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Abstract. Clouds are prevalent and alter fine particulate matter (PM2.5) mass and chemical composition. Cloud-affected 

satellite retrievals are subject to higher uncertainty and are often removed from data products, hindering quantitative 

estimates of tropospheric chemical composition during cloudy times. We examine surface PM2.5 chemical constituent 10 

concentrations in the Interagency Monitoring of PROtected Visual Environments (IMPROVE) network in the United States 

during Cloudy and Clear Sky times defined using Moderate Resolution Imaging Spectroradiometer (MODIS) cloud flags 

from 2010-2014 with a focus on differences in particle hygroscopicity and aerosol liquid water (ALW). Cloudy and Clear 

Sky periods exhibit significant differences in PM2.5 mass and chemical composition that vary regionally and seasonally. In 

the eastern US, relative humidity alone cannot explain differences in ALW, suggesting emissions and in situ chemistry exert 15 

determining impacts. An implicit clear sky bias may hinder efforts to quantitatively understand and improve representation 

of aerosol-cloud interactions, which remain dominant uncertainties in models.  

1 Introduction 

At any given time, visible clouds cover over 60% of the Earth’s surface (King et al., 2013), and a warming climate causes 

cloud cover to change (Norris et al., 2016). Average cloud fraction values over the contiguous US (CONUS) are ~40% year-20 

round with higher values in winter (44-54%) than summer (26-34%) (Ju and Roy, 2008; Kovalskyy and Roy, 2015). Clouds 

act as atmospheric aqueous phase reactors, and their condensed phase oxidative chemistry generates particle mass aloft, such 

as sulfate (Zhou et al., 2019), water-soluble organic carbon (Carlton et al., 2008; Duong et al., 2011), and organo-sulfur 

compounds (Pratt et al., 2013). Clouds are the primary drivers of vertical transport in the atmosphere, moving trace species 

from the boundary layer to the free troposphere (FT) (Ervens, 2015). The radiative impacts of aerosols in the FT are 25 

substantial, especially when located above clouds where they scatter and absorb both incoming solar radiation and diffuse 

back scatter from clouds (Seinfeld, 2008). Aerosol-cloud interactions are complex and a critical uncertainty in model 

projections (Fan et al., 2016). 
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Atmospheric chemistry laboratory studies, ambient sampling, modelling, and analysis strategies are often designed in ways 30 

that minimize cloud and water influences. This leads to an implicit, yet persistent clear sky bias in the quantitative 

understanding of tropospheric composition. During atmospheric chemistry field campaigns, aircraft typically avoid clouds, 

and direct measurement of in-cloud particle chemical composition is rare (Wagner et al., 2015). There is increased error in 

remotely sensed aerosol optical thickness (AOT) retrieval techniques during cloudy times (Martin, 2008), and impacted 

retrievals are screened from final data products to avoid measurement artifacts. Most validation of satellite-derived AOT 35 

through comparison to surface measurements, such as those from sun photometers used to retrieve AOT from the ground up, 

is conducted for cloud-free periods (Liu et al., 2018). Air quality models are often evaluated with cloud-free satellite 

retrievals (van Donkelaar et al., 2010; Guo et al., 2017; de Hoogh et al., 2016; Song et al., 2014; Tian and Chen, 2010) and 

cloud-free aircraft samples (Bray et al., 2017; McKeen et al., 2009). This biases model development and predictive skill 

toward cloud-free conditions, and hinders accurate prediction of trace species during cloudy time periods. Laboratory 40 

experiments to understand particulate matter formation are conducted under dry conditions (Lamkaddam et al., 2017; Ng et 

al., 2007) atypical of cloudy time periods. Should differences in aerosol physicochemical properties, including those that 

affect water uptake, exist between cloudy and clear sky time periods, current approaches are limited in their ability to 

quantitatively assess those differences. This is a key knowledge gap. 

