1	
2	Contributions to OH reactivity from unexplored volatile organic compounds measured by
3	PTR-ToF-MS- A case study in a suburban forest of the Seoul Metropolitan Area during
4	KORUS-AQ 2016
5	
6	Dianne Sanchez, ¹ Roger Seco, ^{1*} Dasa Gu, ¹ Alex Guenther, ¹ John Mak, ² Youngjae Lee, ³ Danbi
7	Kim, ³ Joonyoung Ahn, ³ Don Blake, ⁴ Scott Herndon, ⁵ Daun Jeong, ¹ John T. Sullivan, ⁶ Thomas
8	Mcgee, ⁶ and Saewung Kim ^{1*}
9	1. Department of Earth System Science, University of California, Irvine, Irvine CA 92697,
10	U.S.A.
11	2. School of Marine and Atmospheric Sciences, Stony Brooke University, Stony Brook, NY
12	11794, U.S.A.
13	3. National Institute of Environmental Research, Inchoen 22689, South Korea
14	4. Department of Chemistry, University of California, Irvine, Irvine CA 92697, U.S.A.
15	5. Aerodyne Research Inc., Billerica MA 01821, U.S.A.
16	6. NASA Goddard Space Flight Center, Chemistry and Dynamics Laboratory, Greenbelt, MD
17	20771, U.S.A.
18 19 20 21 22	* Now at: Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark and Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
23	Corresponding author: <u>saewung.kim@uci.edu</u> , tel 1-949-824-4531
24	
25	To be submitted to Atmospheric Chemistry and Physics

26 Abstract

28	We report OH reactivity observations by a chemical ionization mass spectrometer -
29	comparative reactivity method (CIMS-CRM) instrument in a suburban forest of the Seoul
30	Metropolitan Area (SMA) during Korea US Air Quality Study (KORUS-AQ 2016) from mid-
31	May to mid-June of 2016. A comprehensive observational suite was deployed to quantify
32	reactive trace gases inside of the forest canopy including a high-resolution proton transfer
33	reaction time of flight mass spectrometer (PTR-ToF-MS). An average OH reactivity of 30.7 \pm
34	5.1 s ⁻¹ was observed, while the OH reactivity calculated from CO, NO + NO ₂ (NO _x), ozone (O ₃),
35	sulfur dioxide (SO ₂), and 14 volatile organic compounds (VOCs) was 11.8 ± 1.0 s ⁻¹ . An analysis
36	of 346 peaks from the PTR-ToF-MS accounted for an additional $6.0 \pm 2.2 \text{ s}^{-1}$ of the total
37	measured OH reactivity, leaving 42.0 % missing OH reactivity. A series of analyses indicates
38	that the missing OH reactivity most likely comes from VOC oxidation products of both biogenic
39	and anthropogenic origin.
40	
41	
42	
43	
44	
45	
46	
47	
48	

50 **1. Introduction**

51 Total OH reactivity (s⁻¹), the inverse of OH lifetime, is a measure of the total amount of 52 reactive trace gases in the atmosphere in the scale of reactivity, which allow us to quantitatively 53 evaluate our ability to constrain trace gases by comparing measurements of total OH reactivity 54 with the OH reactivity calculated from a speciated reactive gas measurement dataset. The 55 fraction of observed OH reactivity that cannot be reconciled by calculated OH reactivity is 56 known as "missing OH reactivity" (Di Carlo et al., 2004;Goldstein and Galbally, 2007;Yang et al., 2016). A substantial amount of missing OH reactivity has consistently been reported in 57 forest environments (30 - 80%). Di Carlo et al. (2004) conducted a study in a mixed forest near 58 59 Pellston, Michigan where they reported missing OH reactivity (~ 30 %) larger than observational 60 uncertainty. The authors concluded that the missing sources of reactivity were primary biogenic 61 volatile organic compound (biogenic VOC, BVOC) emissions, as the degree of missing OH 62 reactivity followed the temperature dependence of terpenoid emissions. In a boreal forest in 63 Hyytiälä, Finland, Sinha et al. (2010) report a similar result with observed trace gases that 64 account for only 50% of the measured OH reactivity. They argued that oxidation products of 65 BVOCs alone could not account for the missing OH reactivity. Thus, they also concluded that primary emissions were more likely to be the source of missing OH reactivity and they further 66 67 suggest that this could be the result of the contribution of small amounts of many reactive gases. 68 Follow up studies (Nolscher et al., 2012; Praplan et al., 2019) at the same site have presented a 69 consistent conclusion. Nolscher et al. (2012) observed the highest level of missing OH reactivity 70 during a heat wave episode, possibly inducing a stress emission response from the local forest. A 71 comprehensive analysis by Praplan et al. (2019) using a long-term observation dataset and a

