yonghong Wang E-mail: yonghong.wang@helsinki.fi Submitted to: Atmospheric Chemistry and Physics

Figure S1 Time series of (a) ultraviolet radiation (UVB) and atmospheric pressure (P), (b) wind speed (WS) and wind direction (WD), and (c) relative humidity (RH) and temperature (T) during the observation period.

Figure S2 . Composites of the sea level pressure field (units: HPa, shaded colors) and the ground wind field (units: $m s^{-1}$, black arrows) at different times, labeled as (a) - (e), during a typical haze period in BJ from February 19 to 22, 2019.

72h Emission Sensitivities for 2019-Feb-20

72h Emission Sensitivities for 2019-Feb-21

72h Emission Sensitivities for 2019-Feb-22

Figure S3 The 72 hour emission sensitivities (backward retro plumes) for the measurement period. The emission sensitivity values are proportional to the time that the air masses (model particles) have spent over a specific grid during their transport. The text above the figure panels indicates the particle release times in Beijing local time (LT). From these figures we can see that the polluted periods occur under southerly transport conditions, while the pollutants are cleared away during clean air masses from the north-easterly regions.

Figure S4 The dependence of different components (P_{HNO3} , EC, OC, NH₃, HONO, nucleated cluster concentration of sub 3 nm, OH concentration) during polluted and less-polluted conditions as a function of observed MLH. The data related to the upper fitting line represents $PM_{2.5}$ concentrations larger than 75 µg m⁻³, while the date related to the lower fitting line represents $PM_{2.5}$ concentrations less than 75 µg m⁻³. Only daytime conditions determined by the ceilometer from non-rainy periods (RH<95%) are considered. The dark grey points represent mean values; the red line represents median values. The shaded area corresponds to an increased amount of the specific compounds with decreased MLH assuming that the compound has the same variation pattern under highly- polluted conditions as in less polluted time.