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Response to reviewers 
“How aerosols and greenhouse gases influence the diurnal temperature range”, by Stjern et al. 

 
Reviewer #1 (Comments to the Author):  
 5 
General comments: I think the figures are useful and well presented, but in a couple of places I miss some more elaboration 
on the results shown therein. See specific comments below. 
We thank the reviewer for performing this review and refer to specific comments and their responses in blue below. We have 
gone through all our figures with you comment in mind, and either elaborated more on what they show, or moved the figure 
to the supplementary. 10 
 
 
L45: As you allude to later (L63) the relationship between radiative forcing and SAT is non-linear (especially in shallow, 
stably-stratified conditions, such as midlat winter Tmin) because it is modified by the near-surface mixing strength; I think 
this should be clarified here. 15 
We agree that this could have been made clearer. We have rewritten most of the introduction to improve the clarity, and have 
also added the following sentence: “Finally, each process and its effect on DTR may be modified by non-linear effects such 
as, e.g., local hydrological conditions or atmospheric stratification.” 
 
 20 
L55: In the previous sentences you argue that LW changes effect both the Tmax and Tmin, but that SW changes affect the 
Tmax more strongly, but then here you should make clear that in the polar night, in the absence of SW, LW changes effect 
both Tmax and Tmin. 
The mention of the polar night in this paragraph was a bit confusing and uncomplete, as noted by the reviewer. We have 
determined to remove this from the introduction, and rather explain Arctic-related processes when we present the Arctic 25 
results. 
 
 
L69: “Informed projections” I think you should expand on what you mean by that i.e. pathways derived from IAMs 

Thank you, we have reworded this sentence, and it now reads: 30 
“However, the future balance between the different climate forcers is highly uncertain, and differs markedly between the 
various Shared Socioeconomic Pathways currently in use by the projection and climate impact communities (Lund et al., 
2019; Rao et al., 2017). In particular, they include a wide range of possible emission combinations of BC and SO4 from India 
and China, some of which lead to a strong dipole pattern in regional, aerosol induced radiative forcing over the coming 
decades (Samset et al., 2019).” 35 
 
 
L113-114: I think the choice of the Arctic as a region of interest needs some clearer justification as you have already 
mentioned the DTR here is not so much driven by diurnal variations in SW forcing.  

We did mention in the introduction this insensitivity to SW radiation in the Arctic during the polar night. But in the other 40 
half of the year, SW forcing is important even during the night, and thus the driver variation in SW forcing will be highly 
present in the Arctic during summer. However, in a general rewriting of the Introduction to improve clarity and readability, 
we have chosen to remove this part. Instead, the final paragraph of the Methods section now contains a sentence motivating 
the inclusion of the ARC region: 
“We present results for all land regions aggregated (LND), and the populated, high (present or previous) aerosol emission 45 
regions of the continental United States (USA), central Europe (EUR), India (IND), eastern China (CHI). In addition, we 
study changes in the Arctic (ARC), which is a region known to be sensitive to remote emissions but where the mediating 
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processes are not fully explored. As an example, potential drivers of regional impacts such as melt ponds and sea ice loss 
may depend on summertime Arctic DTR, , which may in turn depend on diurnal variations in, e.g., photochemical particle 
production or transport into the region (Deshpande et al., 2014). Our main focus is however on the major aerosol emission 50 
regions.” 
 
 
L124: The multi-model median is referred to as 10.8K, but in the corresponding figure 2 this looks like it is less than 10K – 
am I missing something or is this number referring to the mean perhaps?  55 
Thank you for spotting this error, it is indeed slightly less than 10 – the number should be 9.8 and not 10.8. 
 
 
L136: Here and elsewhere when you refer to comparison of geographical patterns the analysis is qualitative, but it would 
benefit from being supplemented by some quantitative measures of pattern similarity e.g. correlation coefficient between 60 
patterns. 
This specific sentence referred to here is now removed. Not supporting statements of geographic similarity with spatial 
correlation coefficients was a conscious choice on our part. These maps are meant to give the reader an overview of the 
general DTR changes, and we also wanted to show how the changes look in regions and seasons other than the ones we 
focus our analyses on. Still, we want the analyses to be focused on the regional averages, and find that there is no quick way 65 
to just add global comparisons such as spatial correlation coefficients. We would then have to supply correlations between 
BCx10 and CO2x2, between SO4x4 and CO2x2 and between BCx10 and CO2x2, and would have to explain them from a 
global perspective. This, we feel, is beyond the scope of this manuscript. 
Still, we understand the reviewer’s comment. We have chosen to solve the issue by more careful wording when we point to 
these maps, and by informing the reader that quantitative results will be supplied. For example, section 3.2.1 now starts with 70 
“As visible in Fig. 3, all three climate drivers induce a strong reduction in DTR over northern high and mid latitudes in 
winter.  In Fig. 4 we quantify these changes by taking a closer look at regional averages.” 
 
 
Related to Figure 2: For the Tmin plot all the individual regions are either warmer or the same temperature in the models as 75 
compared to the observations, while in the LND average the models are colder. Since this somewhat undercuts the argument 
about choosing representative regions around the globe, I think this should be commented on. 
This inconsistency turned out to stem from deficient masking – especially coastal and island regions were not included in the 
PDRMIP data, causing values that in the case of Tmin were too low when averaged over all land. We have now fixed this 
problem and find that the all-land average Tmin is 7.8 in PDRMIP and 6.4 in CRU-TS. In response to the response from 80 
other reviewers, however, we have chosen to change Figure 2 to make it more intuitive. We therefore plot PDRMIP-CRU 
differences instead of PDRMIP and CRU values separately. The maps (panels b) also show differences now, for both DTR, 
Tmin and Tmax. 
 
 85 
L167: Again, we have a qualitative statement about pattern similarity which would benefit from a quantitative statement to 
support it. 
Se response to comment on line 136. 
 
 90 
Technical issues: L66: pattern(s) 

Thank you, this is now corrected. 

 
 
 95 
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Reviewer #2 (Comments to the Author):  
 
General comments: 
1. My main issue with this paper is the number of maps and panels in the figures that are never commented on in the 
manuscript. My philosophy is that if a figure is not commented on it can be removed. Many sections can be improved by 100 
discussing more of what is presented in the figures.  
We thank the reviewer for this input, and we agree that figures should be properly discussed if included in the main 
manuscript. We have solved this issue partly by making sure to discuss figures more thoroughly, and partly by moving one 
of the figures into the supplementary. Specifically, the two informationally heavy many-panel figures containing Tmin and 
Tmax changes (one figure for summer and one for winter) have been grouped by region instead of season, and the USA-105 
EUR-ARC version have been moved to the supplementary. 
 
 
2. The language of the paper can be improved as it contains many very long sentences that makes it difficult to read. It might 
help to have a native English speaker look over the text. 110 
When reading over the manuscript again, we indeed see that the language has potential for improvement. We have done a 
language “clean-up”, with specific focus on dividing and simplifying the long sentences, and hopefully have a manuscript 
that is more readable now.  
 
 115 
3. Figure 1: The caption states this is the baseline concentrations of BC and SO4, while the text (line 95) and figure itself 
states it shows the perturbed aerosol concentration. Is this figure made based on the models that had concentration 
perturbations, and not emission? Please give a short explanation of how this will give inter-model differences, and make it 
clearer in the figure caption what is actually shown.  

The confusion is understandable – we have now corrected the text (it is the baseline concentrations that are shown in the 120 
figure). We have also added a few sentences on how the differences in model set-up may induce differences in responses: 
“Note that for the aerosol perturbations, four of the ten models perturbed concentrations while others, due to variations in 
model design, used year 2000 emissions as a baseline and perturbed these emissions instead. This leads to some additional 
inter-model differences in forcing and response patterns. For instance, in concentration-driven simulations, climate dynamics 
(e.g., a change in precipitation and thus wet deposition) will not influence BC concentrations, while feedbacks between BC 125 
and other climate processes can operate in emission-driven simulations. However, a previous PDRMIP study found the 
difference between climate responses in emission-driven versus concentration-driven experiments to be highly model 
dependent (Stjern et al., 2017). At least for the BCx10 simulations, two of the emission-driven models (CESM-CAM5 and 
MIROC-SPRINTARS) showed responses very similar to the concentration-driven models, while the two others (HadGEM2-
ES and CanESM2) had slightly stronger responses that might be related to the nature of the experiment set-up.” 130 

 
 
4. Figure 2: a) The explanation of what years are shown for the models are difficult to read. b) the comma after “same years” 
make it slightly confusing if you mean the same years as a) CRU or models. Please make even clearer.  
Thank you, we agree that this caption was difficult to read. Note that we have changed the figure slightly, and the 135 
caption now reads: “Figure 2: For DTR, Tmin and Tmax, respectively, the figure shows a) geographical 
distribution of CRU TS values, averaged over years 1991-210, b) geographical distribution of differences 
between the PDRMIP model-median baseline (mean of years no. 51-100 of 100-year fully coupled simulations) 
and CRU TS, and c) regionally averaged differences for the model median and for individual models. Note that 
as HadGEM2 has a preindustrial baseline in the PDRMIP simulations (Samset et al., 2016) we have omitted this 140 
model here.” 
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5. Figure 3: The caption states that the region called “LND” in the manuscript is average of all land regions, this should not 
be a figure text but might belong in the methods section instead, where the regions are presented.  145 
The LND region is indeed defined in the methods sections as well, but we understand that this additional mention of it does 
not belong in the figure caption. We have now simply removed this sentence from the caption. 
 
