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Abstract. The absence of up-to-date emissions has been a major impediment to accurately 

simulate aspects of atmospheric chemistry, and to precisely quantify the impact of changes of 

emissions on air pollution. Hence, a non-linear joint analytical inversion (Gauss-Newton method) 

of both volatile organic compounds (VOC) and nitrogen oxides (NOx) emissions is made by 

exploiting the Smithsonian Astrophysical Observatory (SAO) Ozone Mapping and Profiler Suite 25 

Nadir Mapper (OMPS-NM) formaldehyde (HCHO) and the National Aeronautics and Space 

Administration (NASA) Ozone Monitoring Instrument (OMI) tropospheric nitrogen dioxide 

(NO2) retrievals during the Korea-United States Air Quality (KORUS-AQ) campaign over East 

Asia in May-June 2016. Effects of the chemical feedback of NOx and VOCs on both NO2 and 

HCHO are implicitly included through iteratively optimizing the inversion. Emission uncertainties 30 

are greatly narrowed (averaging kernels>0.8, which is the mathematical presentation of the 

partition of information gained from the satellite observations with respect to the prior knowledge) 

over medium- to high-emitting areas such as cities and dense vegetation. The prior amount of total 

NOx emissions is mainly dictated by values reported in the MIX-Asia 2010 inventory. After the 

inversion we conclude a decline in the emissions (before, after, change) for China (87.94±44.09 35 

Gg/day, 68.00±15.94 Gg/day, -23%), North China Plain (NCP) (27.96±13.49 Gg/day, 19.05±2.50 
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Gg/day, -32%), Pearl River Delta (PRD) (4.23±1.78 Gg/day, 2.70±0.32 Gg/day, -36%), Yangtze 

River Delta (YRD) (9.84±4.68 Gg/day, 5.77±0.51 Gg/day, -41%), Taiwan (1.26±0.57 Gg/day, 

0.97±0.33 Gg/day, -23%), and Malaysia (2.89±2.77 Gg/day, 2.25±1.34 Gg/day, -22%), all of 

which have effectively implemented various stringent regulations. In contrast, South Korea 40 

(2.71±1.34 Gg/day, 2.95±0.58 Gg/day, +9%) and Japan (3.53±1.71 Gg/day, 3.96±1.04 Gg/day, 

+12%) experience an increase in NOx emissions potentially due to risen number of diesel vehicles 

and new thermal power plants. We revisit the well-documented positive bias (by a factor of 2 to 

3) of the MEGAN v2.1 in terms of biogenic VOC emissions in the tropics. The inversion, however, 

suggests a larger growth of VOC (mainly anthropogenic) over NCP (25%) than previously 45 

reported (6%) relative to 2010. The spatial variation in both magnitude and sign of NOx and VOC 

emissions results in non-linear responses of ozone production/loss. Due to simultaneous 

decrease/increase of NOx/VOC over NCP and YRD, we observe a ~53% reduction in the ratio of 

the chemical loss of NOx (LNOx) to the chemical loss of ROx (RO2+HO2) transitioning toward 

NOx-sensitive regimes, which in turn, reduces/increases the afternoon chemical loss/production of 50 

ozone through NO2+OH (-0.42 ppbv hr-1)/HO2 (and RO2)+NO (+0.31 ppbv hr-1). Conversely, a 

combined decrease in NOx and VOC emissions in Taiwan, Malaysia, and southern China 

suppresses the formation of ozone. Simulations using the updated emissions indicate increases in 

maximum daily 8-hour average (MDA8) surface ozone over China (0.62 ppbv), NCP (4.56 ppbv), 

and YRD (5.25 ppbv), suggesting that emission control strategies on VOCs should be prioritized 55 

to curb ozone production rates in these regions. Taiwan, Malaysia, and PRD stand out as the 

regions undergoing lower MDA8 ozone levels resulting from the NOx reductions occurring 

predominantly in NOx-sensitive regimes. 
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Introduction 60 

The study of ozone (O3) formation within the troposphere in East Asia is of global 

importance. This significant pollutant is not confined to the source, as it spreads hemispherically 

through the air, affecting background concentrations as far away as the U.S. A study by Lin et al. 

[2017] provided modeling evidence of enhancements of springtime surface ozone levels (+0.5 

ppbv yr-1) in the western U.S. in 1980-2014 solely due to the tripling of Asian anthropogenic 65 

emissions over the period. As more studies have informed the impact of ozone pollution on both 

human health and crop yields, Chinese governmental regulatory agencies have begun to take action 

on cutting the amount of NOx (NO+NO2) emissions since 2011-2012 [Gu et al., 2013; Reuter et 

al., 2014; Krotkov et al., 2016; de Foy et al., 2016; Souri et al., 2017a]; however no effective policy 

on volatile organic compound (VOC) emissions had been put into effect prior to 2016 [Stavrakou 70 

et al., 2017; Souri et al., 2017a; Shen et al., 2019; Li et al., 2019], with an exception to Pearl River 

Delta (PRD) [Zhong et al. 2013]. In addition to China, a number of governments including those 

of Malaysia and Taiwan have put a great deal of effort into shifting their energy pattern from 

consuming fossil fuels to renewable sources [Trappey el al., 2012; Chua and Oh, 2011]. On the 

other hand, using satellite observations, Irie et al. [2016] and Souri et al. [2017a] revealed a 75 

systematic hiatus in the reduction of NOx over South Korea and Japan potentially due to increases 

in the number of diesel vehicles and new thermal power plants built to compensate for the collapse 

of the Fukushima nuclear power plant in 2011. Therefore, it is interesting to quantify to what extent 

these policies have impacted ozone pollution. 

Unraveling the origin of ozone is complicated by a number of factors encompassing the 80 

nonlinearity of ozone formation to its sources, primarily from NOx and VOCs. Therefore, to be 

able to quantify the impact of recent emission changes, we have developed a top-down estimate of 

relevant emission inventories using well-characterized satellite observations. There are a myriad 

of studies focusing on optimizing the bottom-up anthropogenic and biogenic emissions using 

satellites observations, which provide high spatial coverage, in conjunction with chemical 85 

transport models for VOCs [e.g., Palmer et al., 2003; Shim et al., 2005; Curci et al., 2010; 

Stavrakou et al., 2009, 2011], and NOx [e.g., Martin et al., 2003; Chai et al., 2009; Miyazaki et al., 

2017; Souri et al., 2016a, 2017a, 2018]. Most inverse modeling studies do not consider both NO2 

and formaldehyde (HCHO) satellite-based observations to perform a joint-inversion. It has been 

shown that VOC and NOx emissions can affect the production/loss of each other [Marais et al., 90 



 4 

2012; Wolfe et al. 2016; Valin et al., 2016; Souri et al., 2020]. Consequently, a joint method that 

incorporates both species while minimizing the uncertainties in their emissions is better suited to 

address this problem. Dealing with this tangled relationship between VOC-NO2 and NOx-HCHO 

requires an iteratively non-linear inversion framework able to incrementally consider the 

relationships derived from a chemical transport model. Here we will provide an optimal estimate 95 

of NOx and VOC emissions during the KORUS-AQ campaign using the Smithsonian 

Astrophysical Observatory (SAO) Ozone Mapping and Profiler Suite Nadir Mapper (OMPS-NM) 

HCHO and the National Aeronautics and Space Administration (NASA) Ozone Monitoring 

Instrument (OMI) NO2 retrievals whose accuracy and precisions are characterized against rich 

observations collected during the campaign. Having a top-down constraint on both emissions 100 

permits a more precise quantification of the impact of the recent emission changes on different 

chemical pathways pertaining to ozone formation and loss. 

