

Main revisions and response to reviewers' comments

Manuscript No.: acp-2020-176

Title: Characterization and source apportionment of aerosol light scattering in a typical polluted city in Yangtze River Delta, China

Authors: Dong Chen, Yu Zhao, Jie Zhang, Huan Yu, Xingna Yu

We thank very much for the valuable comments and suggestions from the two reviewers, which help us improve our manuscript significantly. The comments were carefully considered and revisions have been made in response to suggestions. Following is our point-by-point responses to the comments and corresponding revisions.

Reviewer #1

0. The paper by Chen et al. systematically investigates the characteristics and sources of aerosol light scattering through measurements at three different functional sites in a typical polluted city in the Yangtze River Delta, China. Aerosol scattering is important for both visibility degradation and air pollution, and is also complex due to aerosol chemical composition and hygroscopic growth. In this study, the US IMPROVE formula for aerosol scattering calculation was optimized using online and offline measurements at different functional sites in Nanjing with complicated sources of air pollutants. The influence of aerosol size distributions and pollution levels on the aerosol scattering was quantitatively evaluated based on a comprehensive analysis of the size-specific chemical compositions of particles at various sites. In general, this manuscript is well organized and easy to follow. I would recommend its acceptance after some necessary corrections suggested as follows:

Response and revisions:

We appreciate the reviewer's positive remarks on the importance of the work.

1. Line 87: “ NH_4NO_3 and $(\text{NH}_4)_2\text{SO}_4$ ” need to be defined at their first mention in the

manuscript. The manuscript has similar problems with other chemical species as well. Please go through the manuscript and change all of them.

Response and revisions:

We thank the reviewer's reminder. As suggested, the two species were defined at their first appearance (**lines 88 in the revised manuscript**). We have also checked through the manuscript and revised all other items that need to be defined.

2. Line 149: What is the mass fraction of the methanol soluble organic carbon in the total organic carbon mass? Did you try the water extraction?

Response and revisions:

We thank the reviewer's comment. Figure R1 illustrates the relationship between the total organic carbon (OC) and methanol soluble organic carbon (MSOC) concentrations in this study. The average MSOC was $8.23 \pm 4.84 \mu\text{g}/\text{m}^3$ and accounted for 88% of the total OC mass in all samples. This result was similar to the fraction of 85% estimated by Cheng et al. (2016). Considering that a large fraction of brown carbon (BrC) absorption comes from OC insoluble in water, water extraction (WSOC) method was thus not applied in the current study. We have added the discussion **in lines 174-181 in the revised manuscript**, and provided Figure R1 as **a new Figure S4 in the revised supplement**.

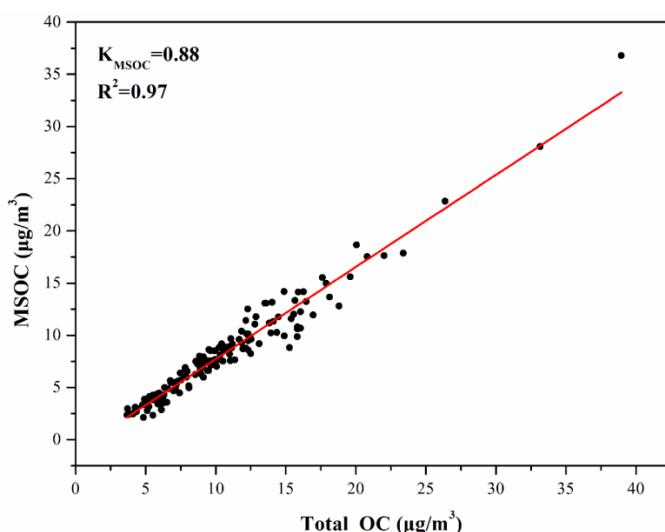


Figure R1. Correlation between MSOC and total OC for all the samples collected in this work. The red line indicates linear regression results with K as slope (intercept is set at zero).

3. Line 186: In the process of formula optimization, why did the authors subtract the scattering coefficients by sea salt, soil dust and coarse particles from the measured scattering coefficient? Does it mean that the light scattering of those species has little impact on the optimization of IMPROVE formula?

Response and revisions:

We thank the reviewer's comment. Figure R2 presents the ratios of the collective scattering coefficients of the sea salt and soil to the total PM_{2.5} scattering at the three sites. The ratios were 0.083, 0.093 and 0.081 at NJU, PAES, and NUIST, respectively, i.e., the scattering coefficients by sea salt and soil dust accounted for less than 10% of the total PM_{2.5} light scattering. Therefore the impact of the two species on the optimization of IMPROVE algorithm should be limited. In order to be concise in the algorithm optimization and to ensure the stability of the multiple linear regression, the independent variables contained (NH₄)₂SO₄, NH₄NO₃ and OM in the optimized formula, and the light scattering of sea salt and soil dust was subtracted from the measured scattering coefficient of PM_{2.5}. We have clarified the methodology **in lines 217-220 in the revised manuscript**, and have added the discussion **in lines 459-465 in the revised manuscript**. A new Figure S10 (i.e., Figure R2) has also been provided in the revised supplement.

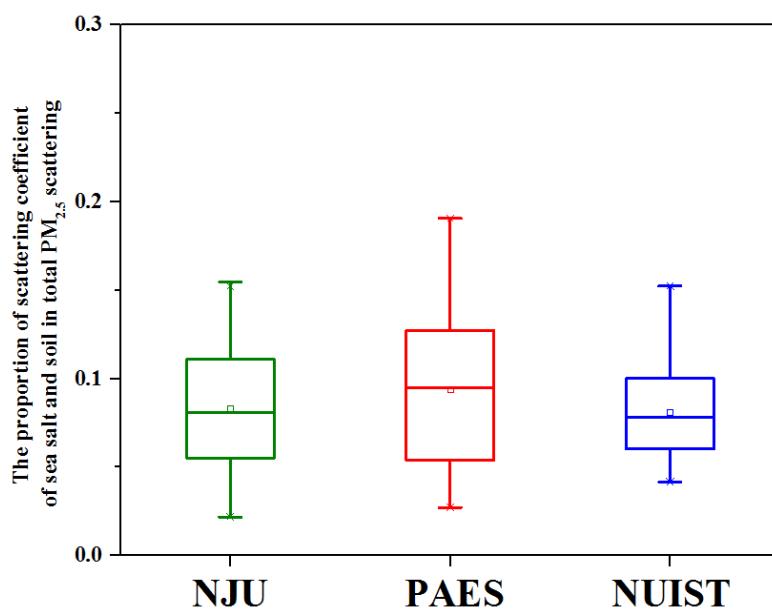


Figure R2 The collective proportions of sea salt and soil dust to the total PM_{2.5} scattering coefficient at the three sites based on the IMPROVE2007 algorithm.

4. Line 201: Mie theory is very sensitive to the size distribution of aerosol chemical species. However, the size distribution data obtained from a high-flow MOUDI impactor can usually be influenced by the particle bounce. This is particularly concerned in case where filters, instead of metal foils with grease coating, are used as the substrate. I suggest the authors make an uncertainty evaluation upon the size distribution measurement in this study.

Response and revisions:

We thank the reviewer's comment. Although application of metal foils with grease coating could avoid the particle bounce, it might change the result of chemical species measurement. More, the metal foils substrate cannot meet the requirement of carbonaceous aerosol analysis, due to its special heating up program. In this study, therefore, we selected teflon filter for ion and element analysis, and quart fiber filter for carbonaceous aerosol analysis. Teflon filter membrane was generally applied for size-resolved particles sampling by MOUDI with excellent results (Contini et al., 2014; Gao et al., 2016; Guo et al., 2010). Taking NJU as an example, excellent agreement was found between the mass concentrations of PM_{1.8} collected with quartz fiber in MOUDI impactor and PM_{2.5} collected with TH-150 samplers, as shown in Figure R3. Therefore, the effect of particle bounce was expected to be limited in this study. We have added the information **in lines 157-161 in the revised manuscript**, and provided **a new Figure S3** (Figure R3 here) in the revised supplement.

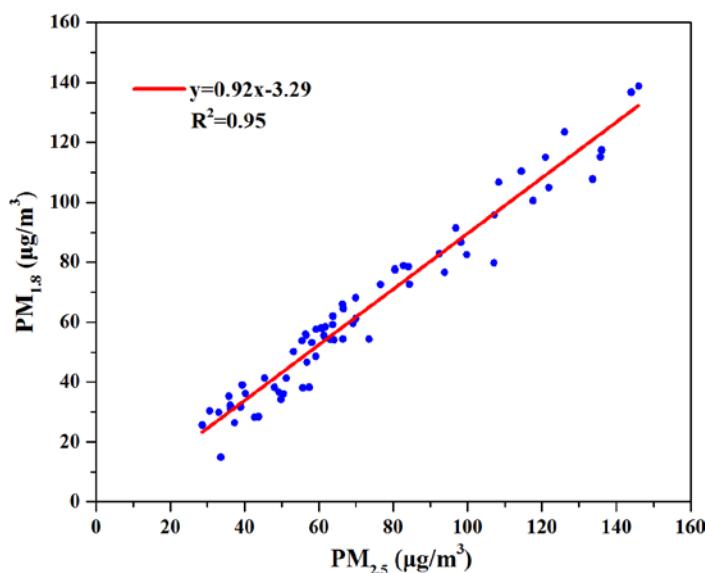


Figure R3 Correlation between the mass concentrations of PM_{1.8} collected with MOUDI impactor and PM_{2.5} collected with TH-150C sampler at NJU.

5. In Section 3.2, the US IMPROVE algorithm was optimized only within one city in the Yangtze River Delta with good performance. How did the authors consider the application of the optimized formula in typical regions such as cities in Beijing-Tianjin-Hebei or Pearl River Delta? Some discussions are recommended here.

Response and revisions:

We thank the reviewer's comment. In this study, the optimized IMPROVE formula was obtained based on the measured ambient concentrations of aerosol chemical species at three different functional sites in Nanjing, a typical polluted city in the Yangtze River Delta. As the chemical composition of aerosol (particularly SNA) was the key factor affecting its light scattering, the optimized IMPROVE formula could be applied in nearby cities with similar composition of aerosols in eastern China including Shanghai and Jinan, as we stated **in lines 465-474 in the revised manuscript**. Moreover, for other regions with rapidly developing economy and fast industrialization in China including Beijing-Tianjin-Hebei or Pearl River Delta regions, the current work provides methodology and data support for the studies of aerosol light scattering in cities with relatively serious particle pollution. Given the fast changes in emission control and aerosol pollution in those regions, more campaigns on aerosol optical and chemical properties are recommended to further evaluate and improve the applicability of the optimized IMPROVE algorithm. We have added the explanation **in lines 474-481 in the revised manuscript**.

6. Line 352: The study did not mention if the scattering coefficients used for the US IMPROVE estimation at the three sites were measured by CAPS or nephelometer? According to Section 2.3, the scattering coefficients at PAES and NUIST were measured by two integrating nephelometers. Need some clarification on this issue.

Response and revisions:

We thank the reviewer's reminder and sorry for the error. The scattering coefficients used for the evaluation and optimization of the IMPROVE algorithm at the three sites were all measured with nephelometers. The relevant texts have been revised **in line 399 in the revised manuscript**.

7. Line 447: Due to the varied chemical properties of particles in different regions, the growth factors of particles (GF) can be different, and it would bring some uncertainty to the calculation of scattering coefficient in Section 3.3. It is recommended to measure and apply the local GF values in this work.

Response and revisions:

We thank and agree the reviewer's comment. Due to the lack of suitable instrument like hygroscopicity tandem differential mobility analyzer (H-TDMA), we did not measure the local GF values directly, and it is a limitation of this study. Instead, we collected the GF data from the existing local studies in Nanjing (Table S1 in the supplement), and applied them in estimation of ambient scattering coefficient by Mie theory. To check the uncertainty of this application, the estimates were compared with those calculated with the scattering hygroscopic growth factor ($f(RH)$), as shown in Figure S12 in the revised supplement (Figure S8 in the original submission). A good agreement was found between the two methods ($R^2=0.95$), indicating the limited uncertainty from the GF values applied in this study.

8. In Section 3.4, there was no clear description whether the scattering coefficients were estimated based on the assumption of dry or ambient conditions.

Response and revisions:

We thank the reviewer's reminder. The estimated scattering coefficients in Section 3.4 were based on the assumption of ambient condition. The relevant text has been revised **in line 543 in the revised manuscript.**

9. In Section 3.5, the assumption that the secondary components were proportional to the emissions of their precursors is subject to great uncertainty, as noted by the authors. Please be more specific on how to get better results with improved measurement or modeling methods.

Response and revisions:

We thank the reviewer's comment. As we stated in the manuscript, there was substantial uncertainty in the methodology in which source apportionment of secondary aerosols depends on the magnitudes of precursor emissions. It is a limitation of the present study. To

further improve the source apportionment results, some specific tracers of secondary aerosols like semi volatile and low volatile oxygen-containing organic aerosols can be firstly observed with advanced technology such as aerosol mass spectrometry (AMS), and the observation data can then be combined with receptor models to quantify the source contribution of secondary aerosols. Besides, air quality model that integrates particle source apportionment technology (PSAT) is recommended to be applied to evaluate and confirm the performance of the source apportionment of secondary aerosol with the receptor model. We have added the explanation **in lines 678-685 in the revised manuscript.**

10. Some minor comments:

Line 31: Define “IMPROVE” on first usage.

Response and revisions:

We thank the reviewer’s reminder and the full name has been given in the revised manuscript.

Line 32: "OC" should not be abbreviated when it is mentioned for the first time.

Response and revisions:

We thank the reviewer’s reminder and the full name has been given in the revised manuscript.

Line 160: What is the wavelength of the integrating nephelometer at the three sites used?

Response and revisions:

We thank the reviewer’s reminder. The two nephelometers (Ecotech Pty Ltd, Australia, Model Aurora1000G) at NJU and PAES were operated at the wavelength of 520 nm. The integrating nephelometer (Model 3563, TSI, USA) used at NUIST can measure the light scattering at three visible wavelengths (450, 550 and 700 nm), and the scattering coefficient at the wavelength of 550 nm was adopted in this work. We have added the explanation **in lines 190-193 in the revised manuscript.**

Line 246: The operational symbol was missing in Eq. (3).

Response and revisions:

We thank the reviewer's reminder and it is corrected in the revised manuscript.

Line 522: "Mien theory" should be "Mie theory".

Response and revisions:

We are sorry for this mistake and thanks for the reminder. We have corrected it in the revised manuscript.

Line 562: "PME" should be "PMF".

Response and revisions:

We are sorry for this mistake and thanks for the reminder. We have corrected it in the revised manuscript.

Line 970: SIA in the legend did not exist in Figure 8.

Response and revisions:

We thank the reviewer's reminder and the SIA legend in Figure 8 has been removed.

Reference list: The format of references should be in accordance with the journal requirement.

Response and revisions:

We thank the reviewer's reminder. We have checked the format of references and made it consistent with the journal requirement.

References

Cheng, Y., He, K.B., Du, Z.Y., Engling, G., Liu, J.M., Ma, Y.L., Zheng, M., Weber, R.J.: The characteristics of brown carbon aerosol during winter in Beijing, *Atmos. Environ.*, 127, 355-364, doi:10.1016/j.atmosenv.2015.12.035, 2016.

Contini, D., Cesari, D., Genga, A., Sicilianob, M., Ielpo, P., Guascito, M. R., Conte, M.: Source apportionment of size-segregated atmospheric particles based on the major

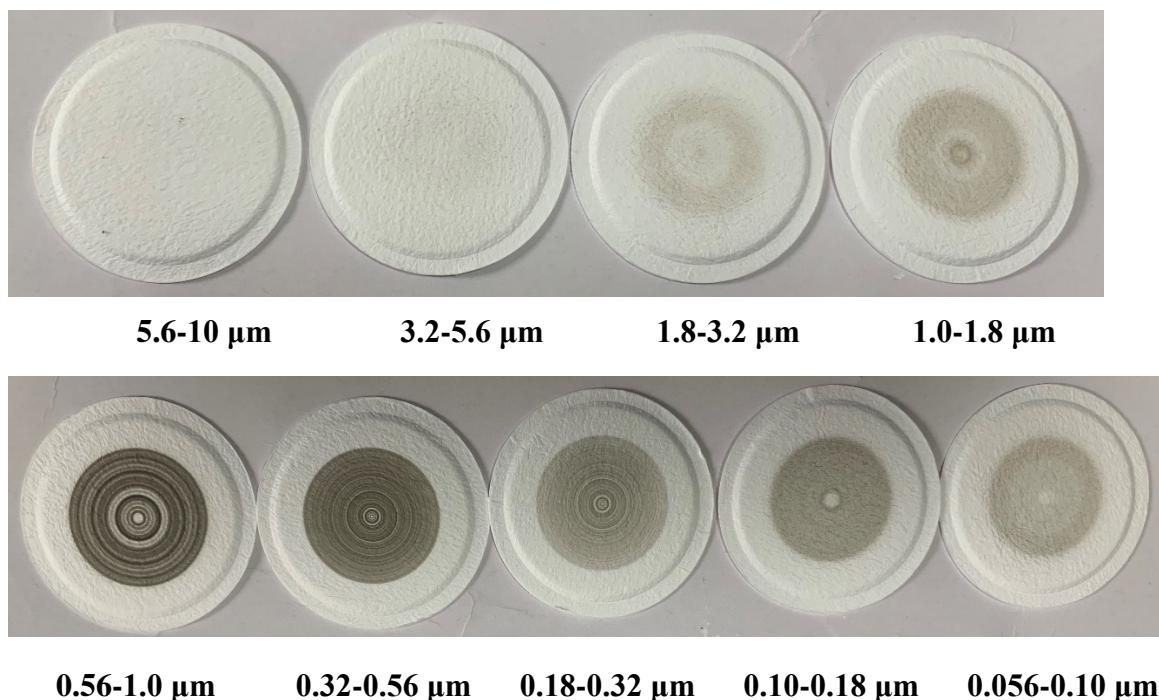
water-soluble components in Lecce (Italy), *Sci. Total Environ.*, 472, 248-261, 10.1016/j.scitotenv.2013.10.127, 2014.

