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Abstract. Airborne backscatter lidar measurements at 532 nm were carried out over Siberia in July 2013 and June 2017.

The Russian Tu-134 flew over major Siberian cities (Novosibirsk, Tomsk, Krasnoyarsk, Yakutsk), the gas flaring fields of the

Ob valley and Siberian Taiga in order to sample several kinds of Siberian aerosol sources. Aerosol types are derived using

the Lagrangian FLEXible PARTicle dispersion model (FLEXPART) simulations, Moderate Resolution Imaging Spectrometer

(MODIS) Aerosol Optical Depth (AOD), Infrared Atmospheric Sounding Interferometer (IASI) CO total column and AOD at5

10 µm. Forest fire detection is based on NASA Fire Information for Resource Management System (FIRMS) from MODIS

and the Visible Infrared Imaging Radiometer Suite (VIIRS) observations and airborne in-situ measurements when available.

Six aerosol type could be identified in this work: (i) Dusty aerosol mixture (ii) Ob valley industrial emission (iii) fresh boreal

forest fire plumes (iv) aged forest fire plumes (v) pollution over the Tomsk/Novosibirsk region (vi) long range transport of

Chinese pollution over Yakutsk. The backscatter to extinction ratio and then the corresponding lidar ratio (LR) were derived10

for each of these 6 identified aerosol type, using an iterative method based on the Fernald forward inversion constrained by

the 10 km MODIS collection 6 AOD distribution closed to the airborne lidar observation. The LR analysis showed that the

lowest LR range was obtained for the "Dusty Mix" case (26-40 sr) and the highest for the urban and industrial pollution

from the Tomsk/Novosibirsk area (71-90 sr). The comparison is good with previous estimate of LR according to the aerosol

classification. The range of lidar ratio obtained for gas flaring emission (43-60sr) was lower than the high values encountered15

in the Tomsk/Novosibirk urban area and has never been characterized using lidar observations. Airborne lidar backscatter

ratio vertical structure, aerosol types and integrated LR derived from the airborne data analysis were compared to nearby

CALIOP overpasses. These comparisons showed three main differences with the CALIOP LR and aerosol type classification

over Siberia: (i) CALIOP aerosol layer can be classified as Elevated smoke instead of Polluted continental and vice versa, but

with little influence on the LR value (ii) aging and transport of aerosol layers effect on the CALIOP LR value is not always20

properly accounted for even when the CALIOP classification is correct (iii) the lack of discrimination between fresh and old

fire plume leads to an overestimation of the optical depth for the fresh fires in the CALIOP AOD over the fire source region.
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1 Introduction

Atmospheric aerosols play a very important role in many meteorological, radiative and chemical processes taking place in the

atmosphere such as cloud formation, scattering and absorption of incident solar (short-wave) and thermal (long-wave) radiation25

from the Earth, as well as affect the air quality (Chỳlek and Coakley, 1974). Due to the variety of the optical, microphysical

and chemical properties of atmospheric aerosols, closely depending on the formation processes of particulate matter and their

subsequent aging processes occurring in the atmosphere, and the poor knowledge of their spatio-temporal distribution as well,

they have been identified by the Intergovernmental Panel on Climate Change (IPCC) as one of the main uncertainty sources

when assessing radiative forcing and the climate change (Stocker et al., 2013).30

Siberia has been widely recognized as a large source region of biomass burning aerosols, the impact of which on the aerosol

load is well identified (Lavoué et al., 2000; Paris et al., 2009b). Regarding anthropogenic aerosol sources, Asian pollution and

gas flaring from oil wells in Siberia have been identified as key aerosol sources (Stohl et al., 2013), however the impact of

these pollutants is underestimated largely due to the lack in reliable data on Russian emissions (Bond et al., 2013; Huang et al.,

2015).35

The YAK-AEROSIB project demonstrated that airborne measurements of atmospheric concentrations of CO2, CH4, CO,

O3 and aerosol content in Siberia are very valuable to identify the anthropogenic and natural sources of aerosol and trace

gases (Paris et al., 2008, 2009a). Lidar measurements of the aerosol vertical distribution in Russia have been also reported by

Dieudonné et al. (2015) using a 355 nm mobile backscatter lidar installed in a van making a road transect between Smolensk

(32oE, 54oN) and Lake Bailkal (107oE, 51oN). A dust outbreak near 70oE and the ubiquity of biomass burning plumes have40

been identified as the major results about the aerosol distribution in Siberia during this field experiment. Regular lidar obser-

vations have been made in Siberia in the city of Tomsk using either a ground based multiwavelength Raman lidar to make

60 nighttime profiles from March to October (Samoilova et al., 2010, 2012), or 18 months of daily measurements with a 808

nm micropulse lidar coupled to the Tomsk sunphotometer (Ancellet et al., 2019). Samoilova et al. (2012) has shown that the

optical characteristics of the aerosol lidar measurements (angstrom coefficient and lidar ratio) can be well explained using an45

urban aerosol model and that the seasonal variability (difference between the warm and cold months) is weak in the planetary

boundary layer (PBL) but significant in the free troposphere (FT). Aerosol type seasonal variability and sources in Siberia

derived by Ancellet et al. (2019) showed that 56% of the detected aerosol layers are linked to natural emissions (vegetation,

forest fires and dust) and 44% to anthropogenic emissions (one-third from flaring and two-thirds from urban emissions). Since

these results are mainly related to observations near the Siberian cities, airborne lidar measurements at the regional scale are50

also needed to get a better insight in the aerosol sources and transport in Russia. Airborne lidar campaigns conducted elsewhere

in the world have been indeed very valuable to characterize the regional distribution of aerosol sources, e.g. in North America

(Burton et al., 2012, 2013), in Europe and North Africa (Groß et al., 2013), or the Indian Ocean (Pelon et al., 2002). Errors in

the aerosol layer optical properties retrieval from lidar observations can be largely ascribed to incorrect aerosol classification

or incorrect lidar ratio (LR)(Rogers et al., 2014). The airborne lidar data analyzed in this paper for the campaigns conducted in55

Russia will focus on the retrieval of these two parameters.
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While airborne or ground based lidar measurements only provide the characterization of few case studies, only space-borne

instruments have the capability to provide daily global coverage of the Earth with a good spatial resolution. The Cloud-Aerosol

Lidar with Orthogonal Polarization (CALIOP) instrument is part of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite

Observations (CALIPSO) mission (Winker et al., 2009). This platform was launched in April 2006 as part of the A-train60

constellation. CALIOP provides attenuated backscatter signal at 532 nm and 1064 nm and depolarization at 532 nm. In the

CALIOP aerosol data processing scheme, the aerosol classification is essential to accurately determine the aerosol extinction

and optical thickness (Omar et al., 2009; Kim et al., 2018), since the extinction to backscatter ratio (lidar ratio) depends on

the aerosol type, age and mixture. Regional aerosol studies with CALIOP have been conducted for high latitudes (Pierro et al.,

2011; Devasthale et al., 2011), European Arctic (Ancellet et al., 2014), or the Arctic ice sheet (Di Biagio et al., 2018), but65

similar studies is also needed for Siberia. Regional airborne lidar campaigns in Siberia are then essential for future analysis of

the CALIOP observations in this region.