 45 

Characterization of fine particulate matter (PM2.5) mass and chemical composition in the US primarily relies on surface 

measurements from relatively sparsely spaced monitors. At various locations across the CONUS, the Interagency Monitoring 

of PROtected Visual Environments (IMPROVE) network samples every 3 days, and the Chemical Speciation Network 

(CSN) samples every 3 or 6 days (US Environmental Protection Agency, 2008). To improve upon surface network spatial 

and temporal limitations, data can be interpolated to describe particle mass (Li et al., 2014; Zhang et al., 2018) and chemical 50 

composition over larger areas (Liu et al., 2009; Tai et al., 2010). Satellite information can also be used (van Donkelaar et al., 

2015b), such as the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard the Aqua and Terra 

satellite platforms. These view the entire Earth surface every 1 to 2 days and are used to impart information for use in air 

quality applications (van Donkelaar et al., 2015b; Gupta et al., 2006; Kloog et al., 2011; Sorek-Hamer et al., 2016). Many 

advanced satellite AOT models translate space-based radiation measurements to surface PM2.5
 (van Donkelaar et al., 2010, 55 

2015b, 2015a; Gupta et al., 2006; Kessner et al., 2013; Kloog et al., 2011; Kumar et al., 2007; Liu et al., 2011; Schaap et al., 

2009; Wang et al., 2012; Wang and Christopher, 2003) and employ sophisticated techniques which account for aerosol size 

and type, vertical extinction, mass, and relative humidity (RH) (van Donkelaar et al., 2010). Evaluation of AOT-to-PM2.5 

techniques finds that monthly aggregated AOT can robustly estimate relationships spanning five years of daily mean values 

over North America (R>0.77) (van Donkelaar et al., 2010). While temporal and geospatial satellite AOT is useful for 60 

understanding trends in PM2.5 concentrations (van Donkelaar et al., 2015b; Sorek-Hamer et al., 2016; Wang and Christopher, 

2003), an implicit constraint for this and other similar findings is that such agreement is for clear sky conditions.  

 

https://doi.org/10.5194/acp-2020-184
Preprint. Discussion started: 23 March 2020
c© Author(s) 2020. CC BY 4.0 License.



3 

 

Surface networks record PM2.5 mass and chemical composition during clear sky and cloudy time periods alike. The 

difference between spatially and temporally aggregated PM2.5 mass concentrations in the CONUS for cloudy and all sky 65 

(cloudy + clear sky) conditions is estimated to be ±2.5 μg m-3 (Christopher and Gupta, 2010). Less attention has been given 

to clear sky and cloudy differences in PM2.5 chemical composition, especially with regards to particle hygroscopicity and 

water uptake. Aerosol mass concentrations and chemical speciation including aerosol liquid water (ALW) influence AOT 

(Christiansen et al., 2019; Malm et al., 1994; Nguyen et al., 2016; Pitchford et al., 2007), cloud microphysics, and mesoscale 

convective systems (Kawecki and Steiner, 2018), including storm morphology and precipitation patterns (Kawecki et al., 70 

2016). Particle chemical composition modulates particle size via water uptake. Particle size is a determining factor in light 

scattering by particles, which is important for aerosol radiative calculations. An implication of this work is that if particle 

hygroscopicity changes from clear sky to cloudy time periods, when aerosol-cloud interactions are most important, a 

quantitative understanding remains unclear.  

 75 

In this work, we test the hypothesis that there are quantitative differences in PM2.5 chemical composition between cloudy and 

clear sky time periods in ways important for water uptake. We employ a combination of satellite products, surface 

measurements, and thermodynamic modeling to analyze annual and seasonal trends in chemical climatology regions across 

the CONUS. We assess and quantify seasonal statistical significance (Kahn, 2005) for differences in distributions of RH, 

PM2.5, and chemical speciation during cloudy and clear sky times using surface measurements from the IMPROVE network 80 

from 2010-2014 within the context of MODIS cloud flag values. Further, we examine one chemical climatology region in 

detail, the Mid South, as a case study. This region encompasses the location of the Atmospheric Radiation Measurement 

Southern Great Plains (SGP) site in an area of the CONUS that experiences varied weather patterns, a broad range of cloud 

conditions, and distinct seasonal variations in temperature and humidity (Sisterson et al., 2016). 