Measurements, Modeling and Method 

Remote sensing measurements 

OMPS HCHO 105 

OMPS-NM onboard the Suomi National Polar-orbiting Partnership (Suomi NPP) is a UV-

backscattered radiation spectrometer launched in October 2011 [Flynn et al., 2014]. Its revisit time 

is the same as other NASA A-Train satellites, including Aura at approximately 13:30 local time at 

the equator in ascending mode. OMPS-NM covers 300-380 nm with a resolution of 1 nm full-

width half maximum (FWHM). The sensor has a 340×740 pixel charge-coupled device (CCD) 110 

array measuring the UV spectra at a spatial resolution of 50×50 km2 at nadir. The HCHO retrieval 

has been fully described in González Abad et al. [2015; 2016]. Briefly, OMPS HCHO slant 

columns are fit using direct radiance fitting [Chance, 1998] in the spectral range 327.7-356.5 nm. 

The spectral fit requires a reference spectrum as function of the cross-track position as it attempts 

to determine the number of molecules with respect to a reference (i.e., a differential spectrum 115 

fitting). To account for this, we use earthshine radiances over a relatively pristine area in the remote 

Pacific Ocean within -30o to +30o latitudes. An upgrade to this reference correction is the use of 

daily HCHO profiles over monthly-mean climatological ones from simulations done by the GEOS-

Chem chemical transport model. On average, this leads to a 4% difference in HCHO total columns 

with respect to using the monthly-mean climatological values (Figure S1). The scattering weights 120 

describing the sensitivity of the light path through a simulated atmosphere are calculated using 
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VLIDORT [Spurr, 2006]. The shape factors used for calculating air mass factors (AMFs) are 

derived from a regional chemical transport model (discussed later) that is used for carrying out the 

inversion in the present study. We remove unqualified pixels based on cloud fraction < 40%, solar 

zenith angle < 65o, and a main quality flag provided in the data. We oversample the HCHO 125 

columns for the period of May-June 2016 using a Cressman spatial interpolator with a 1o radius of 

influence. 

OMI Tropospheric NO2 

We use NASA OMI tropospheric NO2 (version 3.1) level 2 data whose retrieval is made 

in the violet/blue (402-465 nm) due to strong absorption of the molecule in this wavelength range 130 

[Levelt et al., 2018]. The sensor has a nadir spatial resolution of 13´24 km2 which can extend to 

40´160 km2 at the edge of scanlines. A more comprehensive description of the retrieval and the 

uncertainty associated with the data can be found in Krotkov et al. [2017] and Choi et al. [2019]. 

We remove bad pixels based on cloud fraction < 20%, solar zenith angle < 65o, without the row 

anomaly, vertical column density (VCD) quality flag = 0, and Terrain Reflectivity < 30%. Similar 135 

to the OMPS HCHO, we recalculate AMFs by using shape factors from the chemical transport 

model used in this study. We oversample the OMI granules using the Cressman interpolator with 

a 0.25o radius of influence. 

Model simulation 

To be able to simulate the atmospheric composition, and to perform analytical inverse 140 

modeling, we set up a 27-km grid resolution regional chemical transport model using the 

Community Multiscale Air Quality Modeling System (CMAQ) model (v5.2.1, 

doi:10.5281/zenodo.1212601) [Byun and Schere, 2006] that consists of 328×323 grids covering 

China, Japan, South Korea, Taiwan and some portions of Russia, India and South Asia (Figure 1). 

The time period covered by the simulation is from April to June 2016. We use the month of April 145 

for spin-up. The anthropogenic emissions are based on the monthly MIX-Asia 2010 inventory [Li 

et al., 2015] in the CB05 mechanism. The anthropogenic emissions are mainly grouped into three 

different sectors, namely mobile, point, and residential (area) sources. We apply a diurnal scale to 

the mobile sectors used in the national emission inventory (NEI)-2011 emission platform to 

represent the first-order approximation of traffic patterns. We include biomass burning emissions 150 

from the Fire Inventory from NCAR (FINN) v1.6 inventory [Wiedinmyer et al., 2011], and 

consider the plume rise parametrization used in the GEOS-Chem model (i.e., 60% of emissions 
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are distributed uniformly in the planetary boundary layer (PBL)). We use the offline Model of 

Emissions of Gases and Aerosols from Nature (MEGAN) v2.1 model [Guenther et al., 2012] 

following the high resolution inputs described in Souri et al. [2017]. The diurnally-varying lateral 155 

chemical conditions are simulated by GEOS-Chem v10 [Bey et al., 2001] using the full chemistry 

mechanism (NOx-Ox-HC-Aer-Br) spun up for a year. With regard to weather modeling, we use the 

Weather Research and Forecasting model (WRF) v3.9.1 [Skamarock et al., 2008] at the same 

resolution to that of the CMAQ (~27 km), but with a wider grid (342×337), and 28 vertical pressure 

sigma levels. The lateral boundary conditions and the grid nudging inputs are from the global Final 160 

(FNL) 0.25o resolution model. The major configurations for the WRF-CMAQ model are 

summarized in Table 1 and Table 2. 

Inverse modeling 

We attempt to improve our high-dimensional imperfect numerical representation of 

atmospheric compounds using the well-characterized NO2 and HCHO columns from satellites. We 165 

use an analytical inversion using the WRF-CMAQ model to constrain the relevant bottom-up 

emission estimation [Souri et al., 2016; Souri et al., 2017a; Souri et al., 2018]. The inversion seeks 

to solve the following cost function under the assumptions that i) both observation and emission 

error covariances follow Gaussian probability density functions with a zero bias, ii) the observation 

and emission error covariances are independent and iii) the relationship between observations and 170 

emissions is not grossly non-linear: 

𝐽(𝐱) =
1
2
(𝐲 − 𝐹(𝐱))+𝐒-./(𝐲 − 𝐹(𝐱)) +

1
2
(𝐱 − 𝐱1)+𝐒2./(𝐱 − 𝐱1) 

 

(1) 

where x is the inversion estimate (a posteriori) given two sources of data: a priori (xa) and 

observation (y). So and Se are the error covariance matrices of observation (instrument) and 

emission. F is the forward model (here WRF-CMAQ) to project the emissions onto columns. The 

first term of Eq.1 attempts to reduce the distance between observations and the simulated columns. 175 

The second term incorporates some prior understanding and expectation of the true state of the 

emissions. The weight of each term is dictated by its covariance matrix. If Se is large compared to 

So, the a posteriori will be independent of the prior knowledge and, conversely, if So dominates, 

the final solution will consist mostly of the a priori. 