 
6. The author states the regions chosen for investigating were selected based on populated areas, previous findings regarding 150 
DTR, and areas where future interest is large. The introduction does not state any regions where previous findings point to 
large changes in DTR, only regions where anthropogenic aerosol emissions were large (the shift from Europe to Asia). I 
suggest to either include regions with historically large changes in DTR in the introduction which you can refer to in the 
methods section, and/or include that regions were chosen based on areas of large anthropogenic emissions of aerosols, as this 
becomes very important later in the paper.  155 
Thank you, this is very good advice. In the section following the description of DTR-related processes in the Introduction, 
we have now clarified that our choice of regions was mainly based on past or present anthropogenic aerosol trends. In 
addition, the final paragraph of the Methods section repeats the motivation of the choice of regions: 
“We present results for all land regions aggregated (LND), and the populated, high (present or previous) aerosol emission 
regions of the continental United States (USA), central Europe (EUR), India (IND), eastern China (CHI). In addition, we 160 
study changes in the Arctic (ARC), which is a region known to be sensitive to remote emissions but where the mediating 
processes are not fully explored.” 
 
 
7. In section 3.1 first paragraph the crude test in inter-model variability might belong in the method-section, or at least before 165 
you introduce figure 2. As it stands now it seems unnaturally placed between analysis of Figure 2. Also the introduction of 
CRU and the averaging method regarding observations and model grid resolution should have been presented in the methods 
section rather than results.  
We agree with the suggested edits, and have now moved the variability-test, as well as the introduction of CRU into the 
methods section, improving the flow of Section 3.1. 170 
 
 
8. In section 3.2 the first paragraph states that the perturbation results have been normalized to the temperature change per 
experiment, which makes both sulfate and BC harder to interpret. I am therefore unsure that this normalization is useful. 
Please convince the reader why the pros of the normalization outweighs the cons.  175 

We understand the reviewer’s objection to this normalization. The designs of the PDRMIP experiments aim for perturbations 
of similar climate impact magnitude, but it still feels rather arbitrary to compare a doubling of CO2 to, e.g., a fivefold 
increase in SO4. We believe results are more readily compared if they all reflect “the response seen if the given component 
were to warm global climate by one degree.” To give the reader a better understanding of why we use this normalization, we 
have moved this into a separate part of the Methods section, to avoid a lengthy explanation in between presentation of 180 
results. That paragraph reads: 
“Using step perturbations rather than transient simulations means that climate responses will be different to those seen in the 
real world. The advantage is that signals more rapidly emerge from the noise of internal variability, provided that the forcing 
applied is of sufficient strength. In PDRMIP, the experiments were designed to produce such clear and robust climate 
signals. The experiments are however not identical in effective radiative forcing, which necessitates some normalization if 185 
the results are to be fully comparable. Here, we have chosen to divide climate responses (e.g., the DTR change) by the 
global, annual mean temperature change for each driver and model. Our comparisons therefore show the response expected 
for a 1°C surface warming due to perturbations in the given climate driver.” 

 
 190 
9. Figure 3 contains a lot of information that is hardly mentioned in the text. I suggest that if a map is shown but not 
mentioned in the manuscript it can be moved to supplementary.  
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We agree that some of the figures were not commented on enough to justify inclusion in the main manuscript. We have now 
made sure to point to Figure 3 throughout the discussion of the results, to justify its presence.  
 195 
 
10. Please prepare the reader for that China and India is not included in section 3.2.1 and 3.2.2 - analysis of winter- and 
summer time DTR responses. write clearly that they will be analysed in a later section.  
Thank you, a proper introduction of the sections to come is now added at the end of the introductory paragraphs of 3.2: “In 
the next sections we will therefore take a closer look at these two seasons – first for the high and mid northern latitude 200 
regions USA, EUR and ARC, and finally for the Asian regions IND and CHI.” 
 
 
11. The first time you mention China and India as high aerosol emission regions are in the last paragraph of section 3.2.2. 
This is important information that should have been presented in the introduction.  205 
Absolutely, this is now fixed by the new paragraph in the introduction, as mentioned above. 
 
 
Minor comments:  
line 54: “This effect..” please rewrite this sentence as it is hard to read as it stands.  210 
We agree, the sentence was hard to read. The sentence was however removed in its entirety when rewriting the introduction. 
 
 
line 67: The linking of mediterranean drying is unclear if is presented as a cause or effect of the shift in emission. Please 
rewrite more clearly.  215 
We meant to write that the aerosol emission shift was a cause of the drying – the text is now improved. 
 
 
line 75: “these simulations include..”, do you mean “these” as the ones in this paper or the typically historical ones? Please 
rewrite more clearly.  220 
A change from “these simulations” to “such simulations” clarifies that we refer to the historical simulations being discussed 
in that sentence. 
 
 
line 97: Do you mean “current” as in present day? Please write more clearly.  225 
“Current changes” are now changed to “preindustrial to present-day changes”. 
 
 
Line 125: Standard deviations has the same unit as the original data. Add K throughout the text when standard deviations are 
presented.  230 
Units for the standard deviations are now added. 
 
 
line 138: The text states that atmospheric models misrepresent atmospheric boundary layer in the arctic, and line 141-142 
states that the models of this paper have lower agreement in the Arctic than for other regions. Are these two statements 235 
related and how? The first statement relate to model/observation comparison, but the second to model/model comparison. 
Please make clearer in the text.  
The comment on the inter-model spread was meant to illustrate that not all models may be bad at representing the 
atmospheric boundary layer, but this point was not clearly made in the text. We have now rewritten much of this section. 
 240 
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line 143: The text stated “T_min tends to be too cold in China and India”. Please state clearly if you are referring to the 
“T_min model mean”. It reads to me from the figure that model mean T_min in India is not much colder than CRU.  
In the observational comparison figure, we found an inconsistency that turned out to stem from deficient masking – 
especially coastal and island regions were not included in the PDRMIP data. We have now fixed this problem, and slight 245 
changes to Fig. 2 as a result meant that we had to delete this statement altogether. Note that we have chosen to change Fig. 2 
to make the comparison more intuitive, the main difference being that we show model biases (model-observation 
differences) instead of absolute values. We hope that this makes the discussion easier to follow. 
 
 250 
line 145: A specific point is made about USA having four models overestimating and four models underestimating T_max, 
as USA does not differ largely from the other regions in Figure 2a) for T_max this example is not needed. The inter-model 
spread is well presented in Figure 2a.  
Agreed, this was only meant as an example, but we see that it seems that we believe that this region stands out from the 
others somehow. The example is now removed. 255 
 
 
Line 158: to make it easier to read maybe write on the format “2.6 [1.5 to 3.7] K for CO2x2” instead of parentheses. Also the 
number 5 is missing in the perturbation representation for sulfate (SO4x5).  
The syntax is now changed (and the missing 5 added), as suggested by the reviewer. 260 
 
line 243: Please state clearly what figure you are referring to with this statement.  
Thank you, this is clarified now. 
 
line 249-250: what are the units of the number in parenthesis?  265 
These number were Pearson’s correlation coefficients (unitless) – this is clarified now. 
 
line 271: should say cloud cover - not only cloud.  
Thank you, we have now corrected this. 
 270 
line 273: cloud amount or cloud cover? These are two different metrics. 
Cloud cover – this is now specified, and we have gone through the rest of the document to make sure this is consistent all 
over. 
 
 line 275: “cloud increases” should say cloud amount/cover increases.  275 
Thank you, it now says “cloud cover increases”. 
 
line 278: “strongest link” between aerosol-radiation and DTR? please rewrite more clearly what is linked and how. 
Thank you, we have now changed the wording: 
“the strongest link seems to be clouds”  “the strongest driver of DTR changes- seems to be clouds” 280 
 
 line 280: “As cloud responses to the strong BC perturbations are so substantial, especially in India, the BC response in DTR 
stands out here.” please rewrite more clearly what you want to say with this sentence. 
Thank you, the sentence now reads “As the magnitude of the BC-induced cloud response is particularly strong over India, 
this is where we see the most substantial DTR reduction”. 285 
 
line 287-291: Divide this long sentence into smaller ones.  
Thank you, both the indicated sentence as well as the previous sentence was divided in two for increased clarity. 
 
line 314: Please add citation for the “previous studies”. 290 
Reference is now added. 
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line 324: “Moreover,..” please rewrite this sentence, as it is hard to read as it stands. 
Agreed, the final section did not read well, it is now changed to: 
“Disentangling the role of aerosols and greenhouse gases to DTR changes is a crucial step towards prediction of future 295 
changes in regional DTR. This is particularly true in regions such as India and East Asia (Vinnarasi et al., 2017), in which 
risk factors are aggravated by agriculture-dependent economies and dense populations, and where future trends in aerosol 
emissions are highly uncertain but likely to be strong. Understanding how greenhouse gases, absorbing aerosols and 
scattering aerosols individually influence the DTR may help these regions prepare for future changes.” 