2 Data and Methods 85 

Cloudy and clear sky classifications are determined using publicly available data (National Aeronautics and Space 

Administration, 2018) from MODIS on the Aqua and Terra satellites. Pairing of satellite and surface PM2.5 mass 

measurements typically works best in rural and vegetated locations, where the spectral properties of the background tend to 

be dark and vary little over the space of a satellite grid cell (Hauser, 2005; Jones and Christopher, 2010). For this reason, we 

use rural IMPROVE network sites that are located primarily in national parks, although improvements have been made for 90 

retrievals over bright surfaces (Hauser, 2005; Hsu et al., 2004, 2006, 2013; Zhang et al., 2016). We use 500 m resolution 

pixels that contain the IMPROVE sites. Retrievals are flagged as cloudy if QA flags specifically identified clouds as 

preventing retrieval, or if 2.1-micrometer reflectance was too high (r>0.35) and the fraction of 500 m sub pixels that were 

cloudy was greater than 44.4%. We choose 44.4% because it is a fundamental limit of the algorithm (Remer et al., 2013). 

IMPROVE monitors are frequently under a MODIS swath with valid retrievals even if the pixel containing the IMPROVE 95 
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station is not successfully retrieved. As an alternative to the IMPROVE pixel, we employ a method for quality assurance, a 

17x17 grid. This allows for any retrieval within a 50 km x 50 km area to represent the IMPROVE station. If all 17x17 pixels 

are not retrieved, then the state over the monitor is determined to be cloudy. The 17x17 grid approach is much more likely to 

attribute non-retrieved data to clouds (98.5%) than the containing pixel approach, which attributes 89.8% of non-retrieved 

data to clouds. Misidentifying non-retrievals as cloudy is unlikely to substantially affect interpretation, as the sample size is 100 

large (N>70,000 total observations, and N>1500 for an individual region). 

 

IMPROVE network data were downloaded on 13 July 2015 and 26 May 2016 from public archives 

(http://vista.cira.colostate.edu/Improve/) (IMPROVE Network, 2019) for 132 unique sites across the CONUS with complete 

data records for the years 2010-2014 (Fig. S1a). IMPROVE data is collected every 3 days. We investigate 24-hour average 105 

PM2.5 mass, ALW, RH, sulfate (SO4
2-), nitrate (NO3

-), and total organic carbon (TOC) mass concentrations. Other species 

affect particle hygroscopic properties but are not widely measured in routine networks. For example, we investigate TOC as 

a whole even though primary and secondary species affect water uptake differently. There is no direct measurement of either 

in routine monitoring network operations, although fractionation can sometimes be used to infer information about sources 

and formation processes (Aswini et al., 2019; Cao et al., 2005; Chow et al., 2004). We group IMPROVE sites across the 110 

CONUS into 22 chemical climatology regions defined by the IMPROVE network (Fig. S1b) (Hand et al., 2011; Malm et al., 

2017). PM2.5 mass and composition is provided directly from the IMPROVE database, while ALW is estimated. 

 

ALW is a function of RH, particle concentration, and chemical composition. We estimate ALW using a metastable 

assumption in the inorganic (K+–Ca2+–Mg2+–NH4
+–Na+–SO4

2-–NO3
-–Cl-–H2O) aerosol thermodynamic equilibrium model 115 

ISORROPIAv2.1 (Fountoukis and Nenes, 2007). We use the reverse, open-system problem because only aerosol 

measurements are available. Particle mass concentration inputs of SO4
2- and NO3

- are taken from IMPROVE measurements. 