Following the Gauss-Newton method described in Rodger [2000], we derive iteratively 180 

(i.e., i is the index of iteration) the posterior emissions by: 
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𝐱34/ = 𝐱1 + 𝐆[𝐲 − 𝐹(𝐱3) − 𝐾𝑖(𝐱3 − 𝐱1)] (2) 

where G is the Kalman gain, 

𝐆 = 𝐒2 𝐾3+:𝐾3𝐒2 𝐾3+ + 𝐒- ;
./

 (3) 

and 𝐾3 (= 𝐾(𝐱𝒊)) is the Jacobian matrix calculated explicitly from the model (discussed later). The 

covariance matrix of the a posteriori is calculated by: 

𝐒=2 = (𝐈 − 𝐆𝐾?+)𝐒2  (4) 

where 𝐾? is the Jacobian from the ith iteration. Here we iterate Eq.2 three times. The averaging 185 

kernels (A) are given by: 

𝐀 = 𝐈 − 𝐒=2𝐒2./ (5) 

The inversion system is complicated by the commonly overlooked fact that observations 

are biased. For instance, Souri et al. [2018] found that airborne remote sensing observations were 

high relative to surface Pandora measurements. The overestimation of the VCDs was problematic, 

since it could have been propagated in the inversion, inducing a bias in the top-down estimation. 190 

The authors partly mitigated it by constraining the MODIS albedo which was assumed to be 

responsible for the bias. Attempts to reduce the bias resulting from coarse profiles from a global 

model in calculating gas shape profiles were made by recalculating the shape factors using those 

from higher spatial resolution regional models in other studies [e.g., Souri et al., 2017; Laughner 

et al., 2018]. For this study, we use abundant observations from the KORUS-AQ campaign and 195 

follow the intercomparison platform proposed by Zhu et al. [2016; 2020] using aircraft 

observations collected during the campaign to be able to mitigate the biases in HCHO columns. 

Based on the corrected global model as a benchmark (Figure S2), we scale up all OMPS HCHO 

columns by 20%. To mitigate the potential biases in OMI NO2, we followed exclusively the values 

reported over the KORUS-AQ period in Choi et al. [2019]. We increase the NO2 concentration 200 

uniformly by 33.9% (see table A3 in the paper). 

We calculate the covariance matrix of observations using the column uncertainty variable 

provided in the satellite datasets and consider them as random errors associated with spectrum 

fitting. We consider 25% random errors for the air mass factors. Therefore, these values (as random 

errors) are significantly lowered down by oversampling the data over the course of two months. In 205 

addition to that, we consider a fixed error for all pixels due to variability that exists in the applied 

bias correction (3.61´1015 molec.cm-2 for NO2 and 4.62´1015 molec.cm-2 for HCHO). This error 
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is based on the RMSE obtained from the mentioned studies used for removing biases. Despite the 

fact that we do not account for non-diagonal elements of the covariance matrices, the incremental 

updates of G adjusted by both NO2 and HCHO observations should better translate the covariance 210 

matrices into the emission space. 

To increase the degree of freedom for the optimization, we combine all sector emissions 

including anthropogenic, biomass burning and biogenic emissions for NOx and VOCs.  Therefore, 

we use the following formula to estimate the variance of the a priori: 

s+-A1BC = 𝑓EFAGH-C × sEFAGH-
C + 𝑓JJC × sJJ

C + 𝑓J3-C × sJ3-
C  (6) 

where f denotes the fraction of the emission sector with respect to the total emissions, and s is the 215 

standard deviation of each sector category which is calculated from the average of each sector to 

a relative error listed in Table 3. 

For the same purpose (enhancing the amount of information gained from satellite 

observation) and to increase computational speed, we reduce the dimension of the state vectors 

(emissions) by aggregating them. However, grouping emissions into certain zones could also 220 

introduce another type of uncertainty, known as the aggregation error. We choose optimally 

aggregated zones by running the inversion multiple times, each with a certain selection of state 

vectors [Turner and Jacob, 2015]. As in our previous study in Souri et al. [2018], we use the 

Gaussian Model Mixture (GMM) method to cluster emissions into certain zones that share roughly 

similar features and investigate which combinations will lead to a minimum of the sum of 225 

aggregation and smoothing errors. 

In order to create the K matrix, one must estimate the impact of changes in emissions for 

each of the aggregated zones to the concentrations of a target compound which is calculated using 

CMAQ-Direct Decoupled Method (DDM) [Dunker et al., 1989; Cohan et al., 2005]. For instance, 

the first row and column of K denoting the response of the first grid cell to a zonal emission can 230 

be obtained by: 

𝐾(/,/) =
𝑆(/,/)MNC

𝐸𝑁𝑂R	
+-A1B,T-F2 (7) 

where 𝑆(/,/)MNC  is the DDM output in units of molecule cm-2 for the first row and column. It explains 

the resultant change in NO2 column by changing one unit of total NOx emissions. We do not 

consider the interconnection between the zonal emissions and concentrations due to computational 

burdens; therefore, we assume that the HCHO and NO2 columns are mostly confined to their 235 
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sources in the two-month averages. The same concept will be applied to HCHO and VOC 

emissions. The advantage of using CMAQ-DDM to estimate the sensitivity lies in the fact that it 

calculates the local gradient which better represents the non-linear relationship existing between 

the emissions and the columns [Souri et al., 2017a; Souri et al., 2018], which in turn, reduces the 

number of iterations. 240 

Validation of the model in terms of meteorology 

It is essential to first evaluate some key meteorological variables, because large errors in 

the weather can complicate the inversion [e.g., Liu et al. 2017]. In order to validate the performance 

of the WRF model in terms of a number of meteorological variables including surface temperature, 

relative humidity, and winds, we use more than 1100 surface measurements from integrated 245 

surface database (ISD) stations (https://www.ncdc.noaa.gov/isd) over the domain in May-June 

2016. Table 4 lists the comparison of the model and the observations for the mentioned variables. 

Our model demonstrates a very low bias (0.6oC) with regard to surface temperature. We find a 

reasonable correspondence in terms of relative humidity indicating a fair water vapor budget in 

the model. The largest discrepancy between the model and observations in terms of temperature 250 

and humidity occurs in those grid cells that are in the proximity of the boundary conditions (not 

shown). Concerning the wind components, the deviation of the model from the observations is 

smaller than results obtained in a relatively flat area like Houston in Souri et al. [2016]. 

Comparison to satellites and providing top-down emissions 

Prior to updating the emissions, we find it necessary to shed light on the spatial distribution 255 

of tropospheric NO2 and HCHO total columns from both observations and model, and their 

potential differences relative to their key precursors’ emissions. Subsequently, we report the results 

from the inverse modeling and the uncertainty associated with the top-down estimation; moreover, 

we wish to assess how much information is gained from utilizing satellite observations via the 

calculation of averaging kernels. Finally, observations are used to verify, to some extent, the 260 

accuracy of our top-down emission estimations. 

