Rapid mass growth and enhanced light extinction of atmospheric aerosols during the heating
 season haze episodes in Beijing revealed by aerosol-chemistry-radiation-boundary layer

3 interaction

- 4
- 5 Zhuohui Lin¹, Yonghong Wang^{2,3}, Feixue Zheng¹, Ying Zhou¹, Yishuo Guo¹, Zemin Feng¹, Chang
- 6 Li¹, Yusheng Zhang¹, Simo Hakala², Tommy Chan², Chao Yan², Kaspar R. Daellenbach², Biwu
- 7 Chu³, Lubna Dada², Juha Kangasluoma^{1,2}, Lei Yao², Xiaolong Fan¹, Wei Du², Jing Cai², Runlong
- 8 Cai², Tom V. Kokkonen^{2,4}, Putian Zhou², Lili Wang⁵, Tuukka Petäjä^{2,4}, Federico Bianchi^{1,2}, Veli-
- 9 Matti Kerminen^{2,4}, Yongchun Liu¹, and Markku Kulmala^{1,2,4}
- 10
- ¹Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and
- 12 Engineering, Beijing University of Chemical Technology, Beijing, China
- 13 ²Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of
- 14 Helsinki, Finland
- ³Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, China
- ⁴Joint international research Laboratory of Atmospheric and Earth SysTem sciences (JirLATEST),
- 17 Nanjing University, Nanjing, China
- 18 ⁵State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry
- 19 (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

- 20
- 21
- 22
- 23 Corresponding author: Yonghong Wang
- 24 E-mail: yonghongwang@rcees.ac.cn
- 25 Revised to: Atmospheric Chemistry and Physics
- 26

27 Abstract

28

29 Despite the numerous studies investigating haze formation mechanism in China, it is still puzzling that intensive haze episodes could form within hours directly following relatively clean periods. 30 31 Haze has been suggested to be initiated by the variation of meteorological parameters and then to be 32 substantially enhanced by aerosol-radiation-boundary layer feedback. However, knowledge on the 33 detailed chemical processes and the driving factors for extensive aerosol mass accumulation during 34 the feedback is still scarce. Here, the dependency of the aerosol number size distribution, mass 35 concentration and chemical composition on the daytime mixing layer height (MLH) in urban 36 Beijing is investigated. The size distribution and chemical composition-resolved dry aerosol light 37 extinction is also explored. The results indicate that the aerosol mass concentration and fraction of 38 nitrate increased dramatically when the MLH decreased from high to low conditions, corresponding 39 to relatively clean and polluted conditions, respectively. Particles having their dry diameters in the 40 size of ~400-700 nm, and especially particle-phase ammonium nitrate and liquid water, contributed 41 greatly to visibility degradation during the winter haze periods. The dependency of aerosol 42 composition on the MLH revealed that ammonium nitrate and aerosol water content increased the 43 most during low MLH conditions, which may have further triggered enhanced formation of sulphate and organic aerosol via heterogeneous reactions. As a result, more sulphate, nitrate and 44 45 water soluble organics were formed, leading to an enhanced water uptake ability and increased light extinction by the aerosols. The results of this study contribute towards a more detailed 46 understanding of the aerosol-chemistry-radiation-boundary layer feedback that is likely to be 47 48 responsible for explosive aerosol mass growth events in urban Beijing. 49 50

- 51
- 52 53
- 55
- 54

55 1. Introduction

Despite the recent reduction of air pollutants and their precursors in China between 2013 and 2017,
the current emission and air pollution levels are still substantially high (Wang et al., 2020b; Zheng
et al., 2018). Such high emissions, combined with specific meteorological conditions, frequently
lead to severe haze episodes (An et al., 2019; Wang et al., 2019). Particulate matter, a major air
pollutant, has considerable effects on climate, human health and visibility degradation (Che et al.,
2007; Lelieveld et al., 2015; Spracklen et al., 2008; Wang et al., 2015).

62

63 During winter haze episodes, a rapid growth of the aerosol mass concentration has commonly been 64 observed, and this phenomenon seems to be directly affected by meteorological factors (Li et al., 65 2018b; Liu et al., 2018, 2019b; Wang et al., 2018a, 2014a). The meteorological conditions and 66 increased aerosol concentrations are proposed to be interlinked by a feedback loop, called the 67 aerosol-chemistry-boundary layer feedback, in which aerosol particles reduce both solar radiation 68 reaching the surface and turbulent kinetic energy (TKE) of the near-surface air (Ding et al., 2016; 69 Petäjä et al., 2016; Wang et al., 2020d). The reduced TKE owing to aerosol reduce the entrainment 70 of relatively dry air into the mixing layer from above, which makes the air more humid within the 71 mixing layer. The increased relative humidity due to decreased surface temperature enhance the 72 aerosol water uptake ability and promote secondary aerosol formation via aqueous-phase reactions, 73 enhancing light scattering and causing further reduction of solar radiation reaching the surface. All 74 of these factors lead to increased stability of mixing layer height and enhanced air pollution in the 75 mixed layer, which further suppresses the development of boundary layer. As a consequence, 76 concentrations of primary aerosol particles, water vapor and relative humidity increase, creating 77 more favourable conditions for homogeneous and heterogeneous reactions on aerosol surfaces or 78 inside them (Cheng et al., 2016a; Wang et al., 2016; Wu et al., 2018). Such reactions cause rapid 79 formation of secondary aerosol matter and enhanced light extinction during severe winter haze 80 episodes. However, more detailed information on the aerosol and reactive gas chemistry during the 81 aerosol-chemistry-boundary layer feedback and related rapid aerosol mass growth events is still 82 needed (Liu et al., 2019). For instance, it is still unclear which chemical reactions and which

83 compounds in the particulate matter play key roles during such rapid mass growth events.

84

85	The particle number size distribution and chemical composition are considered to be the most
86	important variables influencing the light extinction by aerosol particles. In the atmosphere, the
87	highest contribution to aerosol light extinction comes from organic compounds, nitrate and sulphate
88	in particles with diameters of 100-1000 nm. This is due to the dominant mass fractions of the
89	aforementioned compounds in aerosols that correspond to the peak intensity of solar radiation at
90	wavelengths around 550 nm (Jimenez et al., 2009; Swietlicki et al., 2008). In addition, light
91	scattering which contributes the most to the light extinction by atmospheric aerosols, can be
92	substantially enhanced by the presence of liquid water in the aerosol (Chen et al., 2014; Liu et al.,
93	2019a; Pan et al., 2009; Wang et al., 2020). Hence, quantifying the response of light extinction to
94	different chemical compounds would be helpful in evaluating the feedbacks associated with
95	secondary aerosol production.
96	

97 In this study, we focus on the physical and chemical properties of aerosols in Beijing during the 98 winter heating season from October 2018 to February 2019 using state-of-the-art instrumentation. 99 The variation of aerosol chemical composition and the associated light extinction coefficient as a 100 function of the varying mixing layer height are discussed. Our aim is to identify the key chemical 101 components which contribute to the aerosol-chemistry-radiation-boundary layer feedback loop in 102 Beijing.

103

104 **2.** Methodology

105 **2.1. Measurement location and instrumentations**

106 Measurements were conducted between 1 October 2018 and 28 February 2019 at the roof top of the

107 university building at the west campus of Beijing University of Chemical Technology (39.95°N,

108 116.31°E). This station is located about 150 m away from the nearest road (Zizhuyuan road) and

500 m away from the West Third Ring Road, and it is surrounded by commercial properties and
residential dwellings representative of an urban environment. More details on the location can be
found in (Liu et al., 2020; Zhou et al., 2020).

112

113 The meteorological data for this work include basic meteorological variables (relative humidity 114 (RH), temperature, wind speed, wind direction, and visibility) and mixing layer height (MLH) 115 measured using a weather station (Vaisala Inc., Finland) and a Ceilometer CL51 (Vaisala Inc., 116 Finland), respectively. The MLH is defined as the height above the surface, through which 117 relatively vigorous vertical mixing occurs (Holzworth, 1972), and its value is highly related to the 118 vertical temperature structure and, so some extent, to a mechanically-induced turbulence (Baxter, 119 1991). Here, we followed the method introduced earlier by Münkel et al. (2007) and Eresmaa et al. 120 (2012) in determining the MLH.