 300 

 

How aerosols and greenhouse gases influence the diurnal 
temperature range 
Camilla W. Stjern1, Bjørn H. Samset1, Olivier Boucher2, Trond Iversen3, Jean-François Lamarque4, 

Gunnar Myhre1, Drew Shindell5, Toshihiko Takemura6 305 
1CICERO Center of International Climate Research, Oslo, Norway 
2 Institut Pierre-Simon Laplace, Sorbonne Université / CNRS, Paris, France 
3 Norwegian Meteorological Institute, Oslo, Norway 
4 NCAR/UCAR, Boulder, USA 
5 Nicholas School of the Environment, Duke University, Durham, NC, USA 310 
6 Kyushu University, Fukuoka, Japan 
 

Correspondence to: Camilla W. Stjern, camilla.stjern@cicero.oslo.no 

Abstract. The diurnal temperature range (DTR), or difference between the maximum and minimum temperature within one 

day, is one of many climate parameters that affects health, agriculture and society. Understanding how DTR evolves under 315 

global warming is therefore crucial. Since physically different drivers of climate change, such as greenhouse gases and 

aerosols, have distinct influences on global and regional climate, predicting the future evolution of DTR requires knowledge 

of the effects of individual climate forcers, as well as of the future emissions mix, in particular in high emission regions.  Using 

global climate model simulations from the Precipitation Driver and Response Model Intercomparison Project (PDRMIP), we 

investigate how idealized changes in the atmospheric levels of a greenhouse gas (CO2) and aerosols (black carbon and sulfate) 320 

influence DTR, globally and in selected regions. We find broad geographical patterns of annual mean change that are similar 

between climate drivers, pointing to a generalized response to global warming which is not defined by the individual forcing 

agents. Seasonal and regional differences, however, are substantial, which highlights the potential importance of local 

background conditions and feedbacks. While differences in DTR responses among drivers are minor in Europe and North 

mailto:camilla.stjern@cicero.oslo.no
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America, there are distinctly different DTR responses to aerosols and greenhouse gas perturbations over India and China, 325 

where present aerosol emissions are particularly high. BC induces substantial reductions in DTR, which we attribute to strong 

modelled BC-induced cloud responses in these regions. 

1 Introduction 

As the global climate warms (Hartmann et al., 2013), changes are not only observed in the daily mean temperature, but in a 

variety of parameters relevant to society. One such parameter is the diurnal temperature range (DTR), which is a measure of 330 

the difference between the maximum and the minimum temperature over a given day24-hour period. Variations in the 

magnitude of the DTR have been found to influence mortality and morbidity (Cheng et al., 2014; Kim et al., 2016; Lim et al., 

2012), parasite infection and transmission (Paaijmans et al., 2010), and crop failure (Hernandez-Barrera et al., 2017; Lobell, 

2007). Future changes in the DTR is therefore a potential driver of climate impacts, especially in vulnerable regions, affecting 

risk assessments associated with health and agriculture. and have serious consequences in vulnerable regions.  335 

 

Observations show a general reduction in DTR over the twentieth century, typically mediated by a stronger increase in the 

daily minimum temperature (Tmin) than in the daily maximum temperature (Tmax) (Dai et al., 1999; Karl et al., 1993; Vose et 

al., 2005). This trend in DTR has been linked to anthropogenic emissions, but whether greenhouse gases or aerosols are the 

dominating influence, and what roles these respective climate drivers will play to future DTR changes, is not clear.  340 

Physically, aA range of geophysical processes contribute to determinemining the land surface DTR of a given region. In 

addition to the simplified account below, each process and its effect on DTR may be modified by non-linear effects such a, 

e.g., s local hydrological conditions or atmospheric stratification. Ultimately, DTR changes are driven by differential changes 

to daily maximum and minimum temperatures. Ultimately, DTR changes are driven by differential changes to daily maximum 

and minimum temperatures. Maximum temperatures are reached during daytime, due to the excess of incoming shortwave 345 

(SW, or solar) radiation. Minimum temperatures occur at night, primarily due to cooling from by longwave (LW, or heat) 

radiation.  

As LW cooling is active during both daytime and night-time, factors affecting primarily LW radiation will have an effect on 

both Tmin and Tmax, reducing the potential influence on DTRLW cooling is however active during both daytime and night-time, 

and thus influences both Tmin and Tmax, reducing the potential DTR influence of factors affecting it. . Thus, greenhouse gases 350 

such as CO2, or water vapor, which have a particularly strong effect on LW radiation fluxes throughout the day (e.g., Lagouarde 

and Brunet, 1993), are not initially expected to have the strongest directdirect radiative influence on DTR. Indeed, Dai et al. 

(1999) showed that changes in water vapor had a relatively small effect on DTR.  
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 Aerosols, on the other hand, primarily have climate interactions affecting the shortwave (SW) spectrum. Either through 

scattering or absorption, tThey tend to, lowering  the amount of incomingdownwelling SW radiation at the surface, through 355 

scattering and absorption, initially reducing the daytime Tmax and thus reducing DTR.  

IBut in addition to the direct interactions with SW and, to a lesser extent, LW radiation, greenhouse gases and aerosols alike 

have a range of indirect (radiative and non-radiative) influences on climate. These effects, that can cause further changes to 

Tmin and Tmax. For instance, sulfate aerosols can interact microphysically with clouds to make them more reflective (Twomey, 

1974), or increase the general cloud cover by increasing cloud lifetime (Albrecht, 1989). Cloud changes have been shown to 360 

have a strong influence on DTR, primarily mainly by blocking SW radiation and hence reducing Tmax (e.g., Dai et al., 1999). 

Increased cloud thickness or cloud cover will also affect the surface energy budget, through by increasing downwelling LW 

radiation. This effect operates during both day and night.  

, but at high latitudes during the polar night, when there is no incoming SW radiation and the Tmax effect is therefore absent, 

an increase in Tmin from altered LW retention can reduce the DTR. The strong SW atmospheric absorption of BC and CO2 can 365 

cause rapid adjustments in both cloudiness and precipitation through their influence on atmospheric stability (Hansen et al., 

1997; Richardson et al., 2018; Stjern et al., 2017). An increase in precipitation, for instance, may induce changes in soil 

moisture, which could in turn influence DTR through a reduced Tmin due to enhanced evaporation (Zhou et al., 2007). Finally, 

on a longer time scale, feedback responses following a warming climate can cause changes to DTR via associated changes in 

cloud cover (Dai et al., 1999), atmospheric circulation changes, precipitation (Karl et al., 1993), soil moisture (Zhou et al., 370 

2007), surface heat storage capacity (Kleidon and Renner, 2017), land use changes (Mohan and Kandya, 2015), and the 

turbulent fluxes of sensible and latent heat in the atmospheric boundary layer (Davy et al., 2017). Finally, each process and its 

effect on DTR may be modified by non-linear effects such a, e.g., s local hydrological conditions or atmospheric stratification.  

 

Observations show a general reduction in DTR over the twentieth century, typically mediated by a stronger increase in the 375 

daily minimum temperature (Tmin) than in the daily maximum temperature (Tmax) (Dai et al., 1999; Karl et al., 1993; Vose et 

al., 2005). This trend in DTR has been linked to anthropogenic emissions, but whether greenhouse gases or aerosols are the 

dominating influence, and what roles these respective climate drivers will play to future DTR changes, is not clear. E.g. Vose 

et al. 2005 showed that while the overall trend in DTR was negative for western US and central Europe for the period of 1950-

2005, it reverses to a positive trend in these regions when considering the later 1979-2005 period which saw reductions in 380 

aerosol emissions. China, however, saw a DTR reduction also for this later period – but is also located at lower latitudes.  