NOx 

The first row in Figure 2 illustrates tropospheric NO2 columns from the regional model, 

OMI (using adjusted AMF and bias corrected), and the logarithmic ratio of both quantities in May-

June 2016 at ~1330 LST over Asia. The second row depicts daily-mean values of dominant sources 265 

of NOx, namely as, biogenic, anthropogenic, and biomass burning emissions (that are subject to 
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change after the inversion). A high degree of correlation between the anthropogenic NOx emissions 

and NO2 columns implies the predominant production of NO2 from the anthropogenic sources 

[Logan, 1983]. We find a reasonable two-dimensional Pearson correlation (r=0.73) between the 

modeled and the observed columns. Generally, the WRF-CMAQ largely underestimated (56%, -270 

7.72´1014 molec.cm-2) tropospheric NO2 columns with respect to those of OMI over the entire 

domain. Segregating intuitively the domain into high emission areas (NOx > 10 ton/day) and low 

ones (NOx < 10 ton/day) allows for a better understanding of the discrepancy between the model 

and the observations. In the high NOx areas, the model tends to overestimate tropospheric NO2 

columns by 73% (3.71´1015 molec.cm-2), whereas for the low NOx regions, the model shows a 275 

substantial underestimation by 68% (-8.97´1014 molec.cm-2). Such a conflicting bias is confirmed 

by the contour map of the logarithm ratio of OMI to the model in Figure 2. The large 

overestimation of the model in terms of NO2 over the polluted areas is explained by stringent 

regulations enacted in various countries in Asia; for instance, Chinese regulatory agencies have 

taken aggressive actions recently to cut anthropogenic NOx emissions by implementing selective 280 

catalytic reduction in power plants, closing a number of coal power plants, and policies on 

transportation [Zhang et al., 2012; Liu et al., 2016; Reuter et al., 2015; de Foy et al., 2016; Krotkov 

et al., 2016; Souri et al., 2017a]. The highest positive bias in the model is observed over Shanxi 

Province in China, home to coal production, underscoring the effectiveness of the emission 

standards at controlling air pollution. Likewise, we observe a positive bias in the model over major 285 

cities in Japan and South Korea; but the magnitude of the reduction over these cities is substantially 

smaller than what we observe in China. 

The underestimation of the model in the low NOx regions is related to a number of factors 

such as i) the widely-reported underestimation of soil (biogenic) NOx emissions due to the lack of 

precise knowledge of fertilizers use, soil biota, or canopy interactions [Jaeglé, et al., 2005; Hudman 290 

et al., 2010; Souri et al., 2016], ii) the underestimation of the upper-troposphere NO2 due to non-

surface emissions (aviation/lightning) or errors in the vertical mixing or moist convection [e.g., 

Souri et al., 2018], and iii) a possible overprediction of the lifetime of organic nitrates diminishing 

background NO2 levels [Canty et al., 2015]. Addressing the second issue requires a very high 

resolution model with explicit resolving microphysics and large eddy simulations, and the last 295 

problem requires more experimental studies to improve organic nitrates chemistry [Romer Present 

et al., 2020]. In this study, we attempt to mitigate the discrepancy between the model and the 
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satellite observations solely by adjusting the relevant emissions. Accordingly, future 

improvements in physical/chemical processes of models will offset top-down emission estimates, 

inevitably. 300 

The first row in Figure 3 shows the a priori, the a posteriori, and their ratios in terms of the 

total NOx emissions in May-June 2016. We observe that the ratios are highly anti-correlated with 

those of OMI/CMAQ shown in Figure 2, suggesting that the inversion attempts to reduce the 

distance between the model and the observations. Major reductions occur over China. The 

enhancements in NOx emissions are commonly found in rural areas, especially over grasslands 305 

located in the western/central China and Mongolia. The changes in NOx emissions over South 

Korea and Japan are positive [Irie et al., 2016; Souri et al., 2017a] mainly due to rapid increases 

in the number of diesel cars in South Korea, and thermal power plants built as a substitution for 

the Fukushima nuclear plant in Japan. This is especially the case for Japan for which we observe 

a larger enhancement in total NOx emissions (12%). The second row in Figure 3 depicts the relative 310 

errors in the a priori, the a posteriori, and AKs. Relative errors in the a priori are mostly confined 

to values close to 50% in polluted areas. They increase further, up to 100%, in areas experiencing 

relatively large contributions from biomass burning or biogenic (soil) emissions. Encouragingly, 

OMI tropospheric NO2 columns in conjunction with the solid mathematical inversion method 

[Rodger, 2000] greatly reduce the uncertainties associated with the emissions in polluted areas; we 315 

observe AKs close to 1 over major cities or industrial areas. We see the lowest values in AKs over 

rural areas due to weaker signal/noise ratios from the sensor. Therefore, it is desirable but very 

difficult to improve the model using the sensor in terms of NOx chemistry/emissions in remote 

areas, evident in the low values of AKs. Table 5 lists the magnitude of the total NOx emissions in 

several regions (refer to Figure 1) before and after carrying out the inversion. If we assume that 320 

the dominant source of NOx emissions is anthropogenic, the most successful countries at cutting 

emissions (before, after) are China (87.94±44.09 Gg/day, 68.00±15.94 Gg/day), Taiwan 

(1.26±0.57 Gg/day, 0.97±0.33 Gg/day), and Malaysia (2.89±2.77 Gg/day, 2.25±1.34 Gg/day). All 

three countries have successfully implemented plans to reduce anthropogenic emissions since 

2010-2011 [Zhang et al., 2012; Trappey el al., 2012; Chua and Oh, 2011]. The uncertainty 325 

associated with the top-down estimate improves considerably. The largest reduction in the 

uncertainty of the emissions is observed over China, a response to a strong signal from OMI. 
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An interesting observation lies in the discrepancy between the logarithm-ratio of 

OMI/CMAQ (Figure 2) to that of the a posteriori to the a priori over the North China Plain (NCP), 

suggesting that using a bulk ratio [Martin et al., 2003] cannot fully account for possible chemical 330 

feedback. The logarithm-ratio of OMI/CMAQ is consistently lower than changes in the emission. 

Two reasons contribute to this effect: i) as NOx emissions decrease in NOx-saturated areas (i.e., 

the dominant sink of radicals is through NO2+OH), OH levels essentially increase resulting in a 

shorter lifetime in NO2; therefore to reduce NO2 concentrations, a substantial reduction in NOx 

(suggested by OMI/CMAQ) is unnecessary coinciding with results from the inverse modeling, ii) 335 

the CMAQ-DDM (Figure S3) suggests that NO2 columns decrease due to increasing VOC 

emissions over the region; accordingly, the cross-relationship between NO2 concentrations and 

VOC emissions partly adds to the discrepancy. It is because of the chemical feedback that recent 

studies have attempted to enhance the capability of inverse modeling by iteratively adjusting 

relevant emissions [e.g., Cooper et al., 2017; Li et al., 2019]. Likewise, our iterative non-linear 340 

inversion shows a superior performance over traditional bulk ratio methods, in part because it 

considered incrementally the chemical feedback. 

To assess the resulting changes in the tropospheric NO2 columns after the inversion, and 

to validate our results, we compare the simulated values using the a priori and the a posteriori with 

OMI in Figure 4. We observe 64% reduction in the tropospheric NO2 columns on average over 345 

NCP despite only 32% reduction in the total NOx emissions over the region, a result of the chemical 

feedback. The two-dimensional Pearson correlation between the simulation using the a posteriori 

and OMI increases from 73% (using the a priori) to 83%. Both datasets now are in a better 

agreement as far as the magnitude goes. However, we do not see a significant change in the 

background values in the new simulation compared to those of OMI due to less certain column 350 

observations. 