72	photochemical model framework with the Master Chemical Mechanism illustrates that the model
73	simulated oxidation compound contribution can only contribute 7 % of missing OH reactivity.
74	On the other hand, some studies have attributed the sources of the missing OH reactivity
75	to unmeasured oxidation products of well-characterized BVOCs. Edwards et al. (2013)
76	measured OH reactivity in a pristine tropical forest in the Sabah region of Borneo during the
77	Oxidant and Particle Photochemical Processes (OP3) field campaign (Hewitt et al., 2010). This
78	study implemented the Master Chemical Mechanism (MCMv3.2) (Saunders et al., 2003;Jenkin
79	et al., 1997) into a box model framework to quantify potential contributions from unmeasured
80	oxidation products. The model was constrained with VOCs such as isoprene, monoterpenes, and
81	alkanes and alkenes and other observed trace gases such as $NO + NO_2$ (NO_x) and ozone (O_3).
82	The authors reported that the model simulated oxygenated VOCs (OVOCs) could contribute
83	47.1% of the calculated OH reactivity – surpassing the contribution from isoprene, the primary
84	emission of this ecosystem. It is notable that 30% of observed OH reactivity could not be
85	accounted for by the box model simulations. After examining the comprehensive observational
86	suite of VOCs, the authors determined that the most significant missing sources of OH reactivity
87	were likely secondary multifunctional carbon compounds rather than primary BVOC emissions.
88	Hansen et al. (2014) suggested that their observed missing OH reactivity were likely from
89	unmeasured oxidation products during the Community Atmosphere-Biosphere INteraction
90	EXperiment (CABINEX 2009) in Michigan. This notion was also consistent with findings
91	reported by Kim et al. (2011) who measured OH reactivity of branch enclosures from four
92	representative tree species in the forest canopy during the CABINEX study. They reconciled
93	most of the measured OH reactivity of four representative tree species with well-known BVOCs,
94	such as isoprene and monoterpenes. Finally, Nakashima et al. (2014) reported that 29.5% OH

95	reactivity could not be reconciled by the speciated trace gas dataset during the Bio-hydro-
96	atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen-Southern
97	Rocky Mountain 2008 (BEACHON-SMR08) field campaign (Ortega et al., 2014). The campaign
98	took place at the Manitou Experimental Forest (MEF) in Colorado, a ponderosa pine plantation
99	dominated by primary BVOC emissions of 2-methyl-3-butene-2-ol (232-MBO) and
100	monoterpenes (Ortega et al., 2014). The authors also reported that the missing OH reactivity was
101	likely from BVOC oxidation products. In the same context, Kim et al. (2010) conducted PTR-
102	MS mass spectrum analysis for both ambient air and branch enclosures at the MEF site. They
103	reported more conspicuous unidentified signals on PTR-MS mass spectra in the ambient samples
104	than those from branch enclosure samples at this site.
105	During the Southern Oxidant and Aerosol Study (SOAS) in 2013, Kaiser et al. (2016)
106	used a comprehensive suite of VOC measurements at an isoprene dominant forest site in the
107	southeastern US to examine the role of the OVOC species in missing reactive carbon. The
108	authors used MCMv3.2 embedded in the University of Washington Chemical Box Model
109	(UWCM) to compare OH reactivity from model-generated OVOCs to OH reactivity from
110	measurements of OVOCs. There was no significant discrepancy between the average measured
111	and calculated OH reactivity including observed trace gases and model calculated oxidation
112	products of VOCs. However, it was noted that a small portion (1 s^{-1}) of observed OH reactivity
113	could not be reconciled by the model calculation. As this fraction was not correlated to isoprene
114	oxidation products, it was suggested that the missing OH reactivity may be due to unmeasured
115	primary emissions. One caveat of this analysis pointed out by the authors was that the
116	concentrations of the modeled first-generation isoprene oxidation products (e.g. MVK, MACR,
117	isoprene hydroxy hydroperoxides (ISOPOOH), isoprene nitrates (ISOPN), and hydroperoxy

118	aldehydes (HPALD)) were significantly overpredicted in the afternoon. Consequently, the
119	uncertainty of the model calculation is likely to be much higher for the multi-generation
120	oxidation products and their contributions to the OH reactivity contributions. This result
121	highlights the uncertainty in relying solely on box-model results to assess OH reactivity. This
122	status quo urges us to take a convergent approach by effectively integrating observational results
123	from novel instrumentation and model outcomes.
124	This study examines the OH reactivity observations at Taehwa Research Forest (TRF)
125	supersite from 15 May 2016 to 7 June 2016 during the Korea United States Air Quality Study
126	2016 (KORUS-AQ 2016) campaign. TRF (37 18' 19.08" N 127 19' 7.12" E, 162 m altitude) is
127	operated by Seoul National University and located in Gwangju in the Gyunggi Province in South
128	Korea (Kim et al., 2013b). The site is about 35 km southeast from the center of Seoul and
129	borders the greater Seoul Metropolitan Area (SMA) with its population of 25.6 million. This
130	geographical proximity to SMA results in a significant level of anthropogenic influence,
131	particularly in elevated NOx (Kim et al., 2016). Additionally, occasional pollution transport
132	events occur at regional scales. Previous studies at the site have consistently highlighted the
133	importance of BVOC photochemistry at TRF (Kim et al., 2016;Kim et al., 2013a;Kim et al.,
134	2015). Isoprene and monoterpenes are the dominant OH sinks at the site among observed VOCs.
135	The elevated NO _X accelerates the photochemical processing of VOCs (Kim et al., 2015). Thus,
136	this site is an ideal natural laboratory to study contributions towards total OH reactivity from
137	primary trace gas emissions from both natural and anthropogenic processes and their oxidation
138	products. This motivated us to deploy a high-resolution proton transfer reaction time-of-flight
139	mass spectrometer (PTR-ToF-MS) to quantify trace amounts of VOCs with unknown molecular
140	structures by taking advantage of the universal sensitivity of hydronium ion chemistry towards

141	reactive VOCs (Graus et al., 2010;Jordan et al., 2009a). Therefore, we intend to observationally
142	constrain the contributions of conventionally unidentified or unmeasured VOCs towards OH
143	reactivity.
144	