In this paper we present the analysis of the data obtained during two different aircraft campaigns conducted in Central

and Eastern Siberia in 2013 and 2017 with a Tu-134 aircraft equipped with in-situ trace gas and aerosol sensors as well as a

downward looking 532 nm elastic-backscatter lidar. The analysis of the lidar ratio is however limited by the lack of high spectral70

resolution lidar (HSRL) or Raman detection capabilities for the Russian lidar on-board the Tu-134 aircraft, so only aerosol

layers with simultaneous aerosol optical depth observations by Moderate Resolution Imaging Spectroradiometer (MODIS) at

a 10-km horizontal resolution will be considered in this work (Royer et al., 2010; He et al., 2006). The aircraft campaigns,the

instruments and the methodology to identify the aerosol type and to process the lidar data are described in section 2 and 3. In

section 4, six case studies are analyzed in term of aerosol type encountered and optical properties derived, while the comparison75

with previous LR analysis is made for the types of aerosols identified in this study. Finally a selection of CALIOP profiles that

can be compared to the airborne lidar measurements, is analyzed in section 5 to discuss the representativeness of the aerosol

type classification and lidar ratio values from CALIOP Version 4 aerosol data products over Russia.

2 Description of the aircraft campaign and the data set

2.1 Campaign description80

Research aircraft operated by IAO SB RAS has been flying along the transcontinental routes over central and eastern Siberia

since 2006. Two airborne campaigns took place in July 2013 and June 2017 with a backscatter lidar and in-situ aerosol instru-

ments installed on board the aircraft. The four flight tracks for each campaign are shown in Fig 1.

The flights were performed over (i) the major large Siberian cities (Novosibirsk, Tomsk, Krasnoyarsk, Yakutsk) (ii) the gas

flaring fields of the Ob valley and the industrial city of Norilsk (iii) as well as over the Siberian taiga in order to track the long-85

range transport of emissions from wildfires and mid-latitude Eastern Asia. So the major aerosol sources could be included in

this analysis. During these two airborne campaigns, downward looking backscatter lidar measurements were carried out but

also in-situ measurements of trace gas concentrations and aerosol particle properties (size distribution, scattering properties).
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Figure 1. Map of the 8 aircraft flight tracks carried out in 2013 (eastern loop) and in 2017 (northern loop). The aircraft altitude ranges are

also shown for the 2017 (b) and 2013 (c) flights. Map background : NASA’s Earth Observatory.

The aircraft performed various legs at low altitude (≈ 0.6 km) and between 4 and 8 km in order to sample different atmospheric

layers. Only lidar data collected during flights above 4 km are used for the aerosol layer characterization.90

2.2 Airborne lidar system

The lidar system installed on board the Tu-134 aircraft is based on the LOSA aerosol lidar developed at the IAO SB RAS (Balin

et al., 2011; Penner et al., 2015). The transmitter module is based on a solid state Nd-YAG laser emitting 8 ns laser pulses at

1064 nm and 532 nm. The maximum output energy at 532 nm is 100 mJ with a repetition rate of 10 Hz and a beam divergence

of 2.5 mrd. The optical receiver is a 150 mm diameter reception lens coupled with a 1nm filter and two reception channels (co-95

and cross-polarization). The full geometrical overlap is obtained between 80m and 150m. In practice the first 200 m are not

used to reduce the errors when estimating the overlap function correction in clear air region below the aircraft. The detection

unit is composed of a photomultiplier coupled to an analog-to-digital converter (ADC) electronic system with a sampling rate

range of 25 - 100 MHZ (i.e. a 1.5-6m vertical resolution) and a resolution of 12 bits. The cross-polarization calibration is not

sensitive enough to characterize the aerosol type and is mainly used to discriminate cloud and aerosol layers. The near infrared100

channel was not available during the aircraft campaigns. Attenuated backscatter signal in decimal logarithm > -2.3 with a

signal above detection threshold in the depolarization channel is considered as cloud. The initial lidar data temporal averaging
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is 8 s and 1 minute, respectively for 2013 and 2017 campaign. After cloud clearing data are averaged over 1-5 minutes to get a

measurement range higher than 6 km.

2.3 In-situ measurements105

In-situ measurements include trace gas and aerosol measurements. CO measurement is performed using a fully automated

CO analyzer based on a commercial infrared absorption correlation gas analyzer (Model 48C, TEI Thermo Environment

Instruments, USA). The instrument is described in (Nedelec et al., 2003). The accuracy is 5 ppb (5 % CO ) for a 30 s integration

time (i.e. the response time of the instrument) and the detection limit is 10 ppb.

CO2, CH4 and H2O measurements were performed by means of the Picarro G2301-m gas concentration analyzer with a 5 s110

precision of 70 ppb for CO2 and 0.5 ppb for CH4. Water correction software automatically reports dry gas mole fractions.

Equivalent black carbon (EBC) mass concentration are measured using an aethalometer based on light attenuation by particles

after collection on a filter (Panchenko et al., 2000). The wavelength range between 0.4 and 1.1 µm with a maximum near

0.9 µm. This instrument is sensitive to submicron particles. BC mass concentration (ρBC) in µg/m3 is converted from light

absorption measurement (ln I
I0

) with the following relationship : ρBC = 697 ·Cf · ln I
I0

, where Cf is the correction factor115

between 0.5 and 1 taking into account the blackening of the filter. The EBC sensitivity is ' 0.01 µg/m3.

The particle size distribution is fully characterized using two different instruments. Ultra fine particles concentration in the

diameter range from 3 to 200 nm are measured using a diffusional particle sizer (DPS) consisted of an 8-channel automated

diffusion battery (synthetic screen ADB; designed by ICKC SB RAS, Novosibirsk; Ankilow et al. (1991); Ankilov et al.

(2002b, a)) coupled with a condensation particle counter (TSI CPC 3781). One scanning period of the DPS takes 80 s to derive120

size distribution in 20 size bins. Transmission efficiency for the airborne instrument is corrected for and is≈0.997 in the 70-200

nm range and between 0.82 at 400 hPa and 0.89 at 1000 hPa for the 3-70 nm size range. All concentrations are reported at

standard pressure and temperature (STP) conditions. Particle concentrations in 31 size bins in the range from 0.25 to 32 µm

are measured using a GRIMM 1.109 optical particle counter (GRIMM Aerosol Technik GmbH & Co. KG, Germany).

Meteorological parameters such as temperature, humidity and wind vector are measured routinely on-board using HYCAL125

sensor model IH-3602-C of Honeywell Inc. Temperature and relative humidity accuracies are 0.5oC and 7 %, respectively.

3 Methodolgy of the aircraft data analysis

3.1 Aircraft data processing

The lidar calibration is performed several times during each flight using a normalization of the attenuated backscatter signal

(PR2) to molecular backscatter in the range 200m-700m below the aircraft with a 1-5 min temporal resolution. Flight sections130

without aerosol/cloud occurence are determined using the in-situ aircraft measurements (total aerosol concentrations from the

Grimm instrument < 15 particles.cm−3) . The vertical profile of molecular backscatter was estimated from the 0.75o ERA-

Interim ECWF meteorological analysis (Dee et al., 2011). To account for the the overlap function between the field of view of
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the laser and the telescope, the mean altitude dependency of the ratio between PR2 and the molecular backscatter is determined

for each flight in the 0-700 m altitude range below the aircraft using only profiles with no cloud and aerosol layers . The135

calibration accuracy is then of the order of 5-10% due to the mean signal statistical uncertainty (< 3%) and the assumption on

the reference scattering ratio being unity in the calibration range (≈ 5%).