Gao, Y., Lee, S. C., Huang, Y., Chow, J. C., Watson, J. G.: Chemical characterization and source apportionment of size-resolved particles in Hong Kong sub-urban area, *Atmos. Res.*, 170, 112-122, 10.1016/j.atmosres.2015.11.015, 2016.

Guo, S., Hu, M., Wang, Z. B., Slanina, J., and Zhao, Y. L.: Size resolved aerosol water-soluble ionic compositions in the summer of Beijing: implication of regional secondary formation, *Atmos. Chem. Phys.*, 10, 947–959, doi:10.5194/acp-10-947-2010, 2010.

Reviewer #2

0. The current manuscript presents a comprehensive study of the influential factors and source apportionment of aerosol light scattering at three sites in Nanjing, representative for suburban (NJU), urban (PAES) and industrial areas (NUIST) respectively. The data obtained in this work show interesting details on the linkage between chemistry composition and light scattering of aerosols, and help better understanding the effects of various sources on visibility degradation at the city scale. Overall I think the work provides reasonable analysis and the paper is clearly written. Before it can be published in Atmospheric Chemistry and Physics, however, I have some concerns that should be further addressed, and minor revisions are accordingly suggested as below.


Response and revisions:

We appreciate the reviewer's positive remarks on the importance of the work.

1. In line 130, QA/QC procedures of aerosol sampling process are missed in this manuscript, which are important for a scientific paper presenting the first-hand data. For example, the MOUDI sampler could be blocked during heavy pollution conditions, and the collected samples might not be evenly distributed. This phenomenon would affect the chemical analysis, particularly for OC and EC (choice of spots). How did the authors treat such kind of problems or estimate the uncertainty from sampling?

Response and revisions:

We thank the reviewer's comment. To prevent the blocking by particles during sampling, the MOUDI samplers were first cleaned using an ultrasonic bath for 30 min before each sampling. In addition, the sampling flow rate was calibrated before each sampling and was also monitored with the flow meter during the whole sampling period. Those quality control measures assured that the MOUDI samplers were not blocked during the sampling period. Even for heavily polluted days with the $PM_{1.8}$ concentration measured at $128 \mu\text{g}\cdot\text{m}^{-3}$, the particles sampled by MOUDI were evenly distributed, as shown in Figure R4. We have added the explanation **in lines 138-144 in the revised manuscript**, and added **a new Figure S2** (Figure R4 here) in the revised supplement.

2. In Line 136, were field blanks obtained during the sampling campaigns? And, why were the sampling periods different at the three sites? Similarly, in Line 128, why was the sampling size at NJU larger than another two sites? The sampling strategy should be described more.

Response and revisions:

We thank the reviewer's comment. Yes we applied field blanks to correct the possible

bias in the analysis of aerosol chemical species. Totally 19 sets of size-segregated blank filters (10, 4 and 5 for NJU, PAES and NUIST, respectively) and 35 daily blank PM_{2.5} filters (25, 6 and 9 for NJU, PAES and NUIST, respectively) were obtained at the three sites. All the blank filters were put in the samplers without inlet air flow for 24 h when the field campaigns finished. We have added the information **in lines 152-157 in the revised manuscript**.

Attributed to weather condition and aerosol sampler maintenance, the sampling periods for the three sites were different. Simultaneous samplings were conducted at the three sites from one week to ten days in each season from summer 2016 to winter 2016-2017. For the remaining time, two MOUDI samplers were applied to collect Teflon and quartz filter samples simultaneously at one of the three sites. As the Cavity Attenuated Phase Shift Albedo monitor (CAPS) was only installed at NJU and large amounts of data on aerosol optical and chemical information were needed to examine the influence of relative humidity on aerosol light scattering (Section 3.3), the sampling size at NJU was larger than another two sites. We have added the explanation **in lines 144-152 in the revised manuscript**.

3. In Line 145, Sunset analyzer was able to measure thermal EC and OC, and optical EC and OC. The author should clarify it carefully in the paper. Why choose them for the analysis?

Response and revisions:

We thank the reviewer's comment. The Sunset analyzer provides both thermal and optical concentrations for carbonaceous aerosols, and thermal EC and OC were used in this study. The instrument estimates the optical EC by measuring the light attenuation (ATN). As ATN was determined not only by EC but also by brown carbon (BrC), the optical method may overestimate the EC and thus underestimate the OC (Cui et al., 2016; Massabò et al., 2016). Therefore, we applied the measured thermal EC and OC in this study. We added the explanation **in lines 169-173 in the revised manuscript**.

4. In Line 183, what software did authors use to run the multiple linear regression? If this model has been developed or used in other studies, the references should be provided.

Response and revisions:

SPSS 16.0 was used to conduct the multiple linear regressions. This information was added **in line 216 in the revised manuscript** and relative references were provided (Cheng et al., 2011; Tian et al., 2016).

5. In Line 190, considering the light absorption of methanol soluble organic carbon (MSOC), the optimization of the US IMPROVE algorithm is quite interesting. How did the authors estimate the MSOC concentrations in fine and large size modes?

Response and revisions:

The estimations of fine MSOC and large MSOC concentrations were the same as the calculations of ammonium nitrate (NH_4NO_3), ammonium sulfate ($(\text{NH}_4)_2\text{SO}_4$) and organic carbon (OM), following the previous studies (Pitchford et al., 2007; Cheng et al., 2015). The concentration of large MSOC was estimated by dividing the total concentration of the component by $20 \text{ }\mu\text{g}/\text{m}^3$ (e.g., if the total MSOC concentration was $4 \text{ }\mu\text{g}/\text{m}^3$, the large mode concentration was calculated to be one-fifth of $4 \text{ }\mu\text{g}/\text{m}^3$ or $0.8 \text{ }\mu\text{g}/\text{m}^3$, leaving $3.2 \text{ }\mu\text{g}/\text{m}^3$ in the small mode). If the total MSOC concentration exceeds $20 \text{ }\mu\text{g}/\text{m}^3$, all of it was assumed to be in the large mode.

6. In Line 190, why did the authors only include those eight variables in this equation? How about other species like coarse particles, sea salt, and soil dust?

Response and revisions:

We thank the reviewer's comment. In this study, the optimization of the US IMPROVE formula was for $\text{PM}_{2.5}$, thus the optimization process did not include coarse particles. As indicated in Figure R2 (the response to Question 3 of reviewer 1), the scattering coefficients by sea salt and soil dust accounted for less than 10% of the total $\text{PM}_{2.5}$ scattering, suggesting that the two species should have limited contribution to the total scattering coefficient. In order to be concise in the IMPROVE formula optimization and to ensure the stability of the multiple linear regression, therefore, only ammonium sulfate, ammonium nitrate and organic matter were used as independent variables in the regression. We have added the explanation **in lines 459-465 in the revised manuscript**.

7. In Line 214, the authors need to explain the special reason why they applied PMF model in their analysis.

Response and revisions:

We thank the reviewer's comment. The source apportionment technologies include emissions inventory, chemistry transport model and the receptor model, and the receptor model based on aerosol chemistry analysis has been widely used because it is not limited by the uncertainty of emission inventory or meteorology simulation. Principally the receptor models contain two categories, i.e., the models in which source profiles are needed, such as the chemical mass balance (CMB) method, and those in which source profiles are not needed, such as the positive matrix factorization (PMF) method (Yin et al., 2015). Due to lack of sufficient local measurements, it is generally difficult to build comprehensive and accurate source profiles of various aerosol components for individual cities in China. In this work, therefore, we applied the PMF model to exclude the uncertainty of source profiles which were commonly developed based on literatures or measurements across the country. We have added the explanation **in lines 247-252 in the revised manuscript.**

8. In Line 292, the author stated that “the sum of NO_3^- , SO_4^{2-} and OC for the heavily polluted period was 10.7 and 2.9 times greater than those for the lightly polluted and clean periods”. Something seems wrong here. In which period was the concentration higher, lightly polluted or clean period? From Table 1, moreover, it seems that SNA was elevated more than OC in the heavily polluted period compared to the clean days. Any reason for this difference?

Response and revisions:

We thank the reviewer's comment. We are sorry for the mistakes and corrected the text as “the sum of NO_3^- , SO_4^{2-} and OC for the heavily polluted period was 2.9 and 10.7 times greater than those for the lightly polluted and clean periods” **in line 328 in the revised manuscript.**

It is correct that SNA concentration was elevated more than OC in the heavily polluted period compared to the clean days in this work. During heavily polluted episodes,

enhancement of sulfate and nitrate levels could be more significant than organic matter because the high relative humidity and precursor emissions (i.e., SO_2 and NO_x) promoted the generation of SNA (Tian et al., 2014). During clean periods (commonly in summer), ammonium nitrate (NH_4NO_3) would dissociate to NH_3 and HNO_3 at high temperatures, while secondary organic carbon (SOC) concentration may be increased due to the high levels of O_3 and solar radiation. Those factors caused the result that SNA was elevated more than OC in the heavily polluted period compared to the clean days. Similar result was found in Beijing, where the mass fraction of SNA in fine particles increased from 19% on non-haze days to 31% on haze days, while that of OM decreased from 38% on non-haze days to 31% on haze days (Tian et al., 2016). We have added the above explanation **in lines 334-342 in the revised manuscript.**

9. The authors did not clearly explain the data of which site were used in Section 3.4. If it is based on the data of the three sites, the assumption in Section 3.4 that chemical particles were externally mixed will cause large uncertainty in the calculation of scattering coefficient at NUIST because the internal mixture was an important particle mixing state at NUIST (Figure 3c).

Response and revisions:

We thank the reviewer's comment. Assuming different aerosol species were externally mixed, the influences of size distribution and pollution levels on aerosol light scattering was analyzed based on the aerosol composition information at the three sites. Although internal mixing was identified as an important particle mixing state at NUIST, the Mie theory cannot simulate the scattering coefficients of individual aerosol chemical components based on the assumption of internal or core-shell mixing but external mixing (Cheng et al., 2015; Ding et al 2015). According to Figure 3c in the revised manuscript, the scattering coefficient estimated with the external mixing assumption was 1.07 ± 0.05 and 1.08 ± 0.06 times of those from the internal mixing state simulation and instrument measurement, respectively. Therefore, the overestimation was smaller than 10% by the aggregated scattering coefficient from those of individual chemical species with an assumption of external mixing at NUIST.

We have added the explanation **in lines 540-545 in the revised manuscript.**

10. In Line 534, in general, results generated from PMF model could be questionable if less than 100 samples were used in the model. How did the authors consider this problem?

Response and revisions:

In this study, the PMF analysis was performed respectively at the three sites for the accumulation mode particles with the size bins from 0.18 to 1.8 μm . The samples used in PMF model were 300, 100 and 124 at NJU, PAES and NUIST, respectively. We thus believe that the sample size was sufficient for the PMF analysis.

References

Cheng, S. H., Yang, L. X., Zhou, X. H., Xue, L. K., Gao, X. M., Zhou, Y., and Wang, W. X.: Size-fractionated water-soluble ions, *situ* pH and water content in aerosol on hazy days and the influences on visibility impairment in Jinan, China, *Atmos. Environ.*, 45, 4631–4640, doi:10.1016/j.atmosenv.2011.05.057, 2011.

Cheng, Z., Jiang, J., Chen, C., Gao, J., Wang, S., Watson, J.G., Wang, H., Deng, J., Wang, B., Zhou, M.: Estimation of aerosol mass scattering efficiencies under high mass loading: case study for the megacity of Shanghai, China, *Environ. Sci. Technol.*, 49, 831-838, doi:10.1021/es504567q, 2015.

Cui, X., Wang, X., Yang, L., Chen, B., Chen, J., Andersson, A., Gustafsson, Ö.: Radiative absorption enhancement from coatings on black carbon aerosols, *Sci. Total Environ.*, 551-552, 51-56, doi:10.1016/j.scitotenv.2016.02.026, 2016.

Ding, J., Han, S., Zhang, Y., Feng, Y., Wu, J., Shi, G., Wang, J.: Chemical characteristics of particles and light extinction effects in winter in Tianjin, *Res. Environ. Sci.*, 28, 1353-1361, doi:10.13198/j.issn.1001-6929.2015.09.03, 2015.

Massabò, D., Caponi, L., Bove, M.C., Prati, P.: Brown carbon and thermal-optical analysis: A correction based on optical multi-wavelength apportionment of atmospheric aerosols, *Atmos. Environ.*, 125, 119-125, doi:10.1016/j.atmosenv.2015.11.011, 2016.

Pitchford, M., Malm, W., Schichtel, B., Kumar, N., Lowenthal, D., Hand, J.: Revised algorithm for estimating light extinction from IMPROVE particle speciation data, *J. Air Waste Manag. Assoc.*, 57, 1326-1336, doi:10.3155/1047-3289.57.11.1326, 2007.

Tian, S. L., Pan, Y. P., Liu, Z., Wen, T., and Wang, Y. S.: Size-resolved aerosol chemical analysis of extreme haze pollution events during early 2013 in urban Beijing, China, *J. Hazard. Mater.*, 279, 452–460, doi:10.1016/j.jhazmat.2014.07.023, 2014.

Tian, S. L., Pan, Y. P., Wang, Y. S.: Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes, *Atmos. Chem. Phys.*, 16, 1-19, doi:10.5194/acp-16-1-2016, 2016.

Yin, J., Cumberland, S. A., Harrison, R. M., Allan, J., Young, D. E., Williams, P. I., and Coe, H.: Receptor modelling of fine particles in southern England using CMB including comparison with AMS-PMF factors, *Atmos Chem Phys*, 15, 2139-2158, 2015.

1 **Characterization and source apportionment of aerosol light**
2 **scattering in a typical polluted city in Yangtze River Delta,**
3 **China**

4 Dong Chen^{1, 2}, Yu Zhao^{1, 3*}, Jie Zhang^{2, 3}, Huan Yu⁴, Xingna Yu⁴

5 1. State Key Laboratory of Pollution Control & Resource Reuse and School of the
6 Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu 210023, China

7 2. Jiangsu Provincial Academy of Environmental Science, 176 North Jiangdong Rd.,
8 Nanjing, Jiangsu 210036, China

9 3. Collaborative Innovation Center of Atmospheric Environment and Equipment
10 Technology, CICAEET, Nanjing, Jiangsu 210044, China

11 4. School of Environmental Science and Engineering, Nanjing University of
12 Information Science and Technology, Nanjing, Jiangsu 210044, China

13 *Corresponding author: Yu Zhao

14 Phone: 86-25-89680650; email: yuzhao@nju.edu.cn

15

ABSTRACT

17 Through online observation and offline chemistry analysis of samples at suburban,
18 urban and industrial sites (NJU, PAES and NUIST respectively) in Nanjing, a typical
19 polluted city in Yangtze River Delta, we optimized the aerosol light scattering
20 estimation method, identified its influencing factors, and quantified the contributions
21 of emission sources to aerosol scattering. The daily average concentration of PM_{2.5}
22 during the sampling period (November 2015-March 2017) was $163.1 \pm 13.6 \mu\text{g}/\text{m}^3$ for
23 the heavily polluted period, 3.8 and 1.6 times those for the clean ($47.9 \pm 15.8 \mu\text{g}/\text{m}^3$)
24 and lightly polluted ($102.1 \pm 16.4 \mu\text{g}/\text{m}^3$) periods, respectively. The largest increase in
25 PM concentration and its major chemical components was found at the size range of
26 0.56-1.0 μm for the heavily polluted period, and the contributions of nitrate and
27 sulfate were the greatest in the 0.56-1.0 μm fraction (19.4-39.7% and 18.1-34.7%
28 respectively) for all the three periods. The results indicated that the large growth of
29 nitrate and sulfate were one of the major reasons for the polluted periods. Based on
30 measurements at the three sites, the US Interagency Monitoring of Protected Visual
31 Environments (IMPROVE) algorithm was optimized to evaluate aerosol scattering in
32 eastern China. The light-absorption capacity organic carbon (OC) was estimated to
33 account for over half of the methanol soluble organic carbon (MSOC) at NJU and
34 PAES, whereas the fraction was lower at NUIST. Based on Mie theory, we found that
35 the high relative humidity (RH) could largely enhance the light scattering effect of
36 accumulation particles, but it had few effects on the mixing state of particles. The
37 scattering coefficients of particles within the 0.56-1.0 μm range contributed the most
38 to the total scattering (28-69%). The mass scattering efficiency (MSE) of sulfate and
39 nitrate increased with the elevated pollution level, whereas a low MSE of organic
40 matter (OM) was found for the heavily polluted period, probably because a proportion
41 of OM had only light-absorption property. A coupled model of positive matrix
42 factorization (PMF) and Mie theory was developed and applied for the source
43 apportionment of aerosol light scattering. Coal burning, industry and vehicles were
44 identified as the major sources of the reduced visibility in Nanjing, with an estimated

删除的内容: IMPROVE

删除的内容: OC

47 collective contribution at 64-70%. The comparison between the clean and polluted
48 period suggested that the increased primary particle emissions from vehicles and
49 industry were the major causes of the visibility degradation in urban and industrial
50 regions, respectively. In addition, secondary aerosols were a great contributor to the
51 reduced visibility.

52 **1 INTRODUCTION**

53 Atmospheric aerosols play a great role in visibility degradation, radiative balance
54 variation and climate (Liu et al., 2017; Malm and Hand, 2007; Zhang et al., 2017),
55 resulting largely from their light extinction (Seinfeld and Pandis, 2006).
56 Understanding the contributions of individual chemical species to aerosol light
57 extinction is important for policy making to alleviate the reduced visibility in cities
58 with aerosol pollution. Studies have estimated that the aerosol single scattering albedo
59 (the fraction of light scattering coefficient to the total extinction) ranges from
60 0.81-0.93 in urban China (Andreae et al., 2008; Cao et al., 2012; Xu et al., 2002; Xu
61 et al., 2012), implying that the deteriorated visibility primarily results from the
62 scattering effect of aerosols.