2. Methods

146 2.1.Field Site

147	The Taehwa Research Forest is a Korean pine (<i>Pinus koraiensis</i>) plantation (300 m \times 300
148	m) surrounded by a deciduous forest dominated by oak trees (Kim et al., 2013b). A flux tower
149	(40 m height) at the center of TRF has air-sampling inlets at multiple heights (4 m, 8 m 12 m,
150	and 16 m) below the canopy top (20 m). Each inlet consists of Teflon tubing (3/8" OD) with ~ 1
151	second of residence time. The trace gas dataset including VOCs presented is the average of
152	concentrations measured at the inlets inside of the canopy as previous studies illustrate that there
153	is no substantial vertical VOC gradients inside of the canopy (within 3 %, Kim et al. (2013b)).
154	An air-conditioned instrument shack located at the base of the flux tower housed the PTR-ToF-
155	MS for VOC measurements, a mini tunable infrared laser direct absorption spectroscopy (mini-
156	TILDAS) instrument for HCHO, methane, and methanol measurements, and analyzers for
157	carbon monoxide (CO), sulfur dioxide (SO ₂), ozone (O ₃), and meteorological measurements. The
158	OH reactivity and NO _x analyzers were located in another nearby air-conditioned shack (3 m
159	apart) and sampled air through an extended Teflon inlet line of 4 m (1/4" OD) from the ground
160	with a flow rate of 4 sLpm resulting in a 0.5 second residence time. The height of the ambient air
161	intake was 3.5 m. The analytical characteristics of the instrumentation suite are summarized in
162	Table 1. A ceilometer backscattering characterized boundary layer vertical structure at the site.
163	The ceilometer analysis described by Sullivan et al. (2019) reveals the diurnal boundary layer

164 height evolution, indicating a maximum in the afternoon around 1-3 km and a minimum in the

- 165 early morning below 500 m.
- 166

167 2.2.OH Reactivity Measurements

168 A chemical ionization mass spectrometer - comparative reactivity method (CIMS-CRM) 169 instrument was used to measure OH reactivity. The UCI CIMS-CRM system includes a chemical 170 ionization mass spectrometer with a hydronium reagent ion. The CRM method measures total 171 OH reactivity by quantifying the relative loss of pyrrole, a highly reactive gas ($k_{OH^+ pyrrole} = 1.07$ 172 \times 10⁻¹⁰ cm³ molecule⁻¹ s⁻¹ at 298 K (Dillon et al., 2012)) that is rarely found in the atmosphere 173 (Sinha et al., 2008b). Nitrogen gas flows through a bubbler full of ultrapure liquid 174 chromatography mass spectrometer (LC-MS) grade water to produce water vapor. The water 175 vapor then flows into a glass reactor where it is photolyzed into OH radicals by a mercury lamp 176 (Pen-Ray® Light Source P/N 90-0012-01). The measurement uncertainty is 16.7% (1 σ) with a limit of detection of 4.5 s⁻¹ over 2 minutes (3σ) . 177 178 The UCI CIMS-CRM instrument has been deployed on multiple occasions, including the 179 Megacity Air Pollution Study (MAPS)-Seoul 2015 campaign that incorporated previous 180 measurements at the TRF ground site during September 2015 (Sanchez et al., 2018;Kim et al., 181 2016). During the SOAS 2013 campaign, an ambient OH reactivity intercomparison study was 182 conducted with laser induced fluorescence (LIF) system (Sanchez et al., 2018). The instrument 183 intercomparison showed that the OH reactivity measurements from the CRM and LIF 184 instruments generally agreed within the analytical uncertainty. An average of 16% difference 185 between the techniques was noted in the late afternoons where the CRM measurements were lower than those from LIF. As discussed in Sanchez et al. (2018), this is likely caused by the 186

187	difference in sampling strategies, as the CRM measurements relied on a lengthy Teflon inlet (15
188	m) while the LIF directly sampled air at the top of a walk up tower. As mentioned above, at TRF
189	we used a shorter inlet line to minimize residence time and avoid inlet line loss.
190	An extensive intercomparison study was conducted by Fuchs et al. (2017) with various
191	OH reactivity measurement techniques that highlighted potential analytical artifacts in the CRM
192	technique. These artifacts have all been examined and preventive measures have been
193	implemented in the UCI CIMS-CRM system deployed at TRF. This included a laboratory-built
194	catalytic converter (Pt-wool at 350 °C) that minimized the interferences due to changes in air to
195	prevent the interference from the difference in humidity for the zero air characterizations.
196	Hansen et al. (2015) illustrated that NO_X may be generated from the catalytic converter. To
197	prevent potential NO _X interferences, they used a scrubber with Purafil and activated charcoal,
198	which will modulate the humidity in the sample. Our approach to this type of interference has
199	been to determine the maximum NO level, noticeably interfering with the calibration regression
200	line shown in Sanchez et al. (2018). Laboratory tests indicate that the statistical agreement
201	started to veer off when the NO level is 5 ppb in 1 σ of the linear regression between instrument
202	response (unitless) and OH reactivity (s^{-1}) as the slope for the calibration curve has changed from
203	0.238 to 0.246. In addition, Kim et al. (2016) achieved an OH reactivity budget closure in high
204	NO2 condition, which implies no significant interferences from NO2. However, in response to the
205	Fuchs et al. (2017) observation that various CRM configurations suffer from different levels of
206	NO _X interferences, we plan to conduct more systematic NO _X interference tests to more
207	accurately characterize this system. In conclusion, it is possible that our reported OH reactivity
208	may systematically underestimate ambient total OH reactivity as much as ambient OH reactivity
209	coming from NO ₂ .