121

122 The number size distributions of aerosol particles from 6 nm to 840 nm were measured by a

123 Differential Mobility Particle Sizer (DMPS) (Aalto et al., 2001). The mass concentration of fine

124 particulate matter (PM_{2.5}) was measured using a Tapered Element Oscillating Microbalance

125 Dichotomous Ambient Particulate Monitor (TEOM 1405-DF, Thermo Fisher Scientific Inc, USA)

126 with a total flow rate of 16.67 L/min (Wang et al., 2014).

127

128 A time-of-flight aerosol chemical speciation monitor (ToF-ACSM, Aerodyne Research Inc.) was 129 used to measure the concentrations of non-refractory (NR) components, including sulfate, nitrate, 130 ammonium, chloride and organics of PM_{2.5} (Fröhlich et al., 2013). A PM_{2.5} cyclone was deployed on 131 the rooftop with a flow rate of 3 L/min. The correlation coefficient of $PM_{2.5}$ measured by TEOM 132 and ToF-ACSM is around 0.9, which indicates the consistence of the two datasets. Aerosol was 133 dried though a Nafion dryer (MD-700-24F-3, PERMA PURE) before entering the ToF- ACSM. The 134 inlet flow was set at 1.4 cm³/s. The particle beam passed through the chamber and reached the 135 heated porous tungsten surface (T \approx 600°C). There, the non-refractory PM_{2.5} constituents were

136 vaporized and then ionized by electrons ($E_{kin}=70$ eV, emitted by a tungsten filament). The ions were

137	measured by a detector and the data was analyzed using Tofware ver. 2.5.13 within IgorPro ver.
138	6.3.7.2 (WaveMetrics). The relative ionization efficiencies (RIE) for sulfate, nitrate, ammonium,
139	chloride and organics applied were 0.86, 1.05, 4.0, 1.5 and 1.4, respectively. Besides RIE
140	correction, the data also did CO2+/ NO3 artifact correction (Pieber et al., 2016) and collection
141	efficiency (CE) correction (Middlebrook et al., 2012). The detailed information has been introduced
142	in Cai et al. (2020). Mass concentrations of ammonium nitrate, ammonium sulfate and ammonium
143	chloride were determined according to the method introduced by Gysel et al. (2007). The aerosol
144	liquid water content (AWC) was calculated by the thermodynamic equilibrium model ISORROPIA
145	II using ToF-ACSM data (Fountoukis and Nenes, 2007).
146	Highly-oxygenated organic molecules (HOMs) were measured by a chemical ionization long time-
147	of-flight mass spectrometer equipped with a nitrate chemical ionization source (LToF-CIMS,
148	Aerodyne Research, Inc. USA) (Jokinen et al., 2012) similar to gas-phase sulfuric acid. The
149	ambient air was drawn into the ionization source through a stainless-steel tube with a length of ~ 1.6
150	m and a diameter of 3/4 inch at a flow rate of ~ 8 L/min. A 30-40 L/min purified air flow and a 4-8
151	mL/min ultrahigh purity nitrogen flow containing nitric acid were mixed together as the sheath
152	flow, which is guided through a PhotoIonizer (Model L9491, Hamamatsu, Japan) to produce nitrate
153	reagent ions. This sheath flow is then introduced into a co-axial laminar flow reactor concentric to
154	the sample flow. Nitrate ions are pushed to the sample flow layer by an electric field and
155	subsequently charge analytical molecules. Organic carbon (OC) and element carbon (EC)
156	concentrations were measured semi-continuously with a 1-hour time resolution using an OC/EC
157	Analyzer (Model-4, Sunset Lab. Inc.) and time series of ACSM Org and Sunset OC as shown in Fig
158	S6.
159	The ammonia is measured by Trace Ammonia analyzer (Los Gatos Research, Inc.) at atmospheric
160	ambient levels with high precision (0.2 ppb in 1s) and ultra-fast response (5 Hz).
161	
162	The air mass history was studied by calculating particle retroplumes using a Lagrangian particle
163	dispersion model FLEXPART (FLEXible PARTicle dispersion model) ver. 9.02 (Stohl et al., 2005).
1.4.4	

164 The ECMWF (European Centre for Medium-Range Weather Forecast) operational forecast (with

165 0.15° horizontal and 1 h temporal resolution) was used as the meteorological input into the model.

166 During the measurement period, a new release of 50 000 test particles, distributed evenly between 0

167 and 100 m above the measurement site, occurred every 1 hour. The released particles were traced

168 backwards in time for 72 h, unless they exceeded the model boundary (20–60°N, 95–135°E).

169

170 **2.2. Aerosol light extinction calculation**

The aerosol light extinction coefficient was calculated with the Mie-Model, which uses particle number size distribution, mass concentrations of different aerosol compounds and their refractive index as inputs (Seinfeld and Pandis, 2006). We introduced a series of assumptions into the Mie-Model, including 1) "internal mixture" which considers each chemical component in a particle as homogeneously mixed with each other; 2) all particles are spherical; and 3) particles of different sizes have the same chemical composition.

177

The practical method introduced under those assumptions in previous studies were found to be capable of estimating a variation trend of optical property of $PM_{0.5-20}$ with a relatively good accuracy (Lin et al., 2013).

181

182 Table 1. Summary of the parameters for calculating the average optical refractive index.

183

Species	$ ho_i({ m g~cm^{-3}})$	n_i	k _i
(NH4)2SO4	1.760	1.530	0.000
NH ₄ NO ₃	1.725	1.554	0.000
NH ₄ Cl	1.527	1.639	0.000
Organics	1.400	1.550	0.001
EC	1.500	1.800	0.540

184

185 The average optical refractive index (AORI) of an internally-mixed particle can be calculated from

186 the optical refractive indices (ORI) of each chemical component by following a mixing rule of

187 volume-averaged chemical components as AORI = $n_{\text{eff}} + k_{\text{eff}} \times i$, where the real part (n_{eff}) and

188 imaginary part (k_{eff}) are given by:

$$n_{eff} = \left(\sum_{i} n_{i} \cdot m_{i} / \rho_{i}\right) / \left(\sum_{i} m_{i} / \rho_{i}\right)$$
(1)
$$k_{eff} = \left(\sum_{i} k_{i} \cdot m_{i} / \rho_{i}\right) / \left(\sum_{i} m_{i} / \rho_{i}\right)$$
(2)

189 Here m_i and ρ_i are the mass concentration and density of the component *i* in particles,

190 respectively, and n_i and k_i are the real and imaginary parts of ORI of this component,

191 respectively. The parameters for calculating the AORI are summarised in Table 1. The values of n_i

192 and k_i in Table 1 are referenced to the light wavelength of 550 nm.

193

194 $Q_{sp,j}$ represents light scattering efficiency of a single particle with diameter D_j , while $Q_{ep,j}$

195 represents light absorption efficiency. Theoretically, $Q_{sp,j}$ and $Q_{ep,j}$ are both the function of D_j

and the $AORI_i$ (the AORI of the particle with diameter D_i) at a given light wavelength λ , for

197 which the complicated calculations were referenced to a previous publication (Lin et al., 2013).

198 Regarding the limitations of measurement techniques, the $AORI_j$ was assumed to be equal to the 199 AORI_{PM2.5}, which was determined based on chemical composition of PM_{2.5}. It is possible to derive 200 expressions for the cross sections of a spherical particle exactly. The formulas for $Q_{sp,j}$ and $Q_{ep,j}$

201 are:

202

$$Q_{sp,j}(D_j, \lambda, AORI_j) = \frac{2}{\alpha^2} \sum_{k=1}^{\infty} (2k+1) \cdot [|a_k|^2 + |b_k|^2]$$
(3)
$$Q_{ep,j}(D_j, \lambda, AORI_j) = \frac{2}{\alpha^2} \sum_{k=1}^{\infty} (2k+1) \cdot Re[a_k + b_k]$$
(4)

8

203

204 where

206
$$a_k = \frac{\alpha \psi'_k(y)\psi_k(\alpha) - y\psi'_k(\alpha)\psi_k(y)}{\alpha \psi'_k(y)\xi_k(\alpha) - y\xi'_k(\alpha)\psi_k(y)}$$

208
$$b_k = \frac{y\psi'_k(y)\psi_k(\alpha) - \alpha\psi'_k(\alpha)\psi_k(y)}{y\psi'_k(y)\xi_k(\alpha) - \alpha\xi'_k(\alpha)\psi_k(y)}$$

209

210 with $y = \alpha m$.

