Effect of contrail overlap on radiative impact attributable to aviation contrails

Inés Sanz-Morère¹, Sebastian D. Eastham¹, Florian Allroggen¹, Raymond L. Speth¹, Steven R. H. Barrett¹

¹Laboratory for Aviation and the Environment, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America

10 Corresponding author: Sebastian Eastham (seastham@mit.edu)

Supplementary Information

5

Figure S1. Effect of overlaps on contrail-attributable RF_{SW} as a function of the optical depth τ of each layer. Left: system contrail-contrail; right: system cloud-contrail. Negative RF is shown in blue and positive RF is shown in red. Lower and upper contrail properties are the following: asymmetry parameter of 0.77, temperature of 220 K and 215 K respectively. Cloud properties are the following: asymmetry parameter of 0.85, temperature of 260 K. The solar zenith angle (θ) is held at 45° for all cases.

Figure S2. Effect of overlaps on system RF_{LW} varying with optical depth τ . Same properties as Fig. S1.

20

Figure S3. Effect of overlaps on system net RF varying with layer temperature. Left: system contrail-contrail; right: system cloud-contrail. Negative RF is shown in blue and positive RF is shown in red. Lower and upper contrail properties are the following: asymmetry parameter of 0.77, optical depth of 0.3. Cloud properties are the following: asymmetry parameter of 0.85, optical depth of 3. Fixed $\theta = 45^{\circ}$. Cases where the upper layer is warmer than the lower are not shown.

25

30

Figure S4. System contrail-contrail net RF in W/m², varying with local conditions (solar zenith angle θ increasing from left to right, outgoing longwave radiation and Earth surface temperature T_{srf} (based on Corti and Peter, 2009) and albedo α). Upper row: system RF when contrails considered independent. Lower row: system RF when accounting for total overlap. Negative RF is shown in blue and positive RF is shown in red. Lower and upper contrail properties are the following: asymmetry parameter of 0.77, optical depth of 0.3, temperature of 220 K and 215 K respectively.

Figure S5. Global sensitivity to contrail-contrail overlap ($RF = RF_0 - RF_I$)