210	We consistently kept the pyrrole to OH ratio at 3:1 and so did not achieve a pseudo first
211	order relationship. Even in the field environment with various relative humidity, we have not
212	observed noticeable changes in this ratio as we flow bulk humidified nitrogen (150 standard cc
213	per minute) to the reactor with the total flow of 240 cc, which result in dampening the temporal
214	ambient relative humidity variations. Therefore, we performed multi-point calibrations (5 s ⁻¹ to
215	30 s ⁻¹) with a propene mixture using a NIST traceable gas standard (AirLiquide LLC, 0.847
216	ppm) during the field campaign to avoid any circumstances where the pseudo first-order reaction
217	regime is not established. Detailed calibration procedures for the OH reactivity system including
218	laboratory multi-component calibration results can be found in Sanchez et al. (2018).
219	In addition, Fuchs et al. (2017) also described a potential interference from ambient O ₃ in
220	some CRM systems. In the 2015 field campaigns conducted in Seoul South Korea (Kim et al.,
221	2016), we conducted a standard addition experiment for the propene standard for additional ~ 30
222	$\mathrm{s}^{\text{-1}}$ in two different ozone environment 65 ppb and 123 ppb. The outcome illustrates an
223	agreement between two additions within the analytical uncertainty although a systematic
224	laboratory study will warrant an accurate uncertainty assessment from ozone. Again, as the CRM
225	method is a relatively new technique, one should keep in mind that the future studies may find
226	potential artifacts that we do not report in this study.
227	
228	2.3.PTR-ToF-MS Measurements

A high-resolution PTR-TOF-MS (Ionicon Analytik GmbH) (de Gouw and Warneke, J007b)[•] (Jordan et al., 2009b) was deployed at the TRF site. The instrument was operated with a drift tube temperature of 60 °C, 560 V drift voltage, and 2.27 mbar drift tube to maintain E/N of L26 Td. Background checks were manually conducted about three times a day for a 10-minute

233	duration by scrubbing the ambient air through a catalytic convertor (Pt-wool maintained at
234	350°C). The detectable peaks from the ambient spectra were assessed by subtracting the
235	background spectrum. The instrument was calibrated with a gas mixture manufactured by Apel-
236	Riemer Environmental Inc. The mixture contains ~ 1 ppmv of acetaldehyde, acetone, isoprene,
237	methyl vinyl ketone, methacrolein, benzene, methly ethyl ketone, toluene, o-xylene, and α -
238	pinene. This standard mixture was only used for the PTR-ToF-MS calibration and not the CRM-
239	CIMS calibration. The concentration of the compounds were assessed in the Blake Lab at
240	University of California, Irvine, who also conducted the airborne VOC analysis using whole air
241	samples during the KORUS-AQ campaign on the NASA DC-8 (Colman et al., 2001).
242	A mass range of m/z 40 to m/z 267 was analyzed from the recorded PTR-ToF-MS mass
243	spectra. An automatic mass scale calibration was conducted every 5 minutes on the data
244	averaged over 30 seconds. The raw PTR-ToF-MS data were processed using the PTRwid
245	software described by Holzinger (2015). We normalized the mass peaks by 10 ⁶ reagent ion
246	counts (H ₃ O ⁺). As the majority of the VOC mass peaks could not be directly calibrated, we
247	determined the VOC sensitivities using equation 1 (Eq 1). This method has been employed by a
248	number of previous studies such as Cappellin et al. (2012). The benzene calibration factor was
249	used to calculate mixing ratios by applying its proton transfer reaction rate coefficient (k_{benzene}
250	$cm_1^3 s_1^{-1}$) and sensitivity (spenzene ncps ppb 1) for the available compounds. The application of this
251	equation can be justified since PTRwid provides the mass discrimination corrected counts as a
252	final computational product.
253	

 $ppb_{VOC} = ncps_{VOC} \times \frac{k_{benzene}}{k_{VOC}} \times \frac{1}{11.94 \, ncps \, ppb^{-1}}$ Eq. 1

where, 11.94 ncps ppb-1 is the assessed sensitivity of benzene.

 Formatted: Not Superscript/ Subscript

 Deleted: ncps ppb-1

 Formatted: Superscript

 Formatted: Superscript

 Formatted: Subscript

 Formatted: Not Superscript/ Subscript

 Formatted: Superscript

 Formatted: Superscript

 Formatted: Superscript

 Formatted: Superscript

257	ppb_{VOC} is the mixing ratio of an analyte.
258	ncpsvoc is the mass discrimination corrected normalized count for an analyte.
259	k _{benzene} is the proton transfer reaction rate constant for benzene.
260	$k_{\rm VOC}$ is the proton transfer reaction rate constant for an analyte.
261	
262	For the mass peaks where specific proton transfer reaction rates were unavailable, we
263	estimated the mixing ratios by applying a proton transfer reaction rate coefficient (k_{H3O+}) of 3.00
264	\times 10 ⁻⁹ cm ³ s ⁻¹ , the default value for PTRwid calculations. The spectra had a limit of detection of
265	tens of ppt for a 30 second average. The calibrated compounds had a range of detection limits as
266	low as 3.7 ppt for α -pinene and as high as 48 ppt for toluene.
267	
268	2.4. OH Reactivity Calculation
269	OH reactivity was calculated from the concentrations of all the compounds observed by
270	the instrumental suite described in Table 1. The original data can be found in the KORUS-AQ
271	2016 data archive at https://korus-aq.larc.nasa.gov/. A total of 360 mass peaks measured by the
272	PTR-ToF-MS were analyzed above the background (3 σ or above) to assess their contribution to
273	the calculated OH reactivity. Fourteen of the mass peaks were identified as VOCs commonly
274	reported for PTR-MS measurements (Table 1), leaving 346 unidentified peaks. These remaining
275	mass peaks were grouped into three categories in order to estimate their possible OH reactivity
276	contribution.
277	Category I (81 peaks) included mass peaks for which the PTRwid software calculated a
278	molecular formula. OH reaction rate coefficients for the individual peaks were obtained from the
279	National Institute for Standards and Technology (NIST) Webbook library. As the only