 

Over the coming decades, we can expect to see changes incontinued emissions of both greenhouse gases and aerosols, but with 

amounts and a relative balance that is determined by future socioenonomic and political developments. , resulting in aThe 
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global backdrop of increased greenhouse gas induced forcing will be, combined with an aerosol influence that has regionally 385 

heterogeneous patterns and potentially strong trends. As an example, the global burden of aerosol loading has recently shifted 

from Europe to Asia (Myhre et al., 2017a). These aerosol trends have been , which has previously been linked to andesignated 

as potential causes of the ongoing drying of the Mediterranean region (Tang et al., 2017), and of changes to the South and East 

Asian Monsoon circulations (Wilcox et al., 2020). However, the future balance between the different climate forcers is highly 

uncertain, and differs markedly between informed projections such as the various Shared Socioeconomic Pathways currently 390 

in use by the projection and climate impact communities (Lund et al., 2019; Rao et al., 2017). In particular, they include a wide 

range of possible emission combinations of BC and SO4 from Inda and China, some of which lead to a strong dipole pattern 

in regional, aerosol induced radiative forcing over the coming decades.  Nnear-term changes in aerosols over India and China, 

where aerosol emissions are high,, as envisioned in the Shared Socioeconomic Pathways (Rao et al. 2017), project either 

reduced concentrations of BC and SO4 in both regions, increased concentrations of BC and SO4 in India but reductions in 395 

China, or increased BC over both regions but a dipole pattern of increased SO4 over India but decrease over China (Samset et 

al., 2019). *** 

Given theis uncertainty in future emission trends, understandingdisentangling the individual responses of DTR to these two 

aerosol species and how their influence differdiffers from that of CO2, when taking into account both direct and indirect effects 

and their climate feedbacks,  is of high interestrelevance.  400 

Understanding the separate influence of the different climate drivers on DTR, when taking into account both direct and indirect 

effects and their climate feedbacks, is thereforeSuch understanding is an important prerequisite for understanding how regional 

DTR will evolve over the coming decades. The purpose of this work is to contribute to such an understanding, based on a 

sample of common, idealized experiments performed by nine coupled climate models. While model studies investigating 

effects of greenhouse gases and aerosols on DTR have typically used historical simulations (Lewis and Karoly, 2013; Liu et 405 

al., 2016), thesesuch simulations include trends in greenhouse gases as well as trends in both scattering and absorbing aerosols, 

with opposite effects on global mean temperature and, possibly, on DTR. To disentangle the role of different climate drivers 

to the DTR changes, model responses to idealized experiments where individual drivers are perturbed separately provide a 

separate line of evidence.  

In the present study we compare idealized instantaneous perturbations of CO2, BC and SO4 in nine global climate models from 410 

the Precipitation Driver Response Model Intercomparison Project (PDRMIP) (Myhre et al., 2017b). This unique data sets 

allows us to investigate whether differing changes to DTR can be expected from trends in greenhouse gases, sulfate or black 

carbon, and can shed light on results from more comprehensive, multi-forcer simulations, such as those in the Coupled Model 

Intercomparison Project Phase 6 (CMIP6) (Eyring et al., 2016). While the size of the dataset precludes detailed process-level 

investigations of the output from each model, any significant changes found based on the median response of the model sample 415 
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should represent physically robust expectations based on the geophysical understanding underlying the generation of climate 

models participating here (which are mostly similar to their CMIP5 configurations; Myhre et al. (2017b)). 

In the next section, we give a brief overview of data and methods used in this paper. Section 3 describes the main results of 

this study, starting with a comparison between PDRMIP baseline DTR values to observations, to show how the specific 

PDRMIP models capture regional DTR.  The results are summarized in Section 4. 420 

 

2 Methods 

We utilize data from the Precipitation Driver and Response Multimodel Intercomaprison Project (PDRMIP), in which nine 

global climate models have performed idealized simulations of instantaneous perturbations in different climate drivers. Here, 

we analyze the experiments involving a doubling of CO2 (CO2x2), a tenfold increase in black carbon (BC) (BCx10) and a 425 

fivefold increase in sulfate (SO4) (SO4x5), relative to a climatology consistent with year 2000 conditions. Ssee Table 1. See 

Figure 1 for tThe geographical distribution of the perturbed baseline BC and SO4 aerosol concentration burden fields can be 

found in Fig. 1, which shows that India and eastern China are regions of particularly high current aerosol loading.  

Using step perturbations rather than transient simulations means that climate responses will be different to those seen in the 

real world. The advantage is that signals more rapidly emerge from the noise of internal variability, provided that the forcing 430 

applied is of sufficient strength. The perturbations in the experiments were designed to produce clear and robust climate signals, 

and the magnitude of the resulting changes are therefore larger than what can be expected from current changes in climate 

drivers. Moreover, near-equilibrium changes from these abrupt perturbations will likely yield different responses to the gradual 

build-up (of e.g. CO2) seen in the real word. Note that near-equilibrium changes from these abrupt perturbations will likely 

yield different responses to the gradual build-up (of e.g. CO2) seen in the real world. Also, as In PDRMIP, the experiments 435 

were designed to produce such clear and robust climate signals. The experiments are however not identical in effective radiative 

forcing, which necessitates some normalization if the results are to be fully comparable. Here, , and the magnitude of the 

resulting changes are therefore larger than what can be expected from preindustrial to present-day changes in climate drivers. 

While the strengths of the perturbations were chosen to produce climate responses that are reasonably comparable in 

magnitude, some normalization is still necessary to compare response more quantitatively. We we have chosen to divide 440 

climate responses (e.g., the DTR change) by To make the comparison easier between the drivers, the DTR change is divided 

by the global, annual mean temperature change for each driver and model. Our comparisons therefor show the response 

expected , and thus shows how DTRa given parameter will changes for a 1°C surface warming due to perturbations in the 

given climate driver.  
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Model median global temperature change and model spread for the three drivers are 2.6 [1.5 to 3.7] K (CO2x2), 0.7 [0.2 to 445 

1.7] K (BCx10) and -1.65 [-0.9 to -6.6] K (SO4x), respectively (see Samset et al. (2016) for core analysis of all PDRMIP 

experiments and models). For SO4, which cools the climate, this normalization switches the sign of the change and shows in 

principle the result of a reduced SO4 level, as opposed to the other drivers. Note that even As a the tenfold increase in BC 

yielded a , particularly for some of the models, has a weak impact on global temperatures (Stjern et al., 2017). This has the 

implication that, normalization by these small numbers leads to particularly large normalized changes for the BCx10 450 

experiment. However, as seen by comparing absolute DTR changes for BCx10 in Fig. S2 to those of CO2x2 and SO4x5 (Figs. 

S1, and S3), the absolute DTR change for BCx10 is also large in itself: an annual mean model median DTR change of -0.03 

K (compared to -0.05 K for CO2x2) is substantial given than the doubling of CO2 causes a four times stronger response in the 

global mean temperature.As the tenfold increase in BC, particularly for some of the models, has a weak impact on global 

temperatures (Stjern et al., 2017), normalization by these small numbers leads to particularly large normalized DTR changes 455 

for the BCx10 experiment. However, as seen by comparing absolute DTR changes for BCx10 in Fig. S2 to those of CO2x2 

and SO4x5 (Figs. S1, and S3), the absolute DTR change for BCx10 is also large in itself: an annual mean model median DTR 

change of -0.03 K (compared to -0.05 K for CO2x2) is substantial given than the doubling of CO2 causes a four times stronger 

response in the global mean temperature. 

CO2 concentrations were prescribed in all models. Note that fFor the aerosol perturbations, some four of the ten models 460 

perturbed concentrations while the rest changed their emissions. others, due to variations in model design, used year 2000 

emissions as a baseline and perturbed these emissions instead. perturbed emissions. This leads to some additional inter-model 

differences in forcing and response patterns. For instance, in concentration-driven simulations, climate dynamics (e.g., a 

change in precipitation and thus wet deposition) will not influence BC concentrations, while feedbacks between BC and other 

climate processes can operate in emission-driven simulations. However, a previous PDRMIP study found the difference 465 

between climate responses in emission-driven versus concentration-driven experiments to be highly model dependent but has 

previously been shown not to be a major determining factor for PDRMIP results based on global perturbations (Stjern et al., 

2017). At least for the BCx10 simulations, two of the emission-driven models (CESM-CAM5 and MIROC-SPRINTARS) 

showed responses very similar to the concentration-driven models, while the two others (HadGEM2-ES and CanESM2) had 

slightly stronger responses that might be related to the nature of the experiment set-up. 470 

The perturbation experiments are performed and compared relative to baseline simulations representing present-day conditions 

and using emissions/concentration and solar constant values for year 2000 (except HadGEM2, which used a preindustrial 

baseline). See Table 1 and (Myhre et al., 2017b; Samset et al., 2016; Stjern et al., 2017) for details and a list of models.  