63 Aerosol light scattering is greatly affected by its chemical composition and
64 hygroscopic growth (Liu et al., 2008; Tao et al., 2014a). Based on estimation of the
65 mass scattering efficiency (MSE) of different chemical components, previous studies
66 found that nitrate, sulfate, sea salt and organic matter (OM) are the dominant
67 contributors to aerosol scattering. Developed based on the long-term observations in
68 national parks, the US “IMPROVE” (Interagency Monitoring of Protected Visual
69 Environments) algorithm has been applied to calculate the light extinction of chemical
70 species in aerosols (Watson et al., 2002). Two versions of IMPROVE algorithms
71 (IMPROVE1999 and IMPROVE2007 hereinafter) were deduced successively
72 (Lowenthal and Naresh, 2003; Pitchford et al., 2007), and both assumed that OM has
73 no light-absorption capacity and only light-scattering capacity. As part of OM,
74 however, brown carbon (BrC) has been highlighted in recent studies for its light
75 absorption in the near UV region (Alexander et al., 2008; Bond et al., 2006;

76 Ramanathan et al., 2007; Zhang et al., 2017), and consideration of the light-absorption
77 effect of OM in the optimization process of the IMPROVE formula could improve the
78 understanding of aerosol optical capacity by chemical species (Yan et al., 2014). In
79 addition, hygroscopic growth is a key factor influencing aerosol light scattering
80 (Schwartz, 1996). Previous studies have shown that the light scattering of sulfate and
81 nitrate in PM_{2.5} could be largely enhanced at high relative humidity (RH) conditions
82 (Titos et al., 2016). Aerosol hygroscopicity is expected to depend largely on the
83 particle size and the abundance of water-soluble chemical components (Swietlicki et
84 al., 2008; Tang, 1996). Through the theoretical calculation, Liu et al. (2014) found
85 that smaller particles were in highly hygroscopic mode, whereas larger particles were
86 in nearly hydrophobic mode.

87 Recently, many studies have been conducted on the relationships between
88 visibility and aerosol light scattering in China (Cheng et al., 2015; Tao et al., 2014b;
89 2014c; Xue et al., 2010; Zhang et al., 2015). They found the abundance of
90 hygroscopic ammonium nitrate (NH₄NO₃) and ammonium sulfate ((NH₄)₂SO₄) in
91 PM_{2.5} and their characteristics were the important reason visibility reduction.
92 However, few studies have analyzed the size distribution of aerosol light scattering or
93 quantified the contributions of different emission source categories to the aerosol light
94 scattering, particularly at the varied air pollution levels. The roles of particles of
95 different sizes and origins on visibility degradation remained unclear. To fill this
96 knowledge gap, this study conducted campaigns at three multiple-functional sites in
97 Nanjing, a mega city located in eastern China. Nanjing suffered relatively heavy
98 aerosol pollution in the Yangtze River Delta (YRD) attributed to the massive emissions
99 of anthropogenic air pollutants (Zhao et al., 2015). The mixed sources of primary
100 aerosols (e.g., coal burning) and secondary aerosol precursors (e.g., vehicle and
101 petrochemical industry) make Nanjing a typical city to study the multiple influential
102 factors of aerosol light scattering (Chen et al., 2019). Combining online and offline
103 techniques at different functional regions, the IMPROVE algorithm was optimized
104 taking the light-absorption OM into account. The influences of aerosol size
105 distributions and pollution levels on the aerosol scattering effect were quantitatively

带格式的: 下标
带格式的: 下标
带格式的: 下标
带格式的: 下标
带格式的: 下标
删除的内容: NH₄NO₃ and (NH₄)₂SO₄

107 evaluated based on comprehensive analysis of the chemical compositions of particles
108 by size and location. To explore the reasons for the visibility reduction in different
109 functional regions, a new coupled PMF-Mie model was developed and the source
110 apportionments of aerosol light scattering were determined for the clean and polluted
111 periods.

112 **2 METHODOLOGY**

113 **2.1 Site description**

114 The campaigns were conducted at three sites in Nanjing, i.e., NJU, PAES and
115 NUIST, representative for the suburban, urban and industrial region, respectively (see
116 the site locations in Figure S1 in the Supplement). NJU (32.07°N, 118.57°E) was on
117 the roof (25 m above the ground) of the School of the Environment building in the
118 Nanjing University campus in eastern suburban Nanjing (Chen et al., 2017; 2019).
119 PAES (32.03°N, 118.44°E) was on the roof (30 m above the ground) of the Jiangsu
120 Provincial Academy of Environmental Science building in western urban Nanjing.
121 The site was surrounded by heavy traffic and commercial and residential buildings (Li
122 et al., 2015). NUIST (32.21°N, 118.72°E) was on the roof of the School of the
123 Environment building in the Nanjing University of Information Science &
124 Technology campus. It was an industrial pollution site influenced by the nearby power,
125 iron & steel, and petrochemical industry plants (Wang et al., 2016a).

126
127 **2.2 Aerosol sampling and chemical analysis**

128 Pre-combusted (at 500 °C for ~5 h) quartz filters (90 mm in diameter, Whatman
129 International Ltd., UK) were applied for PM_{2.5} sampling. The filter samples were
130 weighed before and after sampling under the constant temperature (23±2°C) and RH
131 (40±3%) for 24 hours conditioning. All the PM_{2.5} samples were collected using the
132 TH-150C sampler (Wuhan Tianhong Ltd., China) at a flow rate of 100 L/min. From
133 November 2015 to March 2017, 282 daily PM_{2.5} samples at the three sites (174 for
134 NJU, 45 for PAES and 63 for NUIST) were collected.

135 Three sets of ten-stage Micro-Orifice Uniform Deposit Impactors (MOUDI,

136 Model 110, MSP Corp., USA) were adopted to collect size-segregated particles. The
137 50% cutoff points of the MOUDI-110 were 18, 10, 5.6, 3.2, 1.8, 1.0, 0.56, 0.32, 0.18
138 and 0.056 μm . Loaded with Teflon and quartz filters (47 mm in diameter, Whatman
139 International Ltd., UK), MOUDI was operated at a flow rate of 30 L/min. To obtain
140 sufficient particles at each stage for the chemical analysis, every sampling lasted
141 continuously for 24 h from 9:00am. All the MOUDI samplers were cleaned using an
142 ultrasonic bath for 30 min before each sampling. The flow rate was calibrated before
143 each sampling and was monitored with the flow meter during the whole sampling
144 process. Those quality control measures assured that the MOUDI samplers were not
145 blocked during the sampling period and the particles collected in the filter were
146 evenly distributed, even for the heavily polluted period with the PM_{1.8} concentration
147 measured over 120 $\mu\text{g}/\text{m}^3$ (see the samples in Figure S2 in the supplement). Attributed
148 to weather condition and aerosol sampler maintenance, the sampling periods for the
149 three sites were different. Seventy-five sets of particle samples were obtained from
150 December 2015 to February 2017 at NJU, 25 sets were obtained from August 2016 to
151 January 2017 at PAES, and 31 sets were obtained from July 2016 to February 2017 at
152 NUIST. Simultaneous samplings were conducted at the three sites from one week to
153 ten days in each season from summer 2016 to winter 2016-2017. For the remaining
154 time, two MOUDI samplers were applied to collect Teflon and quartz filter samples
155 simultaneously at one of the three sites. Besides, blank filters were applied to correct
156 the possible bias in the analysis of aerosol chemical species. Totally 19 sets of
157 size-segregated blank filters (10, 4 and 5 for NJU, PAES and NUIST, respectively)
158 and 35 daily blank PM_{2.5} filters (25, 6 and 9 for NJU, PAES and NUIST, respectively)
159 were obtained at the three sites. All the blank filters were put in the samplers without
160 inlet air flow for 24 h when the field campaigns finished. We took NJU as an example
161 to check the consistency between the two types of samplers. As shown in Figure S3 in
162 the supplement, excellent agreement was found between the mass concentrations of
163 PM_{1.8} collected with quartz fiber in MOUDI impactor and PM_{2.5} collected with
164 TH-150 sampler.

165 Three anions (SO_4^{2-} , NO_3^- and Cl^-) and five cations (Na^+ , NH_4^+ , K^+ , Mg^{2+} , and

删除的内容: , and all
删除的内容: t
删除的内容: sampling
删除的内容: s were
删除的内容: .
带格式的: 下标
带格式的: 上标

带格式的: 下标
删除的内容: Considering the weather, aerosol samples maintenance and other factors, the sample periods for the three sites will be different.
Simultaneous sampling were conducted for the three sites in each season to make spatial comparison. For the remaining time of each season, two MOUDI samplers were used to collect Teflon and quartz filter samples simultaneously for source analysis of PM at one of the three sites.

183 Ca^{2+}) in particles were measured in the extracted solution of the filter samples with
184 ion chromatography (Dx-120, Dionex Ltd., USA). CS12A column (Dionex Ltd.) with
185 20 mM MSA eluent and AS11-HC column (Dionex Corp.) with 8 mM KOH eluent
186 were used to measured cations and anions, respectively (Chen et al., 2019). Elemental
187 carbon (EC) and organic carbon (OC) were measured with an OC-EC aerosol
188 analyzer (Sunset Inc., USA) following the thermal-optical transmittance (TOT)
189 protocol. In addition to thermal EC and OC, the instrument also provides the optical
190 EC and OC by measuring the light attenuation (ATN). As the ATN is determined not
191 only by EC but also by BrC, the optical method may overestimate EC and
192 underestimate OC (Cui et al., 2016; Massabò et al., 2016). The optical EC and OC
193 were thus not adopted in this work. More details on the analyzer operation were
194 described in our previous studies (Chen et al., 2017; 2019). We used the methanol
195 soluble organic carbon (MSOC) as BrC surrogate. It was believed to be more suitable
196 than water soluble organic carbon (WSOC) as a large fraction of BrC absorption
197 comes from OC insoluble in water (Cheng et al., 2016; 2017; Huang et al., 2018; Lei
198 et al., 2018). The analytical procedure was described in details in Chen et al. (2019).
199 As shown in Figure S4 in the supplement, MSOC was measured to account for 88%
200 of the total OC mass for all the samples in this work, similar to the fraction of 85% by
201 Cheng et al. (2016). Elements of size-resolved particles collected in the Teflon filters
202 (As, Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Ti, V, and Zn) were measured with an
203 inductively coupled plasma-mass spectrometer (ICP-MS, PerkinElmer ELAN 9000,
204 USA) in order to provide further information on the aerosol sources. More detailed
205 information on the instrument was provided by Khan et al. (2016) including the
206 precision, calibration, detection limit, and analytical procedures.

207 208 2.3 Measurements of real time aerosol scattering coefficients

209 The aerosol scattering coefficients were measured using two different types of
210 integrating nephelometers. Two Model Aurora 1000G nephelometers (Ecotech Pty
211 Ltd, Australia) were operated at NJU and PAES at the wavelength of 520 nm, and one
212 Model 3563 nephelometer (TSI Inc., USA) was operated at NUIST at the wavelength

删除的内容:
删除的内容: estimates
删除的内容: an
删除的内容: e
删除的内容: However,
删除的内容: brown carbon (
删除的内容:)
删除的内容: and the measured
删除的内容: then may overestimate to the true value. So, the measured thermal EC and OC were took into our study.
删除的内容: Recent studies indicated that m
删除的内容:
删除的内容: was a
删除的内容: BrC surrogate
删除的内容: and
删除的内容: was thus used in present study
删除的内容:
删除的内容: ,
删除的内容: The t
删除的内容:
删除的内容: , Model Aurora1000G
删除的内容: at NJU and PAES
删除的内容: . The integrating nephelometer
删除的内容: (
删除的内容: ,
删除的内容: had been
删除的内容: used t
删除的内容: o measure the light scattering at three visible wavelengths (450, 550 and 700 nm, and the ...

252 ~~of 550 nm.~~ To obtain the dry aerosol scattering coefficient, the three nephelometers
253 controlled the RH of the inflow air under 50% by the heated inlet to mitigate the
254 impact of water vapor on the scattering coefficient. The nephelometers at NJU and
255 PAES were operated at a flow rate of 5 L/min, and that at NUIST was at 20 L/min.
256 Routine maintenance including zero calibration and span check was conducted
257 following the instrument manual.

258 To explore the RH impact on aerosol light scattering, an online monitoring
259 instrument Cavity Attenuated Phase Shift Albedo monitor (CAPS, Shoreline Science
260 Research Inc., Japan) was used to measure the ambient scattering coefficient at NJU
261 in real ambient conditions. The instrument operates at the wavelength of 530 nm
262 (Onasch et al., 2015; Petzold et al., 2013), and more details on its operation during the
263 campaigns were provided by Chen et al. (2019).

264

265 **2.4 Data analysis**

266 **2.4.1 Estimation of the scattering coefficient of aerosol chemical species with 267 different methods**

268 The details of IMPROVE1999 and IMPROVE2007 are summarized in the
269 Supplement Section A1. Neglecting the light-absorbing effect of BrC, the two
270 algorithms could overestimate the scattering coefficient of OM (Yan et al., 2014). The
271 major difference between the two versions is that the IMPROVE2007 algorithm
272 considers the variety of mass scattering efficiencies due to particle size for $(\text{NH}_4)_2\text{SO}_4$,
273 NH_4NO_3 and OM. With consideration of the BrC presence, we conducted the multiple
274 linear regression between the measured light scattering components and aerosol
275 scattering coefficient with SPSS 16.0 (Cheng et al., 2011; Tian et al., 2016) to obtain
276 the mass scattering efficiency (MSE). The contributions of sea salt and soil dust were
277 excluded by subtracting their light scattering coefficients from the measured $\text{PM}_{2.5}$
278 one. The $\text{PM}_{2.5}$ scattering coefficient can then be estimated statistically based on the
279 concentrations of individual chemical species as Eq. (1):

删除的内容: were adopted in this work.

删除的内容: i.e., Aurora 1000G (Ecotech Pty Ltd., Australia) at NJU and PAES, and Model 3563 (TSI Inc., USA) at NUIST.

删除的内容: In this study

删除的内容: ,

删除的内容: s

删除的内容: s

删除的内容: were conducted to

删除的内容: considering the presence of BrC. SPSS 16.0 was used in this study for multiple linear regression analysis (Cheng et al., 2011). The measured scattering coefficients were subtracted from the scattering coefficients of sea salt, soil dust and coarse particles.

删除的内容: T

删除的内容: scattering coefficient

删除的内容:

带格式的: 下标

302

$$\begin{aligned}
 b_{sca} = & a \times f_s(RH)[Small (NH_4)_2SO_4] + b \times f_L(RH)[Large e (NH_4)_2SO_4] \\
 & + c \times f_s(RH)[Small NH_4NO_3] + d \times f_L(RH)[Large e NH_4NO_3] \\
 & + e \times ([Small OM] - m \times [Small MSOC]) \\
 & + f \times ([Large e OM] - n \times [Large e MSOC])
 \end{aligned} \tag{1}$$

303 where b_{sca} is the measured PM_{2.5} scattering coefficient excluding the contribution of
 304 sea salt and soil dust; a, c and e are the MSEs of $(NH_4)_2SO_4$, NH_4NO_3 and OM (except
 305 for light-absorbing BrC) in the small size mode, respectively; b, d and f are the MSEs
 306 of $(NH_4)_2SO_4$, NH_4NO_3 and OM (except for light-absorbing BrC) in the large size
 307 mode, respectively (definitions of small and large size modes for various aerosol
 308 components can be referred to [Pitchford et al. \(2007\)](#)); m and n indicate the mass
 309 fractions of light-absorbing BrC to total MSOC in small and large modes, respectively
 310 (definitions of small and large size modes of MSOC are the same as other species);
 311 $f(RH)$ (including $f_L(RH)$ and $f_s(RH)$) of sulfate and nitrate indicate the scattering
 312 hygroscopic growth factor under a given relative humidity (RH), obtained from
 313 [Pitchford et al. \(2007\)](#).

删除的内容: Malm et al

删除的内容: .

314 In addition to PM_{2.5}, the scattering coefficient for particles at a given size

315 ($b_{sca}(RH)$) is calculated with the Mie theory (Bohren et al., 1998; Cheng et al., 2015):

316

$$b_{sca}(RH) = \int \pi [D_p \times \frac{g(RH)}{2}]^2 \times Q_{sca}[m(RH), D_p, \lambda] \times N(D_p) \times g(RH) dD_p \tag{2}$$

317 where $m(RH)$ is the aerosol refractive index; $g(RH)$ is the hygroscopic growth factor;
 318 Q_{sca} is the scattering efficiency for a single spherical particle with diameter D_p and
 319 can be calculated with the Mie theory by inputting D_p , $m(RH)$ and the incident
 320 wavelength (λ); $N(D_p)$ is the number concentration of particle with diameter D_p . In
 321 general, three typical models are proposed to represent the particle mixing state
 322 including internal, external and core-shell mixture (Jacobson, 2001; Seinfeld and
 323 Pandis, 2006). The methods of calculating the parameters including $m(RH)$ and $N(D_p)$
 324 are different for the three mixed states, and the details can be referred to Ding et al.
 325 (2015).

删除的内容: P

删除的内容: ical method

326 **2.4.2 Source apportionment of aerosol scattering coefficients with a coupled**
 327 **model of PMF and Mie theory**

328 Positive matrix factorization (PMF) is an effective technology for source

333 apportionment of atmospheric aerosols (Kim and Hopke, 2004). [PMF does not require](#)
334 [the source profile \(i.e., the aerosol chemistry speciation by source category\) as a](#)
335 [model input, and thus excludes the uncertainty of source profiles which were](#)
336 [commonly developed based on literatures or measurements across the country in](#)
337 [China.](#) In this study, PMF 5.0 software was applied [for](#) the source apportionment of

338 accumulated mode particles. In total, 245, 145 and 163 aerosol samples were analyzed
339 at NJU, PAES and NUIST, respectively. It is currently difficult to resolve the sources
340 of secondary organic aerosol (SOA) with PMF. In this study, a simplified method was
341 applied to differentiate the sources of primary and secondary aerosols. Organic carbon
342 is split into primary and secondary organic carbon (POC and SOC), and the SOC
343 concentration was calculated with the EC-tracer method (Chen et al., 2017). The
344 source contributions of primary particles were obtained using the PMF model, and
345 those of secondary inorganic aerosol (SIA) and SOA were further determined based
346 on estimates of the nitrogen oxides (NO_x), sulfur dioxide (SO₂) and volatile organic
347 compounds (VOCs) emissions in a local inventory (Huang, 2018; Lang et al., 2017;
348 Wang et al., 2015). The chemical components applied in the PMF model included
349 inorganic ions, carbonaceous components and metallic elements. We followed the
350 method described in the PMF manual and Tian et al. (2016) to calculate the chemical
351 component uncertainties in the measurement dataset. Criteria including the optimum
352 number of factors and the minimization of an objective function Q were determined
353 based on the principles described in previous studies (Moon et al., 2008; Tian et al.,
354 2016; Watson et al., 2015) and applied in the model to obtain the best PMF solution.