280	information we have is the molecular composition, we identified multiple isomers with different	
281	functional groups and thus different reactivity. We have extensively reviewed previous	
282	publications (Williams et al., 2001;De Gouw et al., 2003;de Gouw and Warneke, 2007a;Jordan et	
283	al., 2009a;Ruuskanen et al., 2011;Muller et al., 2012;Koss et al., 2017a) identifying ambient	
284	VOCs using PTR-MS with both quadrupole and time-of-flight systems to identify possible	
285	compounds. For example, for the m/z of 75.043, there are four possible compounds including	
286	hydroxy acetone, propionic acid, methyl acetate, and ethyl formate. We used the median reaction	
287	constant for the set of possible compounds. The detailed description of the OH reaction constant	
288	determination process for the Category I peaks is described in Sanchez (2019). If the information	
289	was unavailable from the NIST Webbook database, a structure-reactivity relationship described	
290	by Kwok and Atkinson (1995) was applied to obtain reaction rate coefficients. This is an	
291	empirical calculation system to estimate $k_{\rm OH}$ based upon the number of carbons and the	
292	functional groups of given VOCs. The framework is able to calculate k_{OH} within a factor of two	
293	according to a thorough assessments presented in Kwok and Atkinson (1995). However, the	
294	authors discourage the application of the framework to compounds that were not examined in the	
295	study such as halogenated compounds. Although halogenated compounds are not included in this	
296	study, one should be aware of a potentially significant uncertainty.	
297	Category II (28 peaks) included mass peaks for which the PTRwid software could not	
298	assess an exact molecular composition due to uncertainty in the data processing system.	
299	Nonetheless, this group of compounds illustrated a positive correlation ($R^2 = 0.19$ to 0.88) with	
300	either anthropogenic (benzene, toluene) or biogenic (MVK+MACR and monoterpenes) VOCs.	
301	Category II compounds are further grouped into subcategories corresponding to these two main	
302	VOC sources. OH reaction rate constants (k_{OH}) were estimated with equations based on the	

1.0

303	relationship between the m/z and the k_{OH} of compounds in Table 1 (Figure S1). More
304	specifically, we assume that $k_{\rm OH}$ is linearly correlated with m/z. To apply this linear relationship,
305	the compounds with known k_{OH} were grouped into 5 m/z bins and the average k_{OH} of each bin
306	was calculated. The green triangles represent 5 m/z binned averages from these compounds
307	plotted with their respective average k_{OH} . This approach can be justified by the fact that the
308	reaction constants of VOCs towards OH tend to increase as a function of molecular mass within
309	functional groups (Kwok and Atkinson, 1995;Atkinson, 1987). The y-intercepts of the linear
310	regressions were assessed using the $k_{\rm OH}$ values of the biogenic or anthropogenic compounds and
311	their masses.
312	Category III (237 peaks) included mass peaks with very low mixing ratios (average = 4.8
313	ppt ± 19.5 ppt) that were above the limit of detection. We applied a k_{OH} corresponding to the dark
314	green best-fit line in Figure S1 to these peaks. The y-intercept of the dark green line was based
315	on that of acetaldehyde, as it was the lowest mass compound used for the OH reactivity
316	calculations in this study.
317	There are two components that need to be considered for the assessment of uncertainty
318	associated with calculated OH reactivity: the concentration and the reaction constants with OH.
319	The uncertainty of the observed trace gases is in the range of 5 $\%$ to 20 $\%$ as shown in Table 1
320	and is associated with the rate constants from laboratory experiments (Atkinson et al., 2006).
321	Combining 15 % uncertainty from reaction constants and 13.5 % from trace gas observations
322	results in 20 % of uncertainty in calculated OH reactivity. This should be considered as a
323	conservative estimate as most VOC concentrations and associated rate constants are empirically
324	estimated.

3. Results and Discussion

327	An average OH reactivity of $30.7\pm5.1~{\rm s}^{-1}$ was observed from 15 May – 7 June 2016
328	(Figure 1). This was within the range of OH reactivity observed in urban regions (10 - 33 s ⁻¹).
329	(Kovacs et al., 2003;Ren et al., 2003;Sinha et al., 2008a;Dolgorouky et al., 2012;Whalley et al.,
330	2016;Kim et al., 2016;Yang et al., 2017) and in the range of previously reported observations
331	and model calculations at the TRF site (~15 - 35 s ⁻¹) (Kim et al., 2016;Kim et al., 2015). The
332	total calculated OH reactivity of $11.8 \pm 1.0 \text{ s}^{-1}$ from the measured compounds in Table 1 resulted
333	in 63.3% missing OH reactivity. However, an additional OH reactivity of 6.0 \pm 2.2 s $^{-1}$ was
334	further calculated from the reactivity of the VOCs in Categories I – III. The contribution lowered
335	the missing OH reactivity level to 42% of the measured OH reactivity. Kim et al. (2016) had
336	previously measured an average OH reactivity of 16.5 s ⁻¹ at TRF during the MAPS-Seoul
337	campaign from 1 September – 15 September 2015, a substantially lower level then what we
338	report during this springtime study. Although small alkanes and alkenes such as ethane, ethene,
339	propane and propene were not observed on the site, we utilized the dataset from the NASA DC-8
340	that flew at 700 m above the site, which indicates that their contribution was consistently small
341	(~ 0.7 s^{-1} in average). In this suburban forest, we do not think there is any substantial emission
342	sources of these relatively long-lived VOCs.
343	The difference can be attributed to the notably higher reactive trace gas loadings during
344	KORUS-AQ compared to the TRF measurements during MAPS-Seoul. The NO _x , benzene, and
345	toluene concentrations were 3 times higher during KORUS-AQ and CO was 1.4 times higher
346	(Figure S2). Although the average isoprene concentrations were similar between the two
347	campaigns, MVK and MACR concentrations during KORUS-AQ were \sim 3 times higher,