 

All the simulations were 100 years long. Data for the simulation years 51-100 were used in the analyses, and changes were 475 

defined as the average of these years for a perturbed simulation minus the corresponding average for the baseline simulation. 

In a comparison between PDRMIP data and gridded observational data from the Climate Research Unit (CRU) TS v. 4.03 
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(Harris et al., 2014), we compare baseline PDRMIP values (averaged over simulation years 51-100) to observational data 

averaged over years 1991-2010. 

DTR was calculated based on daily minimum temperature (Tmin) and maximum temperature (Tmax) values and averaged into 480 

monthly and seasonal means. To determine whether a given DTR change is significantly different from zero, regional mean 

monthly mean DTR values over a 50-year period, for perturbed versus baseline climates, were tested for each model and 

experiment using Student’s t-test (p < 0.05). As the multi-model but single-realization simulations performed here will be 

sensitive to the timing of internal variability among model simulations, this will likely cause some of the inter-model 

differences. However, the model spread is not sensitive to the exact time period used. As a crudesensitivity test, we picked out 485 

20-year periods from the 50 years of the baseline simulations, moving 5 years at a time (giving 7 20-year periods within the 

50 years of data), and found that inter-model standard deviations of DTR for these periods ranged between 2.555 and 2.564 K. 

While this indicates that model differences are more likely related to actual differences in model formulations and 

parametrizations, we note that internal variations in regional clouds and precipitation – which strongly influence DTR – can 

affect trends over periods up to 60 years (Deser et al., 2012), making it difficult to compare changes in DTR both among 490 

models and between models and observations. 

We have chosen to limit our analysis to land regions and will present results for all land regions aggregated (LND), and the 

populated, high (present or previous) aerosol emission regions of the continental United States region (USA), central Europe 

(EUR), India (IND), eastern China (CHI). In addition, we study changes in, and the Arctic (ARC), which is a region known to 

be sensitive to remote emissions but where the mediating processes are not fully explored. As an example, potential drivers of 495 

regional impacts such as melt ponds and sea ice loss may depend on summertime Arctic DTR, which may in turn depend on 

particle or energy transport into the region (Deshpande and Kamra, 2014). Our main focus is however on the major aerosol 

emission regions.  Regions are chosen partly to present results for the world’s most populated regions, and partly where 

previous findings point to large historical changes in DTR and where changes in the future are of particular interest. 

3 Results and Discussion 500 

This section presents the global, annual land mean modelled DTR changes in response to the PDRMIP perturbations, as well 

as regionally and seasonally resolved results. However, aAs earlier work has demonstrated a tendency in CMIP5-generation 

models to underestimate DTR relative to observations, with a bias that differs strongly between models and regions (Sillmann 

et al., 2013), we also start our analysis by compareing the PDRMIP baseline DTR values to surface temperature observations.  

3.1 Comparison to observations 505 

Figure 2a shows the annual mean DTR (average of 1991-2010) calculated from CRU TS.4, as well as the underlying Tmin 

and Tmax values.  HadCRUT4. The DTR in CRU TS observations (Fig. 2a) averages 11.2 ℃ globally. Typically, the DTR is 



14 
 

relatively narrow (<10 ℃) at northern high latitudes as well as around the tropics, and higher in the subtropics and mid 

latitudes. The world’s highest overland DTR (>20 ℃) can be found in northern and southern parts of Africa, along the 

western parts of North America, in Australia, and in the region around the Arabian Peninsula. 510 

Figures 2b and c compares PDRMIP DTR, Tmin and Tmax for the baseline (year 2000) simulations to gridded observational 

data from the Climate Research Unit (CRU) TS v. 4.03 (Harris et al., 2014) averaged over years 1991-2010between 

PDRMIP and CRU. To ensure that only grid cells with values for both PDRMIP and CRU are compared, we regrid all data 

sets to 1x1 degree resolution prior to the comparison. We find that PDRMIP models typically underestimate the DTR over 

much of the global land area. This is generally linked to minimum temperatures being on the warm side, often (see, e.g., 515 

western USA) enhanced by a tendency for maximum temperatures that are too cold. Notable exceptions to the low DTR bias 

are North Africa and the Arabian Peninsula, which were among the regions with the world’s highest DTR (Fig. 2a). Figure 

2b shows that models simulate too cold minimum temperatures here – conceivably linked to insufficiencies in model 

estimates of soil moisture or clouds.  

Figure 2c shows regionally averaged model-observation biases for the PDRMIP model median as well as for the individual 520 

models. . The observational data set as well as all models are regionally averaged at their native grid resolution. While the 

multi-model median land annual mean DTR has a negative bias of 1.9of 10.8 ℃K is smallercompared t than theo CRU 

values of 11.5 K, individual model-observation values differences have a standard deviation of 2.56 ℃ and range from -

38.23 to 154.48 ℃K (Fig. 2a). HadGEM3, NCAR-CESM-CAM4 and CanESM2 have consistently high DTR values and 

thus positive biases, while GISS-E2-R, NorESM1-M and NCAR-CESM-CAM5 have the lowest values. (HadGEM2 has 525 

been omitted here, since it used a preindustrial baseline.) As the single-realization simulations performed here will be 

sensitive to the timing of internal variability among model simulations, this will likely cause some of the inter-model 

differences. However, the model spread is not sensitive to the exact time period used. As a crude test, we picked out 20-year 

periods from the 50 years of the baseline simulations, moving 5 years at a time (giving 7 20-year periods within the 50 years 

of data), and found that inter-model standard deviations of DTR for these periods ranged between 2.555 and 2.564. While 530 

this indicates that model differences are more likely related to actual differences in model formulations and parametrizations, 

we note that internal variations in regional clouds and precipitation – which strongly influence DTR – can affect trends over 

periods up to 60 years (Deser et al., 2012), making it difficult to compare changes in DTR both among models and between 

models and observations.  

Although the geographical DTR pattern is similar between the model median and observations (Fig. 2b), notable The models 535 

that stand out with a positive bias in DTR tend to instead to strongly overestimate the maximum temperatures.  

differences can also be seen. See for instance western North America, where the modelled DTR is substantially lower than the 

observed. Too warm minimum temperatures are particularly prominent in high-latitude regions, where all models have a 

positive Tmin bias in USA, EUR and ARC. One known issue in atmospheric models is the representation of the atmospheric 
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boundary layer at high latitudes (e.g., Steeneveld, 2014), where wintertime minimum temperatures are often determined by a 540 

very thin and stable boundary layer. Figure 2a shows that minimum temperatures for most of the models are higher than 

observations in the northernmost regions investigated here, notably Europe and North America, which explains the 

underestimated DTR.  

In the Arctic, however, there is lower model agreement also in estimates of Tmin, with about half the models showing a warm 

bias, and the other half a cold bias of Tmin. In India and China, on the other hand, Tmin tends to be too cold, although this is 545 

balanced by Tmax also having a cold bias in many of the models. 

Inter-model spread is in all regions larger for Tmax than Tmin. Note, however, that this is much due to the very strong positive 

Tmax bias of particularly HadGEM3 and NCAR-CESM-CAM4, which for all regions contrast the negative Tmax bias of the 

majority of the other models. , and for Tmax there is also more model disagreement as to the sign of the bias relative to 

observations. Note, for instance, that for Tmax in USA, four models overestimate while four models underestimate. 550 

Overall, the PDRMIP models perform similarly to CMIP5 models in general (Sillmann et al., 2013), with a general 

underestimation of DTR, but with large differences between models as well as between regions. Although no direct comparison 

between historical DTR changes and the idealized simulations in this study will be made, the caveats noted above should be 

kept in mind in interpretations of the analyses below.  

 555 

3.2 DTR change in response to different forcing mechanisms 

Figure 3 shows how the three drivers (CO2, BC and SO4) influence the DTR for the annual mean (large upper panels) and for 

the different seasonsseasonal (small panels) DTR. Recall that results are normalized by the global mean temperature change 

for each given model and experiment. To make the comparison easier between the drivers, the DTR change is divided by the 

global, annual mean temperature change for each driver and model, and thus shows how DTR will change for a 1°C surface 560 

warming due to perturbations in the given climate driver. Model median global temperature change and model spread for the 

three drivers are 2.6 [1.5 to 3.7] K (CO2x2), 0.7 [0.2 to 1.7] K (BCx10) and -1.65 [-0.9 to -6.6] K (SO4x), respectively (see 

Samset et al. (2016) for core analysis of all PDRMIP experiments and models). For SO4, which cools the climate, this 

normalization switches the sign of the change and shows in principle the result of a reduced SO4 level, as opposed to the other 

drivers. As the tenfold increase in BC, particularly for some of the models, has a weak impact on global temperatures (Stjern 565 

et al., 2017), normalization by these small numbers leads to particularly large normalized DTR changes for the BCx10 

experiment. However, as seen by comparing absolute DTR changes for BCx10 in Fig. S2 to those of CO2x2 and SO4x5 (Figs. 