212
$$\mathbf{m} = \mathbf{n}_{eff} + \mathbf{i} \cdot \mathbf{k}_{eff}$$

214
$$\alpha = \frac{\pi D_j}{\lambda}$$

215

213

216 with
$$\lambda = 550$$
 nm.

217

where complex number m stands for $AORI_j$, while α is the size of the particle, usually expressed as a dimensionless size parameter. The functions $\psi_k(z)$ and $\xi_k(z)$ are the Riccati–Bessel

220 functions:

$$\psi_k(z) = \left(\frac{\pi z}{2}\right)^{1/2} J_{k+1/2}(z)$$
(5)
$$\xi_k(z) = \left(\frac{\pi z}{2}\right)^{1/2} \left[J_{k+1/2}(z) + i(-1)^k J_{-k-1/2}(z) \right]$$
(6)

221

222 where $J_{k+1/2}$ and $J_{-k-1/2}$ are the Bessel functions of the first kind and their footnotes indicate the

order of Bessel functions. The Mie theory can serve as the basis of a computational procedure to

- 224 calculate the scattering and absorption of light by any sphere as a function of wavelength.
- 225
- 226 According to the Mie-Model, b_{sp} (light scattering coefficient) and b_{ep} (light extinction
- 227 coefficient) can be quantified with Eqs. (5) and (6), respectively. b_{ap} (light absorption coefficient)
- is the difference between b_{ep} and b_{sp} , which equals zero, when k_i equals zero or very small.
- 229 Optical properties including b_{ep} , b_{sp} and b_{ap} to be discussed later are all referenced to light
- wavelength of 550 nm.

$$\mathbf{b}_{sp} = \sum_{j} \mathbf{b}_{sp,j} = \sum_{j} \frac{\pi D_j^2}{4} \cdot Q_{sp,j} (D_j, \lambda, AORI_j) \cdot N_j$$
(7)

$$\mathbf{b}_{ep} = \sum_{j} \mathbf{b}_{ep,j} = \sum_{j} \frac{\pi D_j^2}{4} \cdot Q_{ep,j} (D_j, \lambda, AORI_j) \cdot N_j$$
(8)

232

In Eqs. (7) and (8), D_j stands for the median Stokes diameter in the j-th particle size range and N_j is the number concentration of particles with diameter, D_j .

235

236 **3. Results and discussion**

3.1. An over of the measurement campaign

The time series particle number size distribution from 6 nm to 840 nm, mass concentrations of nitrate, organics, sulfate, ammonium and chloride in NR_PM_{2.5} (non-refractory PM_{2.5}) and PM_{2.5}, concentration of HOMs and OC are shown in Figure 1(a), (b) and (c). The statistics of these compounds are summarized in Table S1. In general, they showed similar variation patterns (Figure S2 and S3). These concentrations showed high values during haze event than clean days and increased significantly during night time. As shown in Figure 1(b), the rapid mass growth during the heating season in Beijing is related to the rapid growth in nitrate concentration. At the same time, the haze events (PM_{2.5} concentration >= $75\mu g/m^3$ and lasting more than one day) are accompanied by particle size growth (Figure 1(a)). To further study which particle size possesses the highest light extinction efficiency during the haze events, and to what extent nitrates contribute to light extinction with the variation of MLH, a case of rapid rapid aerosol mass growth event is selected for further study.

3.2. Typical case of rapid aerosol mass growth episodes affected by aerosol-chemistry-

238 boundary layer interactions

239 An example of rapid aerosol mass growth in urban wintertime Beijing is illustrated in Figure 2, 240 where the haze accumulation was associated with a rapid $PM_{2.5}$ mass concentration increase from 241 8.5 μ g/m³ to more than 100 μ g/m³ in less than 7 hours. A haze episode started on afternoon 20 242 February 2019 under stagnant meteorological conditions with low wind speeds and elevated 243 ambient relative humidity (Figure S4). The polluted periods during this case occurred under 244 southerly wind transport conditions, whereas clean air masses originated from the north-westerly 245 regions (as shown in Figure S5, S6). These are typical features for a haze evolution process in 246 Beijing (Wang et al., 2020b). During the haze periods marked by the shaded areas in Figure 2, an 247 obvious increase of chemical mass concentration was observed by the ToF-ACSM, characterised by 248 high concentrations of secondary aerosol components (nitrate, organics and sulphate) and typically 249 a shallow boundary layer. The mass concentrations of organics, sulphate and nitrate increased 250 dramatically with a decreasing MLH, accounting for 88.5% of NR-PM_{2.5} during the rapid aerosol 251 mass growth period. The aerosol mass growth was the fastest for nitrate. The mass concentrations of 252 organic and elemental carbon followed that of NR-PM_{2.5}. 253 254 The MLH reached its maximum at around 14:00 in the afternoon of 20 February, after which the development of the mixing layer was suppressed and MLH decreased with the arrival of pollution 255 256 (Figure 2a). Previous studies have shown that the aerosol-radiation-boundary layer feedback

contributes to a rapid enhancement of air pollution (Petäjä et al., 2016; Wang et al., 2020d). High
concentrations of aerosol particles obscure downward radiation, as a result of which the surface
temperature and sensitive heat flux decrease and the development of mixing layer height is
suppressed. Recent studies have gradually realized that the facilitation of various chemical
processes play a non-negligible role in the aerosol-radiation-boundary layer feedback (Liu.Q et al.,
2018; Liu. Z et al., 2019). Therefore, it is important to identify and quantify the role of different
specific chemical species and particle size ranges in reducing atmospheric radiation and extinction.