348 illustrating a higher oxidative environment. There was a persistently high MVK+MACR to

349	isoprene ratio of 1.8 during the KORUS-AQ campaign at TRF. This ratio was similar to the
350	value reported during the summer in a moderately polluted forest in the Pearl River Delta that
351	was attributed to a strong atmospheric oxidation capacity (Gong et al., 2018). The missing OH
352	reactivity during KORUS-AQ was generally much higher than levels reported during urban
353	observations (up to 50% missing OH reactivity) (Kovacs et al., 2003;Ren et al., 2003;Sinha et
354	al., 2008a;Dolgorouky et al., 2012;Whalley et al., 2016;Kim et al., 2016;Yang et al., 2017) and
355	within the range of previously reported values in forest regions where as much as 80% missing
356	OH reactivity has been reported (Kim et al., 2016;Di Carlo et al., 2004;Nolscher et al.,
357	2012;Edwards et al., 2013;Nolscher et al., 2016;Ramasamy et al., 2018;Nakashima et al., 2014).
358	Figure 2 shows the diurnal average of measured, calculated, and missing OH reactivity
359	from 15 May - 7 June 2016. Isoprene was the largest contributor to VOC OH reactivity in the
360	afternoon and the early evening (36% of the calculated OH reactivity in the evening), consistent
361	with the previous studies conducted in this site (Kim et al., 2016;Kim et al., 2013b;Kim et al.,
362	2015). Among all the trace gases, the largest average contributor to the calculated OH reactivity
363	was NOx, which contributed 18.2% (5.6 $\ensuremath{\mathrm{s}}^{-1}$) to the measured OH reactivity. The NOx
364	contribution to OH reactivity is higher during the morning and evening rush hours and at a
365	minimum in the afternoon, which has been reported consistently in previous reports conducted
366	near megacities (Kovacs et al., 2003; Mao et al., 2010; Dolgorouky et al., 2012; Ren et al.,
367	2003;Shirley et al., 2006). Enhanced OH reactivity during the morning or night and minimum
368	OH reactivity during the afternoon have been reported in urban areas (Kovacs et al., 2003;Ren et
369	al., 2006;Shirley et al., 2006;Dolgorouky et al., 2012;Mao et al., 2010;Whalley et al., 2016). On
370	the other hand, strong light-sensitive biogenic emissions (e.g. isoprene) result in a maximum
371	observed OH reactivity in the afternoon in forested regions (Ren et al., 2006;Sinha et al.,

372	2012;Edwards et al., 2013;Hansen et al., 2014;Zannoni et al., 2017;Nolscher et al., 2016) . One
373	exception is an OH reactivity observation conducted in Hyytiälä, a forested site that has low
374	isoprene levels, by Sinha et al. (2010). They attributed a flat diurnal OH reactivity variation to
375	the interplay between high daytime emissions and low nighttime boundary layer height. In urban
376	environments, it is mostly anthropogenic trace gases such as aromatics and OVOCs that
377	contribute to OH reactivity. These compounds have a longer lifetime compared to the diurnal
378	boundary layer evolution. This leads to the accumulation of such compounds in the shallow
379	boundary layer during the night. On the other hand, strong emissions of reactive BVOCs in
380	deciduous forest regions enhance OH reactivity during the daytime but then quickly react away.
381	Very subtle diurnal differences observed in this study (Figure 2), therefore, can be understood as
382	the competitive influences of both anthropogenic and biogenic compounds to the OH reactivity.
383	As described in detail in Sullivan et al. (2019) and Jeong et al. (2019), a strong regional
384	stagnation episode occurred during the KORUS-AQ campaign between May 17 – 23. Later, the
385	Korean Peninsula was affected by a period of continental pollution outflow between May 28 and
386	June 1. The diurnal averages of the two periods and their calculated OH reactivity are presented
387	in Figure 3. It is notable that there is very little difference in the observed OH reactivity between
388	the two distinct periods in terms of the amount of OH reactivity and its diurnal pattern (Figure 4).
389	Furthermore, no significant variance of the different classes of reactive gases such as criteria air
390	pollutants (CO, NO _x , O ₃ , and SO ₂), mostly contributed by NO _x , OVOCs (acetone, acetaldehyde,
391	formaldehyde, methylglyoxal, methanol, methyl ethyl ketone), aromatics (benzene, toluene,
392	xylenes, styrene, benzaldehyde, trimethylbenzenes), and BVOCs (isoprene, monoterpenes,
393	sesquiterpenes, MVK+MACR) was observed during the different periods (Figure 5). These
394	different classes of reactive gases generally differed by less than 10% during the two periods

from the overall campaign. This observation shows that the presence of reactive gases is mostly
controlled by relatively short-lived compounds determined by local emissions and their oxidation
products.