Aerosol optical depth retrieval is based on the Fernald forward inversion of the calibrated PR2 (Fernald, 1984), assuming

a range independent value of aerosol lidar ratio (LR). The LR value is constrained using the distribution of 10 km MODIS

collection 6 (Levy et al., 2013) Aerosol Optical Depth (AOD) in an area of± 70 km and a time lag of± 5 h around the aircraft140

observation. The possible LR values are obtained by an iterative analysis using the 25th and 75th percentile of the MODIS

AOD distribution to constrain the lidar AOD. To estimate the uncertainty of the retrieved backscatter ratio, 500 inversions

were performed using random LR values within the interval deduced from the constraint with MODIS and random backscatter

coefficient at the reference altitude within the interval corresponding to the statistical error on the attenuated backscatter at the

reference altitude (≈ 5%). The complete methodology for the lidar data analysis is summarized in the upper panel of Fig. 2.145

3.2 Identification of the aerosol sources

Aerosol types of the layers observed by the airborne lidar were characterized using first the Lagrangian FLEXible PARTicle

dispersion model (FLEXPART). FLEXPART is a Lagrangian model designed for computing the long-range transport, dif-

fusion, dry and wet deposition, of air pollutants or aerosol particles backward or forward from point sources using a large

number of particles (Stohl and Seibert, 1998; Stohl et al., 2002). For our study particle dispersion calculations are performed150

by including aerosol tracer removal processes by dry and wet deposition in the cloud and under the cloud. For each aerosol

layer identified in a lidar profile, 5-10 days backward simulations of the spatial distribution of 10000 particles released in a 1

km thick altitude zone is made. The occurrence of clouds is calculated by FLEXPART using the relative humidity fields. The

meteorological fields used for the simulations (including precipitation rates) are operational ECMWF field at T255 horizontal

resolution (≈ 80 km) and with 153 model vertical levels. FLEXPART simulations provide maps of Potential Emission Sensi-155

tivity (PES) for each aerosol layer observed by the airborne lidar. These maps represent the areas that have most influenced the

observations including the correction due to the losses of the tracer (Seibert and Frank, 2004). AOD maps from the Level-3

MODIS Atmosphere Daily Global Gridded Product (1ox1o resolution) are also used to identify elevated aerosol sources in the

FLEXPART source region.

Various satellite observations are then used in the source region for a first guess of the aerosol type attribution. The sources160

of biomass-burning aerosol are identified using the daily fire radiative power (FRP) maps based on NASA Fire Information

for Resource Management System (FIRMS) from MODIS observations (Giglio et al., 2003) and the Visible Infrared Imaging

Radiometer Suite (VIIRS) (Schroeder et al., 2014). Significant biomass burning aerosol production is taken into account only

if the daily FRP is higher than 0.3 GW and the fire lifetime higher than three days and if the CO tropospheric column measured

by IASI is higher than the monthly background CO column (Clerbaux et al., 1998; Hadji-Lazaro et al., 1999; Hurtmans et al.,165

2012) (Data set Clerbaux (2018)).
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Dust outbreaks from the Eastern Asia desert are only taken into account if the IASI 10 µm AOD is greater than 0.08 in the

area with elevated PES (Peyridieu et al., 2013; Capelle et al., 2014, 2018) and when CALIOP aerosol depolarization ratio is

greater than 15% in the same area (Tesche et al., 2011; Groß et al., 2011, 2013). Urban pollution aerosol sources are considered

only when large cities (> 500000 inhabitants) are included in the high PES area. The location of flaring sources is based on170

the anthropogenic emissions ECLIPSEv4 data-set (Evaluating the Climate and Air Quality Impacts of Short-Lived pollutants)

described in Klimont et al. (2017). This inventory includes in particular the gridded methane emissions from gas flaring in the

Russian Arctic at a 0.5o x 0.5o horizontal resolution. A threshold of 50 moles.km−2/hour has been applied to the methane

emissions to select areas that could potentially be defined as flaring sources. Elevated CO tropospheric column (> 2.1018

molecule.cm−2) is also mandatory to check the contribution of industrial and urban combustion aerosol sources (Wang et al.,175

2018).

In addition to this first guess for the aerosol type identification, in-situ aircraft measurements of CO concentration, black

carbon (BC) mass concentration and aerosol size distribution are also analyzed for aircraft ascent or descent across the aerosol

layer observed by the airborne lidar. Excess of CO (∆CO), i.e. the difference with the background CO concentration taken as the

minimum of CO measured during the two campaigns in the lower troposphere (0-5 km), must reach 30 ppb for biomass burning180

aerosol and gas flaring emission (Paris et al. (2009b)). Black carbon mass concentrations is also used to identify combustion

aerosol: BC> 0.5 µg.m−3 and BC maximum correlated with elevated ∆CO. The ratio of the aerosol concentration in the cloud

condensation nuclei (CCN) mode between 15 nm and 80 nm over the aerosol concentration in the Aitken nuclei (AN) mode

between 80 nm and 200 nm is used to identify the aerosol aging (Willeke and Whitby, 1975; Bäumer et al., 2008; Furutani

et al., 2008). The complete methodology for the aerosol type identification is summarized in the upper panel of Fig. 2.185

4 Aircraft campaign data analysis

Six flights have been selected during the 2013 and 2017 campaigns, because they correspond to different aerosol sources. The

lidar vertical cross-section of the calibrated attenuated backscatter (PR2) have been used to identify the horizontal and vertical

extent of the aerosol layers (532 nm scattering ratio larger than 1.5). For each aerosol plumes, the AOD and the integrated LR

are calculated, while the aerosol type is retrieved using the methodology described in section 3.190

4.1 Dusty aerosol mixture

On June 16, 2017 the aircraft flew between Novosibirsk and Surgut above the Ob Valley. The PR2 latitudinal cross-section

when the aircraft is flying at 4.2 km, shows an aerosol layer in the 0 and 2.5 km altitude range with a 150 km horizontal

extent (Fig. 3). Clouds (high backscatter and high depolarization ratio) are encountered at 57.5 N when descending to a lower

flight level near 500 m. The AOD and LR are calculated for a 6 min average profile shown by the red rectangle in Fig. 3. The195

lidar ratio range is between 26 sr and 40 sr when using nearby 25th and 75th percentiles of nearby MODIS 550 nm AOD,

respectively 0.07 and 0.112. The corresponding airborne lidar AOD at 532 nm is then 0.09 ± 0.02 (Table 1).
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Figure 2. Flow chart of airborne lidar data processing and aerosol types identification.

Two areas with potential emission sensitivity (PES) higher than 2000 s for the aerosol layer in the altitude range 1 to 3 km

correspond to two regions with elevated 4-day averaging of the MODIS AOD (> 0.2): the Ob Valley industrial area (55oN,

80oE) and a region from 65oE-75oE above Kazakhstan at 50oN (Fig. 4). Fires are detected by MODIS and VIIRS during 3200

days (FRP< 0.2 GW) at 50oN, 65oE over Kazakhstan, while the tropospheric CO column measured by IASI is also high in the

same area (2.0-2.5 x 1018 molecule.cm−2). A second maximum of tropospheric CO column (1.5-1.8 x 1018 molecule.cm−2)

at 58oN,80oE (Fig. 5) is located above the industrial sources of the Ob Valley and Novosibirsk region where there is the

secondary MODIS AOD maximum at 55oN.
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Figure 3. (a) : Vertical cross-section of airborne lidar log10(PR2) on June, 16 2017. Calibration constant is 13458 ± 2%. Grimm aerosol

concentrations in particle.cm−3 are shown at the aircraft altitude. (b) : ∆CO and BC vertical profiles. (c) Aircraft averaged backscatter ratio

vertical profile.