265	Figure 3 shows the contributions of size and chemical composition-resolved dry aerosol to light
266	extinction during the investigated period. As the pollution intensified and MLH decreased (Fig 2c),
267	the light extinction of atmospheric aerosols increased significantly. Assuming that particles of
268	different sizes have the same chemical composition as PM2.5 (organics, NH4NO3, EC, (NH4)2SO4,
269	NH ₄ Cl), the light extinction of particles in the size range of 300-700 nm increased significantly
270	from the relative clean period to the polluted period (namely from 12:00 to 16:00). During relatively
271	clean conditions, the contributions of organics, NH4NO3, EC, (NH4)2SO4 and NH4Cl to the total
272	aerosol light extinction were 42%, 23%, 18%, 11% and 7%, respectively. The contribution of
273	NH4NO3 to aerosol light extinction reached 40% during the heavily polluted period. Based on the
274	observation it is likely that the increased light extinction by aerosols reduced solar radiation
275	reaching the surface, so that the development of the boundary layer was suppressed.
276	
077	
277	3.3. Connection between the aerosol chemical composition, light extinction, size
278	distribution and MLH during the heating season
278 279	distribution and MLH during the heating season
	distribution and MLH during the heating season To better characterize the effect of the chemical composition of dry aerosols and the PNSD (particle
279	
279 280	To better characterize the effect of the chemical composition of dry aerosols and the PNSD (particle
279 280 281	To better characterize the effect of the chemical composition of dry aerosols and the PNSD (particle number size distribution) light extinction under different MLH conditions, the daytime (8:00 –
279 280 281 282	To better characterize the effect of the chemical composition of dry aerosols and the PNSD (particle number size distribution) light extinction under different MLH conditions, the daytime (8:00 – 16:00 LT) measurement data from October 2018 to February 2019 were selected for further
 279 280 281 282 283 	To better characterize the effect of the chemical composition of dry aerosols and the PNSD (particle number size distribution) light extinction under different MLH conditions, the daytime (8:00 – 16:00 LT) measurement data from October 2018 to February 2019 were selected for further analysis. As shown by Figure 4 and consistent with other observations in Beijing (Tang et al., 2016;
 279 280 281 282 283 284 	To better characterize the effect of the chemical composition of dry aerosols and the PNSD (particle number size distribution) light extinction under different MLH conditions, the daytime (8:00 – 16:00 LT) measurement data from October 2018 to February 2019 were selected for further analysis. As shown by Figure 4 and consistent with other observations in Beijing (Tang et al., 2016; Wang et al., 2020c), there was a general tendency for the PM _{2.5} mass concentration to increase with
 279 280 281 282 283 284 285 	To better characterize the effect of the chemical composition of dry aerosols and the PNSD (particle number size distribution) light extinction under different MLH conditions, the daytime (8:00 – 16:00 LT) measurement data from October 2018 to February 2019 were selected for further analysis. As shown by Figure 4 and consistent with other observations in Beijing (Tang et al., 2016; Wang et al., 2020c), there was a general tendency for the PM _{2.5} mass concentration to increase with a decreasing MLH. Organic compounds and nitrate were the most abundant fractions of the daytime
 279 280 281 282 283 284 285 286 	To better characterize the effect of the chemical composition of dry aerosols and the PNSD (particle number size distribution) light extinction under different MLH conditions, the daytime (8:00 – 16:00 LT) measurement data from October 2018 to February 2019 were selected for further analysis. As shown by Figure 4 and consistent with other observations in Beijing (Tang et al., 2016; Wang et al., 2020c), there was a general tendency for the PM _{2.5} mass concentration to increase with a decreasing MLH. Organic compounds and nitrate were the most abundant fractions of the daytime aerosol mass composition, contributing together approximately 70% to total NR-PM _{2.5} mass
279 280 281 282 283 284 285 286 287	To better characterize the effect of the chemical composition of dry aerosols and the PNSD (particle number size distribution) light extinction under different MLH conditions, the daytime (8:00 – 16:00 LT) measurement data from October 2018 to February 2019 were selected for further analysis. As shown by Figure 4 and consistent with other observations in Beijing (Tang et al., 2016; Wang et al., 2020c), there was a general tendency for the PM _{2.5} mass concentration to increase with a decreasing MLH. Organic compounds and nitrate were the most abundant fractions of the daytime aerosol mass composition, contributing together approximately 70% to total NR-PM _{2.5} mass concentration. With a decreasing MLH, the fraction of nitrate mass in NR-PM _{2.5} slightly increased
 279 280 281 282 283 284 285 286 287 288 	To better characterize the effect of the chemical composition of dry aerosols and the PNSD (particle number size distribution) light extinction under different MLH conditions, the daytime (8:00 – 16:00 LT) measurement data from October 2018 to February 2019 were selected for further analysis. As shown by Figure 4 and consistent with other observations in Beijing (Tang et al., 2016; Wang et al., 2020c), there was a general tendency for the PM _{2.5} mass concentration to increase with a decreasing MLH. Organic compounds and nitrate were the most abundant fractions of the daytime aerosol mass composition, contributing together approximately 70% to total NR-PM _{2.5} mass concentration. With a decreasing MLH, the fraction of nitrate mass in NR-PM _{2.5} slightly increased while that of organics decreased. This feature makes the aerosol more hygroscopic under low MLH

radical with nitric oxide; however, it is difficult to distinguish organic nitrate from inorganic nitrateat the moment due to instrumental limitations (Fröhlich et al., 2013).

294

295 Figure 5 depicts the calculated daytime light extinction of the dry aerosol as a function of the MLH, 296 separated by different size ranges and chemical components. We may see that in general, particles 297 with dry diameters in the range of 300-700 nm explains more than 80% of the total aerosol light 298 extinction (Figure 5b). Similar to their share in NR-PM_{2.5}, the fraction of light extinction by 299 ammonium nitrate increased and that of organics decreased during the lowest MLH conditions 300 corresponding to the heavy pollution periods (Figure 5d). There are also apparent differences in the 301 relative contribution of different particle size ranges to light extinction in different MLH conditions: 302 with a decreasing MLH, the contribution of particles with dry dimeters larger than about 400-303 500 nm clearly increased while that of sub-300 nm particles notably decreased. This indicates that 304 the enhanced light extinction by the dry aerosol at low MLH conditions was not only due the more 305 abundant aerosol mass concentration, but also due to the growth of individual particles to optically 306 more active sizes.

307

308 At relative humidity larger than about 70%, aerosol liquid water gives a significant contribution to 309 the aerosol mass concentration and often a dominant contribution to the aerosol light extinction 310 (Titos et al., 2016). This has important implications for the aerosol-chemistry-radiation-boundary 311 layer feedback, when considering our findings listed above and further noting that heavy pollution 312 periods are often accompanied by high values of RH in Beijing (Zhong et al., 2018). First, 313 compared to clean or moderately-polluted conditions, the enhancement in the aerosol light 314 extinction under polluted is probably much larger than that illustrated in Figure 5. Second, the high 315 aerosol water content under polluted conditions promotes many kinds of chemical reactions taking 316 place on the surface or inside aerosol particles.

320	In order to further investigate the interaction between MLH and chemical compounds (either
321	observed or calculated), we divided the observed PM2.5 concentrations into highly polluted and less
322	polluted conditions using a threshold value of 75 μ g /m ³ for PM _{2.5} . The organics, nitrate,
323	ammonium, sulfate, chloride, HOM, aerosol water content (AWC) and PM _{2.5} as a function of the
324	mixing layer height during both highly polluted and less polluted conditions are shown in Figure 6.
325	The fitted relationships connecting the concentrations of different chemical compounds to the
326	reduction of MLH under highly and less polluted conditions allowed us to estimate the net mass
327	concentration increase of each compound due to secondary formation and aerosol-chemical-
328	boundary layer feedback under highly polluted conditions (shaded areas in Figure 6). It is worth
329	noting that AWC, nitrate and sulfate increased the most as the MLH decreased, as represented by
330	the large shaded areas in Figs. 6 (h), (b) and (c). The increases of these components are significant
331	as tested (Supplement Information). The day-time nitrate in aerosol is formed predominately via
332	the reaction of nitric acid and ammonium, while nitric acid is produced from gas phase reaction of
333	nitrogen dioxide and hydroxy radical (Seinfeld and Pandis, 2006). High concentrations of daytime
334	nitrate aerosols indicate efficient production of gas phase nitric acid, its partitioning into liquid
335	aerosol and its fast neutralization by abundant ammonia (Li et al., 2018a; Pan et al., 2016; Wang et
336	al., 2020). A recent study shows that condensation of nitric acid and ammonia could promote fast
337	growth of newly formed particle in urban environment condition (Wang et al., 2020d). Another
338	possibility is that ammonium nitrate is formed rapidly on particle surfaces due to the hydrolysis of
339	dinitrogen pentoxide (N2O5) during daytime, as the AWC increased significantly (Wang et al.,
340	2014; Wang et al., 2020). However, a quantitative distinction between the two formation pathways
341	for nitrate formation is not possible in this study. The dramatic increase of nitrate aerosol could also
342	promote the formation of sulfate by heterogeneous reactions (Cheng et al., 2016b; Wang et al.,
343	2016). The concentration of HOMs showed a slight increase as the MLH decreased, which suggests
344	that also the formation of HOMs is enhanced with an increased level of air pollution. This
345	phenomenon should be further investigated as HOMs can substantially contribute to the secondary

346 organic aerosol formation.