355 A coupled model combining PMF and the Mie theory was developed to evaluate
356 the sources of aerosol light scattering. The procedure of the method was as follows: (1)
357 the EPA-PMF model was applied to quantify the contributions of different sources to
358 the mass concentrations of chemical species in size-segregated particles; (2) the
359 contribution (%) of the i^{th} chemical component to the aerosol scattering coefficient at
360 size D_p was estimated based on Mie theory; (3) the percentage contribution (%) of the
361 i^{th} component in the j^{th} source category to the total scattering at size D_p was calculated
362 as the product of the percentage contribution (%) of the i^{th} chemical species to the

删除的内容: in

364 total scattering and that of the j^{th} source category to the mass concentration of the i^{th}
 365 species in the particles at size D_p , as indicated in Eq.(3); and (4) the percentage
 366 contribution (%) of the j^{th} source to the total scattering at size D_p was estimated by
 367 summing η_{ijD_p} , as shown in Eq. (4).

$$368 \quad \eta_{ijD_p} = a_{ijD_p} \cdot \frac{b_{iD_p}}{\sum_{i=1}^m b_{iD_p}} \times 100\% \quad (3)$$

$$369 \quad \eta_{jD_p} = \sum_{i=1}^I \eta_{ijD_p} \quad (4)$$

370 where i and j stand for the numbers of aerosol chemical components and potential
 371 sources, respectively; η_{ijD_p} (%) is the contribution (%) of i^{th} scattering component in
 372 the j^{th} source to the total particle scattering at size D_p ; η_j (%) is the contribution (%) of
 373 the j^{th} source to the total scattering at size D_p ; a_{ijD_p} is the relative contribution (%) of
 374 the j^{th} source to the i^{th} chemical component in particles with size D_p from PMF
 375 modeling; and b_{iD_p} is the contribution of the i^{th} chemical component to the total
 376 scattering from Mie modeling.

377 3 RESULTS AND DISCUSSION

378 3.1 Mass concentrations and size distributions of PM compositions

379 Based on the national definition on ambient Air Quality Index (AQI) (MEP,
 380 2012), we divided the whole sampling period into three categories, i.e., the clean
 381 period with AQI less than 100, the lightly polluted period with AQI between 100 and
 382 200, and the heavily polluted period with AQI above 200. Note that the AQI is a
 383 unitless index calculated based on the daily concentrations of regulated air pollutants
 384 including NO_2 , SO_2 , CO , O_3 , $\text{PM}_{2.5}$ and PM_{10} (MEP, 2012). As summarized in Table 1,
 385 the average daily $\text{PM}_{2.5}$ mass concentrations at the three conditions were calculated at
 386 47.9 ± 15.8 , 102.1 ± 16.4 , and $163.1 \pm 13.6 \mu\text{g}/\text{m}^3$, respectively. The mass
 387 concentration of secondary inorganic ions (SO_4^{2-} , NO_3^- and NH_4^+) for the heavily
 388 polluted period was 4.4 and 2.2 times those for the clean and lightly polluted periods,
 389 respectively. The corresponding values for the carbonaceous aerosols (the sum of OC

390 and EC) were 3.1 and 1.9 times, respectively, and the OC to EC ratios increased from
391 4.5 for the clean period to 5.2 for the heavy period. In addition to the particulate
392 components, gaseous pollutants such as NO_2 and SO_2 were also significantly elevated
393 from the clean to the heavy periods. These results imply that secondary aerosol
394 formation was an important source of enhanced $\text{PM}_{2.5}$ for the heavily polluted period.

395 Figure [S5](#) in the Supplement compares the size distributions of mass
396 concentrations for particles and selected chemical components under three pollution
397 levels. Bimodal size distributions were found for PM and OC mass concentrations,
398 with the two peaks at the ranges of 0.56-1.0 μm and 3.2-5.6 μm , respectively. This
399 bimodal pattern could partly result from the coexistence of primary and secondary
400 sources of OC. POC with larger sizes may contribute largely to the peak in the coarser
401 particles. In contrast, due to chemistry reactions of biogenic and anthropogenic VOCs,
402 SOC was expected to be abundant in the accumulation mode (0.18-1.8 μm) (Cao et al.,
403 2007). The size distributions of NO_3^- and SO_4^{2-} followed a unimodal distribution with
404 the mass concentrations peak at the range of 0.56-1.0 μm , as most of the inorganic
405 aerosols were generated through secondary formation. The mass concentrations of
406 PM, NO_3^- , SO_4^{2-} and OC for all sizes were enhanced from the clean to the polluted
407 periods, and the biggest differences were found in the size bin of 0.56-1.0 μm . As
408 shown in Figure [S5a](#), the concentrations of $\text{PM}_{0.56-1.0}$ for the heavily and lightly
409 pollution periods were 7.0 and 2.7 times greater than that for the clean period,
410 respectively. Moreover, $\text{PM}_{0.56-1.0}$ contributed 31%, 23%, and 15% to the total mass
411 concentrations of particles for the heavily, lightly polluted and clean periods,
412 respectively, implying that the enhanced concentration of $\text{PM}_{0.56-1.0}$ was an important
413 reason for the aggravated pollution. As shown in Figure [S5b-S5d](#), the sum of NO_3^- ,
414 SO_4^{2-} and OC for the heavily polluted period was [2.9 and 10.7](#) times greater than those
415 for the lightly polluted and clean periods, respectively. From clean to heavily polluted
416 periods, the collective mass fraction of the three components to $\text{PM}_{0.56-1.0}$ increased
417 from 42% to 64%. The results indicated that the increased NO_3^- , SO_4^{2-} and OC at the
418 size bin of 0.56-1.0 μm could be an indicator for the serious air pollution events. [As](#)
419 indicated in Table 1, moreover, SNA was elevated more than OC in the heavily

删除的内容: S2

删除的内容: S2a

删除的内容: S2b

删除的内容: S2d

删除的内容: 10.7 and 2.9

删除的内容: According to Table 1,

426 polluted period compared to the clean days. During the heavily polluted episodes in
427 winter, enhancement of SO_4^{2-} and NO_3^- could be more significant than OM because
428 the high relative humidity and precursor emissions promoted the generation of SNA
429 (Tian et al., 2014). During clean periods (commonly in summer), NH_4NO_3 would
430 dissociate to NH_3 and HNO_3 at high temperature, while the SOC concentration might
431 increase due to the high levels of O_3 and solar radiation. Similar result was found in
432 Beijing, where the mass fraction of SNA was observed to increase from 19% on
433 non-haze days to 31% on haze days, while that of OM decreased from 38% to 31%
434 (Tian et al., 2016).

435 To explore the mass fractions of major chemical species in the particles, the PM
436 mass was reconstructed as $(\text{NH}_4)_2\text{SO}_4$ ($1.38 \times \text{SO}_4^{2-}$), NH_4NO_3 ($1.29 \times \text{NO}_3^-$), OM
437 ($1.55 \times \text{OC}$), fine soil (FS) and EC (Cheng et al., 2015; Pitchford et al., 2007). As
438 shown in Figure S6 in the Supplement, strong correlations were found between the
439 reconstructed PM mass concentrations and the measurements for $\text{PM}_{1.8}$ ($R^2=0.91$) and
440 PM_{10} ($R^2=0.89$) at the three sites. The slope of $\text{PM}_{1.8}$ (0.85) was greater than that of
441 PM_{10} (0.72), indicating smaller unidentified fraction in the $\text{PM}_{1.8}$. The larger
442 unidentified mass in the reconstructed PM_{10} was probably due to underestimation in
443 the crustal components (Hueglin et al., 2005).

444 Figure 1 presents the mass concentrations and fractions of the reconstructed
445 aerosol chemical species by particle size under the three pollution levels. NH_4NO_3 ,
446 $(\text{NH}_4)_2\text{SO}_4$, and OM were the dominant components in particles. From the clean to
447 heavily polluted periods, their mass fractions to $\text{PM}_{1.8}$ increased from 16.9 to 35.3%,
448 from 14.9 to 28.6% and from 16.7 to 22.2%, respectively (Figure 1b, Figure 1d and
449 Figure 1f). The mass fraction of OM in $\text{PM}_{1.8}$ was 5.4% and 7.4% larger than
450 NH_4NO_3 and $(\text{NH}_4)_2\text{SO}_4$ for the clean period, while 13.3% and 6.6% smaller than
451 those for the heavily polluted period, respectively. The results further confirmed that
452 substantial growth in the mass of NH_4NO_3 and $(\text{NH}_4)_2\text{SO}_4$ was an important reason
453 for the aerosol pollution. The formation of sulfate, nitrate, and ammonium (SNA) is
454 mainly affected by the emissions of precursors and the atmospheric oxidation capacity
455 Due to the great use of fossil fuel consumption, the emissions of precursors SO_2 and

删除的内容: In this study, the concentrations of PM and its chemical components were higher in winter and lower in summer, due to a combination of emissions and seasonal variance in...

删除的内容: sulfate

删除的内容: nitrate

删除的内容:

删除的内容: were

删除的内容: organic matter

删除的内容: (i.e., SO_2 and NO_x)

带格式的: 下标

删除的内容: ammonium nitrate (

带格式的: 下标

带格式的: 下标

删除的内容:)

带格式的: 下标

带格式的: 下标

删除的内容: s

删除的内容: secondary organic (...

删除的内容: ay

删除的内容: be

删除的内容: d by

带格式的: 下标

删除的内容: concentration

删除的内容: These factors caused the...

删除的内容: dominated in fine (...

删除的内容: d

删除的内容: .1

删除的内容: .2

删除的内容: 7.9

删除的内容: on

删除的内容: non-haze days

删除的内容: .2

删除的内容: on haze days

删除的内容: S3

500 NO_x per unit area in eastern China were estimated 2.3 and 3.4 times larger than the
501 national average, respectively (Cheng et al., 2012; Shi et al., 2014). Under high RH,
502 moreover, the SNA formation could significantly be elevated through gas-to-particle
503 heterogeneous reactions for the heavily polluted period (Seinfeld and Pandis, 2006).
504 Sulfate mass concentration, for example, increased from $6.4 \text{ } \mu\text{g}/\text{m}^3$ for the clean
505 period to $53.3 \text{ } \mu\text{g}/\text{m}^3$ for the heavily polluted period. Among all the size bins,
506 NH_4NO_3 and $(\text{NH}_4)_2\text{SO}_4$ were estimated to contribute the most to the mass
507 concentrations for $0.56\text{-}1.0 \mu\text{m}$ particles, with their mass fraction ranging 19.4-39.7%
508 and 18.1-34.7%, respectively, across different pollution levels. In comparison, the
509 largest contributions of OM appeared in the $0.056\text{-}0.18 \mu\text{m}$ fraction and were 31.2%,
510 29.0% and 52.3% for the clean, lightly polluted and heavily polluted periods,
511 respectively. As the largest PM fraction was found in the $0.56\text{-}1.0 \mu\text{m}$ size bin for the
512 heavily pollution period, the elevated concentrations of NH_4NO_3 and $(\text{NH}_4)_2\text{SO}_4$ in
513 $\text{PM}_{0.56\text{-}1.0}$ were the major causes of the increased aerosol pollution.

514 Figure [S7](#) in the Supplement compares the size distributions of PM mass
515 concentrations and selected chemical species at the three sites. As mentioned above, a
516 bimodal distribution with two peaks at $0.56\text{-}1.0 \mu\text{m}$ and $3.2\text{-}5.6 \mu\text{m}$ was observed for
517 PM and OC at all the three sites, attributed to the coexistence of primary and
518 secondary sources. Different from PAES and NUIST, NO_3^- had an obvious small
519 coarse mode peak at NJU. Previous studies suggested that the chemistry of coarse
520 mode NO_3^- can vary in different locations, and the components include NH_4NO_3 ,
521 NaNO_3 and $\text{Ca}(\text{NO}_3)_2$ (Pakkanen et al., 1996). As NJU was close to the G25 highway,
522 the reaction of HNO_3 with crustal particles could be an important process for coarse
523 mode NO_3^- formation. The highest mean concentrations of NO_3^- and SO_4^{2-} at the
524 $0.56\text{-}1.0 \mu\text{m}$ size among the three sites were observed at NJU, followed by NUIST
525 and PAES. As NO_3^- and SO_4^{2-} were the major components of the aerosol light
526 scattering, the variety of their mass concentrations at $0.56\text{-}1.0 \mu\text{m}$ could be a crucial
527 reason for the visibility difference among the three sites. A greater difference was
528 found for the size distribution of OC among the three sites, and the highest
529 concentration at the $0.56\text{-}1.8 \mu\text{m}$ size was observed at NUIST. Our previous work

删除的内容: S4

531 found that NUIST was greatly influenced by VOCs emissions of surrounding
532 industrial plants (Chen et al., 2019). Given its capability of light scattering and
533 absorption, the abundant OC in the area could play an important role on the visibility.

534 **3.2 Evaluation and optimization of the IMPROVE algorithm**

535 Figure [S8](#) in the Supplement presents the linear regressions between the
536 measured daily aerosol scattering coefficients with nephelometers (b_{sp-m}) and those
537 calculated with IMPROVE algorithms ($b_{sp-1999}$ and $b_{sp-2007}$) based on the measured
538 concentrations of particle components at the three sites. At each site, strong
539 correlations were found between the observation and IMPROVE estimation ($R^2 \geq$
540 0.94), indicating consistency between the different techniques. As shown in Figure
541 [S8a](#), the calculated aerosol scattering coefficients $b_{sp-1999}$ were 30%, 16% and 19%
542 smaller than the measured values at NJU, PAES and NUIST, respectively. Similar
543 results were found for other megacities in eastern China. Based on the online
544 analytical methods, for example, Cheng et al. (2015) estimated that the scattering
545 coefficients predicted by the IMPROVE1999 algorithm were 34% smaller than the
546 measurement for a heavy pollution period in Shanghai. A greater underestimation of
547 the scattering coefficient existed at NJU than the other two sites, partly due to the
548 relatively abundance of sulfate and nitrate in particles at NJU. The sum of SO_4^{2-} and
549 NO_3^- accounted for $35.3 \pm 13.2\%$ of the total mass concentrations of $PM_{2.5}$ at NJU,
550 larger than the fraction at PAES ($27.6 \pm 12.9\%$) and NUIST ($24.1 \pm 11.6\%$) (note the
551 SO_4^{2-} and NO_3^- concentrations at the 0.56-1.0 μm were the largest at NJU as well, as
552 shown in Figure [S7](#)). Tao et al. (2014b) and Cheng et al. (2015) suggested that the
553 relatively small MSE of sulfate and nitrate aerosols in the IMPROVE1999 algorithm
554 might result in underestimation of the scattering coefficient in China, as sulfate and
555 nitrate were the main light-scattering components in $PM_{2.5}$.

556 As shown in Figure [S8b](#), $b_{sp-2007}$ was only 4% smaller than the measurement at
557 NJU, and 4% and 18% larger at PAES and NUIST, respectively. Overall, the
558 performance of the IMPROVE2007 algorithm was better than that of the
559 IMPROVE1999, although deviation still existed due to the uncertainty in MSEs for

删除的内容: S5

删除的内容: the three

删除的内容: CAPS

删除的内容: S5a

删除的内容: S4

删除的内容: S5b

566 chemical species and the presence of light absorption organic matter such as BrC. A
567 relatively large deviation between b_{sp-m} and $b_{sp-2007}$ was found at NUIST compared to
568 NJU and PAES. Chen et al. (2019) and Shao et al. (2016) found higher annual average
569 concentration of non-methane hydrocarbon at NUIST (34.4 ppbv) than NJU (22.0
570 ppbv) or PAES (27.1 ppbv). The more VOCs in the atmosphere were expected to
571 increase the SOC formation and to result in big deviation of $b_{sp-2007}$, as the OM with
572 light-absorption capability was not considered in IMPROVE2007.

573 Using the optimized IMPROVE algorithm as described in Section 2.4.1, the
574 aerosol scattering coefficients were recalculated and compared against the observation
575 at the three sites, as illustrated in Figure 2. Good correlations were found between the
576 observed and calculated scattering coefficients at all the sites ($R^2 \geq 0.96$), and the
577 regression slopes were estimated to be much closer to 1 than those between
578 observations and predictions with the IMPROVE1999 or IMPROVE2007 algorithms
579 (Figure S8). In addition, the MSEs calculated based on the Mie theory were applied to
580 evaluate the results of the IMPROVE algorithms. As presented in Figure S9 in the
581 Supplement, the MSEs of $(NH_4)_2SO_4$ and NH_4NO_3 calculated with the optimized
582 IMPROVE algorithm were closer to the MSE simulated by Mie theory than those
583 with the IMPROVE2007 algorithm. The results indicated the optimized algorithm had
584 a better performance and could reduce the bias from the US IMPROVE algorithm.

585 As summarized in Table 2, the MSEs estimated with the optimized IMPROVE
586 algorithm were 2.29, 4.82, 2.62, 5.35, 4.46, and $6.41\text{ m}^2/\text{g}$ for small sulfate, large
587 sulfate, small nitrate, large nitrate, small and large OM, respectively. In comparison,
588 the MSEs for the small and large size modes using the IMPROVE2007 were 2.2 and
589 $4.8\text{ m}^2/\text{g}$ for $(NH_4)_2SO_4$, respectively, and 2.4 and $5.1\text{ m}^2/\text{g}$ for NH_4NO_3 , respectively.
590 The slightly larger MSEs from the optimized IMPROVE algorithm for $(NH_4)_2SO_4$ and
591 NH_4NO_3 implied underestimation of the scattering coefficients of inorganic
592 components when applying the previous algorithm. There were clear differences in
593 the MSEs of OM (especially for fine OM) between the two algorithms, resulting from
594 consideration of the light-absorbed OM in the optimized algorithm. Indicated by the
595 m values in Table 2, the light-absorbed OC accounted for 66% and 71% of the fine

删除的内容: S5

删除的内容: S6

598 MSOC mass at NJU and PAES, respectively, indicating that most of the fine MSOC
599 had only light-absorption capacity. Unlike NJU and PAES, less than half of the fine
600 MSOC (39%) had light-absorption capacity at NUIST, likely resulting from the varied
601 sources of OM at the three sites. As described in our previous study (Chen et al.,
602 2019), substantial OC was from the secondary formation in industrial polluted region,
603 and its light-absorption capacity was weaker than that from the primary emissions.