To further validate the results, we compare the NO2 data from the NCAR’s four-channel 

chemiluminescence instrument onboard the DC-8 aircraft during the campaign (Figure S4). These 

data are not interfered by NOz family. The aircraft collected the data in the Korean Peninsula 

around 23 days in May-June 2016 covering various altitudes and hours (https://www-355 

air.larc.nasa.gov/cgi-bin/ArcView/korusaq, access date: December 2019). We observe an 

underestimation of NO2 at the near surface levels (<900 hPa) by 19% (DC8 = 4.50 ppbv, CMAQ 
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= 3.67 ppbv). The updated emissions increase the near surface levels over the Korean Peninsula, 

which in turn, reduce the bias to 11% (CMAQ = 4.02 ppbv). 

VOC 360 

A comparison between HCHO columns from the model and OMPS along with the major 

sources of VOCs in May-June 2016 is depicted in Figure 5. Anthropogenic VOCs are emitted from 

various sources such as solvent use, mobile, and chemical industries [Liu et al., 2008a,b]. A 

reasonable correlation (r=0.78) between the model and OMPS suggests a good confidence in the 

location of emissions. However, the magnitude of HCHO columns between the two datasets 365 

strongly disagrees, especially over the tropics where biogenic emissions are large. A myriad of 

studies have reported a largely positive bias (by a factor of 2-3) associated with isoprene emissions 

estimated by MEGAN using satellite measurements [e.g., Millet et al., 2008; Stavrakou et al., 

2009; Marais et al., 2012; Bauwens et al., 2016]. To compound, Stavrakou et al. [2011] found a 

large overestimation in methanol emissions from the same model that can further preclude the 370 

accurate estimation of the yield of HCHO. This is especially the case for the tropics. As a response 

to the overestimation of the biogenic VOCs by MEGAN, we observe a largely positive bias in the 

simulated HCHO columns ranging from 50% over the south of China to ~400% over Malaysia 

and Indonesia. As we move away from the hotspot of the biogenic emissions in lower latitudes, 

the positive bias of the model declines, ultimately turning into a negative bias at higher latitudes. 375 

OMPS HCHO columns suggest that the concentration of HCHO over NCP and Yangtze River 

Delta (YRD) is comparable to those over the tropics suggesting that the anthropogenic emissions 

over NCP are the dominant source of HCHO [Souri et al., 2017a; Jin and Holloway, 2015]. We do 

not see a significant deviation in the model from the observations over this region indicating that 

no noticeable efforts on controlling VOC emissions in NCP and YRD have been made which is 380 

very likely due to the fact that the recent regulations over China have overlooked cutting emissions 

from several industrial sectors [Liu et al., 2016] prior to 2016 [Li et al. 2019]. For instance, 

Stavrakou et al. [2017] reported ~6% increases in anthropogenic VOC emissions over China from 

2010 to 2014. The underestimation of the model with respect to OMPS lines up with results 

reported by Souri et al. [2017a] and Shen et al. [2019]. We observe both underestimated and 385 

overestimated values in the simulated HCHO columns over areas in South Korea and Japan. The 

underestimation of HCHO in the model over regions with low VOCs (such as Mongolia and 
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Pacific Ocean) can be either due to missing sources or the incapability of CMAQ to account for 

moist convective transport.  

Figure 6 illustrates the total VOC emissions before and after the inversion along with their 390 

errors. Immediately apparent is the large reduction of VOC emissions in the tropics and subtropics 

due to the overestimation of isoprene from MEGAN v2.1. In contrast, enhancements of the 

emissions are evident at higher latitudes. We observe that the dominantly anthropogenic VOC 

emissions over NCP increase (~25%) after the adjustment. Despite the presence of vegetation over 

Japan and South Korea, we do not see largely overestimated values in the emissions. Hence, the 395 

overestimation of isoprene emissions is more pronounced in the tropics possibly because of an 

overestimation in the emission factors used for specific plants. Nevertheless, a non-trivial 

oversight in models could be an insufficient representation of both HOx chemistry and dry 

deposition in forest canopies [Millet et al., 2008]; as a result, the net amount of HCHO  in the 

atmosphere over forest areas is higher than what should be if removal through either a chemical 400 

loss or a faster dry deposition is considered.  

Owing to the fact that we assume anthropogenic VOC emissions to be less uncertain 

relative to other sectors, the errors in the a priori are smaller in populated areas. We observe that 

OMPS HCHO columns are able to significantly reduce the uncertainty associated with the total 

VOC emissions over areas showing a strong HCHO signal (>1016 molec.cm-2). Over clean areas, 405 

it is the other way around; we see less confidence in our top-down estimate (AK<0.4) in areas such 

as Tibet and Mongolia. 

We then compare the simulated HCHO column using two different emission inventories 

with those of OMPS in Figure 7. We observe a substantial improvement both in the spatial 

structure and the magnitude of simulated HCHO columns using the a posteriori with respect to 410 

OMPS. The two-dimensional Pearson correlation increases from 0.78 to 0.91 after applying the 

adjustments to the emissions. In response to the increases in the total VOC emissions over the 

NCP, we observe ~11% enhancements in the simulated HCHO total columns. The updated 

emissions lead to a reduction in HCHO total columns as large as 70% in the tropics. 

Validation of the model in terms of VOCs is not a straightforward task because the 415 

chemical mechanism used for our model has lumped several VOC species such as terminal/internal 

olefin or paraffin, only a handful of which were measured during the campaign. Besides, the MIX-

Asia inventory estimates the anthropogenic emissions for a selected number of VOCs in the CB05 
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mechanism. Here, we focus only on six compounds including isoprene, HCHO, ethene, ethane, 

acetaldehyde, and methanol whose emissions are adjusted (with the same factor) based on satellite 420 

measurements. The comparison of the simulated values with the DC-8 measurements showed a 

noticeable mitigation in the discrepancy between two datasets at lower boundaries (<900 hPa) in 

terms of isoprene (Figure S5), ethane (Figure S6), ethene (Figure S7), and acetaldehyde (Figure 

S8). Surprisingly, we observe a large underestimation of methanol over the Korean Peninsula by 

a factor of ten (Figure S9). The same tendency was observed in other regions in Wells et al. [2014] 425 

(see Figure 8 in the paper). Our inversion obviously fails at mitigating the bias as there is not much 

direct information from the satellite observations on this compound. Wells et al. [2014] and Hu et 

al. [2011] demonstrated that methanol can be a secondary source of HCHO up to 10-20% in 

midlatitudes in warm seasons. We tend to underestimate HCHO concentrations (by 15%) in the 

lower atmosphere (<900 hPa) after using the a posteriori over the Korean Peninsula (Figure S10). 430 

Implications for surface ozone 

The results we have generated can be further exploited to elucidate changes in the ozone 

production rates P(O3) due to having the constrained NOx and VOC emissions. We calculate P(O3) 

by subtracting the ozone loss driven by HOx (HO+HO2), reaction with several VOCs (i.e., alkenes 

and isoprene), the formation of HNO3, and O3 photolysis followed by the reaction of O(1D) with 435 

water vapor, from the ozone formation via removal of NO through HO2 or RO2: 