Ammonium ion is not considered due to limited measurement availability. Dust and organic species are also not considered 

because water uptake properties are not well constrained (Jathar et al., 2016; Metzger et al., 2018), and there is large spatial 

heterogeneity in dust. Our approach to employing ISORROPIA introduces uncertainties (e.g., pH estimates would be 120 

unreliable (Guo et al., 2015)), but neglect of dust does not affect overall interpretation of ALW mass (Fig. S2), consistent 

with an earlier sensitivity using this technique that included organic species (Nguyen et al., 2015). The temperature and RH 

were extracted from the North American Regional Reanalysis (NARR) model (Kalnay et al., 1996) similar to Nguyen et al. 

2016. 

 125 

Cloudy and Clear Sky differences in ALW are investigated in two ways. First, we compare ALW estimated using 24-hour 

average chemical composition and meteorology and group results into Clear Sky and Cloudy bins using the MODIS cloud 

flag. We use these daily values when comparing ALW within chemical climatology regions. Second, we investigate trends 

across the eastern US to isolate the effect of chemical composition. We select the eastern US since ALW concentrations are 
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largest in this region (Fig. S3), and it is in cloud often and consistently (cloud fraction 30-50% year-round) (Fig. S4). This 130 

makes statistical comparisons between Cloudy and Clear Sky times more robust than in the dry western US, where ALW 

concentrations and cloud fraction are low in most seasons. We group 24-hour average chemical composition and 

meteorology into Clear Sky and Cloudy bins and take monthly medians. We perform ALW estimations using the medians 

via three ISORROPIA calculation scenarios: 1) Clear Sky chemical composition and Clear Sky meteorology (“Clear Sky” 

scenario), 2) Cloudy chemical composition and Cloudy meteorology (“Cloudy”), and 3) Clear Sky chemical composition 135 

and Cloudy meteorology (“Mixed”) (Table S1, Fig. S5). We use monthly medians to avoid complications that arise from 

differing numbers of Cloudy and Clear Sky days in the Mixed scenario. To investigate meteorology and chemical 

composition impacts separately, we perform the Mixed scenario in order to reproduce studies in which cloud free growth 

factors (Brock et al., 2016) are eventually applied in models that contain cloudy meteorological conditions (Bar-Or et al., 

2012). When the Mixed scenario is significantly different than Cloudy, we can reject the hypothesis that RH and temperature 140 

alone explain the difference. Wet deposition is unconstrained in this analysis, but cloud droplets typically evaporate 

(Pruppacher and Klett, 2010). 

 

Growth factors used in the Mid South region are estimated from a modified Kohler equation (Brock et al., 2016; Jefferson et 

al., 2017) (Eq. 1). We use RH from the NARR and estimate   , the particle hygroscopicity, from IMPROVE-measured 145 

chemical composition mass concentrations and individual species κ values (    =0.5,     =0.7) (Petters and Kreidenweis, 

2007). Here,       is the hygroscopic diameter growth. 

 

           
  

      
                                                                                                                                                      (1) 

 150 

Statistical significance for differences in measurement distributions of PM2.5 chemical composition and properties between 

Cloudy and Clear Sky time periods from 2010-2014 is determined using the Mann-Whitney U Test in R statistical software 

(R Core Team, 2013). The Mann-Whitney U Test is a non-parametric test that compares two samples to assess whether 

population distributions differ (McKnight and Najab, 2010). 2010-2014 encompasses typical conditions and coincides with 

several intensive observation periods including the Southeast Atmosphere Studies (SAS) (Carlton et al., 2018), the Studies of 155 

the Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS) (Toon et al., 

2016), and the California Research at the Nexus of Air Quality and Climate Change (CalNex) (Ryerson et al., 2013) field 

campaigns. We define cloud fraction for each region as the number of MODIS-flagged cloudy IMPROVE sampling days 

over the total number of IMPROVE sampling days. Further, we define winter as December, January, and February (DJF), 

spring as March, April, and May (MAM), summer as June, July, and August (JJA), and fall as September, October, and 160 