S1, and S3), the absolute DTR change for BCx10 is also large in itself: an annual mean model median DTR change of -0.03 

K (compared to -0.05 K for CO2x2) is substantial given than the doubling of CO2 causes a four times stronger response in the 

global mean temperature. 570 
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The geographical patterns of annual mean DTR change are relatively similar between the drivers. All the drivers show cause 

a reducedtion in annual mean DTR at high latitudes (see the Arctic), increased DTR in mid-latitudes (see, e.g. USA and 

central/southern Europe), increased DTR over the Amazon and southern Africa, and reduced DTR over northern/central Africa. 

As mentioned above, however, these three drivers influence DTR  through different processes that are likely tomay be 

seasonally dependent. The small panels in Fig. 3 indicateshows that for each individual driver,  the largest seasonal differencess 575 

in DTR responsess are found between summer (JJA) and winter (DJF) for all driver. Spring (MAM) and fall (SON) show 

patterns of change that reflect transitions between the typical summertime and wintertime responses.  In the next sections we 

will therefore take a closer look at these two seasonshow DTR is influenced during summer and winter – first for the high and 

mid northern latitude regions USA, EUR and ARC, and finally for the Asian regions IND and CHI. 

3.2.1 Wintertime DTR responses in USA, EUR and ARC 580 

As visible in Fig. 3, all three climate drivers induce a strong reduction in DTR over northern high and mid latitudes in winter 

(Fig. 3).  In Fig. 4 we quantify these changes by taking a closer look at regional averages. Colored bars indicate high inter-

model consistency, defined as cases where 80% of models with data have changes of the same sign.  Figure 4 shows regional, 

multi-model mean DTR changes for each season and driver. Colored bars indicate high inter-model consistency, defined as 

cases where 80% of models with data have changes of the same sign. In wintertime winter there is athe DTR reduction is 585 

particularly robust (colored bars for all drivers) reduction in DTR oveover Europe and the Arctic (Fig. 4a). Numbers below 

the bars indicate for how many of the nine models these changes are statistically significant, and the number is high for both 

these regions. A similar reduction is seen over USA, but here there is lower model agreement on the BC-induced DTR 

reduction. The hatching on the DJF BCx10 map in Fig. 3, indicating low model agreement, shows that this true for the entirety 

of the USA region. 590 

For all drivers (but most strongly so for BC and SO4) the wintertime DTR reductions in these northern mid and high latitudes 

are driven by an increase in Tmin that is stronger than the increase in Tmax (Fig. S4). Previous studies have shown that while a 

general global warming of the climate can be expected to increase both Tmin and Tmax, an increase in cloud cover can 

substantially dampen the increase in Tmax (e.g., Dai et al., 1999), resulting in a DTR reduction. We therefore take a closer look 

at how greenhouse gases and aerosols influence the cloud cover in these regions. 595 

In Europe, we do find a slight wintertime increase in cloud cover for both CO2x2 and SO4x5 (Fig. 6 and Table S1). Combined 

with statistically significant negative correlations between cloud cover changes and DTR changes (Table S2), these are 

indications that these climate drivers reduce DTR through their influence on cloud cover. For BCx10, however, we find a 

reduction in clouds over Europe. Table S2 shows statistically significant correlations between DTR change and the change in 

clear-sky downwelling radiation for these two experiments, and for BCx10 the reduction in this variable is particularly strong 600 

(Table S3) – almost 11 W/m2K. This is likely enough to dampen Tmax despite the slight reduction in cloud cover.  
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As shown in Fig. 5, the wintertime DTR reduction in these northern mid and high latitudes is driven by an increase in Tmin that 

is stronger than the increase in Tmax. Previous studies have shown that while the general global warming, instigated for instance 

by increased greenhouse gases, can be expected to increase both Tmin and Tmax, an increase in cloud cover can substantially 

dampen the increase in Tmax (e.g., Dai et al., 1999), resulting in a DTR reduction. We therefore take a closer look at how 605 

greenhouse gases and aerosols influence the cloud cover in these regions.  

Tables S1-S6 show correlation coefficients between changes in DTR and changes in related variables (cloud cover, latent and 

sensible heat flux, clear-sky and all-sky downwelling SW radiation and all-sky downwelling LW radiation). Here we see that 

there are statistically significant negative correlations between cloud amount changes and changes in DTR for all these regions, 

confirming that more clouds are associated with lower DTR. Figure 6 and Table S1 shows cloud cover changes for winter and 610 

summer, for the three drivers. 

For CO2x2 and SO4x5, we do find a slight increase in cloud cover in the USA, EUR and ARC regions, which would contribute 

to the pattern of Tmax and Tmin changes seen in Fig. 5. For BCx10, however, we find a reduction in clouds over Europe but 

increases over USA and the Arctic. Wintertime changes in Tmin and Tmax for both aerosol experiments for Europe show very 

strong differences and thus strong DTR change (Fig. 5 and Fig. 4). Table S3 shows statistically significant correlations between 615 

DTR change and the change in clear-sky downwelling radiation for these two experiments, and for BCx10 the reduction in 

this variable is particularly strong (Table S8) – likely enough to dampen Tmax in spite of the slight reduction in cloud cover.  

In the Arctic region (recall that our regional averages only land, not ocean, areas in this study), the lack of incoming solar 

radiation in winter means that the increase in Tmax will be dampened to a lesser degree, and the difference between the changes 

in Tmin and Tmax will be smaller. This can be seen in Fig. 5S4, where the wintertime slopes between Tmin and Tmax are much 620 

weaker for the ARC region than, e.g. for EUR, manifesting in a weaker DTR change (Fig. 4). The absence of short wave 

radiation during the polar night make potential driver differences as the one seen over Europe less prominent. As we will see 

in the next section, drivers influence DTR more differently in the Arctic summer. 

All in all, a prominent wintertime feature in the EUR, USA and ARC regions is a consistency between drivers in terms of 

changes to Tmin and Tmax, ultimately all causing a reduction in DTR. We see, however, that although greenhouse gases and 625 

aerosols influence DTR in the same manner, the underlying processes differ between drivers. 

3.2.2 Summertime DTR responses in USA, EUR and ARC 

The reduced wintertime DTR in mid-latitudes is contrasted by a strong summertime increase, as seen by the orange colors on 

the JJA maps in Fig. 3.  Europe stands out as the region with the best inter-model agreement (Fig. 4; all bars are colored), 

withe, with a clear summertime DTR increase for all three drivers. This is caused by  that stems from a much stronger increase 630 

in Tmax than in Tmin (Fig. S47). The same can be seen for USA, albeit with less agreement between models for the CO2 response. 

In both these regions, all three drivers induce substantial reductions in summertime cloud cover (Fig. 6), driving inducing the 
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strong increase in Tmax. The link between DTR and cloud changes is supported by strong and statistically significant 

correlations between the two (Tables S2 and S3S4), with corresponding correlations to sensible heat flux and the amount of 

downwelling SW radiation, which we expect to increase as the cloud cover diminishes. A reduction in summertime 635 

precipitation in this region (not shown) contributes to the Tmax enhancement as a drier climate tends to involve less clouds and 

a drier surface with less evaporation. These are conditions that lower the night-time temperatures and increase daytime 

temperatures, thus contributing to increased DTR. It is well know from observations that the last decades have seen a marked 

drying of Europe in the summer (Manabe and Wetherald, 1987; Rowell and Jones, 2006; Vautard et al., 2014; Leduc et al., 

2019), potentially as a result of an expanding Hadley cell (Lau and Kim, 2015) or due to weaker lapse-rate changes over the 640 

Mediterranean region than over northern Europe (Brogli et al., 2019). 