𝑃(𝑂V) = 𝑘XNY4MN[𝐻𝑂C][𝑁𝑂] +[𝑘\NY]4MN[ 𝑅𝑂C3][𝑁𝑂]

− 𝑘NX4MNY4_[𝑂𝐻][𝑁𝑂C][𝑀] − 𝑘XNY4Na[𝐻𝑂C][𝑂V]

− 𝑘NX4Na[𝑂𝐻][𝑂V] − 𝑘N: bc ;4XYNd𝑂: 𝐷/ ;f[𝐻C𝑂] − 𝐿(𝑂V + 𝑉𝑂𝐶𝑠) 

(8) 

Since P(O3) is a non-linear function of NOx and VOC emissions, it is advantageous to look at the 

ratio of chemical loss of NOx to that of ROx (RO2+HO2), a robust indicator to pinpointing 

underlying drivers for ROx cycle. LROx is defined through the sum of primarily radical-radical 

reactions: 440 

𝐿𝑅𝑂R = 𝑘XNY4XNY[𝐻𝑂C]
C +[𝑘\NY]4XNY[𝑅𝑂C3][𝐻𝑂C] +[𝑘\NY]4\NY][𝑅𝑂C3]

C (9) 

LNOx mainly occurs via the NO2+OH reaction: 

𝐿𝑁𝑂R = 𝑘NX4MNY4_[𝑂𝐻][𝑁𝑂C][𝑀] (10) 

Typically, a value of LNOx/LROx~2.7 defines the transition line between VOC-sensitive and 

NOx-sensitive regimes [Schroeder et al., 2017; Souri et al., 2020].  
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Figure 8 depicts a contour map of LNOx/ROx ratios before and after the inversion. As 

expected, the larger ratios are confined within major cities or industrial areas due to abundant NOx 445 

emissions. The hotspot of VOC-sensitive regimes is located in NCP and YRD. Also of interest in 

Figure 8 is that advection renders a major fraction of the Yellow Sea (the sea connecting China to 

Korea) VOC-sensitive. Using the a posteriori leads to precipitous changes in the chemical regimes. 

As a result of a large reduction in the isoprene emissions in both the tropics and subtropics, we 

observe a shift toward VOC-limited, though the values of LNOx/ROx are yet too far from the 450 

transition line (i.e., <<2.7). The substantial reduction in NOx emissions and an increase in VOC 

emissions over NCP and YRD go hand-in-hand transitioning towards NOx-sensitive regime. The 

ratios over South Korea and Japan are found to be variable and somehow in synch with the changes 

in NOx emissions. 

The resultant changes in the LNOx/LROx ratios shed some light on ozone sensitivity with 455 

respect to its major precursors, but P(O3) is also dependent on the absolute values of emissions, 

the degree of reactivity of VOCs, and the abundance of radicals. Here we use the integrated 

reaction rates (IRR) to determine the most influential reactions pertaining to ozone loss and 

production at the surface. We focus on 1200 to 1800 China standard time (CST) hours. Figure 9 

shows the differences in the major pathways for the loss and the formation of ozone at the surface 460 

within the time window. The differences are computed based on the subtraction of the simulation 

with the a posteriori from that with the a priori. In Figure 9 we see a strong degree of correlation 

between the changes in magnitude of P(O3) through HO2+NO reaction with those of NOx 

emissions (Figure 3), whereas the changes in magnitude of P(O3) via RO2+NO reaction primarily 

are on par with those of VOC emissions (Figure 6). We observe P(O3) increases through HO2+NO 465 

and RO2+NO reactions in Japan, South Korea, Myanmar, and Philippines because of increases in 

NOx emissions in NOx-sensitive regions. The simultaneous decrease in NOx and VOC in PRD and 

Taiwan causes the production of ozone via the same pathways to reduce. 

Normally, in VOC-rich environments, reduction in VOC emissions boosts OH 

concentrations (Figure S11). Consequently, we observe an enhancement of NO2+OH reaction in 470 

the tropics and subtopics. A substantial reduction in the chemical loss of ozone through NO2+OH 

over NCP and YRD arises from a considerable decrease of NOx emissions and an increase in OH 

(due to chemical feedback of NOx). In response to increase in HOx concentrations over NCP 

(Figure S11-S12), we observe an enhancement of ozone loss through O3+HOx. The ozone 
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photolysis (O1D+H2O) are majorly driven by photolysis and water vapor mixing ratios, both of 475 

which are roughly constant in both simulations; accordingly the difference map of O1D+H2O is 

mainly reflecting changes in ozone concentrations (shown later). Interestingly, we observe a large 

reduction in the loss of ozone through reaction with VOCs at lower latitudes. This is essentially 

because of the reduction in ISOP+O3, a VOC that prevails in those latitudes. Despite a much slower 

reaction rate for ISOP+O3 compared to ISOP+OH and ISOP+hv [Karl et al. 2004], this specific 480 

chemical pathway can be important as a way to oxidize isoprene and form HOx in forests [Paulson 

and Orlando, 1996]. 

Figure 10 sums the differences of all mentioned chemical pathways involved in 

formation/loss of surface ozone at 1200-1600 CST. Because of a complex non-linear relationship 

between P(O3) and its precursors, we observe a variability in both the sign and amplitude of P(O3). 485 

On average, changes in  O3 production dominate over changes  in O3 sinks except in Malaysia 

which underwent a significant reduction in isoprene emissions, thus slowing down the ISOP+O3 

reaction. In general, the differences in P(O3) follow the changes in the NOx emissions depending 

on which chemical regimes prevail. 

Much of the above analysis is based on ozone production rates, however, various 490 

parameters encompassing dry deposition, vertical diffusion, and advection can also affect ozone 

concentrations. Therefore we further compute the difference between the simulated maximum 

daily 8-h average (MDA8) surface ozone levels before and after the inversion depicted in Figure 

11. For comparison, we also overplot the Chinese air quality monitoring network observations 

(https://quotsoft.net/air/) to have a general grasp of the performance of the model before and after 495 

adjusting the emissions. We see a striking correlation between P(O3) (right panel in Figure 10) and 

MDA8 surface ozone indicating that the selected chemical pathways in this study can explain 

ozone changes. Nonetheless, the transport obviously plays a vital role in the spatial variability 

associated with the differences of surface ozone [e.g., Souri et al., 2016b]. Figure 11 suggests a 

significant enhancement of ozone over NCP (~4.56 ppbv, +5.6%) and YRD (5.2 ppbv, +6.8%) 500 

due to simultaneous decreases/increases in NOx/VOCs which is in agreement with Li et al. [2019]. 