604 In this study, the optimized IMPROVE algorithm for PM_{2.5} did not include the
605 contribution of sea salt or soil dust. As illustrated in Figure S10 in the supplement, sea
606 salt and soil dust accounted collectively for less than 10% of the total PM_{2.5} scattering
607 coefficient, suggesting that the two species should have limited impact on the
608 IMPROVE algorithm optimization. In order to be concise in the optimized formula
609 and to ensure the stability of the multiple linear regression, therefore, only (NH₄)₂SO₄,
610 NH₃NO₃ and OM were used as independent variables. Through field measurement
611 and data reconstruction in different cities, previous studies explored the
612 concentrations of PM_{2.5} and its chemical components for various cities in China (Chen
613 et al., 2019; Feng et al., 2012; Lai et al., 2016; Tao et al., 2013., Yang et al., 2011;
614 Zhao et al., 2013). The major components of light scattering in aerosols, SNA, were

615 found to typically account for half of the PM_{2.5} mass concentrations in eastern Chinese
616 cities like Nanjing, Shanghai, and Jinan (Yang et al., 2011). Given the similar SNA
617 levels and strong regional transport of pollution among those cities, the optimized

618 IMPROVE algorithm applied in Nanjing in this work is believed to be more suitable
619 than the previous algorithms for eastern China. Moreover, for other regions with
620 rapidly developing economy and fast industrialization in China including
621 Beijing-Tianjin-Hebei or Pearl River Delta regions, the current work provides
622 methodology and data support for the studies of aerosol light scattering in cities with
623 relatively serious aerosol pollution. Given the fast changes in emission control and
624 aerosol pollution in those regions, more campaigns on aerosol optical and chemical
625 properties are recommended to further evaluate and improve the applicability of the
626 optimized IMPROVE algorithm.

带格式的: 下标
带格式的: 下标
带格式的: 下标
带格式的: 下标
删除的内容: .

删除的内容: was

删除的内容: level

带格式的: 字体: (默认) Times New Roman, (中文) 黑体, 字体颜色: 自动设置

带格式的: 字体: (默认) Times New Roman, (中文) 黑体, 字体颜色: 自动设置

带格式的: 字体: (默认) Times New Roman, (中文) 黑体, 字体颜色: 自动设置

带格式的: 缩进: 首行缩进: 0 字符

631 **3.3 Effects of mixing state and relative humidity on aerosol light scattering**

632 Figure 3 presents the scattering coefficients measured by nephelometer and those
633 simulated by Mie theory at the three sites under dry conditions ($RH < 40\%$). The
634 simulated scattering coefficients based on the assumption of an external mixing state
635 were larger than those based on core-shell and internal mixing states at all the three
636 sites. Compared with the internal and core-shell states, the simulated scattering
637 coefficients in the external mixing state were closer to the measurements at NJU and
638 PAES (Figure 3a and 3b), indicating the reasonable assumption of external mixtures
639 as the main mixing state of particles. Similarly, Ma et al. (2012) also suggested that
640 the external mixture was an important particle mixing state in northern China based
641 on a stochastic particle-resolved aerosol box model. Assuming the aerosol
642 components were externally mixed, Cheng et al. (2015) estimated the MSEs of
643 aerosol species in Shanghai, and found better agreement between the optimized
644 scattering coefficients and the measurements. At NUIST, the measured scattering
645 coefficients were closer to the simulated values in internal and core-shell states, likely
646 due to the high aging level of SOA at the industrial site (Figure 3c). Due to the strong
647 atmospheric oxidation and thereby the abundance of SOA coatings at NUIST, our
648 previous study suggested that the aerosol aging process could result in the growth of
649 internally mixed BC (Chen et al., 2019). Based on the observation of O_3 and
650 percentage of internally mixed BC, Lan et al. (2013) suggested that photochemical
651 production of secondary aerosol components was the main reason for the switching
652 from an external mixing state to an internal mixing state for BC.

653 In an actual environment, ambient aerosols are typically hygroscopic under the
654 conditions of high RH, and it is an important reason for visibility degradation. Table
655 S1 in the Supplement summarizes the growth factors (GF) of particle size measured in
656 Nanjing at different RH levels in previous studies. To evaluate the rationality of those
657 GF values, we followed the method by Tao et al. (2014b) and calculated the scattering
658 hygroscopic growth factor ($f(RH)$) at NJU based on the measured ambient scattering
659 coefficients by CAPS and the dry scattering coefficients by nephelometer, as shown in
660 Figure S11 in the Supplement. The correlation between $f(RH)$ and RH was fitted

删除的内容: S7

删除的内容: S8

删除的内容: S9

删除的内容: S9

删除的内容: .

662 through the power regression. Figure [S12](#) in the Supplement presents a good
663 agreement between the scattering coefficients estimated by $f(RH)$ and those obtained
664 by the Mie theory ($R^2=0.95$). The results indicate the accuracy of the GF values
665 applied on different particle sizes and RH levels. The estimated and measured
666 scattering coefficients at NJU under ambient condition are shown in Figure [S13](#) in the
667 Supplement. Different from the estimation under the dry conditions, the lowest value
668 was found for the externally mixing state among the three mixing modes. In the
669 externally mixing state, only sulfate and nitrate particles had hygroscopicity under wet
670 conditions, whereas each particle had the capability of hygroscopic growth in the
671 internal mixing and core-shell states, resulting in a significant increment in the
672 scattering coefficient. Similarly, comparing the measured scattering coefficients under
673 the dry and ambient conditions (Figure 3 and Figure [S13](#)), the simulated values based
674 on an external mixing state were closer to the measurements than the other two modes,
675 implying that RH had a limited effect on the particle mixing state.

676 To explore the impact of RH on the light scattering of particles with different
677 sizes, the size distribution of $f(RH)$ was estimate and shown in Figure 4. Large
678 differences were found between $f(RH)$ when the RH was above and below 75%, and
679 high RH enhanced the capacity of scattering hygroscopicity growth of small size
680 particles. Approximately 140 nm particles had strong hygroscopicity when the RH
681 was below 75%, whereas a high $f(RH)$ (1.41 ± 0.03) was observed for the
682 accumulation mode particles from 100 to 400 nm when the RH was above 75%.
683 Similar results were reported for Beijing: larger hygroscopic GF was measured for
684 accumulation mode particles (100–300 nm) with a hygroscopicity tandem differential
685 mobility analyzer (H-TDMA), consistent with the elevated abundance of the
686 light-scattering compositions such as sulfate and nitrate (Meier et al., 2009).

688 3.4 Size distribution of aerosol light scattering by pollution level

689 Figure 5 shows the size distribution of the scattering coefficients for particles and
690 given chemical components under the three pollution levels, [based on the](#)
691 [measurements at all the three sites. Note the result was obtained with Mie theory](#)

696 under the assumption of external mixing at ambient condition. Although other mixing
697 states might be more important at specific site (e.g., internal mixing at NUIST), their
698 influence on scattering coefficient estimation was modest (Figure 3). The scattering
699 coefficients of particles for all size categories were the largest for the heavily polluted
700 period (Figure 5a). The accumulation mode particles (0.18-1.8 μm) accounted for
701 92.9%, 92.6 and 93.4% of the total scattering coefficients for the clean, lightly
702 polluted and heavily polluted periods, respectively. In particular, particles in the size
703 bin of 0.56-1.0 μm accounted for 57% and 63% of the scattering coefficient for the
704 heavily and lightly polluted periods, respectively, much larger than that for the clean
705 period, 38%. From the results of Section 3.1, the abundance of particles of different
706 sizes was considered to be an important factor for the variety of scattering coefficients
707 across the whole size range.

708 As the dominant chemical components of aerosol light scattering, $(\text{NH}_4)_2\text{SO}_4$,
709 NH_4NO_3 and OM collectively contributed 90%, 76% and 60% to the mass
710 concentrations of $\text{PM}_{0.56-1.0}$ for the heavily polluted, lightly polluted and clean periods,
711 respectively (Figure S5b-S5d). The scattering coefficients of $(\text{NH}_4)_2\text{SO}_4$ and NH_4NO_3
712 were the largest in the size bin of 0.56-1.0 μm for the three pollution levels, and their
713 contributions increased along with the aggravation of pollution (Figure 5b and Figure
714 5c). The OM concentration in the size bin of 0.56-1.0 μm was $2.5 \mu\text{g}/\text{m}^3$ for the clean
715 period, and those for the lightly and heavily polluted periods were 160% and 510%
716 larger, respectively. The scattering coefficient of OM in the size bin of 0.56-1.0 μm
717 for the heavily polluted period was 15% less than that for the lightly polluted period,
718 indicating the more important role of OM in the particle scattering effect for the
719 lightly polluted period (Figure 5d). The large OM scattering contribution could likely
720 be explained by the elevated mass fraction of OM and/or enhancement of the OM
721 MSE. It could be inferred that the low visibility during heavy pollution resulted
722 mainly from the enhancement of the scattering effect of SNA.

723 The MSEs of given chemical components in $\text{PM}_{1.8}$ are presented by pollution
724 level in Figure 6. Increased MSEs for $(\text{NH}_4)_2\text{SO}_4$ and NH_4NO_3 were found along with
725 the elevated $\text{PM}_{2.5}$ pollutions (Figure 6a). The large contributions of inorganic

删除的内容: .

删除的内容: at ambient condition

删除的内容: S2b

删除的内容: S2d

730 components and their strong light scattering ability were important reason for the
731 reduced visibility during the heavily polluted period. Although the largest OM
732 concentrations were observed in each size bin for the heavy pollution period, the
733 smallest MSE of OM in $PM_{1.8}$ was found for the heavily polluted period ($3.73\text{ m}^2/\text{g}$,
734 Figure 6b). As discussed in Section 3.2, most of the fine MSOC was expected to have
735 only a light-absorption effect whereas large MSOC had light-scattering capability.
736 With the optimized IMPROVE algorithm, the mass fraction of light-absorption OC to
737 total MSOC mass was estimated at $66.9\pm5.8\%$ for the heavily polluted period, much
738 larger than those for clean and lightly polluted periods at $44.3\pm6.5\%$ and $50.8\pm5.9\%$,
739 respectively, as shown in Figure S14 in the Supplement. Therefore, the small MSE of
740 OM for the heavily polluted period was partly attributed to the abundance of light
741 absorption BrC in $PM_{2.5}$.

742 For the whole research period, the MSEs of $(\text{NH}_4)_2\text{SO}_4$, NH_4NO_3 and OM in
743 $PM_{1.8}$ were calculated at 3.95, 4.26 and $4.14\text{ m}^2/\text{g}$ with the Mie theory, while the
744 analogue numbers in $PM_{2.5}$ were 3.94, 4.31 and 5.25 with the optimized IMPROVE
745 algorithm, respectively (Table 2). Very good agreement between the two methods was
746 found for SNA, and clearer discrepancy existed for OM, indicating a larger
747 uncertainty in the evaluation of organic aerosol scattering.

748

749 **3.5 Source apportionment of aerosol light scattering with the PMF-Mie coupled** 750 **model**

751 As illustrated in Figure 5, the light scattering of the accumulation mode (0.18-1.8
752 μm) accounted for the largest proportion of the total light scattering. To better
753 understand the causes of visibility degradation, the source apportionment of aerosol
754 light scattering at this size range was conducted for different pollution levels with the
755 PMF and Mie coupled model, as described in Section 2.4.2. The PMF model was
756 adopted to identify the potential sources and to estimate their respective contributions
757 to the mass concentration of accumulation mode particles. To resolve the appropriate
758 number of factors, different numbers of identifiable sources were tested. The source
759 profiles and contributions to accumulation mode particles at the three sites are

删除的内容: S10

删除的内容: Mien

删除的内容: results of the

删除的内容: their

删除的内容: S11

删除的内容: S11

764 presented in Figure [S15](#) in the Supplement and Figure 7a-c, respectively. The main
765 sources identified at the three sites include coal combustion, industrial pollution,
766 vehicle, fugitive dust, biomass burning, and SIA (Figure [S15](#)). Compared to NJU and
767 NUIST, vehicle contributed more to accumulated particles at the urban site PAES
768 (Figure 7b). As stated in Section 2.4, we assumed that the contribution of the
769 individual source category to the secondary particle component was proportional to
770 the fraction of that source category to the emissions of corresponding precursors
771 (Lang et al., 2017). Based on the emission inventory of precursors of SOC (VOCs)
772 and SIA (NO_x , SO_2 and NH_3) in Nanjing (Huang, 2018), the source apportionment for
773 primary and secondary particles of accumulation mode at the three sites were
774 estimated, and the results are presented in Tables S2-S4 in the Supplement. With the
775 source apportionment of secondary components, the contributions of coal combustion
776 and industrial pollution increased 45-50% and 138-478% compared to those for
777 primary particles across the three sites, respectively. The result indicates that the
778 gaseous precursors from coal combustion and industrial pollution greatly elevate the
779 aerosol pollution.

780 The contributions of different aerosol species to the aerosol light scattering were
781 estimated using the Mie model, and the results are presented in Table S5 in the
782 Supplement. OM contributed the most to the total scattering at the three sites (31%,
783 29% and 33% for NJU, PAES and NUIST, respectively). Compared to other Chinese
784 mega cities, the contribution of OM in Nanjing was close to that for inland cities like
785 Beijing (Tao et al., 2015) and Tianjin (Wang et al., 2016b), but was much larger than
786 that observed in a coastal megacity, Guangzhou (Tao et al., 2014c).

787 Combined with the source apportionment from the [PMF](#) model, Figure 7d-7f
788 illustrates the source contribution to aerosol light scattering at the three sites. Coal
789 combustion, industrial plants and vehicle were the major sources of the aerosol light
790 scattering in Nanjing, and the three source categories collectively accounted for
791 64-70% of the total scattering capacity of aerosols. Given their relatively intensive
792 activities in urban and industrial regions, vehicles and industrial plants were identified
793 as the largest contribution sources at PAES and NUIST, respectively. Indicated by the

删除的内容: PME

797 dashed lines in Figure 7d-7f, the collective contributions of secondary aerosol
798 components were estimated to be 26.7%-35.2% of the total scattering at the three sites,
799 suggesting the important role of secondary aerosol formation in visibility reduction.

800 Figure 8 illustrates the source apportionment of aerosol light scattering for the
801 clean and polluted periods at the three sites. Coal combustion contributed the most to
802 the total scattering for the clean period, and the contribution declined significantly for
803 the polluted period, from 39% to 21%, from 38% to 19% and from 35% to 18% at
804 NJU, PAES and NUIST, respectively. The results implied that coal combustion might
805 not be the most important reason for visibility degradation in polluted periods.
806 Similarly, the contribution of fugitive dust during the polluted period was estimated to
807 be smaller than that for the clean condition. In contrast, the contributions of vehicles
808 and industrial pollution to light scattering increased from 27% to 48%, from 27% to
809 47% and from 31% to 62% for the polluted periods compared to the clean period at
810 NJU, PAES, and NUIST, respectively. As shown in Figure 8b and 8c, particularly, the
811 contribution of primary emissions from vehicles to aerosol scattering was estimated to
812 increase from 11.4% to 21.5% at PAES, and that from industrial plants increased from
813 4.5% to 13.5% at NUIST. The primary aerosol emissions from vehicles and industrial
814 plants were thus identified as the main cause of visibility reduction in the urban and
815 industrial areas, respectively. Similarly, Wang et al. (2016b) suggested that vehicle
816 was the dominate source of aerosol light extinction in Hangzhou, with the
817 contribution to the total extinction coefficient of $PM_{2.5}$ reaching 30.2%. The present
818 study indicated that more effective measures for reducing the primary particle
819 emissions from vehicles and industrial production should be conducted to avoid
820 severe haze pollution in urban and industrial regions.

821 In addition, the results suggest that secondary aerosols were another important
822 contributor to the reduced visibility. From the clean to the heavily polluted periods, as
823 shown in Figure 8, the contributions of secondary aerosols to the total light scattering
824 increased from 19.9% to 36.7%, from 20.9% to 32.4%, and from 28.6% to 41.7% at
825 NJU, PAES, and NUIST, respectively. As shown in Table 3, the contributions of SIA
826 to the total scattering at the three sites were ranged at 14.5%-19.9% and 24.5%-28.0%,

827 much more than those of SOA at 4.1%-8.7% and 7.9%-13.7% for the clean and
828 polluted periods, respectively. The results imply that SIA had a greater impact on
829 visibility degradation. Although the contribution of coal combustion to the total
830 scattering declined from clean to polluted periods, the contributions of SIA from coal
831 combustion for the polluted periods were 88%, 35% and 36% larger than those for the
832 clean period at NJU, PAES and NUIST, respectively. The enhancement of SIA from
833 coal combustion was thus an important cause of polluted days. Moreover, the
834 contribution of SOA to the total scattering coefficient during the polluted periods was
835 estimated at 13.7% at NUIST, larger than the 7.9% and 9.1% at PAES and NJU,
836 respectively, indicating that the contribution of SOA to visibility reduction at
837 industrial polluted areas should not be ignored. Notably, there is uncertainty in the
838 methodology of source apportionment of aerosol scattering coefficients. In particular,
839 the assumption that the secondary components were proportional to the emissions of
840 their precursors is a simplified method and probably led to large bias, as the
841 complicated nonlinear mechanism of secondary aerosol formation is not recognized.

842 To further reduce the uncertainty and to improve the source apportionment, some
843 specific tracers of secondary aerosols like semi-volatile and low-volatile
844 oxygen-containing organic aerosols can be observed with advanced technology such
845 as aerosol mass spectrometry (AMS), and the observation data can then be combined
846 with the receptor models to quantify the source contribution of secondary aerosols.
847 Besides, air quality model that integrates particle source apportionment technology
848 (PSAT) is recommended to be applied to evaluate and confirm the performance of the
849 source apportionment of secondary aerosols with the receptor model.