398 The diurnal variation behavior of each chemical class reflects the chemical lifetime of the 399 compounds (e.g. aromatics vs BVOCs). The calculated OH reactivity from OVOCs does not 400 show a strong diurnal variation. This reflects the fact that OVOCs are mostly generated or 401 emitted during the daytime and their lifetime is generally longer than their precursors, which 402 allows nocturnal accumulation due to the absence of OH. The differences in the diurnal variation 403 of different classes of reactive gases can also be used to interpret the origin of the compounds in 404 Categories I-III as presented in Figure 6. The diurnal variations of Category I resemble those of 405 relatively long-lived chemical species with a distinct nocturnal accumulation pattern. This 406 diurnal pattern has been previously reported for both anthropogenic VOCs such as toluene and 407 benzene and temperature dependent monoterpenes such as α -pinene. It is notable that the diurnal 408 pattern is enhanced during the stagnation period during early morning hours. This enhancement 409 is also seen in the aromatic trace gases particularly during the stagnation period (Figure 5b). 410 Indeed, there are both biogenic and anthropogenic contributions towards the Category I 411 compounds, which contribute an average of 3.8 s^{-1} to the OH reactivity assessment, the largest 412 amount among the three categories (Figure 6a). The largest contributors to Category I, which 413 appear to be from a mixture of biogenic and anthropogenic sources, include m/z 89.060, 101.06, and 101.096, and they contributed 0.3 s⁻¹, 0.2 s⁻¹, and 0.2 s⁻¹, respectively. The m/z 89.060 had a 414 415 molecular formula of C4H8O2H+ and was correlated to the anthropogenic compounds such as 416 benzene and toluene. The m/z 101.06 peak had the molecular formula of $C_5H_8O_2H^+$ and had a 417 diurnal variation similar to that of MVK + MACR. This mass peak has been previously

418	identified in laboratory (Zhao et al., 2004) and field (Williams et al., 2001) studies as the C_5
419	hydroxy carbonyl, an isoprene oxidation product. Results from an indoor chamber
420	photooxidation experiment conducted by Lee et al. (2006) showed that m/z 101 is a common
421	fragment of unidentified oxidation products of monoterpenes, sesquiterpenes, and isoprene. Lee
422	et al. (2006) also reported that this mass peak also composed over 5% of the fragments of
423	unidentified α - humulene and linalool oxidation products. The molecular formula of this peak is
424	$C_6H_{12}OH^+$, and it has been identified in previous studies as C_6 carbonyls (Koss et al., 2017b) or
425	hexanal (Brilli et al., 2014;Rinne et al., 2005). Furthermore, <i>m/z</i> 99.044 and 113.023 were also
426	among the highest contributors to Category I and were correlated with MVK and MACR. The
427	m/2 99 was previously reported to be a fragment ion of unidentified terpene oxidation products in
428	a chamber experiment (Lee et al., 2006). The m/z 113 was observed by a PTR-MS in a
429	Ponderosa pine forest in central California by Holzinger et al. (2005). In this case, it was formed
430	within the canopy from the rapid oxidation of terpinolene, myrcene, and α -terpinene.
431	Furthermore, m/z 113 was observed to come from the photooxidation and ozonolyis of multiple
432	terpenes in two indoor chamber studies by Lee et al. (2006). The m/z 113 composed over 5% of
433	the oxidation product fragments of myrcene and verbenone. Finally, m/z 83.085 had the
434	molecular formula of $C_6H_{11}^+$ and was correlated to benzene. Multiple studies have identified this
435	peak as cyclohexane, methyl-cyclopentane, or methylcyclohexane, typically found in areas rich
436	in oil and gas (Koss et al., 2017b;Gueneron et al., 2015;Yuan et al., 2014). In summary, both the
437	gross diurnal pattern and the individual peak analyses consistently illustrates that both
438	anthropogenic and biogenic compounds comprise Category I, the largest contributor to the
439	previously unexplored compounds in the PTR-ToF-MS spectrum at this research site.

440	Category II contributed an average of 0.3 $\mathrm{s}^{\text{-1}}$ to the calculated OH reactivity, the lowest
441	amount for the three Categories (Figure 6b). The compounds in category II appear to correlate to
442	either BVOCs or acetone, depending on the time period. In Figure 6b, the maximum during the
443	transport period is enhanced to about 0.2 s^{-1} higher than the overall campaign and shifted about 3
444	hours later to \sim 4:00 PM. The OH reactivity calculated from Category II is strongly correlated to
445	MVK + MACR ($r^2 = 0.82$) during this period as well. On the other hand, during the stagnation
446	period the average OH reactivity from Category II correlates more strongly with acetone ($r^2 =$
447	0.62) than with MVK +MACR ($r^2 = 0.28$). In fact, six of the highest contributors to Category II
448	(Figure 6b) are more strongly correlated to acetone ($r^2 > 0.40$) during the stagnation period
449	compared to the transport period. The sources of acetone can be either biogenic or
450	anthropogenic. Biogenic sources include direct emissions from plants or their oxidation products
451	and plant decay (Jacob et al., 2002;Seco et al., 2007). Anthropogenic sources of acetone include
452	vehicular emissions, solvent use, and the oxidation of other anthropogenic VOCs (Jacob et al.,
453	2002). Therefore, this illustrates that the compounds in Category II also have a complex source
454	profile of both biogenic and anthropogenic origin.
455	Category III contributed 1.9 s ⁻¹ to the calculated OH reactivity (Figure 6c). The six
456	highest contributors out of 236 mass peaks contributed a total of 0.43 s ⁻¹ of the calculated OH
457	reactivity. Overall, Category III compounds had no strong correlations to isoprene,
458	MVK+MACR, benzene, or toluene during either the stagnation or transport periods. However,
459	Category III compounds were highly correlated to methylglyoxal ($r^2 = 0.85$, 0.82, and 0.78 for
460	the stagnation, transport, and overall period, respectively), one of the measured OVOCs. A
461	global modeling study illustrated that methylglyoxal is mainly produced from isoprene oxidation
462	processes and the second most important source is acetone oxidation (Fu et al., 2008). In