Figure 4. (a) : Map of the vertically integrated PES distribution from a FLEXPART backward simulation for the aerosol layers between

0-2.5 km at 56.6oN (green point). The orange dotted lines is the selected CALIOP overpasses in the aerosol emission area. The yellow dotted

circle is the dust source area. (b) : MODIS AOD 1ox1oaveraged over the 4 days before the flight (June 13 to 16 2017) with high PES area

(PES ≥ 2000 s) shown by the pink dotted line. The green point is the airborne lidar position. Map background : NASA’s Earth Observatory.

The role of dust emission is also significant for this case study when looking at the 4-day average of the 10 µm AOD measured205

by IASI which is in the range 0.15-0.35 above Kazakhstan (Fig. 5). A CALIOP overpass on June 16 also shows high aerosol

depolarizing ratio (15%-20%) up to 3 km altitude at 50oN,70oE above Kazakhstan (Fig. 5). An aerosol depolarization ratio

less than 20% is consistent with polluted dust aerosol (Tesche et al. (2011); Groß et al. (2011); Burton et al. (2013); Groß et al.

(2013)). In the flight area, IASI also detected a 10 µm AOD between 0.08-0.1, which is smaller than above Kazakhstan, but

reaches the dust detection threshold of 0.08. The aerosol layer observed by the airborne lidar at 57oN,80oE can be considered210

as a mixture of dust, industrial pollution the Ob Valley and aged smoke.
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Figure 5. (a) : Tropospheric CO total column averaged over 4 days before the flight (June 13 to 16 2017). The pink area is the area with dust

AOD > 0.08 (AOD at 10µm from IASI). (b) : Averaged CALIOP 532 nm aerosol depolarization ratio vertical profile in the aerosol source

region at 49.7oN (Fig. 4a). Map background : NASA’s Earth Observatory.

When looking at the in-situ measurement made by the aircraft, ∆CO range is between 20 and 30 ppbv up to 2.5 km and the

BC mass concentration increases from 0.2 µg.m−3 at 2 km to 0.4 µg.m−3 at 500 m. These moderate values of ∆CO and BC

compared to other flights (Table 1) are also consistent with a dusty aerosol mixture.

4.2 Ob Valley gas flaring emissions215

On June 18, 2017, the aircraft flew again between Novosibirsk and Surgut and aerosol layers have been observed at higher

latitudes above the gas and oil extraction field of the Ob Valley at 59oN. he PR2 latitudinal cross-section when the aircraft

is flying at 4.5 km, shows an aerosol layer in the 0 and 3.5 km altitude range. The AOD and LR are calculated for a 6 min

average profile shown by the red rectangle in Fig. 6. The lidar ratio range is between 43 sr and 60 sr when using 0.2 and 0.26

for respectively the 25th and 75th percentiles of the nearby MODIS 550 nm AOD. The corresponding 532 nm AOD for the220

airborne lidar is then 0.23 ± 0.06 (Table 1), two times larger than the previous dusty mix case observed at 57oN two days

earlier.

The corresponding PES map (Fig. 7) shows again a large fraction of the air masses above the Ob Valley (55oN-60oN, 75oE)

and air masses transported from Kazakhstan, but with little influence from the fire region at 67oE. Two areas corresponding

to elevated 4-day average of the MODIS AOD (> 0.2) and high PES values, are identified: the oil and gas field at 5oN, 75oE225

and the dust emission region above Kazakhstan at 47oN,73oE (Fig. 8). The map of the IASI tropospheric CO column averaged

from June 15 to June 18 is quite similar to the map averaged from June 13 to June 16 discussed in the previous section (Fig.

10a). The CO maximum of 2.0 x 1018 molecule.cm−2 is still above the Ob Valley at 58oN,75oE. Contrary to the previous case,

the 4-day average of the 10 µm AOD (0.06) in the aircraft flight area is below the dust detection threshold of 0.8, even though

sensitivity to dust emission from Kazakhstan is still highlighted by the PES analysis. A layer with dust (aerosol depolarization230
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Figure 6. (a) : Vertical cross-section of airborne lidar log10(PR2) on June, 18 2017. Calibration constant is 63413 ± 2%. Grimm aerosol

concentrations in particle.cm−3 are shown at the aircraft altitude. (b) : ∆CO, CCN/Aitken and BC vertical profiles. (c) Aircraft averaged

backscatter ratio vertical profile.

ratio up to 30% ) is detected by a CALIOP overpass on June 18 at the aircraft location 13 hours after the flight. However the

dust layer is above an altitude of 3.5 km (Fig. 8a), so above the layer seen by the airborne lidar and the dust layer thickness

is less than 1 km. Ancellet et al. (2019) already pointed out that dust layers above Tomsk (56oN,85oE) are generally detected

above the boundary layer. We can conclude that the aerosol layer sampled by the airborne lidar at 59oN on June 18 below 3.5

km is then mainly related to the Ob Valley aerosol emissions and is not significantly influenced by the Kazakhstan dust and235

biomass burning emissions. Aircraft in-situ measurements during the descent at 59oN (Fig. 6) also show ∆CO concentrations

up 40 ppbv and BC mass concentration of 0.5 µg.m−3 in the 1-2 km altitude range which indicate that local pollution sources

have been transported up to 2 km on June 18. The moderate value of CCN to AN ratio (0.3-0.65) is also consistent with the

accumulation of local emissions compared to the transport of distant emissions from the Kazakhstan deserts.

4.3 Fresh forest fire plume240

The aircraft flew in July 2013 near a region with numerous forest fires above Northern Siberia between 60oN-65oN, 90oE-

100oE. The airborne lidar detected a 500-m thick aerosol layer in the altitude range 2-4 km with a backscatter ratio of the order

of 3.5 (Fig. 9). The aerosol plume sampled by the aircraft has a West-East cross section of 50 km and the AOD and LR are

calculated for three 40 s average profile shown by the red rectangles at 93.2oE, 93.7oE and 94.1oE in Fig. 9. The 25th and 75th

percentiles of the 550 nm AOD measured by MODIS in the biomass burning plume are respectively 0.115 and 0.125 in the245

area where the fire plume has been observed. To account for the airborne lidar not sampling 20% and 35% of the 4 km thick

aerosol layer observed by MODIS at 93.7oE and 94.1oE, the 550 AOD ranges have been lowered accordingly, i.e. 0.092-0.1

and 0.075-0.081 respectively when calculating the lidar ratio at these two longitudes. For the three selected profiles, we obtain

the same LR range of 32-39 sr, while the AOD measured by the lidar at 532 nm is 0.115± 0.01 for this biomass burning plume.
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Figure 7. (a) : Map of the vertically integrated PES distribution from a FLEXPART backward simulation for the aerosol layers between 0-3.5

km at 58.3oN (green point). The orange dotted lines is the selected CALIOP overpasses in the aerosol emission area. (b) : MODIS AOD

1ox1oaveraged over the 4 days before the flight (June 15 to 18 2017) with high PES area (PES ≥ 2000 s) shown by the pink dotted line. The

green point is the airborne lidar position. Map background : NASA’s Earth Observatory.