November (SON). 
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3 Results and Discussion 

3.1 Hygroscopicity and Chemical Composition 

Distributions in monthly particle chemical composition across the eastern US in 2010-2014 are sufficiently changed between 

MODIS-defined Cloudy and Clear Sky times to affect hygroscopicity and alter predicted ALW mass concentrations beyond 165 

differences that would arise from changes in meteorology alone (Fig. 1). These findings are consistent with an analysis in the 

desert southwest US that shows that chemical composition is an essential factor for improving cloud condensation nuclei 

predictions (Crosbie et al., 2015). The only difference between the Mixed and Cloudy ALW calculations is that the Mixed 

scenario employs Clear Sky chemical composition (rather than Cloudy chemical composition) extrapolated to Cloudy 

meteorology. This type of scenario can occur in model development or satellite validation applications when PM2.5-AOD 170 

relationships or growth factors remain unmeasured for Cloudy periods (Brock et al., 2016; van Donkelaar et al., 2010; de 

Hoogh et al., 2016; Tian and Chen, 2010). Previous work using climate models shows that application of ALW uptake that is 

influenced by incorrect chemical composition significantly affects top of atmosphere radiative forcing estimates and 

attribution of anthropogenic climate impacts (Rastak et al., 2017). When Clear Sky chemical composition is extrapolated to 

Cloudy period meteorology (“Mixed”), monthly median ALW concentrations in the eastern US, in all seasons except winter, 175 

are significantly different from our best estimate, which employs the actual chemical composition during cloudy periods 

(“Cloudy”). Interestingly, monthly median Clear Sky and Cloudy scenario ALW concentrations do not differ significantly 

except during winter despite higher Cloudy RH (Fig. 2). This is consistent with chemical composition as a determining 

factor in ALW (Carlton and Turpin, 2013; Liao and Seinfeld, 2005), CCN (Crosbie et al., 2015), and extinction (Pitchford et 

al., 2007) on cloudy days because the pattern in ALW is opposite the pattern in RH.  180 

 

Clear Sky/Cloudy patterns in SO4
2- and NO3

- mass concentrations, which affect particle hygroscopicity, vary regionally and 

seasonally. When aggregated over the eastern US, ALW estimates for the Mixed case are largest during summer and spring 

and can be explained by elevated Clear Sky SO4
2- and NO3

- concentrations and high Cloudy RH (Fig. 2). Generally, Mixed 

ALW concentrations in the eastern US are higher than for the Cloudy scenario because Clear Sky chemical composition 185 

facilitates greater hygroscopicity and Cloudy RH is elevated (Table S2). A notable exception is the Ohio River Valley during 

winter, where Cloudy SO4
2-, NO3

-, and RH are higher than Clear Sky. In this case, Cloudy period ALW concentrations are 

higher than for the Mixed scenario. These findings highlight that a changing PM2.5 chemical composition has a determining 

effect on ALW mass concentrations (Nguyen et al., 2016), a critical element in the estimation of aerosol-cloud interactions 

and particle radiative impacts. During cloudy periods, when the accurate prediction of ALW and aerosol-cloud interactions is 190 

most critical, in situ knowledge of PM2.5 chemical composition is required.  

 

Differences in daily mass concentrations of fine particle chemical constituents between Cloudy and Clear Sky periods across 

the CONUS are spatially and temporally different among PM2.5 mass and its chemical constituents except in the Northwest 
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region (Figs. 3-7, Tables S3-S7, Fig. S6). These patterns cannot be adequately described as a function of MODIS cloud 195 

fraction (Figs. S6-S7). If meteorological processes and physical transport are the only controlling factors, then patterns in 

mass concentrations among PM2.5 and constituents should not vary. However, they do, suggesting differences in emissions 

and/or in situ chemical production of PM2.5 during Cloudy and Clear Sky time periods. Where differences are significant for 