Based on observations, Makowski et al. (2008) found a strong increase in European DTR in the period of strong SO2 

mitigations in the region, and suggested a causal relationship. Although natural variability and other forcing mechanisms have 

likely contributed to these trends, the increase in DTR over Europe seen in the SO4x5 experiment (recall the normalization by 

temperature change, meaning that this experiment corresponds to a SO4 reduction) is consistent with the findings of Makowski 645 

et al. (2008). However, as our SO4 perturbation experiment causes DTR increases that are comparable with what is caused by 

perturbations of BC and CO2., itTherefore, it seems that the DTR change in Europe is not a driver specific response, but rather 

linked to the surface temperature change resulting from the aerosol induced forcing, and the solely linked to the trends in 

aerosols, but rather part of a larger response to the general warming of the climate and the resulting large-scale circulation 

changes.  650 

InDuring the Arctic summerregion, processes dependent on short wave radiation may operate both day and night, and the 

potential for driver-specific responses is more present than during the polar night. wWe find differences in the summertime 

DTR response between the drivers. CO2 causes a stronger Arctic increase in Tmax than in Tmin and thus an increased DTR for 

all models, while BC for most models causes a stronger increase in Tmin and thus DTR reduction (Fig. 7S4). The reason is that 

CO2 induces a reduction in the summertime Arctic cloud cover, consistent with the increase in Tmax, while BC enhances the 655 

cloud cover, thus hindering the strong Tmax increase. As a further step, we Indeed, calculatinge SW and LW cloud radiative 

effects (CRE, Fig. 78) as the difference between clear-sky and all-sky top-of-atmosphere radiative fluxes (see, e.g., Dessler 

and Zelinka, 2015). And indeed, we see a strong summertime SW cloud radiative cooling over Arctic land masses for BCx10 

(-7.0 Wm-2K-1) (much stronger than the LW CRE effect, thus indicating that the change is primarily to low clouds), contrasting 

a small positive CRE (+0.2 Wm-2K-1) for CO2x2. The BCx10 SW CRE effect is much stronger than the LW CRE effect, thus 660 

indicating that the change is primarily to low clouds. 

We have now shown that, in general, responses to greenhouse gases and aerosols have similar effects on DTR in northern mid 

and high latitudes. Next, we move on to the high aerosol-emission regions of India and China, to illustrate that in regions of 

high aerosol emissions, the slight differences in how greenhouse gases and aerosols influence DTR will result in much more 

prominent differences in DTR change between the drivers. 665 
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3.2.3 Driver-specific DTR changes over India and China 

A visual comparison of the IND and CHI regions in the maps of Fig. 4 hints of interesting differences between drivers and 

between the to regions. Regionally averaged, CO2 causes reduced DTR in winter and increased DTR in summer (except for in 

IND), as we saw for EUR, USA and ARC (Fig. 4). While the DTR response to the SO4 perturbation is associated with large 670 

model spread in both seasons, it does produce a significant reduction in DTR over India in summer. What really stands out, 

however, is the strong response to BC. Near-term changes in aerosols over India and China, as envisioned in the Shared 

Socioeconomic Pathways (Rao et al. 2017), project either reduced concentrations of BC and SO4 in both regions, increased 

concentrations of BC and SO4 in India but reductions in China, or increased BC over both regions but a dipole pattern of 

increase over India but decrease over China (Samset et al., 2019). Given this uncertainty in future emission trends, 675 

understanding the individual responses of DTR to these two aerosol species is of high interest. In our simulations, BC causes 

strong DTR changes in all regions (Fig. 4), but particularly in India and China where present-day aerosol concentrations (and 

thus the magnitude of the perturbations) are high (Fig. 1). There is a high level of agreement between models on the sign of 

the DTR changes (Fig. 4; bars representing BC changes are mostly colored, indicating model agreement). , whichThis is 

striking, as BC-induced climate changes have been shown repeatedly to be associated with higher levels of model disagreement 680 

than changes driven by CO2 and SO4 (Richardson et al., 2018; Samset et al., 2016). While we found that BC caused reduced 

DTR in winter and increased DTR in summer over Europe, India and China experience severe DTR reductions in both seasons. 

In these regions, where baseline aerosol concentrations (Fig. 1) and thus the absolute magnitude of the aerosol perturbations 

are so high, the distribution of which processes dominate the response may be different.  Contrasting the strong inter-driver 

consistency in DTR changes in northern mid latitudes, we find the DTR-response of BC to differ more from the other drivers 685 

in India and China, where strongly negative BC-induced DTR changes stand out from the other drivers in both seasons.  

Changes in aerosol concentrations have been suggested as a cause of the DTR changes in China (Dai et al., 1999; Liu et al., 

2004). Here, we find relatively weak correlations between the DTR changes and changes in the BC burden (Pearson’s 

correlation coefficient of 0.26 and 0.38 in summer in India in DJF and JJA, respectively, and 0.12 and 0.29 in China). Still, c 

While correlations between both BCx10 and SO4x5  DTR changes and changes in downwelling clear-sky SW radiation (Tables 690 

S4 S5 and S56) are strong and significant, at least in India. , we find significant correlations also in the CO2x2 case.  

Interestingly, for both BCx10 and SO4x5, the aerosol perturbations perturbations are stronger in China than in India (see 

baseline concentrations in Fig. 1)., and Table S38 shows that the magnitude of the change in downwelling clear-sky SW 

radiation in summer is also strongest in China. Still, the link between these changes and DTR are strongest in India. We find 

that in the BASE simulations, India tends towards a slightly drier climate with less precipitation, less surface evaporation, less 695 

cloud cover and a stronger sensible heat flux than China (not shown) – properties typically associated with warmer maximum 
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and colder minimum temperatures. India therefore has a higher DTR to begin with (Fig. 2a), and thus a larger potential for 

change in the DTR.  

In winter, the only substantialstrongest DTR changes can be seen for BCx10 in the China region, for which the increase in 

Tmax is very weak (Fig. 5), likely due to a simulated increase in clouds for this experiment (Fig. 6). The same can be seen iIn 700 

summer, for which BC also causes DTR DTR reduction in China due to BC also goesto go down and cloud levels to go up. 

Correlations between the two are strong and significant in both seasons; -0.73 and -0.78 in DJF and JJA, respectively (Tab. 

S6). 

In India, models disagree strongly on the relative responses of Tmin and Tmax (and thus DTR) in general, see Fig. 5. In winter, 

we find a slight DTR reduction for CO2x2 as mentioned above, and a stronger reduction for BCx10. In summer, the majority 705 

of the models simulate reduced DTR for the SO4x5 experiment, due to a strong increase in Tmin and a lesser increase in Tmax. 

In the same season DTR is reduced by more than 2 K for BCx10. most models agree that the increase in summertime Tmin is 

stronger than in Tmax, causing reduced DTR for all three drivers. However, this effect is substantially stronger for BC than for 

CO2 and SO4. Figure 7 5 shows that thishe extremely strong DTR reduction for BCx10 over India in summer occurs because 

Tmin is slightly enhanced while Tmax is actually reduced. The reduction in Tmax is seen for all models but IPSL-CM5A, which 710 

is the only model for which cloud cover decreases over India in this season. For the other models, the increase in summertime 

cloud cover increase from in the BCx10 experiment, as clearly seen in Fig. 6, is substantial over India (Fig. 6). In particular, 

there is a strong reduction in the SW CRE over Indiain this region (Fig. 87), likely responsible for the reduction in summertime 

Tmax. Oppositely, the increase in summertime Tmin (nighttime temperatures are influenced only by the LW spectrum) is 

enhanced by the positive change in LW CRE over India. In fact, regions which have both a negative change in the SW CRE 715 

and a positive change in the LW CRE can be recognized as the regions with the strongest reductions in DTR in the BCx10 JJA 

map of Fig. 3 (most importantly India and Central Africa).  

The strong link between cloud and DTR changes is confirmed by significant negative correlations between DTR and cloud 

cover in the India and China regions (Tables S4 and S5), strongest in the summer. A previous analysis of the PDRMIP BCx10 

experiment by Stjern et al. (2017) found that the BC-induced cloud amount cover increases in these regions were strongly 720 

mainly driven by rapid cloud adjustments (including the so-called semi-direct effect), but were also a part of the longer-term 

response to increased global surface temperatures. They found cloud cover increases wereto be stronger in India than in China, 

particularly for low clouds, which have the strongest influence on Tmax.  

All in all, while we do see that aerosol-radiation interactions have likely contributed to the regions’ DTR changes (through 

reduction in downwelling SW radiation and thus surface heating), the strongest link againdriver of DTR changes seems to be 725 

clouds. Greenhouse gases and aerosols cause distinctly different responses in DTR in the regions – not primarily through their 

direct radiative effect, but via their specific influence on cloud cover. As the magnitude of the BC-induced cloud response is 
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particularly strong over India, this is where we see the most substantial DTR reduction.cloud responses to the strong BC 

perturbations are so substantial, especially in India, the BC response in DTR stands out here. 

 730 

Given the strong role of clouds in the DTR response, estimates of DTR change will be sensitive to the way that specific climate 

forcers influence clouds in different climate models, and to their baseline cloud representations. Model responses to CO2 

perturbations have been shown to vary greatly between individual models, and responses to aerosols have even larger 

uncertainties, partly due to additional variations in parametrizations of indirect and semidirect effects. For instance, both a 

previous PDRMIP analysis of the BCx10 experiment (Stjern et al., 2017), and an idealized single-model study (Samset and 735 

Myhre 2015), indicatesuggest that increased BC concentrations lead to rapid adjustments in the form of increased fractions of 

low clouds and reduced fractions of high clouds. These cloud changes occurred over large areas of the globe, with a global 

mean cooling effect. In a recent study, however, Allen et al. (2019) find indications that the heating rate induced by BC is less 

“top heavy” than what is calculated in many climate models (i.e., the vertical profile of short wave heating rates is too uniform). 