347

348	Figure 7 displays the dry aerosol light extinction by different chemical compounds in the same way
349	as Figure 6 did for aerosol mass concentrations. The aerosol light extinction is directly related to the
350	reduction of solar radiation reaching the surface, assuming that aerosol chemical components are
351	vertically nearly homogeneously distributed. The light extinction from ammonium nitrate,
352	ammonium sulfate and organics showed significantly increased contributions under highly polluted
353	conditions (low MLH) as compared with less polluted conditions. To the contrary, no such
354	enhancement was observed for ammonium chloride or element carbon (Figs. 7 (d) and (e)). In case
355	of EC this is an expected result, as it originates solely from primary sources. The formation of
356	particle phase chloride have secondary sources from chlorine atom-initiated oxidation of volatile
357	organic compounds, so that the resulting oxidation products could contribute to the observed
358	chloride (Wang and Ruiz, 2017; Wang et al., 2019a).
359	
360	To better illustrate the combined effects of secondary aerosol formation and associated feedback on
361	the daytime mass concentrations and light extinction due to different chemical components, we
362	scaled these quantities by either the total PM2.5 mass concentration or EC concentration and plotted
363	them as a function of MLH (Fig. 8). With the average level of $PM_{2.5}$ measured by TEOM and ToF-
364	ACSM, the latter scaling minimizes the boundary layer accumulation effect on our analysis, as EC
365	originates from primary emission sources (Cao et al., 2006). As shown in Fig. 8a, organics with
366	their mass fraction of 61% were the most abundant component in $PM_{2.5}$ under high MLH
367	conditions, followed by nitrate and ammonium with their mass fractions of 22% and 13%,
368	respectively. The aerosol was estimated to be rather dry under high MLH conditions (AWC/PM _{2.5} =
369	0.03). However, with the decreasing MLH, the fraction of nitrate and the AWC to $PM_{2.5}$ ratio
370	increased up to 45% and 0.2, respectively. This clearly indicates rapid nitrate formation and
371	dramatic increase of the aerosol water uptake from less polluted conditions to intensive haze
372	pollution. Compared with EC (Fig.8c), the concentrations of organic compounds, nitrate, sulfate
272	and ammonium increased by factors of 1.5.6.2.4.8 and 4.0 respectively from the highest to the

and ammonium increased by factors of 1.5, 6.3, 4.8 and 4.9 respectively, from the highest to the

374	lowest MLH conditions. Thus, although organics remained as the second most abundant aerosol
375	component after nitrate under haze conditions, secondary formation and associated feedback from
376	less to highly polluted conditions were clearly stronger for both sulfate and ammonium. Efficient
377	sulfate production associated with haze formation has been reported in several studies conducted in
378	China (Cheng et al., 2016; Xie et al., 2015; Xue et al., 2016). Ammonium production during haze
379	formation is tied with neutralization of acidic aerosol by ammonia, which was apparently present
380	abundantly in the gas phase. Compared with the EC concentration, light extinction by (NH ₄ NO ₃)
381	increased the most from the highest MLH conditions (248 M $m^{\text{-1}}/\mu\text{g}\ m^{\text{-3}})$ to the lowest MLH
382	conditions (1150 M m ⁻¹ / μ g m ⁻³) as shown by Figure 8b. Overall, the rapid growth of nitrate aerosol
383	mass, together with abundant concentration of organic aerosol, were the main cause of the light
384	extinction for dry aerosol under haze formation.
385	
386	The mechanism governing the aerosol-chemistry-radiation-boundary layer feedback for the rapid
387	growth of atmospheric aerosol is illustrated in Fig. 9. As a result of reduction in solar radiation and
388	atmospheric heating, a variety of chemical reactions in the gas phase and on particle surfaces or
389	inside them are enhanced with an increased relative humidity and AWC. Such conditions are
390	unfavorable for the dispersion of pollutants, which further enhances atmospheric stability. The
391	formation of hydrophilic compounds, e.g., nitrate, sulfate and oxygenated organic compounds,
392	result in enhanced water uptake by aerosol particles, which will essentially increase heterogeneous
393	reactions associated with these particles. As a result, the aerosol mass and size increase, light
394	extinction is enhanced, and the development of the mixing layer is depressed. At the same time,
395	aerosol precursors concentrated within a shallower mixing layer lead to enhanced production rate of
396	aerosol components in both gas and aerosol phases, especially nitrate but also other secondary
397	aerosol. The increased concentrations of aerosol will further enhance this positive loop.
398	

4. Conclusions

401 We investigated the synergetic variations of aerosol chemical composition and mixing layer height 402 during the daytime in urban Beijing. Significant dependency of the sharp increase of ammonium 403 nitrate and aerosol water content with the occurrence of the explosive aerosol mass growth events 404 were observed. We showed that these two components drove a positive aerosol-chemistry-radiation-405 boundary layer feedback loop, which played an important role in the explosive aerosol mass growth 406 events. A plausible explanation is that the increased aerosol water content at low mixing layer 407 heights provides favorable conditions for heterogeneous reactions for nitrate and sulfate production 408 and neutralization by ammonia. The significant formation of secondary aerosol increases the 409 concentration of aerosol particles in the diameter range 300-700 nm, which effectively reduces the 410 solar radiation reaching the surface and further enhances the aerosol-chemistry-radiation-boundary 411 layer feedback loop. Our analysis connects the aerosol light extinction to a reduction in the mixing 412 layer height, which suppresses the volume into which air pollutants are emitted and leads to an 413 explosive aerosol mass growth. Our results indicate that reduction of ammonium and nitrate 414 concentration in aerosol could weaken the aerosol-radiation-chemistry-boundary layer feedback 415 loop, which could thereby reduce heavy haze episodes in Beijing.

416 5. Acknowledgements

417 This work was supported by the funding from Beijing University of Chemical Technology. The

418 European Research Council via advanced grant ATM-GTP (project no. 742206) and Academy of

419 Finland via Academy professor project of M. K.

420 6. Competing financial interests

421 The authors declare no competing financial interests.

7. Author contributions

- 422 YW and MK initiated the study. ZL, YW, FZ, YZ, YG, ZF, CL, YZ, TC, CY, KD, BC, JK, LY, XF,
- 423 WD, JC and YL conducted the longtime measurements. ZL, YW, LD, RC, SH, PZ, LW, VK, YL

- 424 and MK interpreted the data. ZL, YW and VK wrote the manuscript.

429 **Reference**

Aalto, P., Hämeri, K., Becker, E. D. O., Weber, R., Salm, J., Mäkelä, J. M., Hoell, C., O'Dowd, C.

D., Karlsson, H., Hansson, H., Väkevä, M., Koponen, I. K., Buzorius, G. and Kulmala, M.: Physical characterization of aerosol particles during nucleation events, Tellus, Series B: Chemical and

Physical Meteorology, 53(4), 344–358, doi:10.3402/tellusb.v53i4.17127, 2001.

An, Z., Huang, R.-J., Zhang, R., Tie, X., Li, G., Cao, J., Zhou, W., Shi, Z., Han, Y., Gu, Z. and Ji,

Y.: Severe haze in northern China: A synergy of anthropogenic emissions and atmospheric

processes, Proceedings of the National Academy of Sciences, 116(18), 8657 LP - 8666,

doi:10.1073/pnas.1900125116, 2019.

Baxter, R.: Determination of mixing heights from data collected during the 1985 SCCCAMP field program, Journal of Applied Meteorology, 30(5), 598–606, doi:10.1175/1520-

0450(1991)030<0598:DOMHFD>2.0.CO;2, 1991.

Cai, J., Chu, B., Yao, L., Yan, C., Heikkinen, L. M., Zheng, F., Li, C., Fan, X., Zhang, S., Yang, D.,

Wang, Y., Kokkonen, T. V., Chan, T., Zhou, Y., Dada, L., Liu, Y., He, H., Paasonen, P., Kujansuu, J.

T., Petäjä, T., Mohr, C., Kangasluoma, J., Bianchi, F., Sun, Y., Croteau, P. L., Worsnop, D. R.,

Kerminen, V.-M., Du, W., Kulmala, M., and Daellenbach, K. R.: Size-segregated particle number

and mass concentrations from different emission sources in urban Beijing, Atmospheric Chemistry and Physics, 20, 12721-12740, 10.5194/acp-20-12721-2020, 2020.

Cao, G., Zhang, X. and Zheng, F.: Inventory of black carbon and organic carbon emissions from China, Atmospheric Environment, 40(34), 6516–6527, doi:10.1016/j.atmosenv.2006.05.070, 2006. Che, H., Zhang, X., Li, Y., Zhou, Z. and Qu, J. J.: Horizontal visibility trends in China 1981-2005,

Geophysical Research Letters, 34(24), doi:10.1029/2007GL031450, 2007.