Figure 8. (a) : Tropospheric CO total column averaged over 4 days before the flight (June 13 to 16 2017). The pink area is the area with dust

AOD > 0.08 (AOD at 10µm from IASI). (b) : Averaged CALIOP 532 nm aerosol depolarization ratio vertical profile at 55oN, 75oE on June

18, 2017 21UT. Map background : NASA’s Earth Observatory.

The PES map calculated by FLEXPART (Fig. 10) shows no aerosol transport from large cities or pollution sources. Active250

forest fires with a lifetime around 3 days and FRP up to 0.2 GW took place at 66oN, 108oE from June 17 to June 19 and an

active fire was observed at the aircraft location (58oN, 95oE) on June 19 with a FRP of 0.18 GW and a lifetime of 1-2 days. A

fresh forest fire plume is then responsible for the aerosol layer seen by the lidar with a backscatter ratio higher than 3.5. The

aircraft in-situ measurements indeed show BC mass concentration between up to 1.6 µg.m−3 and ∆CO up 40 ppbv at 3 km,

and the low CCN to AN concentration ratio (0.1 - 0.15) is consistent with the sampling of a fresh fire plume.255
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Figure 9. (a) : Vertical cross-section of aircraft log10(PR2) on July, 19 2013. Calibration constant is 491724 ± 10%. Grimm aerosol

concentrations in particle.cm−3 are shown at the aircraft altitude. (b) : ∆CO, CCN/Aitken and BC vertical profiles. (c) Aircraft averaged

backscatter ratio vertical profile.

Figure 10. (a) : Map of the vertically integrated PES distribution for FLEXPART backward simulation for the aerosol layer at 1.7 km (green

point). The red dots represent position of the forest fires detected by MODIS and VIIRS and The orange dotted lines is the selected CALIOP

overpasses in the aerosol emission area. (b) : MODIS AOD 1ox1oaveraged over the 4 days before the flight (June 16 to 19 2017) with high

PES area (PES ≥ 2000 s) shown by the pink dotted line. The green point is the airborne lidar position. Map background : NASA’s Earth

Observatory.

4.4 Aged forest fires

It is also interesting to investigate if aged fires correspond to larger lidar ratio as expected according to previous studies (Müller

et al., 2005; Tesche et al., 2011; Burton et al., 2013). Part of the June 18, 2017 flight between Novosibirsk and Surgut meets

this objective. The latitudinal cross-section PR2, when the aircraft flies at 4 km, shows a layer of aerosol in the altitude range of

0 and 2 km with a horizontal extension of 120 km (Fig. 11). The AOD and LR are calculated for a 9 min average profile shown260
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Figure 11. (a) : Vertical cross-section of aircraft log10(PR2) on June, 18 2017. Calibration constant is 83014 ± 5%. Grimm aerosol

concentrations in particle.cm−3 are shown at the aircraft altitude. (b) : ∆CO, CCN/Aitken and BC vertical profiles. (c) Aircraft averaged

backscatter ratio vertical profile.

by the red rectangle in Fig. 11. The lidar ratio range is between 64 sr and 86 sr when using 0.16 and 0.22 for respectively the

25th and 75th percentiles of the nearby MODIS 550 nm AOD. The corresponding 532 nm AOD for the airborne lidar is then

0.19 ± 0.04 (Table 1), 1.6 times larger than the previous dusty mix case observed at 57oN two days earlier.

The PES calculated by FLEXPART between 500 m and 2 km at 57.4oN (Fig. 12) shows that aerosol emissions are from an area

between 80oE and 100oE at 57oN, while the highest MODIS AOD in this area are related to forest fires which occurred 100oE265

North of Irkutzk (0.05 < FRP < 0.2 GW). The tropospheric CO columns measured by IASI (Fig. 13) also show high values

North East of Irkutsk (2.0-2.5 x 1018 molecule.cm−2) while it remains in the range 1.5 - 2.0 x 1018 molecule.cm−2 above the

cities of Tomsk, Novosibirsk and Krasnoyarsk. Forest fire plumes from Eastern Siberia can explain the aerosol layers seen by

the airborne lidar at 57.49oN, 78.63oE. In-situ aircraft measurements (Fig. 11) are also consistent with this hypothesis since

∆CO concentrations are even higher than in the fresh fire plume (35-60 ppbv) and the 0.58 CCN to Aitken size distribution ratio270

is significantly higher than the small values encountered in the fresh fire. The BC mass concentration (0.3 and 0.55 µg.m−3)

is however weaker than the fresh forest value due to the short lifetime (few days) of BC in the atmosphere (Cape et al., 2012;

Lund et al., 2018).

4.5 Siberian urban and industrial emissions

The aircraft flew over the major Siberian cities in July 2013 between Krasnoyarsk and Novosibirsk, many aerosol layers have275

been encountered in the 0-3 km altitude range. On example has been selected on July 20th 2013 and is shown in Fig. 14. The

PR2 latitudinal cross-section when the aircraft is flying at 4.5 km and then descends to 2.5 km, shows a 600 km long aerosol

layer in the 0-3 km altitude range. The AOD and LR are calculated for a 1 min average profile shown by the red rectangle in Fig.

14 when the aircraft is between Tomsk and Novosibirsk, i.e. a densely populated area with numerous industrial infrastructure.
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Figure 12. (a) : Map of the vertically integrated PES distribution from FLEXPART backward simulation for the aerosol layer between 0-2

km at 57.49oN (green point). The red dotted area is the forest fire area and the orange dotted lines are the selected CALIOP overpasses in

the source area. (b) : MODIS AOD 1ox1oaveraged over the 4 days before the flight (June 15 to 18 2017) with high PES area (PES ≥ 2000

s) shown by the pink dotted line. The green point is the airborne lidar position. Map background : NASA’s Earth Observatory.

Figure 13. Tropospheric CO total column averaged over 4 days before the flight (June 15 to 18 2017). The pink area is the area with dust

AOD > 0.08 (AOD at 10µm from IASI). Map background : NASA’s Earth Observatory.

The lidar ratio range is between 71 sr and 90 sr when using 0.13 and 0.21 for respectively the 25th and 75th percentiles of the280

nearby MODIS 550 nm AOD (Table 1). The corresponding 532 nm AOD for the airborne lidar is then 0.17 ± 0.05 (Table 1).

The strong PES values obtained with the FLEXPART backward simulation for the aerosol layer observed by the lidar (Fig.

15) remain concentrated between 50oN and 55oN south of Novosibirsk and Tomsk. The range of the 4-day averaged MODIS

AODs at 550 nm is 0.2-0.3 in the northern part of this domain near the major cities while it is 0.1-0.2 in the southern part

around 52oN. The tropospheric CO column values above 2.0 x 1018 molecule.cm−2 match also the MODIS AOD distribution285

(Fig. 16). No fires have been detected in this region using the FIRMS data set and the amount of dust is very low in this area
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Figure 14. (a) : Vertical cross-section of aircraft log10(PR2) on July, 20 2013. Calibration constant is 136203 ± 5%. Grimm aerosol

concentrations in particle.cm−3 are shown at the aircraft altitude. (b) : ∆CO, CCN/Aitken and BC vertical profiles. (c) Aircraft averaged

backscatter ratio vertical profile.