850 4 CONCLUSIONS

851 A comprehensive investigation of the light-scattering properties of atmospheric
852 aerosols was conducted from November 2015 to March 2017 at three functional sites
853 in Nanjing. High concentrations of sulfate and nitrate in $PM_{0.56-1.0}$ were the major
854 causes of the heavy particle pollution events. The varied abundance of secondary
855 inorganic components at the three sites was an important reason for the visibility

删除的内容: More tools including chemistry transport modeling and radiocarbon measurements are thus recommended to be integrated into future studies to better determine the primary and secondary sources of aerosols.

863 differences, and OC played an important role on the visibility reduction in the
864 industrial area due to its complicated optical effect. Based on the measured aerosol
865 scattering coefficients and the mass concentrations of aerosol components, an
866 optimized algorithm of IMPROVE that considered the light absorption effect of OM
867 was developed to better represent the aerosol optical property.

868 Compared with internal and core-shell mixing states, the simulated scattering
869 coefficients based on an external mixing assumption were closer to the measurements
870 at NJU and PAES, indicating that externally mixed particles widely existed at urban
871 and suburban areas. At the industrial site NUIST, the high aging level of SOA was the
872 main reason for particle switching from external to internal mixing states. The results
873 for the scattering coefficients under dry and ambient conditions indicated that RH had
874 little effect on particle mixing state but a large impact on the scattering coefficients.
875 Particles in the size range of 0.56-1.0 μm contributed the most (38%-63%) to the total
876 scattering coefficient under different pollution levels. As the dominant light scattering
877 species in aerosols, NH_4NO_3 , $(\text{NH}_4)_2\text{SO}_4$ and OM collectively contributed 90%, 81%
878 and 76% of the mass concentrations of $\text{PM}_{0.56-1.0}$ for the heavily polluted, lightly
879 polluted and clean periods, respectively. The low visibility during the heavy pollution
880 period mainly resulted from the enhanced light scattering of SNA. The abundance of
881 light-absorption OC was an important reason for the relatively low contribution of
882 OM to light scattering in the heavy pollution period.

883 Through a coupled model of PMF and Mie theory, we found coal combustion,
884 industrial plants and vehicle were the main sources of the visibility reduction in
885 Nanjing. Vehicles and industrial plants were the main causes for visibility reduction in
886 urban and industrial areas, respectively. The increased emissions of SIA precursors
887 from coal combustion were an important cause of polluted days, and the contribution
888 of SOA to visibility reduction at industrial pollution areas should not be ignored. The
889 source apportionment of aerosol light scattering in this work provides scientific
890 evidence for the control of haze pollution in different functional areas of cities in
891 developed eastern China.

892

893

DATA AVAILABILITY

894 All data in this study are available from the authors upon request.

895

896 AUTHOR CONTRIBUTIONS

897 DC developed the strategy and methodology of the work and wrote the draft. YZ
898 improved the methodology and revised the manuscript. JZ, HY and XY provided
899 observation data of aerosol scattering coefficient.

900

901 COMPETING INTERESTS

902 The authors declare that they have no conflict of interest.

903

904 ACKNOWLEDGEMENT

905 This work was sponsored by the Natural Science Foundation of China
906 (41922052 and 91644220), and the National Key Research and Development Program
907 of China (2017YFC0210106).

908

REFERENCES

909 Alexander, D. T. L., Crozier, P. A., Anderson, J. R.: Brown carbon spheres in East
910 Asian outflow and their optical properties, *Science*, 321, 833-836,
911 doi:10.1126/science.1155296, 2008.

912 Andreae, M. O., Schmid, O., Yang, H., Chand, D., Yu, J. Z., Zeng, L. M., Zhang, Y. H.:
913 Optical properties and chemical composition of the atmospheric aerosol in urban
914 Guangzhou, China, *Atmos. Environ.*, 42, 6335-6350,
915 doi:10.1016/j.atmosenv.2008.01.030, 2008.

916 Bohren, C. F, Huffman, D. R.: *Absorption and scattering of light by small particles*
917 [R], New York: Wiley, Inc., 1998.

918 Bond, T. C., Bergstrom, R. W.: *Light Absorption by Carbonaceous Particles: An*

919 Investigative Review, *Aerosol Sci. Technol.*, 40, 27-67,
920 doi:10.1080/02786820500421521, 2006.

921 Cao, J. J., Lee, S. C., Chow, J. C., Watson, J. G., Ho, K. F., Zhang, R. J., Jin, Z. D.,
922 Shen, Z. X., Chen, G. C., Kang, Y. M., Zou, S. C., Zhang, L. Z., Qi, S. H., Dai, M. H.,
923 Cheng, Y., Hu, K.: Spatial and seasonal distributions of carbonaceous aerosols over
924 China, *J. Geophys. Res.*, 112, D22S11, doi:10.1029/2006JD008205, 2007.

925 Cao, J. J., Wang, Q. Y., Chow, J. C., Watson, J. G., Tie, X. X., Shen, Z. X., Wang, P.,
926 An, Z. S.: Impacts of aerosol compositions on visibility impairment in Xi'an, China,
927 *Atmos. Environ.*, 59, 559-566, doi:10.1016/j.atmosenv.2012.05.036, 2012.

928 Chen, D., Cui, H., Zhao, Y., Yin, L., Lu, Y., Wang, Q.: A two-year study of
929 carbonaceous aerosols in ambient PM_{2.5} at a regional background site for western
930 Yangtze River Delta, China, *Atmos. Res.*, 183, 351-361,
931 doi:10.1016/j.atmosres.2016.09.004, 2017.

932 Chen, D., Zhao, Y., Lyu, R., Wu, R., Dai, L., Zhao, Y., Chen, F., Zhang, J., Yu, H.,
933 Guan, M.: Seasonal and spatial variations of optical properties of light absorbing
934 carbon and its influencing factors in a typical polluted city in Yangtze River Delta,
935 China, *Atmos. Environ.*, 199, 45-54, doi:10.1016/j.atmosenv.2018.11.022, 2019.

936 Cheng, M. C., You, C. F., Cao, J., Jin, Z.: Spatial and seasonal variability of water
937 soluble ions in PM2.5 aerosols in 14 major cities in China, *Atmos. Environ.*, 60,
938 182-192, 10.1016/j.atmosenv.2012.06.037, 2012.

939 [Cheng, S. H., Yang, L. X., Zhou, X. H., Xue, L. K., Gao, X. M., Zhou, Y., and Wang,](#)
940 [W. X.: Size-fractionated water-soluble ions, situ pH and water content in aerosol on](#)
941 [hazy days and the influences on visibility impairment in Jinan, China, Atmos.](#)
942 [Environ., 45, 4631-4640, doi:10.1016/j.atmosenv.2011.05.057, 2011.](#)

943 Cheng, Y., He, K.B., Du, Z.Y., Engling, G., Liu, J.M., Ma, Y.L., Zheng, M., Weber,
944 R.J.: The characteristics of brown carbon aerosol during winter in Beijing, *Atmos.*
945 *Environ.*, 127, 355-364, doi:10.1016/j.atmosenv.2015.12.035, 2016.

946 Cheng, Y., He, K.B., Engling, G., Weber, R., Liu, J.M., Du, Z.Y., Dong, S.P.: Brown
947 and black carbon in Beijing aerosol: Implications for the effects of brown coating on
948 light absorption by black carbon, *Sci. Total Environ.*, 599-600, 1047-1055.

949 doi:10.1016/j.scitotenv.2017.05.061, 2017.

950 Cheng, Z., Jiang, J., Chen, C., Gao, J., Wang, S., Watson, J.G., Wang, H., Deng, J.,
951 Wang, B., Zhou, M.: Estimation of aerosol mass scattering efficiencies under high
952 mass loading: case study for the megacity of Shanghai, China, Environ. Sci. Technol.,
953 49, 831-838, doi:10.1021/es504567q, 2015.

954 [Cui, X., Wang, X., Yang, L., Chen, B., Chen, J., Andersson, A., Gustafsson, Ö.:](#)
955 [Radiative absorption enhancement from coatings on black carbon aerosols, Sci. Total](#)
956 [Environ., 551-552, 51-56, doi:10.1016/j.scitotenv.2016.02.026, 2016.](#)

957 [Ding, J., Han, S., Zhang, Y., Feng, Y., Wu, J., Shi, G., Wang, J.: Chemical](#)
958 [characteristics of particles and light extinction effects in winter in Tianjin, Res.](#)
959 [Environ. Sci., 28, 1353-1361, doi:10.13198/j.issn.1001-6929.2015.09.03, 2015.](#)

960 Feng, J. L., Sun, P., Hu, X. L., Zhao, W., Wu, M. H., Fu, J. M.: The chemical
961 composition and sources of PM2.5 during the 2009 Chinese New Year's holiday in
962 Shanghai, Atmos. Res., 118, 435-444, doi:10.1016/j.atmosres.2012.08.012, 2012.

963 Huang, R. J., Yang, L., Cao, J., Chen, Y., Chen, Q., Li, Y., Duan, J., Zhu, C., Dai, W.,
964 Wang, K.: Brown Carbon Aerosol in Urban Xi'an, Northwest China: The Composition
965 and Light Absorption Properties, Environ. Sci. Technol., 52, 6825-6833,
966 doi:10.1021/acs.est.8b02386, 2018.

967 Huang, Y.W: Effects of changes in emission and meteorological conditions on fine
968 particulate levels in the city scale, Master thesis, Nanjing University, 2018.

969 Hueglin, C., Gehrig, R., Baltensperger, U., Gysel, M., Monn, C., and Vonmont, H.:
970 Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city
971 and rural sites in Switzerland, Atmos. Environ., 39, 637-651,
972 doi:10.1016/j.atmosenv.2004.10.027, 2005.

973 Jacobson, M.Z.: Strong radiative heating due to the mixing state of black carbon in
974 atmospheric aerosols, Nature, 409, 695-697, doi:10.1038/35055518, 2001.

975 Khan, M. F., Latif, M. T., Hwa, S. W., Amil, N., Nadzir, M. S. M., Sahani, M., Tahir,
976 N. M., Jing, X. C.: Fine particulate matter in the tropical environment: monsoonal
977 effects, source apportionment, and health risk assessment, Atmos. Chem. Phys., 16,
978 597-617, doi:10.5194/acp-16-597-2016, 2016.

删除的内容: .

980 Kim, E., Hopke, P.K.: Improving source identification of fine particles in a rural
981 northeastern US area utilizing temperature-resolved carbon fractions, *J. Geophys.*
982 *Res.: Atmos.*, 109, D09204, doi:10.1029/2003jd004199, 2004.

983 Lai, S.C.: Characterization of PM2.5 and the major chemical components during a
984 1-year campaign in rural Guangzhou, Southern China, *Atmos. Res.*, 167, 208-215,
985 doi:10.1016/j.atmosres.2015.08.007, 2016.

986 Lan, Z. J., Huang, X. F., Yu, K. Y., Sun, T. L., Zeng, L. W., Hu, M.: Light absorption
987 of black carbon aerosol and its enhancement by mixing state in an urban atmosphere
988 in South China, *Atmos. Environ.*, 69, 118-123, doi:10.1016/j.atmosenv.2012.12.009,
989 2013.

990 Lang, J. L., Cheng, S. Y., Wen, W., Liu, C., Wang, G.: Development and application of
991 a new PM_{2.5} source apportionment approach, *Aerosol Air Qual. Res.*, 17, 340-350, doi:
992 10.4209/aaqr.2015.10.0588, 2017.

993 Lei, Y., Shen, Z., Wang, Q., Zhang, T., Cao, J., Sun, J., Zhang, Q., Wang, L., Xu, H.,
994 Tian, J., 2018. Optical characteristics and source apportionment of brown carbon in
995 winter PM2.5 over Yulin in Northern China, *Atmos. Res.*, 213, 27-33,
996 doi:10.1016/j.atmosres.2018.05.018, 2018.

997 Li, B., Zhang, J., Zhao, Y., Yuan, S., Zhao, Q., Shen, G., Wu, H.: Seasonal variation of
998 urban carbonaceous aerosols in a typical city Nanjing in Yangtze River Delta, China,
999 *Atmos. Environ.*, 106, 223-231, doi:10.1016/j.atmosenv.2015.01.064, 2015.

1000 Liu, X., Cheng, Y., Zhang, Y., Jung, J., Sugimoto, N., Chang, S. Y., Kim, Y. J., Fan, S.,
1001 Zeng, L.: Influences of relative humidity and particle chemical composition on
1002 aerosol scattering properties during the 2006 PRD campaign, *Atmos. Environ.*, 42,
1003 1525-1536, doi:10.1016/j.atmosenv.2007.10.077, 2008.

1004 Liu, H. J., Zhao, C. S., Nekat, B., Ma, N., Herrmann, H.: Aerosol hygroscopicity
1005 derived from size-segregated chemical composition and its parameterization in the
1006 North China Plain, *Atmos. Chem. Phys.*, 14, 2525-2539,
1007 doi:10.5194/acp-14-2525-2014, 2014.

1008 Liu, D., Whitehead, J., Alfarra, M. R., Reyesvillegas, E., Spracklen, D. V., Reddington,
1009 C. L., Kong, S., Williams, P. I., Ting, Y. C., Haslett, S.: Black-carbon absorption

1010 enhancement in the atmosphere determined by particle mixing state, *Nature Geosci.*,
1011 10, 184-188, doi:10.1038/ngeo2901, 2017.

1012 Lowenthal, D. H., Naresh, K.: PM2.5 mass and light extinction reconstruction in
1013 IMPROVE, *J. Air Waste Manag. Assoc.*, 53, 1109-1120,
1014 doi:10.1080/10473289.2003.10466264, 2003.

1015 Ma, N., Zhao, C. S., Müller, T., Cheng, Y. F., Liu, P. F., Deng, Z. Z., Xu, W. Y., Ran,
1016 L., Nekat, B., Van Pinxteren, D., Gnauk, T., Müller, K., Herrmann, H., Yan, P., Zhou,
1017 X.J., Wiedensohler, A.: A new method to determine the mixing state of light absorbing
1018 carbonaceous using the measured aerosol optical properties and number size
1019 distributions, *Atmos. Chem. Phys.*, 12, 2381-2397, doi:10.5194/acp-12-2381-2012,
1020 2012.

1021 Malm, W.C., Hand, J. L.: An examination of the physical and optical properties of
1022 aerosols collected in the IMPROVE program, *Atmos. Environ.*, 41, 3407-3427,
1023 doi:10.1016/j.atmosenv.2006.12.012, 2007.

1024 [Massabò, D., Caponi, L., Bove, M.C., Prati, P.: Brown carbon and thermal-optical](#) 带格式的: EndNote Bibliography,
1025 [analysis: A correction based on optical multi-wavelength apportionment of](#) 行距: 1.5 倍行距
1026 [atmospheric aerosols, *Atmos. Environ.*, 125, 119-125,](#)
1027 [doi:10.1016/j.atmosenv.2015.11.011, 2016.](#)

1028 [Meier, J., Wehner, B., Massling, A., Birmili, W., Nowak, A., Gnauk, T., Bruggemann,](#) 删掉的内容: .
1029 E., Herrmann, H., Min, H., Wiedensohler, A.: Hygroscopic growth of urban aerosol
1030 particles in Beijing (China) during wintertime: a comparison of three experimental
1031 methods, *Atmos. Chem. Phys.*, 9, 6865-6880, doi:10.5194/acp-9-6889-2009, 2009.

1032 Ministry of Environmental Protection of China (MEP): Technical regulation on
1033 ambient air quality index, China Environ.Sci. Press, HJ633-2012, 2012.

1034 Moon, K. J., Han, J. S., Ghim, Y. S., Kim, Y. J.: Source apportionment of fine
1035 carbonaceous particles by positive matrix factorization at Gosan background site in
1036 East Asia, *Environ. Int.*, 34, 654-664, doi:10.1016/j.envint.2007.12.021, 2008.

1037 Onasch, T. B., Massoli, P., Kebabian, P. L., Hills, F. B., Bacon, F. W., Freedman, A.:
1038 Single Scattering Albedo Monitor for Airborne Particulates, *Aerosol Sci. Technol.*, 49,
1039 267-279, doi:10.1080/02786826.2015.1022248, 2015.

1041 Pakkanen, T. A., Kerminen, V. M., Hillamo, R. E., Makinen, M., Makela, T., and
1042 Virkkula, A.: Distribution of nitrate over seasalt and soil derived particles implications
1043 from a field study, *J. Atmos. Chem.*, 24, 189–205, 1996.

1044 Petzold, A., Onasch, T., Kebabian, P., Freedman, A.: Intercomparison of a Cavity
1045 Attenuated Phase Shift-based extinction monitor (CAPS PMex) with an integrating
1046 nephelometer and a filter-based absorption monitor, *Atmos. Meas. Tech.*, 6,
1047 1141–1151, doi:10.5194/amt-6-1141-2013, 2013.

1048 Pitchford, M., Malm, W., Schichtel, B., Kumar, N., Lowenthal, D., Hand, J.: Revised
1049 algorithm for estimating light extinction from IMPROVE particle speciation data, *J.*
1050 *Air Waste Manag. Assoc.*, 57, 1326–1336, doi:10.3155/1047-3289.57.11.1326, 2007.

1051 Ramanathan, V., Li, F., Ramana, M. V., Praveen, P. S., Kim, D., Corrigan, C. E.,
1052 Nguyen, H., Stone, E. A., Schauer, J. J., Carmichael, G. R., Adhikary, B., Yoon, S. C.:
1053 Atmospheric brown clouds: Hemispherical and regional variations in long-range
1054 transport, absorption, and radiative forcing, *J. Geophys. Res.: Atmos.*, 112, D22S21,
1055 doi:10.1029/2006JD008124, 2007.

1056 Schwartz, S.: The Whitehouse Effect–Shortwave radiative forcing of climate by
1057 anthropogenic aerosols: An overview, *J. Aerosol Sci.*, 27, 359–382,
1058 doi:10.1016/0021-8502(95)00533-1, 1996.

1059 Seinfeld, J. H., Pandis.: Atmospheric chemistry and physics: From air pollution to
1060 climate change, doi:10.1080/00139157.1999.10544295, 2006.