ALW, Cloudy ALW is higher than Clear Sky in all seasons, with few exceptions (Fig. 3, Table S3). Water uptake 

contributes to particle growth with a determining impact on particle size and radiative properties. PM2.5 mass, greater during 200 

Clear Sky times in most regions and seasons, has nearly an opposite pattern to ALW spatial and seasonal trends (Fig. 4). The 

largest ALW differences are observed in the central and eastern US during winter. Wintertime Cloudy SO4
2- mass 

concentrations are greater than Clear Sky (Fig. 5, Table S5), and the highest NO3
- mass concentration differences are 

observed during Cloudy times in winter when temperatures are coldest (Fig. 6, Table S8). This promotes thermodynamic 

stability of nitrate in the condensed phase, increasing particle hygroscopicity and facilitating ALW.  205 

 

Outside of winter, significant SO4
2- mass concentrations are typically higher on Clear Sky days in the eastern US (Fig. 5, 

Table S5). Higher Clear Sky SO4
2- concentrations during summertime are associated with heat waves and stagnation events, 

which are characterized by a lack of ventilation in high pressure systems (Jacob and Winner, 2009; Wang and Angell, 1999) 

and higher electricity demand (Farkas et al., 2016) associated with emissions that form sulfate.  210 

 

TOC mass concentrations are nearly always higher during Clear Sky times than Cloudy (Fig. 7, Table S7) in all chemical 

climatology regions across the CONUS, with the largest differences during summer and fall. Precursor VOC emissions (e.g., 

biogenic) and subsequent derived PM that contributes to OC differ by season and region (Donahue et al., 2009; Gentner et 

al., 2017; Youn et al., 2013). Increased sunlight under clear sky conditions leads to higher biogenic VOC emissions 215 

(Sakulyanontvittaya et al., 2008) and enhanced photolysis rates that facilitate hydroxyl radical production important to 

secondary organic aerosol formation (Tang et al., 2003). Organic aerosol hygroscopicity and water uptake is highly uncertain 

(Christiansen et al., 2019; Nguyen et al., 2015), and yet has profound impacts on top-of-atmosphere radiative forcing 

calculations (Rastak et al., 2017). We note that TOC is also influenced by primary sources of OC including wildland fires in 

the west and prescribed burning in the east which are not influenced by cloud presence (Spracklen et al., 2007; Tian et al., 220 

2009; Zeng et al., 2008). 

3.2 PM2.5 Mass Concentrations 

Significant differences in PM2.5 mass concentrations measured at IMPROVE monitoring locations are observed between 

Cloudy and Clear Sky conditions in the majority (>60%) of regions in any given season during 2010-2014 (Fig. 4 and Table 

S4) and do not correlate with MODIS cloud fraction during any season in any region (Fig. S8). In all regions, Clear Sky 225 

PM2.5 concentrations are generally higher than Cloudy. Satellite AOT products used to derive PM2.5 may overestimate the 

atmospheric burden across the CONUS, particularly during summertime. Median All Sky PM2.5 concentrations are also 
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significantly different and typically lower than Clear Sky in multiple chemical climatology regions (Table S9). This suggests 

the clear sky bias in satellite data may impart a positive bias when assessing surface PM2.5 trends in model applications for 

air quality, weather, and climate.  230 

3.3 Case Study: The Mid South 

ALW concentrations are significantly higher during Cloudy times than Clear Sky in the Mid South during all seasons (Table 

1, Fig. 8). RH in the region is high year-round during Cloudy and Clear Sky periods alike, with the median greater than 60%. 

Gas-phase water vapor mixing ratios are sufficiently high that water availability is not limiting for ALW in the region for 

any season. Aerosol mass concentrations and chemical composition vary, however, and the effects on particle hygroscopicity 235 

can be seen in contrasting Cloudy and Clear Sky ALW concentrations among the seasons. For example, during Clear Sky 

conditions, the highest ALW mass concentrations occur during summer and spring, which correspond to the highest SO4
2- 

concentrations in the Mid South, and not when Clear Sky RH is highest (i.e., during winter). The largest absolute ALW 

concentrations and estimated growth factors occur during Cloudy times in the winter and spring, when NO3
- mass fraction 

and RH are highest. This is consistent with independent humidified nephelometer measurements by Jefferson et al., who find 240 

that aerosol growth rates are highest in the winter and spring at the SGP site within the Mid South chemical climatology 

region, and identify nitrate and RH as determining factors (Jefferson et al., 2017). 