Figure 15. (a) : Map of the vertically integrated PES distribution from FLEXPART backward simulation for the aerosol layer between

0-2.5 km at 87.5oN (green point). The orange dotted lines are the selected CALIOP overpasses in the source area. (b) : MODIS AOD

1ox1oaveraged over the 4 days before the flight (July 17 to 20 2013) with high PES area (PES ≥ 2000 s) shown by the pink dotted line. The

green point is the airborne lidar position. Map background : NASA’s Earth Observatory.

according to the IASI 10 µm AOD which is always below 0.1. Therefore the source of the aerosol plume observed by the

airborne lidar is related to the local urban and industrial emissions from the Novossibirsk/Tomsk area. The ∆CO concentration

and CCN to Aitken ratio measured by the aircraft at 2 km are respectively 50 ppbv and 0.5 at 2 km altitude, i.e. similar to the

values encountered for local urban and industrial emissions in section 4.5. The BC mass concentration (0.2 however lower than290

the BC values observed for the region dominated by gas flaring emission (0.4-0.5 µg.m−3).
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Figure 16. Tropospheric CO total column averaged over 4 days before the flight (June 17 to 20 2013). Map background : NASA’s Earth

Observatory.

Figure 17. (a) : Vertical cross-section of aircraft log10(PR2) on July, 19 2013 above Yakutsk. Calibration constant is 127216± 5%. Grimm

aerosol concentrations in particle.cm−3 are shown at the aircraft altitude. (b) : ∆CO, CCN/Aitken and BC vertical profiles. (c) Aircraft

averaged backscatter ratio vertical profile.

4.6 Long range transport of Northern China emissions

The last case study corresponds to the lidar observations near the city of Yakutzk (62oN, 129oE) on July 19, 2013. A PR2

vertical cross-section when descending to Yakutsk shows several aerosol layers in the 0 and 5 km altitude range (Fig. 17). The

AOD and LR are calculated for a 40 sec average profile shown by the red rectangle in Fig. 17 when the aircraft is high enough295

to sample the entire aerosol layer between 0 and 4 km. The lidar ratio range is between 41 sr and 51 sr when using 0.1 and

0.13 for respectively the 25th and 75th percentiles of the nearby MODIS AOD at 550 nm (Table 1). The corresponding AOD

for the airborne lidar at 532 nm is then 0.12 ± 0.04 (Table 1).
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Figure 18. (a) : Map of the vertically integrated PES distribution from FLEXPART backward simulation for the aerosol layer between 0-4

km at 62oN, 129.45oE (green points). The orange dotted lines are the selected CALIOP overpasses in the source area. (b) : MODIS AOD

1ox1oaveraged over the 4 days before the flight (July 16 to 19 2013) with high PES area (PES ≥ 1000 s) shown by the pink dotted line. The

green point is the airborne lidar position. Map background : NASA’s Earth Observatory.

The PES calculated by FLEXPART for this aerosol layer and the MODIS AOD 4-day map show that the aerosol source region

is located in a North-South corridor at 128oE extending southward to the city of Harbin in Northern China (Fig. 18). The CO300

tropospheric column measured by IASI is less than 2.0 x 1018 molecule.cm−2 between Yakutsk and 52oN, while it is higher

than 2.0 x 1018 molecule.cm−2 in the Harbin area (Fig. 19). No fire is detected by FIRMS and no dust layer is seen by the

10 µm AOD measured by IASI in the area between Harbin and Yaktusk (Fig. 19). Therefore, the main source of the aerosol

layers observed by the lidar, and in particular the one located at altitude between 2.5 and 4 km, can be attributed to emissions

from the Harbin region.305

The ∆CO concentration measured by the aircraft during an ascent west of Yakutsk at 128.6oE is as large as 75 ppbv in the

layer between 2 and 4 km, while the CCN to AN ratio is characteristic of aged aerosol with a value as high as 1.4 (Fig. 17).

This is consistent with the hypothesis of atmospheric transport of a polluted aerosol plume between Harbin and Yakutsk. The

BC mass concentrations are similar to the values encountered for the previous case when flying around the Siberian cities. So

either the contributions of Harbin and of Novosibirsk/Tomsk emissions to the BC atmospheric concentrations are similar or310

BC from Harbin emissions has been efficiently removed during the 2-day transport between Harbin and Yakutsk.

4.7 Aerosol classification discussion

The characteristics of the 6 aerosol layers studied in this section are grouped in a summary table (Table 1). It can be noted that

the highest AODs (> 0.2) were obtained on the one hand for the gas flaring emission in accordance with several studies on the

impact of these emissions on aerosol production (Stohl et al., 2013; Elvidge et al., 2016), and on the other hand for aged fire315

plumes as frequently observed in Siberia (Damoah et al., 2004; Paris et al., 2009b). However, the highest ∆CO values were

obtained for cases of long range transport of combustion aerosols from fires or Northern China. It is consistent with the CO
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Figure 19. Tropospheric CO total column averaged over 4 days before the flight (July 16 to 19 2013). Map background : NASA’s Earth

Observatory.

lifetime being longer than 15 days and the buildup with time of individual plumes at remote locations (Forster et al., 2001;

Petetin et al., 2018). BC mass concentration is high (> 1.5 µ g.m−3) for the fresh biomass burning plume while it is less than

0.5 µ g.m−3 for the other cases because of efficient BC removal for transport lifetime> 1-2 days (Cape et al., 2012; Lund et al.,320

2018). Gas flaring contribution to BC mass concentration (0.5 µg.m−3) is also higher than the urban pollution contribution (0.2

µg.m−3).

Regarding the LR values according to the aerosol type, the lowest range is obtained for the "Dusty Mix" case (26 sr - 40 sr) and

the highest for the urban pollution from Tomsk and Novosibirsk (71 sr - 90 sr). A lofted dust layer in Tajikistan discussed by

Hofer et al. (2017) with a multiwavelength Raman lidar has LR of the order of 36 sr at 532 nm, while the range of the LR for325

dusty mix cases discussed by Burton et al. (2013) with an airborne HSRL lidar at 532 nm is between 26 sr and 49 sr in North

America. Our dusty mix case shows similar values. The ranges obtained for our fresh and aged biomass burning plumes are

also in good agreement with previous studies. Burton et al. (2013) also found fresh biomass burning LR (33-46 sr) lower than

aged fire plume LR (55-73 sr) in North America. Lidar ratios reported for aged Siberian smoke layers transported over Japan

(Murayama et al., 2004) or Korea (Noh et al., 2008) are also of the order of 65 sr at 532 nm.330

The range of LR values for pollution aerosol is quite large in published papers (43-90 sr) depending on the type of anthro-

pogenic emission, on the season and on the altitude of the aerosol layer. For example in Europe, Chazette et al. (2005) found

LR between 60 sr and 77 sr in Paris, while Müller et al. (2007) obtained 45-60 sr in Leipzig. Burton et al. (2013) proposed

a LR range between 53 sr and 70 sr in North America using their airborne lidar flights around major North American cities

and Mexico. In Beijing, Xie et al. (2008) found 44 sr for high humidity and heavy pollution and 61 sr for lower humidity335

and moderate pollution level. Ansmann et al. (2005) and Heese et al. (2017) also found LR generally below 50 sr for the Pearl

River delta in China where high pollution and humidity are generally found. Our values for transport of aged aerosol layer from
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Table 1. Aerosol type / LR classification obtained from the airborne lidar study. For each identified aerosol type, the studied layer AOD, the

MODIS AOD distribution used for the inversion and In-situ measurements of ∆CO, CCN/Aitken and BC are also presented. Finally, the

comparison with Burton et al. (2013) classification is presented.