1061 Shao, P., An, J., Xin, J., Wu, F., Wang, J., J, D., Wang, Y.: Source apportionment of
1062 VOCs and the contribution to photochemical ozone formation during summer in the
1063 typical industrial area in the Yangtze River Delta, China, *Atmos. Res.*, 176–177, 64–74,
1064 doi:10.1016/j.atmosres.2016.02.015, 2016.

1065 Shi, Y., Chen, J., Hu, D., Wang, L., Yang, X., Wang, X.: Airborne submicron
1066 particulate (PM1) pollution in Shanghai, China: chemical variability,
1067 formation/dissociation of associated semi-volatile components and the impacts on
1068 visibility, *Sci. Total Environ.*, 473, 199–206, 10.1016/j.scitotenv.2013.12.024, 2014.

1069 Swietlicki, E., Hansson, H. C., Hämeri, K., Svenningsson, B., Massling, A.,
1070 McFiggans, G., McMurry, P. H., Petäjä, T., Tunved, P., Gysel, M., Topping, D.,

1071 Weingartner, E., Baltensperger, U., Rissler, J., Wiedensohler, A., Kulmala, M.:
1072 Hygroscopic properties of submicrometer atmospheric aerosol particles measured
1073 with H-TDMA instruments in various environments – a review, *Tellus B*, 60, 432–469,
1074 doi:10.1111/j.1600-0889.2008.00350.x, 2008.

1075 Tang, I. N.: Chemical and size effects of hygroscopic aerosols on light scattering
1076 coefficients, *J. Geophys. Res.: Atmos.*, 101, 19245–19250, doi:10.1029/96jd03003,
1077 1996.

1078 Tao, J., Cheng, T., Zhang R.: Chemical composition of PM2.5 at an urban site of
1079 Chengdu in southwestern China, *Adv. Atmos. Sci.*, 30, 1070–1084,
1080 doi:10.1007/s00376-012-2168-7, 2013.

1081 Tao, J. C., Zhao, C. S., Ma, N., Liu, P. F.: The impact of aerosol hygroscopic growth
1082 on the single-scattering albedo and its application on the NO₂ photolysis rate
1083 coefficient, *Atmos. Chem. Phys.*, 14, 12055–12067, doi:10.5194/acp-14-12055-2014,
1084 2014a.

1085 Tao, J., Zhang, L., Cao, J., Hsu, S. C., Xia, X., Zhang, Z., Lin, Z., Cheng, T., Zhang,
1086 R.: Characterization and source apportionment of aerosol light extinction in Chengdu,
1087 southwest China, *Atmos. Environ.*, 95, 552–562, doi:10.1016/j.atmosenv.2014.07.017,
1088 2014b.

1089 Tao, J., Zhang, L., Kinfai, H. O., Zhang, R., Lin, Z., Zhang, Z., Lin, M., Cao, J., Liu,
1090 S., Wang, G.: Impact of PM_{2.5} chemical compositions on aerosol light scattering in
1091 Guangzhou - the largest megacity in South China, *Atmos. Res.*, 135–136, 48–58,
1092 doi:10.1016/j.atmosres.2013.08.015, 2014c.

1093 Tao, J., Zhang, L., Gao, J., Wang, H., Chai, F., Wang, S.: Aerosol chemical
1094 composition and light scattering during a winter season in Beijing, *Atmos. Environ.*,
1095 110, 36–44, doi:10.1016/j.atmosenv.2015.03.037, 2015.

1096 Tian, S. L., Pan, Y. P., Liu, Z., Wen, T., and Wang, Y. S.: Size-resolved aerosol
1097 chemical analysis of extreme haze pollution events during early 2013 in urban Beijing,
1098 China, *J. Hazard. Mater.*, 279, 452–460, doi:10.1016/j.jhazmat.2014.07.023, 2014.
1099 Tian, S. L., Pan, Y. P., Wang, Y. S.: Size-resolved source apportionment of particulate
1100 matter in urban Beijing during haze and non-haze episodes, *Atmos. Chem. Phys.*, 16,
1101 doi:10.5194/acp-15-9405-2015, 2015.

删除的内容: Tian, S. L., Pan, Y. P.,
Wang, Y. S.: Size-resolved source
apportionment of particulate matter in
urban Beijing during haze and
non-haze episodes, *Atmos. Chem.
Phys.*, 15, 9405–9443,
doi:10.5194/acp-15-9405-2015, 2015.

1108 | [1-19, doi:10.5194/acp-16-1-2016, 2016.](https://doi.org/10.5194/acp-16-1-2016_2016)

1109 Titos, G., Cazorla, A., Zieger, P., Andrews, E., Lyamani, H., Granados-Muñoz, M. J.,
1110 Olmo, F. J., Alados-Arboledas, L.: Effect of hygroscopic growth on the aerosol
1111 light-scattering coefficient: A review of measurements, techniques and error sources,
1112 *Atmos. Environ.*, 141, 494-507, doi:10.1016/j.atmosenv.2016.07.021, 2016.

1113 Wang, H., An, J., Cheng, M., Shen, L., Zhu, B., Li, Y., Wang, Y., Duan, Q., Sullivan,
1114 A., Xia, L.: One year online measurements of water-soluble ions at the industrially
1115 polluted town of Nanjing, China: Sources, seasonal and diurnal variations,
1116 *Chemosphere*, 148, 526-536, doi:10.1016/j.chemosphere.2016.01.066, 2016a.

1117 Wang, J., Zhang, Y., Feng, Y., Zheng, X., Li, J., Hong, S., Shen, J., Tan, Z., Jing, D.,
1118 Qi, Z.: Characterization and source apportionment of aerosol light extinction with a
1119 coupled model of CMB-IMPROVE in Hangzhou, Yangtze River Delta of China,
1120 *Atmos. Res.*, 178-179, 570-579, doi:10.1016/j.atmosres.2016.05.009, 2016b.

1121 Wang, S. R., Yu, Y. Y., Wang, Q. G., Lu, Y., Yin, L. N., Zhang, Y. Y., Lu, X. B.: Source
1122 apportionment of PM_{2.5} in Nanjing by PMF, *China Environ. Sci.*, 35, 3535-3542, 2015.

1123 Watson, J. G.: Visibility: Science and regulation, *J. Air Waste Manage. Assoc.*, 52,
1124 628-713, 2002.

1125 Watson, J. G., Chow, J. C., Lowenthal, D. H., L-W, A. C., Stephanie, S., Edgerton, E.
1126 S., Blanchard, C. L.: PM_{2.5} source apportionment with organic markers in the
1127 Southeastern Aerosol Research and Characterization (SEARCH) study, *J. Air Waste
1128 Manage. Assoc.*, 65, 1104-1118, doi:10.1080/10962247.2015.1063551, 2015.

1129 Xu, J., Bergin, M. H., Yu, X., Liu, G., Zhao, J., Carrico, C. M., Baumann, K.:
1130 Measurement of aerosol chemical, physical and radiative properties in the Yangtze
1131 delta region of China, *Atmos. Environ.*, 36, 161-173,
1132 doi:10.1016/s1352-2310(01)00455-1, 2002.

1133 Xu, J., Tao, J., Zhang, R., Cheng, T., Leng, C., Chen, J., Huang, G., Li, X., Zhu, Z.:
1134 Measurements of surface aerosol optical properties in winter of Shanghai, *Atmos.
1135 Res.*, 109-110, 25-35, doi:10.1016/j.atmosres.2012.02.008, 2012.

1136 Xue, L., Ding, A., Gao, J., Wang, T., Wang, W., Wang, X., Lei, H., Jin, D., Qi, Y.:
1137 Aircraft measurements of the vertical distribution of sulfur dioxide and aerosol

1138 scattering coefficient in China, *Atmos. Environ.*, 44, 278-282,
1139 doi:10.1016/j.atmosenv.2009.10.026, 2010.

1140 Yan, C. Q., Zheng, M., Zhang, Y. H.: Research progress and direction of atmospheric
1141 brown carbon, *Environ. Sci.*, 35, 4404-4414, doi:10.13227/j.hjkx.2014.11.050, 2014.

1142 Yang, F., Tan, J., Zhao, Q., Du, Z., He, K., Ma, Y., Duan, F., Chen, G., Zhao, Q.:
1143 Characteristics of PM_{2.5} speciation in representative megacities and across China,
1144 *Atmos. Chem. Phys.*, 11, 5207-5219, doi:10.5194/acp-11-5207-201, 2011.

1145 Zhang, L., Sun, J. Y., Shen, X. J., Zhang, Y. M., Che, H. C., Ma, Q. L., Zhang, Y. W.,
1146 Zhang, X. Y., Ogren, J. A.: Observations of relative humidity effects on aerosol light
1147 scattering in the Yangtze River Delta of China, *Atmos. Chem. Phys.*, 15, 2853-2904,
1148 doi:10.5194/acp-15-8439-2015, 2015.

1149 Zhang, Y., Forrister, H., Liu, J., Dibb, J., Anderson, B., Schwarz, J. P., Perring, A. E.,
1150 Jimenez, J. L., Campuzanojost, P., Wang, Y.: Top-of-atmosphere radiative forcing
1151 affected by brown carbon in the upper troposphere, *Nature Geosci.*, 10,
1152 doi:10.1038/ngeo2960, 2017.

1153 Zhao, P. S., Dong, F., He, D., Zhao, X. J., Zhang, W. Z., Yao, Q., Liu, H. Y.:
1154 Characteristics of concentrations and chemical compositions for PM2.5 in the region
1155 of Beijing, Tianjin, and Hebei, China, *Atmos. Chem. Phys.*, 13, 4631-4644.
1156 doi:10.5194/acp-13-4631-2013, 2013.

1157 Zhao, Y., Qiu, L. P., Xu, R., Xie, F., Zhang, Q., Y. Yu, Y., Nielsen, C. P., Qin, H.,
1158 Wang, H., Wu, X., Q. Li, W., Zhang, J.: Advantages of a city-scale emission inventory
1159 for urban air quality research and policy: the case of Nanjing, a typical industrial city
1160 in the Yangtze River Delta, China, *Atmos. Chem. Phys.*, 15, 12623-12644.
1161 doi:10.5194/acpd-15-18691-2015, 2015.

1162

1163

FIGURE CAPTIONS

1164 **Figure 1.** The mass concentrations and fractions of the main chemical
1165 components of particles with different sizes in Nanjing on clean, lightly-polluted
1166 and heavily-polluted days during the sampling period.

1167 **Figure 2.** Linear regressions between the measured light scattering coefficients
1168 and those estimated with the optimized IMPROVE algorithm at NJU, PAES,
1169 NUIST and all three sites.

1170 **Figure 3.** The comparison of measured and estimated dry scattering coefficients
1171 based on the assumptions of external, internal, and core-shell mixture at NJU (a),
1172 PAES (b) and NUIST (c).

1173 **Figure 4.** The size distribution of hygroscopic scattering growth of particles
1174 under varied relative humidity levels at the three sites.

1175 **Figure 5.** The size distribution of scattering coefficients of aerosol particles (a),
1176 $(\text{NH}_4)_2\text{SO}_4$ (b), NH_4NO_3 (c) and OM (d) under different pollution levels. The
1177 contributions of particles with different sizes to total scattering coefficient are
1178 indicated in the panels as well.

1179 **Figure 6.** The size distribution of mass concentrations of $(\text{NH}_4)_2\text{SO}_4$, NH_4NO_3 (a),
1180 and OM (b) under different pollution levels and mass scattering efficiencies
1181 (MSE) for $\text{PM}_{1.8}$. The size of dot represents the MSEs of $\text{PM}_{1.8}$ (Unit: m^2/g).

1182 **Figure 7.** Source apportionment of accumulation mode particles at NJU (a),
1183 PAES (b) and NUIST (c), and source apportionment of light scattering for
1184 accumulation mode particles at NJU (d), PAES (e) and NUIST (f). The shadow
1185 represents the contribution of secondary aerosols from each source category.

1186 **Figure 8.** Source apportionment of light scattering for accumulation mode
1187 particles for the clean and polluted periods at NJU (a), PAES (b) and NUIST (c).
1188 The shadow represents the contribution of secondary aerosols from each source
1189 category.

1190

1191

TABLES

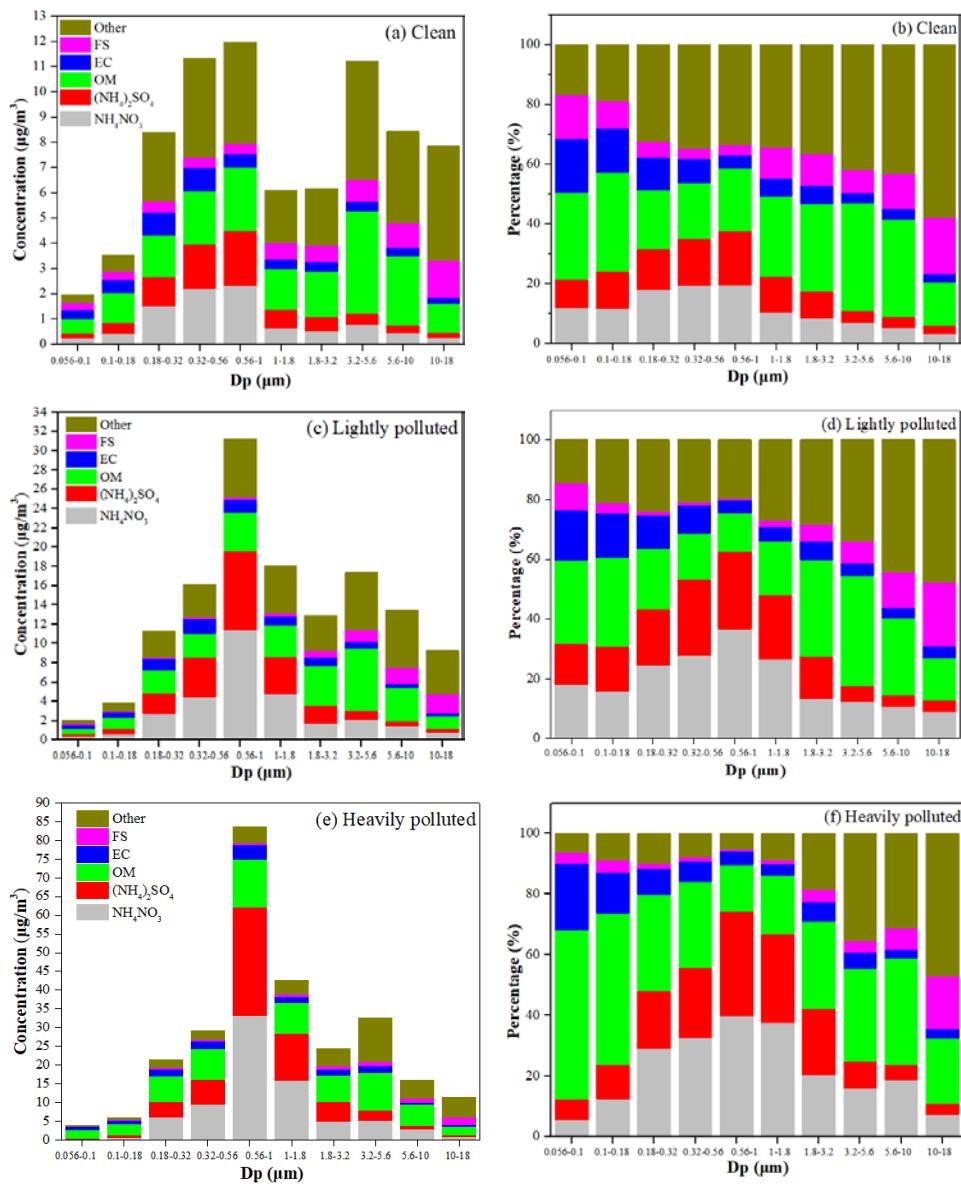
1192 **Table 1. The concentrations of particulate matter and its chemical components**
 1193 ($\mu\text{g}/\text{m}^3$), light scattering coefficients (Mm^{-1}), and selected meteorological
 1194 parameters including wind speed (WS, m/s) and relative humidity (RH, %) at all
 1195 the three sites for different pollution levels from November 2015 to January
 1196 2017.