On the other hand, reductions in NOx mitigate ozone pollution in PRD (-5.4%), Malaysia (-5.6%) 

and Taiwan (-11.6%). Table 6 lists the simulated MDA8 surface ozone levels for several regions 

before and after updating the emissions. Increases in MDA8 ozone over NCP and YRD 

overshadow decreases in southern China resulting in 1.1% enhancement for China. This provides 505 
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strong evidence that regulations on cutting VOC emissions should not be ignored. The largest 

reduction/increase of MDA8 ozone is found over Taiwan/YRD. Comparisons with surface 

observations show that the model generally captured the ozone spatial distributions; however, it 

tends to largely overpredict MDA8 surface ozone (~ 7 ppbv). This tendency has been well-

documented in other studies [e.g., Travis et al., 2016; Souri et al., 2017b; Lu et al., 2019]. The 510 

updated simulation with the top-down emission partly reduces this overestimation in southern 

regions of China, while it further exacerbates the overestimation in the northern parts. No doubt 

much of this stems from the fact that the preexisting biases associated with the model (beyond 

emissions such as vertical mixing and cloud optical thickness) mask any potential improvement 

expected from the constrained emissions. Because of this, in addition to adjusting relevant 515 

emissions, a direct assimilation of ozone concentrations should complementarily be exploited [e.g., 

Miyazaki et al., 2019] to bolster the capability of the model at simulating ozone. 

Summary 

In this paper we have focused on providing a top-down constraint on both volatile organic 

compound (VOC) and nitrogen oxides (NOx) emissions using a combination of error-characterized 520 

Smithsonian Astrophysical Observatory (SAO) Ozone Mapping and Profile Suite Nadir Mapper 

(OMPS-NM) formaldehyde (HCHO) and National Aeronautics and Space Administration 

(NASA) Ozone Monitoring Instrument (OMI) nitrogen dioxide (NO2) retrievals during the Korean 

and United States (KORUS) campaign over East Asia in May-June 2016. Here, we include 

biogenic, biomass burning and anthropogenic emissions from MEGAN, FINN, and MIX-Asia 525 

2010 inventory, respectively. A key point is that by considering together the satellite observations, 

we have been able to not only implicitly take the chemical feedback existing between HCHO-NOx 

and NO2-VOC into account through iteratively optimizing an analytical non-linear inversion, but 

also to quantify the impact of recent changes in emissions (since 2010) on surface ozone pollution. 

Concerning total NOx emissions, the inversion estimate suggests a substantial reduction 530 

over China (-23%), North China Plain (NCP) (-32%), Pearl River Delta (PRD) (-36%), Yangtze 

River Delta (YRD) (-41%), Taiwan (-23%), and Malaysia (-22%) with respect to the values 

reported in the prior emissions mostly dictated by the MIX-Asia 2010 inventory. In essence these 

values reflect recent actions to lower emissions in those countries [Zhang et al., 2012; Trappey el 

al., 2012; Chua and Oh, 2011]. The analytical inversion also paves the way for estimating the 535 

averaging kernels (AKs), thereby informing the amount of information acquired from satellites on 



 19 

the emissions estimation. We observe AKs>0.8 over major polluted areas indicating that OMI is 

able to improve the emission estimates over medium to high-emitting regions. Conversely, AKs 

are found to be small over pristine areas suggesting that little information can be gained from the 

satellite over rural areas given retrieval errors. In line with the studies of Irie et al. [2016] and Souri 540 

et al. [2017a], we observe a growth in the total NOx emissions in Japan (12%) and South Korea 

(+9%) which are partially explained by new construction of thermal power plants in Japan, and an 

upward trend in the number of diesel vehicles in South Korea. 

MEGAN v2.1 estimates too much isoprene emissions in the tropics and subtropics, a 

picture that emerges from the latitudinal dependence of the posterior VOC emissions to the prior 545 

ones. It is readily apparent from the top-down constrained VOC emissions that the prevailing 

anthropogenic VOC emissions in NCP is underestimated by 25%, a direction that is in agreement 

with studies by Souri et al. [2017] and Shen et al. [2019]. We find out that OMPS HCHO columns 

can greatly reduce the uncertainty associated with the total VOC emissions (AKs>0.8) over regions 

having a moderate-strong signal (>1016 molec.cm-2). 550 

A large spatial variability associated with both NOx and VOC results in great oscillation in 

chemical conditions regimes (i.e., NOx-sensitive or VOC-sensitive). Due to considerable 

reduction/increase in NOx/VOC emissions in NCP and YRD, we observe a large increase (53%) 

in the ratio of the chemical loss of NOx (LNOx) to the chemical loss of ROx (RO2+HO2) shifting 

the regions towards NOx-sensitive. As a result, a substantial reduction in afternoon NO2+OH 555 

reaction rate (a major loss of O3), and an increase in afternoon NO+HO2 and RO2+NO (a major 

production pathway for O3) are observed, leading to enhancements of the simulated maximum 

daily 8-hr average (MDA8) surface ozone concentrations by ~5 ppbv. Therefore, additional 

regulations on VOC emissions should be implemented to battle ozone pollution in those areas. On 

the other hand, being predominantly in NOx-sensitive regimes favors regions including Taiwan, 560 

Malaysia and PRD to benefit from reductions in NOx, resulting in noticeable decreases in 

simulated MDA8 surface ozone levels. The comparison of simulated ozone before and after 

adjusting emissions and Chinese surface air quality observations reveal a large systematic positive 

bias (~ 7 ppbv) which hinders attaining the benefits from a more accurate ozone production rate 

due to the observationally-constrained NOx/VOC ratios. This highlights the need to explicitly deal 565 

with other underlying issues in the model [e.g., Travis et al., 2016] to be able to properly simulate 

surface ozone.  
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It has taken many years to develop satellite-based gas retrievals, and weather and chemical 

transport models accurate enough to enable observationally-based estimates of emissions with 

reasonable confidence and quantified uncertainty, and produce credible top-down emission 570 

inventories over certain areas. However it is essential to improve certain aspects to be able to 

narrow the range of uncertainty associated with the estimation such as spatiotemporally varying 

bias of the satellite gas retrievals ii) the lack of precise knowledge of prior errors in the bottom-up 

emissions, iii) the model parameter errors including those from PBL, radiation, and winds should 

be propagated to the final output [e.g., Rodger 2000], iv) due to intertwined chemical feedback 575 

between various chemical compounds, inverse modeling needs to properly incorporate all 

available information (beyond HCHO and NO2) considering the cross-relationship either explicitly 

or implicitly. Despite these limitations, this research demonstrated that a joint inversion of NOx 

and VOC emissions using well-characterized observations significantly improved the simulation 

of HCHO and NO2 columns, permitting an observationally-constrained quantification of the 580 

response of ozone production rates to the emission changes.  
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Table 1. CMAQ major configurations 

CMAQ version V5.2.1 
Chemical Mechanism CB05 with chlorine chemistry 
Lightning NOx emission Included using inline code 
Photolysis Inline including aerosol impacts 
Horizontal advection YAMO (hyamo) 
Vertical advection WRF omega formula (vwrf) 
Horizontal mixing/diffusion Multiscale (multiscale) 
Vertical mixing/diffusion Asymmetric Convective Model version 2 (acm2) 
Aerosol AERO 6 for sea salt and thermodynamics (aero6) 
IC/BC source GEOS-Chem v10 

 
Table 2. WRF physics options 

WRF Version V3.9.1 
Microphysics WSM-6 
Long-wave Radiation RRTMG 
Short-wave Radiation RRTMG 
Surface Layer Option Monin-Obukhov 
Land-Surface Option Noah LSM  
Boundary Layer  ACM2 
Cumulus Cloud 
Option Kain-Fritsch 

IC/BC FNL 0.25o 
 905 
Table 3. The uncertainty assumptions used for estimating the covariance matrix of the a priori.  