Aerosol type Transport of dusty Fresh smoke Transport of smoke Gas flaring Urban and Transport of urban and

aerosol mixture from Siberian fires from Siberian fires industrial emissions industrial emissions industrial emissions

from Kazakhstan of Siberian cities from Northern China

∆CO in ppbv 20 35 - 45 65 - 60 20 - 40 50 30 - 80

Black carbon 0.2 - 0.4 0.8 - 1.6 0.3 - 0.55 0.4 - 0.5 0.2 0.2

concentration

(µg.m−3)

CCN / Aitken - 0.1 - 0.15 0.6 0.3 - 0.65 0.5 0.8 - 1.4

Aircraft AOD 0.0895 ± 0.0225 0.117 ± 0.02 0.19 ± 0.04 0.23 ± 0.06 0.17 ± 0.05 0.12 ± 0.04

Aircraft LR 26 - 40 34 - 40 64 - 86 43 - 60 71 - 90 41 - 51

MODIS AOD 0.069 - 0.112 0.115 - 0.125 0.16 - 0.22 0.2 - 0.26 0.13 - 0.21 0.1 - 0.13

(25th - 75th)

Aerosol type Dusty Mix Fresh Smoke Smoke Urban Urban Polluted Marine

Burton et al. (2013)

classification

LR (5th - 95th) 29 - 49 33 - 46 55 - 73 53 - 70 53 - 70 36 - 45

Burton et al. (2013) (14 - 63) (24 - 52) (46 - 87) (43 - 81) (43 - 81) (27 - 50)

classification

China is in the lower range (40-50 sr) as expected for aged aerosol and southerly flow with many clouds and high humidity

over Eastern Siberia (Fig. 18). The "polluted marine" aerosol type in the Burton et al. (2013) classification better corresponds

to the aged aerosol layer from Northern China, as their aircraft flights are then representative of aged anthropogenic plumes340

from coastal cities transported over the ocean. The LR range of 36-45 sr is then similar to this work for the aged plume from

Northern China.

Our LR values for the Novosibirsk area (70-90 sr) is in the upper range of previous observations of polluted aerosol layers.

Dieudonné et al. (2017) also found elevated LR (> 90 sr) at 355 nm around several cities in Russia. Since the lidar ratio is

generally 10 sr higher at 355 nm than at 532 nm (Mattis et al., 2004; Müller et al., 2007), these results are consistent with the345

high LR values found by the airborne lidar around Novosibirsk.
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Finally the LR range obtained for the gas flaring area (43 sr - 60 sr) cannot be compared to an existing value as specific studies

of these aerosol plumes with a lidar system have not been published. Chazette et al. (2018) reported LR of the order of 71 sr

at 355 nm in Hammerfest, Northern Norway for a mixture of flaring emissions from a local industrial source and transport of

pollution aerosol from the Murmansk area in Russia and is hardly comparable to the case of the Ob Valley with many flaring350

sources. The range of LR (40-50 sr) measured in Tomsk above the boundary layer between 2.5 and 5 km using a Raman lidar at

532 nm in April-May 2007 (Samoilova et al., 2010) is probably a better proxy of the influence of the Ob Valley flaring emission

area since no fires are present over Siberia during this month and long range transport is mainly controlled by Westerly and

Northerly wind at 500 hPa from the Ob Valley region (22 days out of 31).

5 Comparison of airborne lidar and CALIOP aerosol layer data products355

In this section, aerosol type and LR values derived from the airborne lidar data analysis are compared to nearby CALIOP

overpasses. The time of passage and the position of the aircraft do not allow to have an exact coincidence with the footprint of

the CALIOP lidar. Therefore CALIOP granules to be compared with the aircraft have been selected using the FLEXPART PES

maps discussed in the previous section. For the selected CALIPSO granule, cloud free attenuated backscatter profiles with PES

> 0.8·PESmax are averaged to obtain a mean backscatter ratio vertical profile using the methodology described in Ancellet360

et al. (2014). The averaging distance is generally of the order of 100-300 km (see Table 2). The aerosol type and the range of

the LR distribution for the CALIOP profile is then taken from the Version 4.1 level 2 CALIOP aerosol data product Kim et al.

(2018).

The comparisons of the total backscatter ratio vertical profiles for the six case studies presented in Table 1 are shown in Fig.

20. The positions and dates of the CALIPSO profiles chosen for this comparison are given in Table 2 along with the spatial and365

temporal differences between the aircraft measurements and the CALIOP profiles. Only one case above the Ob valley on June

18 (Fig. 20d) corresponds to a distance less than 150 km and a time lag less than 12 h. For the other cases, a strong sensitivity

to a spatial distance larger than 200 km is only expected on June 16 (Fig. 20a) when the air mass transport direction is not

parallel to the line connected the aircraft and CALIOP profile positions, and when the differential advection of the aerosol

plume may change the vertical structure of the total backscatter. The range of the selected CALIOP backscatter ratio profiles in370

Fig. 20 differs from that of airborne lidar by less than 20% and the thicknesses of the aerosol layers are in good agreement. The

comparison for the case with long range transport from Northern China even shows a surprisingly good agreement (Fig. 20f)

considering the large distance (576 km) between the two measurements mainly because the transport pathway is parallel to the

line connected the CALIOP footprint and the aircraft position. Because the sensitivity to spatial and temporal mismatches is

expected to be large for the biomass burning cases, two CALIOP vertical profiles are selected in Fig. 20b, c provided that the375

0.8·PESmax criteria is still true. For the fresh fire case (Fig. 20b), a layer with similar structure and backscatter ratio magnitude

was seen by CALIOP 60 hours earlier and 500 km further north, and should be also considered in the comparison. For the aged

forest fires, the differences between the two CALIOP vertical profiles are quite small and the CALIOP profiles are then fairly

representative of the airborne lidar observations. The 532 nm AOD calculated for the aircraft and CALIOP profiles (Table
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Figure 20. Comparison of aircraft and CALIOP averaged backscatter ratio vertical profile.

2) are very similar except for the aged urban pollution layers transported from northern China where the AOD differences380

between CALIOP and the airborne lidar is 0.16 (+57%). This is mainly due to large difference of lidar ratio (70 sr instead 45

sr) between the CALIOP retrieval and the aircraft data (see hereafter). Therefore the selected CALIOP profiles are suitable to

discuss the differences between the CALIOP V4.2 lidar ratio values compared to the airborne lidar data analysis.