Category	Clean period	Lightly polluted period	Heavily polluted period
AQI	65.8 ± 15.7	110.6 ± 21.3	209.4 ± 30.1
PM ₁₀	80.4 ± 26.3	143.1 ± 28.6	244.2 ± 21.2
PM _{2.5}	47.9 ± 15.8	102.1 ± 16.4	163.1 ± 13.6
OC	8.6 ± 3.2	14.2 ± 3.2	27.6 ± 5.0
EC	1.9 ± 0.9	3.0 ± 1.2	5.3 ± 0.1
SO ₄ ²⁻	6.9 ± 3.9	13.5 ± 5.6	33.8 ± 9.2
NO ₃ ⁻	10.5 ± 5.4	22.7 ± 8.7	47.9 ± 17.7
Cl ⁻	1.8 ± 1.5	2.2 ± 1.3	4.8 ± 1.4
Ca ²⁺	1.2 ± 0.8	1.3 ± 1.6	0.8 ± 0.1
Na ⁺	0.8 ± 0.2	0.9 ± 0.3	1.0 ± 0.1
Mg ²⁺	0.1 ± 0.1	0.2 ± 0.1	0.1 ± 0.0
NH ₄ ⁺	5.1 ± 1.9	9.2 ± 2.2	16.9 ± 2.5
K ⁺	0.9 ± 0.2	1.3 ± 0.3	2.1 ± 0.7
CO	0.8 ± 0.2	1.3 ± 0.3	1.6 ± 0.1
NO ₂	57.4 ± 18.0	71.6 ± 20.0	91.2 ± 32.8
SO ₂	17.7 ± 6.5	21.1 ± 6.0	29.5 ± 12.5
WS	1.6 ± 0.3	1.4 ± 0.5	1.0 ± 0.3
RH	56.1 ± 13.5	62.7 ± 10.8	68.9 ± 4.9
b _{sp}	251.4 ± 170.8	558.3 ± 236.4	1286.2 ± 293.3

1197

1198 **Table 2. The mass scattering efficiencies (MSEs, m^2/g) of chemical species in the**
 1199 **optimized and the existing algorithms from the Interagency Monitoring of**
 1200 **Protected Visual Environments (IMPROVE). The sample numbers and the mass**
 1201 **fractions of light-absorption BrC to MSOC for small and large size modes (i.e., m**
 1202 **and n in Eq.1) are provided for the optimized algorithm.**

	Modes	NJU	PAES	NUIST	All the three sites	IMPROVE 2007	IMPROVE 1999
MSE of $(\text{NH}_4)_2\text{SO}_4$	small	2.32	2.02	2.43	2.29	2.2	-
	large	4.71	4.92	4.86	4.82	4.8	-
	overall	3.91	3.88	4.03	3.94	-	3
MSE for NH_4NO_3	small	2.67	2.48	2.56	2.62	2.4	-
	large	5.37	5.31	5.26	5.35	5.1	-
	overall	4.41	4.13	4.23	4.31	-	3
MSE of OM	small	4.4	4.56	4.22	4.46	2.8	-
	large	6.23	6.36	6.45	6.41	6.1	-
	overall	5.26	5.03	5.35	5.25	-	4
m	-	0.66	0.71	0.39	0.67	-	-
n	-	0.29	0.27	0.33	0.31	-	-
Sample number	-	174	45	63	282	-	-

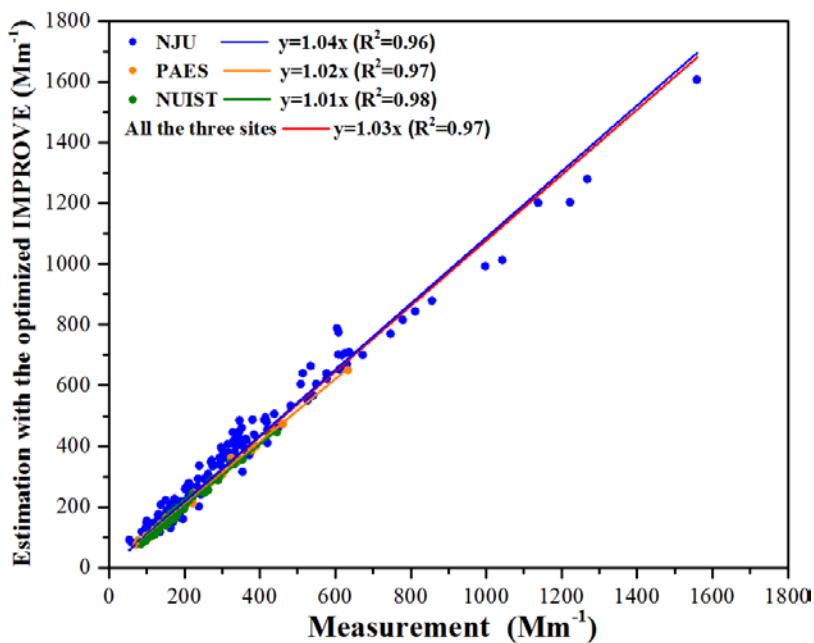

1203

1204 **Table 3. The source contributions of secondary aerosols to aerosol light**
1205 **scattering at the three sites for the clean and polluted periods (%).**

Air quality level	Sources	NJU		PAES		NUIST	
		SIA	SOA	SIA	SOA	SIA	SOA
Clean	Coal combustion	6.6	0.8	6.5	1.1	7.5	1.3
	Industrial plants	5.8	3.6	4.2	1.5	8.2	6.3
	Vehicles	2.1	1.0	6.1	1.5	4.2	1.1
Total		19.9		20.9		28.6	
Polluted	Coal combustion	12.4	1.6	8.8	2.3	10.2	2.2
	Industrial plants	10.2	5.8	7.8	3	12.6	9.9
	Vehicles	5.0	1.7	7.9	2.6	5.2	1.6
Total		36.7		32.4		41.7	

1206

1207

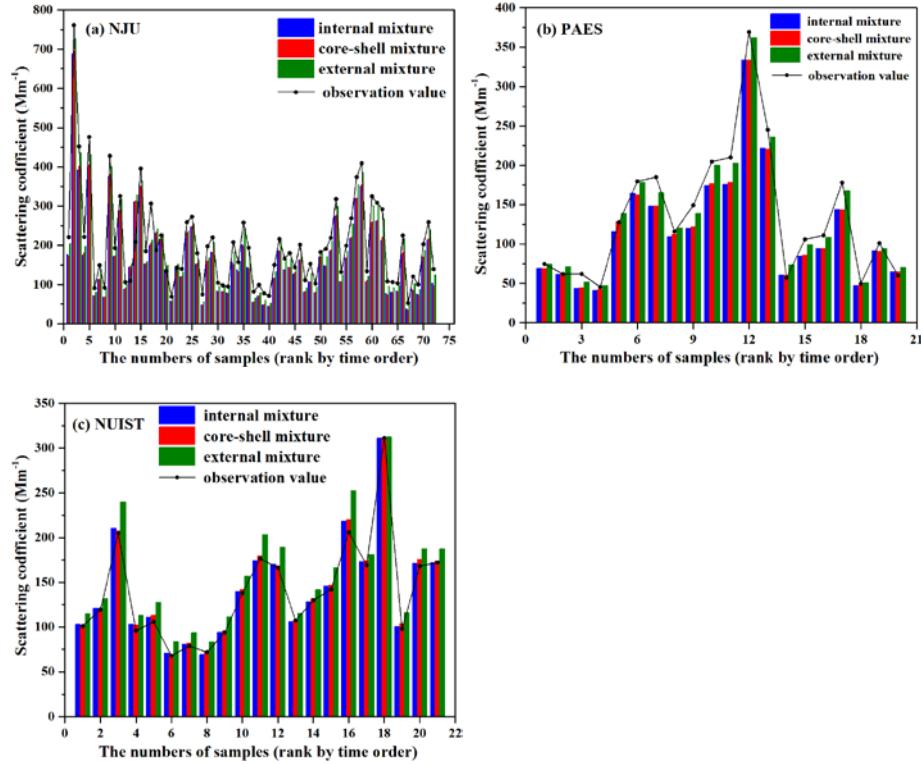

Figure 1

1208

1209

1210 **Figure 2**

1211

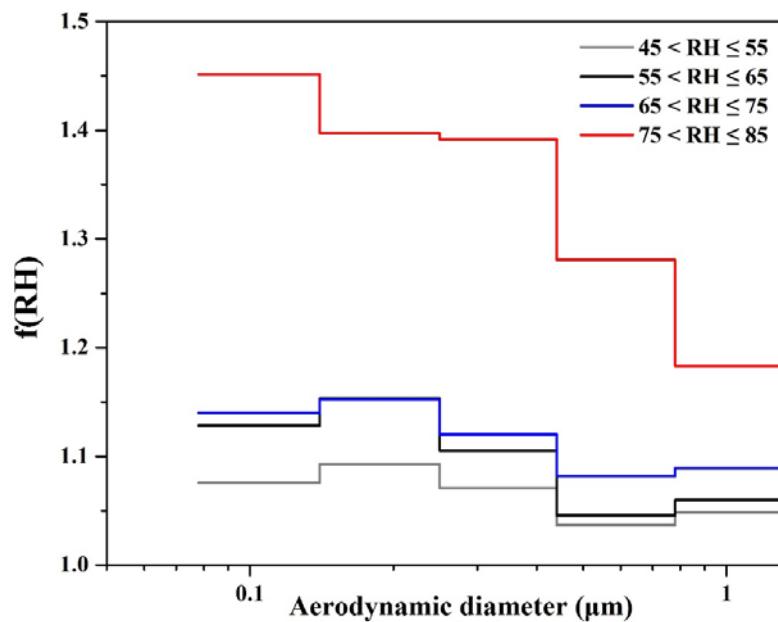


1212

1213

1214

1215 **Figure 3**

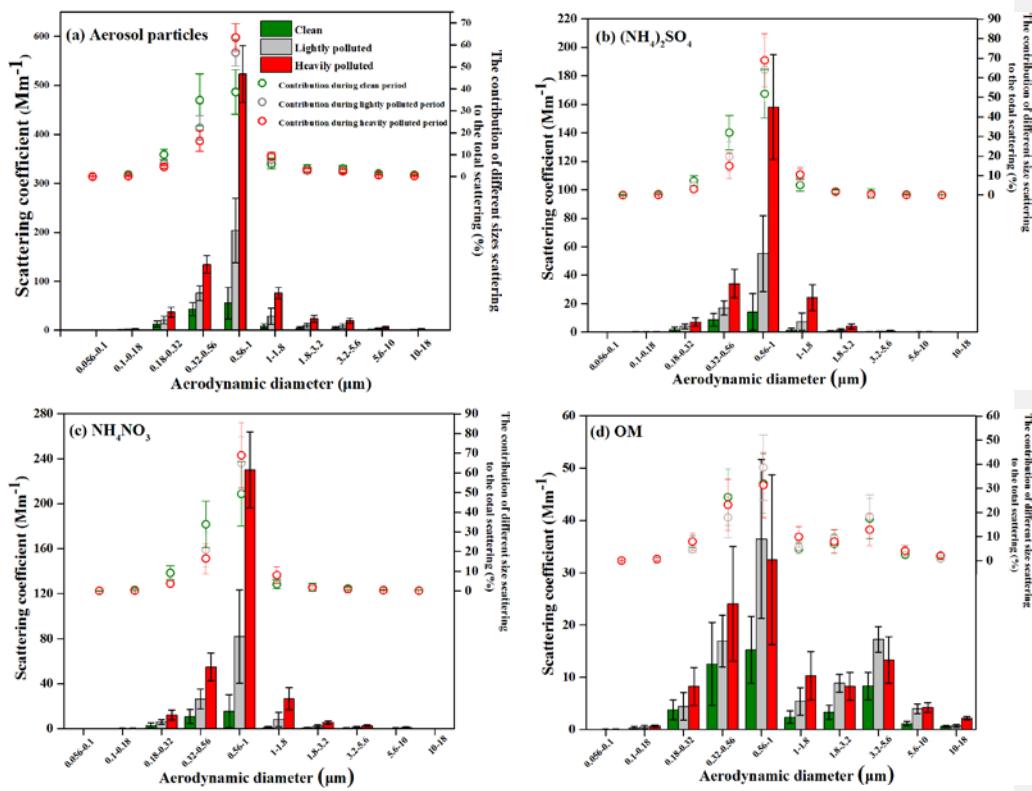


1216

1217

1218

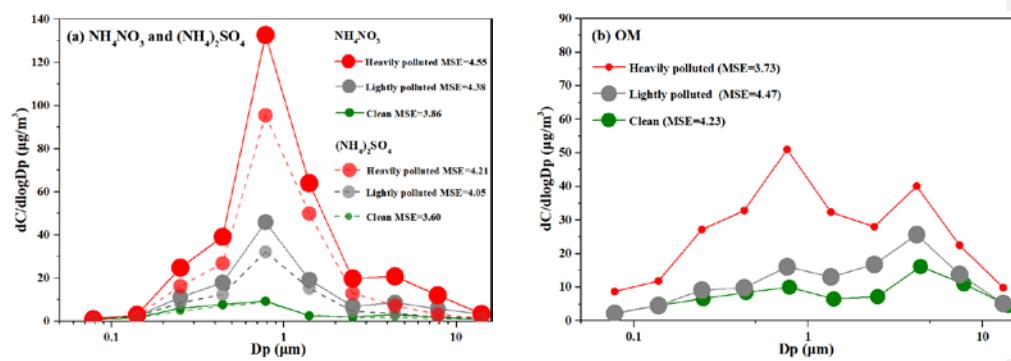
Figure 4



1219

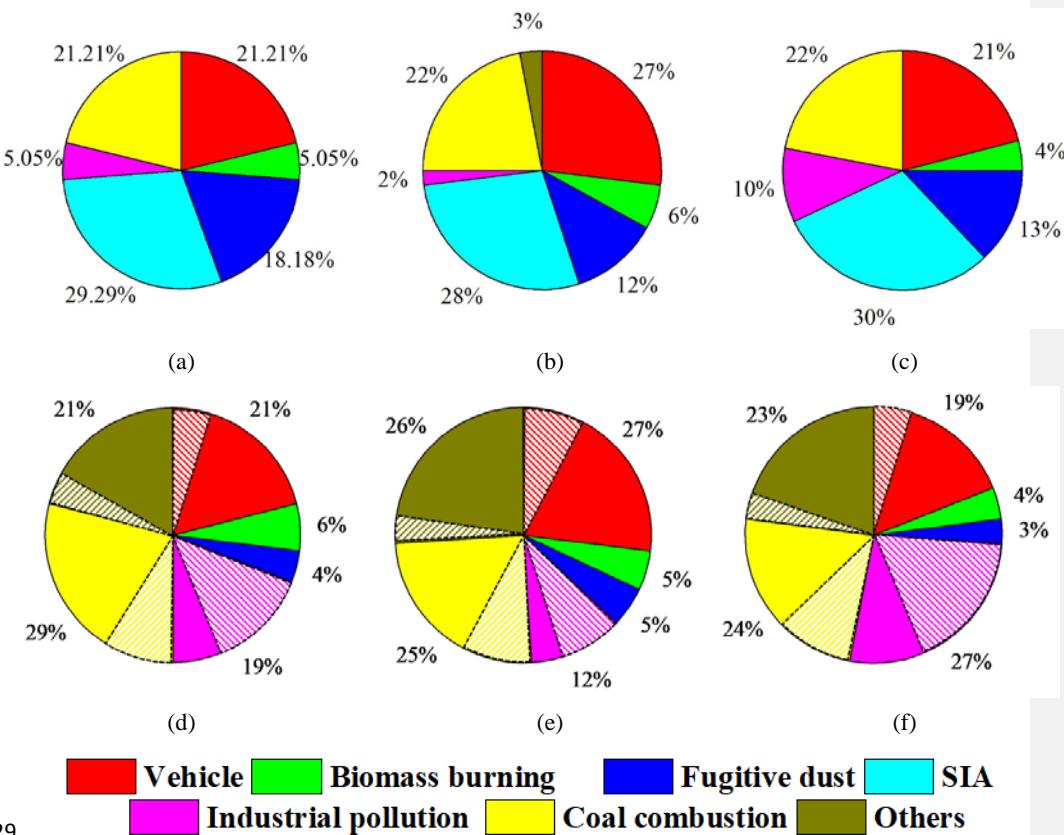
1220

1221


1222 **Figure 5**

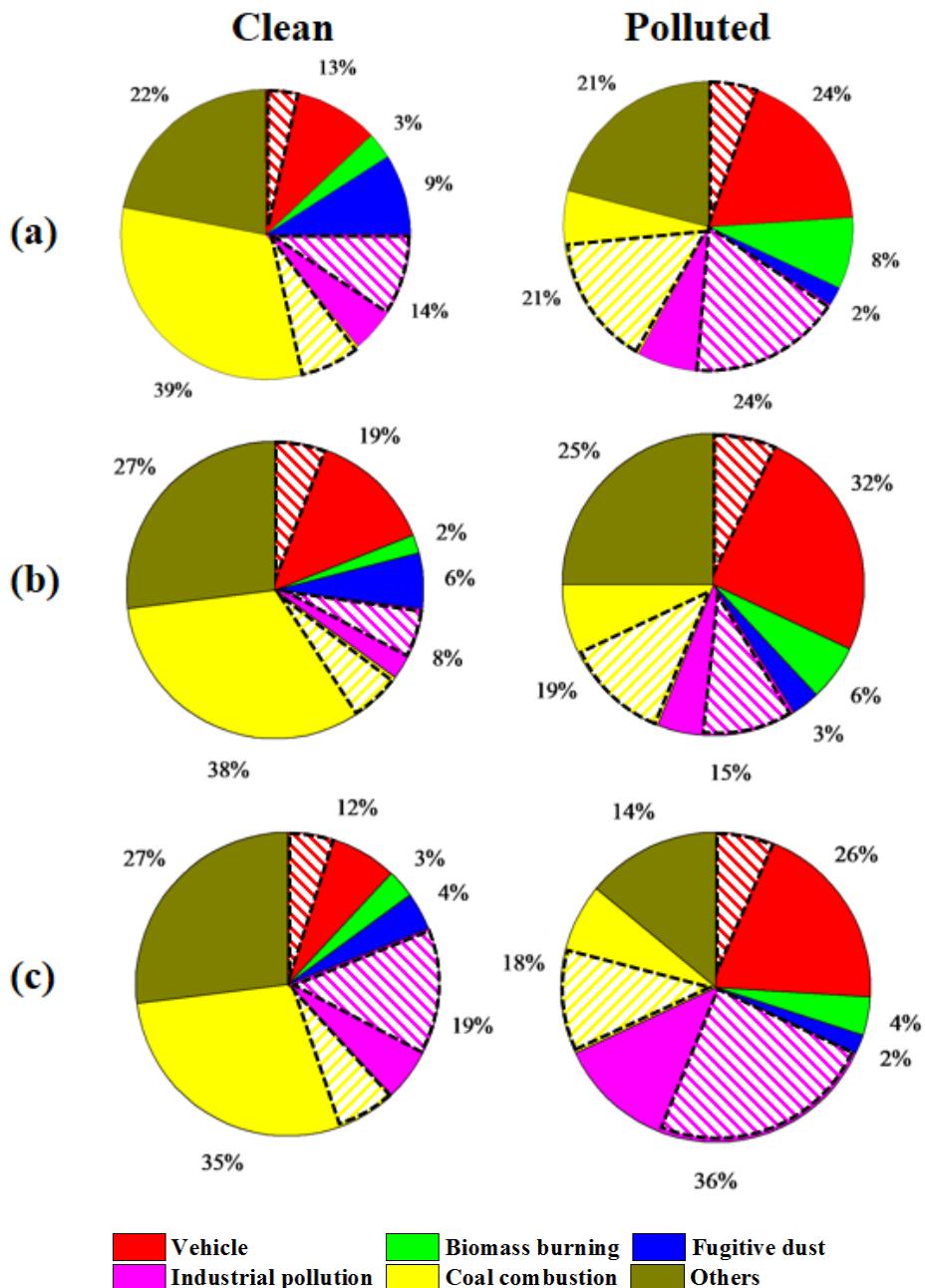
1223

1224


1225 **Figure 6**

1226

1227


1228 **Figure 7**

1229

1230

1231 **Figure 8**