 

NO3
- concentrations are generally lower than SO4

2- in the Mid South, but NO3
- is more hygroscopic and provides influence 

over ALW patterns. Sulfate is traditionally considered dominant in determining absolute ALW mass concentrations in this 245 

region, and sulfate mass fraction is highest in summer (Carlton and Turpin, 2013; Gasparini et al., 2006). Similar to other 

regions of the CONUS, SO4
2- mass concentrations are greatest during summertime Clear Sky conditions due to transport 

(Parworth et al., 2015), increased rates of photochemistry (Stone et al., 2012), and increased electricity sector emissions 

during heat waves and stagnation events (Appel et al., 2011; Farkas et al., 2016), which generally occur on sunny days. 

Sulfate mass fraction is lowest in winter, when NO3
- concentrations are high due to cooler temperatures and transport of 250 

precursor species from nearby agricultural and surrounding urban areas (Parworth et al., 2015). Year-round NO3
- 

concentrations are higher during Cloudy conditions than Clear Sky, which are associated with lower temperatures. Under 

Cloudy conditions, the highest ALW concentrations and estimated growth factors occur during winter and spring, when NO3
- 

mass fraction and RH are highest. In another continental location, the Po Valley in Italy, NO3
- was found to control ALW 

concentrations with implications for secondary organic aerosol (Hodas et al., 2014). The Mid South is also a continental, 255 

agricultural area and aerosol growth may be subject to similar mechanisms. 
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4 Conclusions 

Across the CONUS, statistically discernible differences among PM2.5 and chemical constituent concentrations under Cloudy 

and Clear Sky conditions cannot be explained solely by physical mechanisms. The chemical properties of aerosol are 

important to explain differences in water uptake and particle composition under different meteorological conditions. While 260 

meteorological phenomena such as pressure systems, winds, and air mixing affect PM2.5 and chemical component 

concentrations, they are insufficient to explain chemical constituent differences between Cloudy and Clear Sky times. In situ 

chemical formation processes are necessary to fully explain temporal and spatial patterns. Spatially and seasonally, PM2.5 

and particle speciation information that lends insight into water uptake, particle properties, and particle growth is incomplete 

when information is gathered only during Clear Sky times. The work presented here indicates aerosol growth due to water 265 

uptake is greatest during satellite periods identified as Cloudy in many regions, when satellites are unable to remotely sense 

particle properties and impacts. This limits understanding of atmospheric particle burden and its climate-relevant 

physicochemical properties, which have implications for the prediction of weather (Kawecki and Steiner, 2018), air quality, 

and climate. This indicates that the clear sky bias affects accurate representation of ALW on cloudy days and suggests that 

without in situ chemical information, aerosol-cloud interactions and subsequent estimates of radiative forcings in models 270 

(Lin et al., 2016; Vogelmann et al., 2012) will remain a large uncertainty.  
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Table 1: Particle chemical constituent concentrations, meteorology, and growth factors during Cloudy (Cl) and Clear Sky (CS) 

times in the Mid South. 