Chen, J., Zhao, C. S., Ma, N. and Yan, P.: Aerosol hygroscopicity parameter derived from the light

scattering enhancement factor measurements in the North China Plain, Atmos. Chem. Phys, 14,

8105-8118, doi:10.5194/acp-14-8105-2014, 2014.

Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang, Q., He, K.,

Carmichael, G., Pöschl, U. and Su, H.: Reactive nitrogen chemistry in aerosol water as a source of

sulfate during haze events in China, Science Advances, 2(12), e1601530-e1601530,

doi:10.1126/sciadv.1601530, 2016b.

Ding, A. J., Huang, X., Nie, W., Sun, J. N., Kerminen, V. M., Pet ä ä, T., Su, H., Cheng, Y. F.,

Yang, X. Q., Wang, M. H., Chi, X. G., Wang, J. P., Virkkula, A., Guo, W. D., Yuan, J., Wang, S.

Y., Zhang, R. J., Wu, Y. F., Song, Y., Zhu, T., Zilitinkevich, S., Kulmala, M. and Fu, C. B.:

Enhanced haze pollution by black carbon in megacities in China, Geophysical Research Letters, 43(6), 2873–2879, doi:10.1002/2016GL067745, 2016.

Eresmaa, N., Härkönen, J., Joffre, S. M., Schultz, D. M., Karppinen, A. and Kukkonen, J.: A Three-Step Method for Estimating the Mixing Height Using Ceilometer Data from the Helsinki Testbed, Journal of Applied Meteorology and Climatology, 51(12), 2172–2187, doi:10.1175/JAMC-D-12-058.1, 2012.

Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for

K⁺–Ca²⁺–Mg²⁺–NH₄⁺–Na⁺–SO₄^{2−}–NO₃<sup>, Atmospheric Chemistry and Physics, 7(17), 4639–4659, doi:10.5194/acp-7-4639-2007, 2007. Fr öhlich, R., Cubison, M. J., Slowik, J. G., Bukowiecki, N., Pr év ôt, A. S. H., Baltensperger, U.,

Schneider, J., Kimmel, J. R., Gonin, M., Rohner, U., Worsnop, D. R. and Jayne, J. T.: The ToF-

ACSM: A portable aerosol chemical speciation monitor with TOFMS detection, Atmospheric

Measurement Techniques, 6(11), 3225–3241, doi:10.5194/amt-6-3225-2013, 2013.

Gysel, M., Crosier, J., Topping, D. O., Whitehead, J. D., Bower, K. N., Cubison, M. J., Williams, P.

I., Flynn, M. J., McFiggans, G. B. and Coe, H.: Closure study between chemical composition and

hygroscopic growth of aerosol particles during TORCH2, Atmospheric Chemistry and Physics,

7(24), 6131–6144, doi:10.5194/acp-7-6131-2007, 2007.

Holzworth, G. C.: Mixing heights, wind speeds, and potential for urban air pollution throughout the contiguous united states, , 118, 1972.

Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q., Kroll, J. H.,

DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken, A. C., Docherty, K. S., Ulbrich, I. M.,

Grieshop, A. P., Robinson, A. L., Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin,

C., Sun, Y. L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara, P., Ehn, M.,

Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J., Dunlea, E. J., Huffman, J. A.,

Onasch, T. B., Alfarra, M. R., Williams, P. I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F.,

Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A.,

Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina, K., Kimmel, J. R.,

Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M., Williams, L. R., Wood, E. C.,

Middlebrook, A. M., Kolb, C. E., Baltensperger, U. and Worsnop, D. R.: Evolution of organic

aerosols in the atmosphere, Science, 326(5959), 1525–1529, doi:10.1126/science.1180353, 2009.

Jokinen, T., Sipil ä, M., Junninen, H., Ehn, M., Lönn, G., Hakala, J., Pet äj ä, T., Mauldin, R. L.,

Kulmala, M. and Worsnop, D. R.: Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF, Atmospheric Chemistry and Physics, 12(9), 4117–4125, doi:10.5194/acp-12-4117-2012, 2012.

Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D. and Pozzer, A.: The contribution of outdoor air pollution sources to premature mortality on a global scale, Nature, 525(7569), 367–371, doi:10.1038/nature15371, 2015.

Li, H., Zhang, Q., Zheng, B., Chen, C., Wu, N., Guo, H., Zhang, Y., Zheng, Y., Li, X. and He, K.: Nitrate-driven urban haze pollution during summertime over the North China Plain, Atmospheric Chemistry and Physics, 18(8), 5293–5306, doi:10.5194/acp-18-5293-2018, 2018a.

Li, J., Sun, J., Zhou, M., Cheng, Z., Li, Q., Cao, X. and Zhang, J.: Observational analyses of dramatic developments of a severe air pollution event in the Beijing area, Atmospheric Chemistry and Physics, 18(6), 3919–3935, doi:10.5194/acp-18-3919-2018, 2018b.

Lin, Z. J., Tao, J., Chai, F. H., Fan, S. J., Yue, J. H., Zhu, L. H., Ho, K. F. and Zhang, R. J.: Impact of relative humidity and particles number size distribution on aerosol light extinction in the urban area of Guangzhou, Atmospheric Chemistry and Physics, 13(3), 1115–1128, doi:10.5194/acp-13-1115-2013, 2013.

Liu, G., Xin, J., Wang, X., Si, R., Ma, Y., Wen, T., Zhao, L., Zhao, D., Wang, Y. and Gao, W.: Impact of the coal banning zone on visibility in the Beijing-Tianjin-Hebei region, Science of the Total Environment, 692, 402–410, doi:10.1016/j.scitotenv.2019.07.006, 2019a.

Liu, Q., Jia, X., Quan, J., Li, J., Li, X., Wu, Y., Chen, D., Wang, Z. and Liu, Y.: New positive

feedback mechanism between boundary layer meteorology and secondary aerosol formation during severe haze events, Scientific Reports, 8(1), doi:10.1038/s41598-018-24366-3, 2018.

Liu, Y., Zhang, Y., Lian, C., Yan, C. and Feng, Z.: The promotion effect of nitrous acid on aerosol formation in wintertime Beijing : possible contribution of traffic-related emission, Atmos. Chem. Phys. Discuss., 2020(February), 1–43, doi:10.5194/acp-2020-150, 2020.

Liu, Z., Hu, B., Ji, D., Cheng, M., Gao, W., Shi, S., Xie, Y., Yang, S., Gao, M., Fu, H., Chen, J. and Wang, Y.: Characteristics of fine particle explosive growth events in Beijing, China: Seasonal variation, chemical evolution pattern and formation mechanism, Science of the Total Environment, 687, 1073–1086, doi:10.1016/j.scitotenv.2019.06.068, 2019b.

Münkel, C., Eresmaa, N., R äs änen, J. and Karppinen, A.: Retrieval of mixing height and dust concentration with lidar ceilometer, Boundary-Layer Meteorology, 124(1), 117–128, doi:10.1007/s10546-006-9103-3, 2007.

Pan, X. L., Yan, P., Tang, J., Ma, J. Z., Wang, Z. F., Gbaguidi, A. and Sun, Y. L.: Observational study of influence of aerosol hygroscopic growth on scattering coefficient over rural area near Beijing mega-city, Atmospheric Chemistry and Physics, 9(19), 7519–7530, doi:10.5194/acp-9-7519-2009, 2009.

Pan, Y., Tian, S., Liu, D., Fang, Y., Zhu, X., Zhang, Q., Zheng, B., Michalski, G. and Wang, Y.:
Fossil Fuel Combustion-Related Emissions Dominate Atmospheric Ammonia Sources during
Severe Haze Episodes: Evidence from 15N-Stable Isotope in Size-Resolved Aerosol Ammonium,
Environmental Science and Technology, 50(15), 8049–8056, doi:10.1021/acs.est.6b00634, 2016.
Pet äj ä T., J ävi, L., Kerminen, V. M., Ding, A. J., Sun, J. N., Nie, W., Kujansuu, J., Virkkula, A.,
Yang, X., Fu, C. B., Zilitinkevich, S. and Kulmala, M.: Enhanced air pollution via aerosol-boundary
layer feedback in China, Scientific Reports, 6, doi:10.1038/srep18998, 2016.
Pieber, S. M., El Haddad, I., Slowik, J. G., Canagaratna, M. R., Jayne, J. T., Platt, S. M., Bozzetti,
C., Daellenbach, K. R., Fr öhlich, R., Vlachou, A., Klein, F., Dommen, J., Miljevic, B., Jim énez, J.
L., Worsnop, D. R., Baltensperger, U. and Pr év ât, A. S. H.: Inorganic Salt Interference on CO2+ in
Aerodyne AMS and ACSM Organic Aerosol Composition Studies, Environmental Science and

Technology, 50(19), 10494–10503, doi:10.1021/acs.est.6b01035, 2016.