, and iThey claim that if the overestimated upper-level cloud response is corrected for, it could instead produce rapid 740 

adjustments that warm the climate, on average. These nuances are relevant to the accuracy of DTR simulations as a BC-

induced reduction in high clouds will cause LW cooling and likely lower Tmin, while increased low clouds will cause SW 

cooling and also lower Tmax, with effects on the DTR depending on which is influenced the most. If, on the other hand, BC 

causes strong reductions in low clouds (increases Tmax) and also weak reductions in high clouds (reduces Tmin slightly), this 

will contribute to an increase in DTR. More research is needed on modelled cloud responses and the vertical distribution on 745 

BC, but we note that both Stjern et al. (2017) and Allen et al. (2019) find that in the high-emission regions of India, China and 

North/Central Africa, the rapid adjustments produce an increase throughout all cloud layers with a total cooling effect (compare 

to Fig. 87, where the SW CRE is stronger than the LW CRE in these regions) and likely with similar effects on the DTR. 

4 Summary and Conclusion 

We have analyzed a multi-model set of idealized simulations to investigate how changes to the atmospheric levels of CO2, BC 750 

and SO4 influence the diurnal temperature range, through alterations of global mean surface temperature, cloud amounts cover 

and other climate parameters. For northern mid- and high-latitude regions, we find DTR changes that are broadly similar 

between drivers. The cause of the DTR change, as apparent from patterns of Tmin and Tmax changes, is not always the same for 

all drivers. However, the resulting change is consistently an increase in DTR in summer, in EUR, USA and ARC, and a 

decrease in winter. This similarity may partly be the result of general atmospheric response to changes in surface temperature, 755 

rather than the distinct processes through which the drivers operate. Thus, while the strong DTR reductions over Europe have 

been linked to the massive mitigation effort of SO4 over the past decades, our similar responses of SO4 perturbations to 

perturbations of CO2 and BC indicate that this is not necessarily an aerosol-specific response. 
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Over India and China there is less agreement between drivers, with BC causing a strong DTR reduction in both regions in all 

seasons. The inter-model spread is large, but all models agree on the sign of this change. Although the strong short-wave 760 

atmospheric absorption induced by BC particles is predominantly active in daytime, thus impacting the maximum (daytime) 

temperature more than the minimum (nighttime) temperature, we find that the direct aerosol effect is likely not the leading 

cause of the DTR response. Rather, it is the strong cloud response to BC in these regions, shown in previous studies {Stjern, 

2017 #465} to result from aerosol-induced changes to atmospheric stability and relative humidity, that drive the response in 

DTR. All models have stronger correlations to cloud related variables than to clear-sky radiative fluxes or changes in BC 765 

burden. Hence, the very high BC concentrations in this region have a strong influence on clouds, and thus on DTR. 

Although these high-emission regions seem to have driver-specific responses in the DTR, in some seasons, e.g. during autumn 

over India, CO2 and SO4 produce DTR-changes of the same sign as BC, again indicating the existence of an underlying, driver-

independent DTR response tied to the general warming of the climate. This supports the work of Vinnarasi et al. (2017), who 

stressed that observed DTR changes over India are a result of both local and global factors working in tandem. 770 

Disentangling the role of aerosols and greenhouse gases to DTR changes is a crucial step towards prediction of future changes 

in regional DTR. This is particularly true in regions such as India and East Asia (Vinnarasi et al., 2017), in which risk factors 

are aggravated by agriculture-dependent economies and dense populations, and where future trends in aerosol emissions are 

highly uncertain, but likely to be strong. Understanding how greenhouse gases, absorbing aerosols and scattering aerosols 

individually influence the DTR may help these regions prepare for future changes. 775 
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Tables and Figures 950 
 
 
 
Table 1: Overview of models and experiments 

Experiments 
BASE Present-day conditions, with solar constant and CO2 emissions for year 2000 

(Lamarque et al., 2010). Five models ran the aerosol simulations in concentration-
based mode, where BC or SO4 concentrations were fixed at the monthly multi-model 
mean present-day concentrations from AeroCom Phase II (Myhre et al., 2013; 
Samset et al., 2013). The remaining models (indicated below) ran emission-based 
simulations where the BASE simulation used present-day emissions of BC or SO4. 

CO2x2 A global instantaneous doubling of the BASE CO2 emissions. 
BCx10 A global instantaneous tenfold increase in the BASE BC concentrations (for the 

concentration-based models) or emissions (for the emission-based models). 
SO4x5 Like BCx10, only for SO4. For models doing emission-based perturbations, SO2 (not 

SO4) was perturbed. 
Models Aerosol simulation type No. of lon x lat x lev grid cells 
CanESM2 Emission-based 128 x 68 x 22 
NCAR-CESM1-CAM4 Concentration-based 144 x 96 x 17 
NCAR-CESM1-CAM5 Emission-based 144 x 96 x 17 
GISS-E2-R Concentration-based 144 x 90 x 40 
HadGEM2 Emission-based 192 x 144 x 17 
HadGEM3 Concentration-based 192 x 144 x 17 
IPSL-CM5A Concentration-based 96 x 96 x 39 
NorESM1 Concentration-based 144 x 96 x 26 
MIROC-SPRINTARS Emission-based 256 x 128 x 40 
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Figure 1: Geographical distribution of the baseline baseline concentrations ofburden of BC and SO4, respectively as used in the 
BASE simulations, and as multiplied by 10 and 5 in the BCx10 and SO4x5 simulations, respectively. 
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Figure 2: For DTR, Tmin and Tmax, respectively, the figure shows a) geographical distribution of CRU TS values, averaged over 
years 1991-210, b) geographical distribution of differences between the PDRMIP model-median baseline (mean of years no. 51-100 975 
of 100-year fully coupled simulations) and CRU TS, and c) regionally averaged differences for the model median and for individual 
models.  Comparison of baseline (year 2000, years 51-100 of 100-year fully coupled simulations) PDRMIP and CRU TS (mean of 
years 1991-2010) DTR, Tmin and Tmax. For PDRMIP, single models are shown as open symbols and multi-model median as a filled 
horizontal bar. Note that as HadGEM2 has a preindustrial baseline in the PDRMIP simulations (Samset et al., 2016) we have omitted 
this model here. b) Geographical distribution of DTR for the same years, for the PDRMIP inter-model median and for CRU. 980 
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Figure 3: Multi-model median change in DTR, normalized by the global mean temperature change [K/K], for the three experiments. 
Large upper maps show annual mean changes, while smaller maps show seasonal changes. Hatching indicates areas where less than 
75% of the models agree on the sign of the change. Annual maps include indications of the focus regions of this study. The region 
called “LND” throughout the manuscript is the average of all land regions on the globe. 985 
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Figure 4: Multi-model median change in DTR for the different drivers and seasons, normalized by the global mean temperature 
change [K/K]. Cases for which 80 % of models with data have DTR changes of the same sign are marked with colors, whereas 995 
hatched bars indicate larger model disagreement. The numbers associated with the colored bars shows the number of models for 
which the change is statistically significant (Student’s t-test p-value of less than 0.05). The coefficient of variation [std.dev/mean, %] 
is shown as numbers on the top. 
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Figure 5: Regional changes in DTR, Tmin and Tmax for the three drivers (columns) in the two Asian regions IND and CHI (rows). 
For each driver and region subpanels show, respectively, wintertime changes in Tmin and Tmax, wintertime and summertime 
changes in DTR, and summertime changes in Tmin and Tmax. The black horizontal bars and circles show the multi-model median 1020 
changes.Regional wintertime changes in DTR, Tmin and Tmax for the three cases (columns) and six regions (rows). Black horizontal 
line and squares shows the multi-model median changes. 
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Figure 6: Multi-model median seasonal cloud cover change for the three drivers, normalized by the global annual mean temperature 1035 
change. Hatching indicates that less than 75% of the models agree on the sign of the change. 
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Figure 7: Regional summertime changes in DTR, Tmin and Tmax for the three cases (columns) and six regions (rows). Black 
horizontal line and squares shows the multi-model median changes. 
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Figure 87: Multi-model median change in short-wave (SW) and long-wave (LW) cloud radiative effects [Wm-2] for the JJA months, 
for the BCx10 experiment. See supplementary figures for maps of all seasons and experiments. 
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