The aerosol composition for the six averaged CALIOP profiles are given in Table 2 using the CALIOP level 2 aerosol type

and taking into account the thickness of the aerosol layers. The corresponding lidar ratio is obtained using the fraction of the385

aerosol type and the lidar ratio range given for each type of the CALIOP aerosol classification by Kim et al. (2018); Omar

et al. (2009). For the forest fire cases where two CALIOP profiles have been considered for the comparison, the two CALIOP

profiles have the same composition for the fresh fire case and the mixture of polluted dust and smoke is only slightly different
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for the two CALIOP profiles selected for the analysis of the aged forest fire plume (less polluted dust fraction for the CALIOP

profile least distant from the Baikal lake fire area).390

Regarding the aerosol type found for the CALIOP observations, there is a good agreement with our detailed analysis of

the aerosol sources for three cases (dusty mixture, fresh smoke and aged pollution plume from Northern China) while the

classification is not appropriate for the aged Siberian fires from Lake Baikal region and for the urban and gas flaring emissions

from Russia. For the aged forest fire case and the gas flaring emissions, the fraction of polluted dust aerosol is too high. These

two misclassifications led to moderate underestimates of the lidar ratio of 5 sr and 7 sr respectively for the case of old fires and395

flaring gas emissions. In fact the misclassification even compensates for the bias on the value of the lidar ratio of the polluted

continental type which is too high for gas flaring emissions. The misclassification of the CALIOP profile related to urban and

industrial Russian emissions seen as an elevated smoke type occure mainly because the polluted PBL thickness is frequently

higher than 2.5 km in summer above Siberia (i.e. the upper limit to ascribe an elevated smoke type to an aerosol layer in the

CALIOP V.4). This misclassification does not impact the value of the lidar ratio.400

Eventhough the aerosol type classification is correct for the dusty mixture and the transport of pollution plume from Northern

China, the lidar ratio found for CALIOP is too high by 25 sr. Although this difference is not far from the CALIOP lidar ratio

uncertainty, it is likely that aerosol plume aging and mixture with background aerosol cannot be properly taken into account

and lead to a positive bias when deriving the lidar ratio from the aerosol type. Regarding the fresh forest fire case, CALIOP

classification is correct but since the age of the fire is not taken into account in the CALIOP data processing the lidar ratio405

is two times larger than the estimated value by the airborne lidar. This will lead to an overestimation of the aerosol AOD by

CALIOP when sampling biomass burning plume very close to the fire region.

6 Conclusions

Two airborne lidar campaigns were carried out over Siberia in July 2013 and June 2017. Aerosol types and optical properties

were derived using FLEXPART, satellite data and airborne in-situ measurements when available. Six aerosol type could be410

identified in this work: (i) Dusty aerosol mixture (ii) Ob valley industrial emission (iii) fresh boreal forest fire plumes (iv) aged

forest fire plumes (v) pollution over the Tomsk/Novosibirsk region (vi) long range transport of Chinese pollution over Yakutsk.

The aircraft in-situ measurement, mainly ∆CO and BC have been useful to validate the identification of the aerosol origin

using FLEXPART and the satellite observations ; namely large BC concentrations in the fresh forest fire plume and large ∆CO

for the long range transport of Eastern Siberian forest fires and of polluted plumes from Northern China. The lidar ratio (LR)415

analysis shows that the lowest LR range is obtained for the "Dusty Mix" case (26-40 sr) and the highest for the urban and

industrial pollution from the Tomsk/Novosibirsk area (71-90 sr). We found a good agreement of this work analysis of the LR

values according to the aerosol classification with previous studies (e.g., Burton et al., 2013). The range of lidar ratio obtained

for gas flaring emission (43-60 sr) is lower than the high values encountered in the Tomsk/Novosibirk urban area and has never

been characterized using lidar observations.420
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Table 2. Aerosol type / LR classification and AOD obtained from the study of airborne lidar data and the associated CALIOP profiles are presented. Spatial and temporal

informations of CALIOP profiles are also presented.

Aerosol type Transport of dusty Fresh smoke Transport of smoke Gas flaring Urban and Transport of urban and

aerosol mixture from Siberian fires from Siberian fires industrial emissions industrial emissions industrial emissions

from Kazakhstan of Siberian cities from Northern China

CALIOP time 15/06/2017, 21UT 16/07/2013, 19UT 17/06/2017, 06UT 18/06/2017, 20UT 17/07/2013, 20UT 18/07/2013, 18UT

18/07/2013, 05UT 17/06/2017, 19UT

CALIOP HAV (km) 190 60 220 360 140 110

100 220

CALIOP mean 54.5oN,82.5oE 61.8oN,102.4oE 56.7oN,83.7oE 57.85oN,76.62oE 55.2oN,87.52oE 57oN,127.15oE

position 59.3oN,97.6oE 57.3oN,87oE

Dx (km) ≈ 200 ≈ 530 ≈ 375 ≈ 224 ≈ 105 ≈ 640

≈ 220 ≈ 525

∆t (h) -7 -60 -20 +19 -57 -12

-24 -7

CALIOP aerosol type

(LR of aerosol type):

Polluted Dust 84% 11 % 29% 65% 10% 0%

(55± 22 sr) 39%

Polluted continental 16 % 89% 71% 32% 0% 70%

/ Smoke (70± 25 sr) 56%

Elevated smoke 0 % 0 % 0% 0% 90% 30%

(70± 16 sr) 0%

Clean continental 0 % 0 % 0 % 3% 0% 0%

(53± 24 sr) 5%

CALIOP mean LR 57±23 70±16 66±25 60±24 69±25 70±25

63±25

CALIOP AOD 0.093 ± 0.04 0.09 ± 0.04 0.19 ± 0.07 0.19 ± 0.06 0.11 ± 0.03 0.28 ± 0.1

0.18 ± 0.07 0.14 ± 0.06

Aircraft LR 26 - 40 34 - 40 64 - 86 43 - 60 71 - 90 41 - 51

Aircraft AOD 0.089 ± 0.02 0.2 ± 0.02 0.19 ± 0.04 0.23 ± 0.06 0.17 ± 0.05 0.12 ± 0.04
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Airborne lidar backscatter ratio vertical structure, aerosol types and integrated LR derived from the airborne data analysis

(section 4) were compared to nearby CALIOP overpasses. We found three main differences with the CALIOP LR and aerosol

type classification over Siberia: (i) layer can be classified as Elevated smoke instead of Polluted continental and vice versa, but

with little influence on the LR value (ii) aging and transport of aerosol layers effect on the LR value is not always properly

accounted for even when the classification is correct (e.g. the dusty mixture is properly identified but with a lidar ratio too high)425

(iii) the lack of discrimination between fresh and old fire plume leads to an overestimation of the optical depth for the fresh

fires. Constrained LR CALIOP with an independent AOD could be another alternative to alleviate some of these limitations

discussed in this paper. Such an independent AOD value could be given by co-localized MODIS observations especially for

daytime observations in summer. Surface lidar reflectance observations on homogeneous surfaces such as the Siberian taiga or

artic tundras could be also a very good alternative as discussed by (Josset et al., 2018) especially for nighttime observations.430
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Code availability. The FLEXPART code version 9.2 was downloaded from the FLEXPART wiki homepage (https://www.flexpart.eu/downloads).

Data availability. Airborne lidar data and in-situ measurements are available and can be provided on request (contact : Mikhail Arshinov -

michael@iao.ru). The daily MODIS and VIIRS information from the fires were provided by LANCE FIRMS operated by NASA/GSFC/EOSDIS

and are available at https://firms.modaps.eosdis.nasa.gov/download/. MODIS AOD product (10 km and gridded 1oresolution) were down-

loaded in hdf format at https://ladsweb.modaps.eosdis.nasa.gov/archive/. The 10 µm IASI product was download in NetCDF format at435

https://ara.lmd.polytechnique.fr/index.php?page=aerosols. CALIOP level L2 data have been downloaded from the ICARE date base (http:

//www.icare.univ-lille1.fr). The AERIS infrastructure (http://www.aeris-data.fr) provided the access to the IASI CO data. Meteorological

Analysis are available at ECMWF (http://www.ecmwf.int)
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