- Spracklen, D. V., Carslaw, K. S., Kulmala, M., Kerminen, V. M., Sihto, S. L., Riipinen, I.,
- Merikanto, J., Mann, G. W., Chipperfield, M. P., Wiedensohler, A., Birmili, W. and Lihavainen, H.: Contribution of particle formation to global cloud condensation nuclei concentrations, Geophysical Research Letters, 35(6), doi:10.1029/2007GL033038, 2008.

Stohl, A., Forster, C., Frank, A., Seibert, P. and Wotawa, G.: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmospheric Chemistry and Physics, 5(9),

2461-2474, doi:10.5194/acp-5-2461-2005, 2005.

Swietlicki, E., Hansson, H.-C., Hämeri, K., Svenningsson, B., Massling, A., Mcfiggans, G.,

Mcmurry, P. H., Pet äjä, T., Tunved, P., Gysel, M., Topping, D., Weingartner, E., Baltensperger, U., Rissler, J., Wiedensohler, A. and Kulmala, M.: Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments—a review, Tellus B: Chemical and Physical Meteorology, 60(3), 432–469, doi:10.1111/j.1600-0889.2008.00350.x, 2008.

Tang, G., Zhang, J., Zhu, X., Song, T., Münkel, C., Hu, B., Schäfer, K., Liu, Z., Zhang, J., Wang,
L., Xin, J., Suppan, P. and Wang, Y.: Mixing layer height and its implications for air pollution over
Beijing, China, Atmos. Chem. Phys, 16, 2459–2475, doi:10.5194/acp-16-2459-2016, 2016.

Titos, G., Cazorla, A., Zieger, P., Andrews, E., Lyamani, H., Granados-Muñoz, M. J., Olmo, F. J. and Alados-Arboledas, L.: Effect of hygroscopic growth on the aerosol light-scattering coefficient: A review of measurements, techniques and error sources, Atmospheric Environment, 141, 494–507, doi:10.1016/j.atmosenv.2016.07.021, 2016.

Vanhanen, J., Mikkilä, J., Lehtipalo, K., Sipilä, M., Manninen, H. E., Siivola, E., Petäjä, T. and

Kulmala, M.: Particle size magnifier for nano-CN detection, Aerosol Science and Technology,

45(4), 533–542, doi:10.1080/02786826.2010.547889, 2011.

Wang, G., Zhang, R., Gomez, M. E., Yang, L., Zamora, M. L., Hu, M., Lin, Y., Peng, J., Guo, S.,

Meng, J., Li, J., Cheng, C., Hu, T., Ren, Y., Wang, Y., Gao, J., Cao, J., An, Z., Zhou, W., Li, G.,

Wang, J., Tian, P., Marrero-Ortiz, W., Secrest, J., Du, Z., Zheng, J., Shang, D., Zeng, L., Shao, M.,

Wang, W., Huang, Y., Wang, Y., Zhu, Y., Li, Y., Hu, J., Pan, B., Cai, L., Cheng, Y., Ji, Y., Zhang,

F., Rosenfeld, D., Liss, P. S., Duce, R. A., Kolb, C. E. and Molina, M. J.: Persistent sulfate

- formation from London Fog to Chinese haze, Proceedings of the National Academy of Sciences of the United States of America, 113(48), 13630–13635, doi:10.1073/pnas.1616540113, 2016. Wang, H., Peng, Y., Zhang, X., Liu, H., Zhang, M., Che, H. and Cheng, Y.: Contributions to the explosive growth of PM 2 . 5 mass due to aerosol – radiation feedback and decrease in turbulent diffusion during a red alert heavy haze in Beijing – Tianjin – Hebei , China, , 17717–17733, 2018a. Wang, J., Wang, S., Jiang, J., Ding, A., Zheng, M., Zhao, B., Wong, D. C., Zhou, W., Zheng, G., Wang, L., Pleim, J. E. and Hao, J.: Impact of aerosol-meteorology interactions on fine particle pollution during China's severe haze episode in January 2013, Environmental Research Letters, 9(9), doi:10.1088/1748-9326/9/9/094002, 2014a.
- Wang, M., Kong, W., Marten, R., He, X.-C., Chen, D., Pfeifer, J., Heitto, A., Kontkanen, J., Dada,
- L., Kürten, A., Yli-Juuti, T., Manninen, H. E., Amanatidis, S., Amorim, A., Baalbaki, R., Baccarini,
- A., Bell, D. M., Bertozzi, B., Bräkling, S., Brilke, S., Murillo, L. C., Chiu, R., Chu, B., De
- Menezes, L.-P., Duplissy, J., Finkenzeller, H., Carracedo, L. G., Granzin, M., Guida, R., Hansel, A.,
- Hofbauer, V., Krechmer, J., Lehtipalo, K., Lamkaddam, H., Lampim iki, M., Lee, C. P.,
- Makhmutov, V., Marie, G., Mathot, S., Mauldin, R. L., Mentler, B., Müller, T., Onnela, A., Partoll,
- E., Pet äjä, T., Philippov, M., Pospisilova, V., Ranjithkumar, A., Rissanen, M., Rörup, B., Scholz,
- W., Shen, J., Simon, M., Sipilä, M., Steiner, G., Stolzenburg, D., Tham, Y. J., Tom é, A., Wagner,
- A. C., Wang, D. S., Wang, Y., Weber, S. K., Winkler, P. M., Wlasits, P. J., Wu, Y., Xiao, M., Ye,
- Q., Zauner-Wieczorek, M., Zhou, X., Volkamer, R., Riipinen, I., Dommen, J., Curtius, J.,
- Baltensperger, U., Kulmala, M., Worsnop, D. R., Kirkby, J., Seinfeld, J. H., El-Haddad, I., Flagan,
- R. C. and Donahue, N. M.: Rapid growth of new atmospheric particles by nitric acid and ammonia condensation, Nature, 581(7807), 184–189, doi:10.1038/s41586-020-2270-4, 2020d.
- Wang, X., Wang, T., Yan, C., Tham, Y. J., Xue, L., Xu, Z. and Zha, Q.: Large daytime signals of N2O5 and NO3 inferred at 62 amu in a TD-CIMS: Chemical interference or a real atmospheric phenomenon, Atmospheric Measurement Techniques, 7(1), 1–12, doi:10.5194/amt-7-1-2014, 2014b.
- Wang, Y., Riva, M., Xie, H. and Heikkinen, L.: Formation of highly oxygenated organic molecules from chlorine atom initiated oxidation of alpha-pinene, Atmospheric Chemistry and Physics, 2020,

1-31, doi:10.5194/acp-2019-807, 2020.

Wang, Y., Wang, Y., Wang, L., Pet äj ä, T., Zha, Q., Gong, C., Li, S., Pan, Y., Hu, B., Xin, J. and Kulmala, M.: Increased inorganic aerosol fraction contributes to air pollution and haze in China, Atmos. Chem. Phys, 19, 5881–5888, doi:10.5194/acp-19-5881-2019, 2019b.

Wang, Y., Gao, W., Wang, S., Song, T., Gong, Z., Ji, D., Wang, L., Liu, Z., Tang, G., Huo, Y.,

Tian, S., Li, J., Li, M., Yang, Y., Chu, B., Pet ä ä, T., Kerminen, V.-M., He, H., Hao, J., Kulmala,

M., Wang, Y. and Zhang, Y.: Contrasting trends of PM2.5 and surface ozone concentrations in China from 2013 to 2017, National Science Review, doi:10.1093/nsr/nwaa032, 2020b.