 Anthropogenic Biogenic Biomass Burning 

NOx 50% 200% 100% 

VOC 150% 200% 300% 

 

Table 4. Statistics of surface temperature, relative humidity, and wind. Corr – Correlation;; 
RMSE – Root Mean Square Error; MAE – Mean Absolute Error; MB – Mean Bias; O – 
Observation; M - Model; O_M – Observed Mean; M_M – Model Mean; SD – Standard 910 
Deviation; Units for RMSE/MAE/MB/O_M/M_M/O_SD/M_SD:  oC for temperature, 
percentage for relative humidity, and m s-1 for wind. 

Variable Corr RMSE MAE MB O_M M_M O_SD M_SD 
Temperature 0.74 7.0 2.8 0.6 22.2 22.8 9.5 8.7 

Relative 
Humidity 0.76 12.1 9.5 -1.1 67.8 66.6 14.3 18.6 

U Wind 0.58 1.3 0.7 0.1 0.1 0.2 1.2 1.4 
V Wind 0.49 1.6 0.7 0.3 0.2 0.5 1.6 1.2 
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Table 5. NOx emissions before and after carrying out the inversion using OMI/OMPS for different 915 
countries in May-June 2016. 

Countries The a priori 
(Gg/day) 

The a posteriori 
(Gg/day) 

Changes in 
magnitudes 

Changes in 
errors 

China 87.94±44.091 68.00±15.942 -23% -63% 
North China Plain 27.96±13.49 19.05±2.50 -32% -81% 
Pearl River Delta 4.23±1.78 2.70±0.32 -36% -84% 
Yangtze River Delta 9.84±4.68 5.77±0.51 -41% -89% 
Thailand 4.38±3.24 4.20±2.28 -4% -29% 
Japan 3.53±1.71 3.96±1.04 +12% -39% 
Malaysia 2.89±2.77 2.25±1.34 -22% -49% 
Vietnam 2.87±2.04 2.79±1.57 -3% -23% 
South Korea 2.71±1.34 2.95±0.58 +9% -56% 
Bangladesh 1.72±1.06 2.10±0.87 +22% -18% 
Philippines 1.30±1.10 1.54±0.98 +18% -11% 
Taiwan 1.26±0.57 0.97±0.33 -23% -42% 
Cambodia 0.54±0.50 0.57±0.45 +5% -11% 
Mongolia 0.19±0.13 0.28±0.12 +44% -8% 

1- The errors in the a priori are estimated from equation 6. 
2- The errors in the a posteriori are calculated by equation 4. 
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Table 6. MDA8 surface ozone levels before and after carrying out the inversion for different 920 
regions in May-June 2016. 

Regions The a priori 
(ppbv) 

The a posteriori 
(ppbv) 

Changes in 
magnitudes 

China 56.10±16.34 56.72±16.71 +1.1% 
North China Plain 81.15±9.57 85.71±10.39 +5.6% 
Pearl River Delta 65.94±9.39 62.37±8.93 -5.4% 
Yangtze River Delta 76.79±5.90 82.04±5.21 +6.8% 
Thailand 50.86±8.84 48.85±7.94 -3.9% 
Japan 64.29±7.98 65.52±7.78 +1.9% 
Malaysia 46.87±21.87 44.22±12.90 -5.6% 
Vietnam 49.90±9.20 48.88±8.65 -2.0% 
South Korea 84.23±3.57 84.90±3.69 +0.8% 
Bangladesh 65.79±12.08 65.21±12.20 -0.9% 
Philippines 27.92±9.11 28.69±7.92 +2.8% 
Taiwan 61.55±10.88 54.38±8.00 -11.6% 
Cambodia 39.87±3.62 40.20±3.46 +0.8% 
Mongolia 40.11±2.52 40.16±2.40 +0.1% 

 
 
 
  925 
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Figures: 

 
Figure 1. The CMAQ 27-km domain covering the major proportion of Asia. The background 

picture is retrieved from publicly available NASA’s blue marble (© NASA). 930 
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Figure 2. (first row), tropospheric NO2 columns from the WRF-CMAQ model, OMI (using 

adjusted AMFs based on the shape factors derived from the model and bias corrected following 935 

Choi et al. [2019]), and the logarithmic ratio of CMAQ/OMI during May-June 2016 at ~1330 LST. 

(second row) The major sources of NOx emissions in the region including biogenic (soil) emissions 

simulated by MEGAN, anthropogenic emissions estimated by MIX Asia (2010), and biomass 

burning emissions made by FINN. The emissions are the daily-mean values based on the emissions 

in May-June. 940 
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Figure 3. (first row), total NOx emissions (i.e., the a priori), constrained by the satellite observations 

(i.e., the a posteriori) in May-June 2016, and the ratio of the a posteriori to the a priori. (second row) 

the errors in the a priori based on Table 3, the errors in the top-down estimation, and the averaging 945 

kernels (AKs) obtained from the estimation. 
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Figure 4. (from left to right), tropospheric NO2 columns from OMI, WRF-CMAQ simulated with 950 

the prior emissions, and the same model but with the top-down emissions constrained by 

OMI/OMPS in May-June 2016.   
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Figure 5. (first row), HCHO total columns from the WRF-CMAQ model, OMPS (using adjusted  960 

AMFs based on the shape factors derived from the model and bias corrected following the method 

proposed in Zhu et al. [2020]), and the logarithmic ratio of CMAQ/OMPS during May-June 2016 

at ~1330 LST. (second row) The major sources of VOC emissions in the area including biogenic 

emissions simulated by MEGAN, anthropogenic emissions estimated by MIX Asia (2010), and 

biomass burning emissions made by FINN. The emissions are the daily-mean values based on the 965 

emissions in May-June. The VOC emissions only add up those compounds that are included in the 

CB05 mechanism. 
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Figure 6. (first row), total VOC emissions (i.e., the a priori), constrained by the satellite 970 

observations (i.e., the a posteriori) in May-June 2016, and the ratio of the a posteriori to the a priori. 

(second row) the errors in the a priori based on Table 3, the errors in the top-down estimation, and 

the averaging kernels (AKs) obtained from the estimation. 

  



 37 

 975 
Figure 7. (from left to right), HCHO total columns from OMPS, the WRF-CMAQ simulated with 

the prior  emissions, and the same model but with the top-down emissions constrained by the 

satellite in May-June 2016. 

 

 980 
Figure 8. (from left to right), ratio of LNOx/LROx simulated by the posterior emissions, the prior, 

and their relative differences at 1200-1800 CST, averaged over May-June 2016. 

 



 38 

 
Figure 9. Differences between the simulations with the updated emissions and the default ones of 985 

six major pathways of ozone production/loss. The time period is May-June 2016, 1200-1800 CST. 

 

 
Figure 10. Changes in the major chemical pathways of ozone production/loss, and the net of ozone 

production P(O3) after updating the emissions. The time period is May-June 2016, 1200-1800 990 

CST. 
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Figure 11. Simulated MDA8 surface ozone using the updated emissions constrained by OMI/OMPS 995 

observations (left), the default ones (middle), and their difference (right) in May-June 2016. We 

overplot surface MDA8 ozone values (circles) from the Chinese air quality monitoring network 

(https://quotsoft.net/air/). 

 