 
SO4

2-
 NO3

-
 ALW RH Growth Factors 

 
CS Cl CS Cl CS Cl CS Cl CS Cl 

Win 0.77 1.24 0.90 1.22 1.32 3.61 0.64 0.80 1.33 1.50 

Spr 1.46 1.79 0.37 0.50 2.48 4.02 0.62 0.76 1.25 1.41 

Sum 1.91 1.69 0.20 0.19 2.92 3.57 0.59 0.72 1.21 1.39 

Fall 1.05 1.17 0.18 0.33 1.56 2.74 0.57 0.73 1.18 1.37 
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Figure 1: ALW mass concentrations are significantly different between Clear Sky and Cloudy time periods beyond what would 

arise from changes solely in meteorology (e.g., RH). Monthly median estimated ALW distributions at each IMPROVE monitor in 

the eastern US during Clear Sky times (yellow, Clear Sky scenario), Cloudy times (blue, Cloudy scenario), and Cloudy times 600 
employing Clear Sky particle chemical composition (green, Mixed scenario). The black asterisk in (a) indicates the only situation 

where Clear Sky and Cloudy scenarios differ significantly. The red asterisk in (a) indicates the only situation where the Cloudy 

and Mixed scenarios do not differ significantly. The midline in the box is the median, the box boundaries are the 25th and 75th 

percentiles, and the whiskers are the 10th and 90th percentiles. Potential outliers are not shown but are used in calculations. 
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Figure 2: Box plots of PM2.5, RH, NO3
-
, and SO4

2-
 during clear sky times (yellow) and cloudy times (blue) across the eastern US. 

Note that potential outliers are not shown but are used in calculations. The width of the box plot is proportional to the number of 610 
observations. Asterisks denote Cloudy and Clear Sky differences that are not significant (p<0.05) by the Mann-Whitney U Test. 
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Figure 3: Maps of the difference in ALW mass concentration medians (Cloudy-Clear Sky) for all regions from 2010-2014 for (a) 

winter, (b) spring, (c) summer, and (d) fall. The color of the point corresponds to the magnitude of the difference. Triangles 615 
indicate that median differences are significant by the Mann-Whitney U Test. Note that the difference in wintertime medians for 

daily ALW concentrations in the Ohio River Valley (denoted with asterisk) is substantially larger than other regions (Cloudy 

median value is 4.6 µg m
-3

 larger than Clear Sky). 
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 620 

Figure 4: Maps of the difference in PM2.5 mass concentration medians (Cloudy-Clear Sky) for all regions from 2010-2014 for (a) 

winter, (b) spring, (c) summer, and (d) fall. The color of the point corresponds to the magnitude of the difference. Triangles 

indicate that median differences are significant by the Mann-Whitney U Test. 
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 625 

Figure 5: Maps of the difference in SO4
2-

 mass concentration medians (Cloudy-Clear Sky) for all regions from 2010-2014 for (a) 

winter, (b) spring, (c) summer, and (d) fall. The color of the point corresponds to the magnitude of the difference. Triangles 

indicate that median differences are significant by the Mann-Whitney U Test.  
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Figure 6: Maps of the difference in NO3
-
 mass concentration medians (Cloudy-Clear Sky) for all regions from 2010-2014 for (a) 

winter, (b) spring, (c) summer, and (d) fall. The color of the point corresponds to the magnitude of the difference. Triangles 

indicate that median differences are significant by the Mann-Whitney U Test. Note that the difference in medians for daily NO3
-

concentrations in winter for the Central Great Plains (denoted with asterisk) is substantially larger than other regions (Cloudy 635 
median value is 1.07 µg m

-3
 larger than Clear Sky).  
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Figure 7: Maps of the difference in TOC mass concentration medians (Cloudy-Clear Sky) for all regions from 2010-2014 for (a) 

winter, (b) spring, (c) summer, and (d) fall. The color of the point corresponds to the magnitude of the difference. Triangles 640 
indicate that median differences are significant by the Mann-Whitney U Test. 
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Figure 8: Box plots of cloudy and clear sky distributions of PM2.5 and chemical constituent mass concentrations (µg m
-3

) and RH in 

the Mid South for each season from 2010-2014. The width of the box plot is proportional to the number of observations. Note that 650 
potential outliers are not shown but are used in calculations. Asterisks denote Cloudy and Clear Sky differences that are not 

significant (p<0.05) by the Mann-Whitney U Test. 
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