Wang, Y., Chen, Y., Wu, Z., Shang, D., Bian, Y., Du, Z. and Schmitt, S. H.: Mutual promotion between aerosol particle liquid water and particulate nitrate enhancement leads to severe nitratedominated particulate matter pollution and low visibility, Atmos. Chem. Phys, (September 2020), 2161–2175, 2020c.

Wang, Y., Yu, M., Wang, Y., Tang, G., Song, T., Zhou, P., Liu, Z., Hu, B., Ji, D., Wang, L., Zhu,
X., Yan, C., Ehn, M., Gao, W., Pan, Y., Xin, J., Sun, Y., Kerminen, V.-M., Kulmala, M. and Pet äj ä
T.: Rapid formation of intense haze episodes via aerosol–boundary layer feedback in Beijing,
Atmos. Chem. Phys., 20(1), 45–53, doi:10.5194/acp-20-45-2020, 2020d.

Wang, Y. H., Hu, B., Ji, D. S., Liu, Z. R., Tang, G. Q., Xin, J. Y., Zhang, H. X., Song, T., Wang, L.
L., Gao, W. K., Wang, X. K. and Wang, Y. S.: Ozone weekend effects in the Beijing-Tianjin-Hebei metropolitan area, China, Atmos. Chem. Phys, 14, 2419–2429, doi:10.5194/acp-14-2419-2014, 2014c.

Wang, Y. H., Liu, Z. R., Zhang, J. K., Hu, B., Ji, D. S., Yu, Y. C. and Wang, Y. S.: Aerosol physicochemical properties and implications for visibility during an intense haze episode during winter in Beijing, Atmospheric Chemistry and Physics, 15(6), 3205–3215, doi:10.5194/acp-15-3205-2015, 2015.

Wu, Z., Wang, Y., Tan, T., Zhu, Y., Li, M., Shang, D., Wang, H., Lu, K., Guo, S., Zeng, L. and Zhang, Y.: Aerosol Liquid Water Driven by Anthropogenic Inorganic Salts: Implying Its Key Role in Haze Formation over the North China Plain, Environmental Science and Technology Letters, 5(3), 160–166, doi:10.1021/acs.estlett.8b00021, 2018.

- Xie, Y., Ding, A., Nie, W., Mao, H., Qi, X., Huang, X., Xu, Z., Kerminen, V. M., Pet äjä, T., Chi, X., Virkkula, A., Boy, M., Xue, L., Guo, J., Sun, J., Yang, X., Kulmala, M. and Fu, C.: Enhanced sulfate formation by nitrogen dioxide: Implications from in-situ observations at the SORPES station, Journal of Geophysical Research, 120(24), 12,679-12,694, doi:10.1002/2015JD023607, 2015.
- Xue, J., Yuan, Z., Griffith, S. M., Yu, X., Lau, A. K. H. and Yu, J. Z.: Sulfate Formation Enhanced by a Cocktail of High NOx, SO2, Particulate Matter, and Droplet pH during Haze-Fog Events in Megacities in China: An Observation-Based Modeling Investigation, Environmental Science and Technology, 50(14), 7325–7334, doi:10.1021/acs.est.6b00768, 2016.

Xue, J., Yu, X., Yuan, Z., Griffith, S. M., Lau, A. K. H., Seinfeld, J. H. and Yu, J. Z.: Efficient control of atmospheric sulfate production based on three formation regimes, Nature Geoscience, 12(12), 1–6, doi:10.1038/s41561-019-0485-5, 2019.

Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L.,

Zhang, Y., Zhao, H., Zheng, Y., He, K. and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, Atmospheric Chemistry and Physics

Discussions, 1–27, doi:10.5194/acp-2018-374, 2018.

Zhong, J., Zhang, X., Dong, Y., Wang, Y., Liu, C., Wang, J., Zhang, Y. and Che, H.: Feedback effects of boundary-layer meteorological factors on cumulative explosive growth of PM2.5 during winter heavy pollution episodes in Beijing from 2013 to 2016, Atmospheric Chemistry and Physics, 18(1), 247–258, doi:10.5194/acp-18-247-2018, 2018.

Zhou, Y., Dada, L., Liu, Y., Fu, Y., Kangasluoma, J., Chan, T., Yan, C., Chu, B., Daellenbach, K.
R., Bianchi, F., Kokkonen, T. V., Liu, Y., Kujansuu, J., Kerminen, V.-M., Pet äj ä, T., Wang, L.,
Jiang, J. and Kulmala, M.: Variation of size-segregated particle number concentrations in
wintertime Beijing, Atmospheric Chemistry and Physics, 20(2), 1201–1216, doi:10.5194/acp-201201-2020, 2020.

- 431
- 432

- 443 Figure 1. Time series of (a) particle number concentration distribution (PNSD) from 6 nm to 840

⁴⁴⁵ organic carbon (OC) and highly oxygenated organic molecules (HOM).

Figure 2. Time series of (a) attenuated backscattering coefficient and mixing layer height (b)
particle number concentration distribution (PNSD), (c) chemical composition and PM_{2.5} mass
concentrations and (d) elemental carbon (EC) and organic carbon (OC). The haze periods are
marked by the shaded areas.

485 respectively.

498 Figure 4. Statistical relationship between MLH and concentration (a) and fraction (b) of chemical

499 composition species. Only daytime conditions determined by ceilometer from non-rainy periods

- ____

Figure 6. Observed dependency of (organics (a), nitrate (b), ammonium (c), sulfate (d), chlorine (e), element carbon (f), HOMs (g), AWC (h) and PM_{2.5}(i) on the MLH during polluted and less-polluted conditions. The data related to the upper fitting line represents PM_{2.5} concentrations larger than 75 μ g m⁻³, while the date related to the lower fitting line represents PM_{2.5} concentrations lower than 75 μ g m⁻³. Only daytime conditions determined by the ceilometer from non-rainy periods (RH<95%) were considered. The solid cycles and hollow cycles denotes concentrations that are more than 75 $\mu g m^{-3}$ and less than 75 $\mu g m^{-3}$, respectively. The dark grey points and red lines in the boxes represent mean and median values, respectively. The shaded area between the upper solid and dotted lines corresponds to an increased amount of the specific compounds with decreased MLH, assuming that the compound has the same variation pattern under highly- polluted conditions as in less polluted time.

569	Figure 7. Observed dependency of the aerosol light extinction due to NH ₄ NO ₃ (a) (NH ₄) ₂ SO ₄ (b),
570	NH ₄ Cl (c) Org (d) and EC (e) on the MLH during polluted and non-polluted conditions. The data
571	related to the upper fitting line represents $PM_{2.5}$ concentrations larger than 75 $\mu g\ m^{-3},$ while the date
572	related to the lower fitting line represents $PM_{2.5}$ concentrations less than 75 $\mu g\ m^{-3}.$ Only daytime
573	conditions determined by ceilometer from non-rainy periods (RH<95%) are considered. The dark
574	grey points and red lines in the boxes represent mean and median values, respectively. The shaded
575	area between the upper solid and dashed line corresponds to an increased amount of $PM_{2.5}$ with a
576	decreased MLH, assuming that PM _{2.5} has the same variation pattern under highly- polluted
577	conditions as in less polluted time
578	
579	
580	
581	
582	
583	

589 Figure 8. (a) the ratio of the mass concentration of different chemical components (nitrate, sulfate,

590 organics, chlorine, ammonium) and AWC to the mass concentration of NR_PM_{2.5} as a function of

591 MLH. (b) the ratio of dry aerosol light extinction by different chemical components (NH₄NO₃,

592 (NH₄)₂SO₄, Org, NH₄Cl) to the mass concentration EC as a function of MLH (c) the ratio of the

593 mass concentration of different chemical components (nitrate, sulfate, organics, chlorine,

ammonium) and AWC to the mass concentration of EC as a function of MLH. All the date

595 corresponds to polluted conditions (fine PM >75 μ g m⁻³), and only daytime conditions determined

596 by the ceilometer from non-rainy periods (RH<95%) were considered.

-