463	addition, aromatics and alkenes are also known to produce methylglyoxal through atmospheric
464	oxidation processes (Henry et al., 2012). As TRF is a high aromatics and high isoprene
465	environment, the source profile of methyl glyoxal in the region is likely complex, which can be
466	applied to interpret the source of the Category III compounds.
467	Overall, the OH reactivity estimates from Categories I – III contributed an average of 6.0
468	$\pm2.2~\text{s}^{\text{-1}}$ to the calculated OH reactivity. In summary, there is consistency that both
469	anthropogenic and the biogenic contributions need to be further studied in the PTR-ToF-MS
470	spectrum. Furthermore, by adding this additional signal from Category I, II, and III, VOC
471	contribution to calculated OH reactivity (11.0 s ⁻¹) becomes larger than that (6.8 s ⁻¹) from criteria
472	air pollutants (CO, NO _x , SO ₂ and O ₃). This should be considered when evaluating ozone
473	production regimes (Kim et al., 2018).
474	Even with the inclusion of the additional peaks to the calculated OH reactivity, we still
475	find a missing OH reactivity of 42%. Thus, it is important to investigate the origin of this
476	missing fraction. A correlation can be observed between missing OH reactivity in percentage and
477	OH reactivity from NO _X (R2 = 0.5, Figure 7 A) but not between OH reactivity from NO _x and
478	absolute missing OH reactivity (s ⁻¹) ($R2 = 0.2$, Figure 7 B). This leads us to speculate that there
479	is a consistent presence of unquantified trace gases, likely oxidation products of both
480	anthropogenic and biogenic VOCs as we explored the origin of the unexplored peaks causing
481	missing OH reactivity. In other words, NO _x is relatively well measured with a highly pronounced
482	temporal variation that determines the percentage of missing OH reactivity.
483	Finally, unaccounted for uncertainty associated with the reaction rate constant
484	estimations described in the method section should be also further explored. For example, to
485	reconcile the averaged missing OH reactivity during the day (10 s ⁻¹), it requires ~ 60 ppm of

486	methane but only \sim 4 ppb of isoprene. This clearly demonstrates the importance of rate constant
487	estimation. Indeed, if we apply the reaction rate constant of isoprene with OH ($k_{\text{OH}} = 1 \times 10^{-10}$
488	cm ³ molecule ⁻¹ s ⁻¹ at 298 K) to Category II and Category III compounds, then the observed OH
489	reactivity is fully reconciled (Figure S3). Proton ion chemistry may have an intrinsic limitation to
490	quantify highly oxidized OVOCs. Moreover, due to the different inlet configurations for OH
491	reactivity and VOC observations, their contributions towards observed and calculated OH
492	reactivity may not have been consistently evaluated (e.g. Sanchez et al. (2018)). Therefore, a
493	comprehensive analysis along with a dataset from other instrumentation is necessary towards
494	reconciling missing OH reactivity with observational constraints. Finally, it is highly plausible
495	that we may double count for fragmented molecules in the mass spectrum. Although it would not
496	affect concentration evaluation as the intensity of ion signals from the fragmented molecules
497	would be fully accounted for by adding parent ion and fragmented ion signals, the OH reactivity
498	calculated from the fragmented ions is susceptible to underestimation from the assumption that
499	k _{OH} positively correlates with molecular masses.
500	

501 *4. Summary*

502 We present OH reactivity observations at a suburban forest site during the KORUS-AQ field 503 campaign. A comprehensive trace gas dataset including 14 VOCs quantified by PTR-ToF-MS is 504 used to calculate OH reactivity, which only accounts for 36.7 % of the averaged observed OH 505 reactivity.

506 This study presents a detailed methodology for retrieving OH reactivity contributions from 507 all of the peaks of the PTR-ToF-MS mass spectrum. This decreases the amount of missing OH 508 reactivity as the majority of them have not been accounted towards calculated OH reactivity in

509	previous studies. First, we converted the raw signals to concentrations using a constant proton
510	transfer reaction rate (3 $\times 10^{-9}$ cm ³ s ⁻¹). Then, we grouped the previously unaccounted peaks into
511	three categories to estimate reaction constants for each compound. The contributions of the
512	unaccounted peaks in the mass spectrum account for a calculated OH reactivity of $\sim 6 \text{ s}^{-1}$, which
513	decreases missing OH reactivity from 63.3 % to 42.0 %. It is noteworthy that the diurnal
514	variations of observed OH reactivity and calculated OH reactivity from the various groups of
515	trace gases does not have a high variability during the field campaign even though there were
516	several synoptic meteorological configuration changes. This suggests that the reactive trace gas
517	loading is mostly determined by local emission and oxidation processes not influenced by the
518	synoptic meteorological conditions.
519	In conclusion, this study highlights PTR-ToF-MS as a tool for observationally constraining
520	missing OH reactivity. Further study is required particularly towards characterizing proton
521	reaction rate constants and reaction constants with OH for the many unknown compounds
522	detected on PTR-ToF-MS. In addition, other mass spectrometry techniques, such as nitrate or
523	iodine ion chemistry systems, should be utilized in future studies to complement the PTR
524	technique, which is sensitive to volatile to semi volatile VOCs, to quantify lower volatility
525	compounds and comprehensively constrain OH reactivity contributions from VOCs.
526	
527	Acknowledgements

529 This study is supported by NASA (NNX15AT90G) and NIER. We highly appreciate NASA
530 ESPO for logistical support. Taehwa Research Forest is operated by College of Agriculture and
531 Life Sciences at Seoul National University. S. Kim would like to acknowledge a funding support

532	from Brain Pool Program of National Research Foundation Korea	(NRF) Funded by	v the Ministr	v

533	of Science ICT (# 2020H1D3A2A01060699).
534	
535	Data Availability
536	
537	Data is available at: https://korus-aq.larc.nasa.gov/
538	
539	References
540	
541	Atkinson, R.: A Structure-Activity Relationship for the Estimation of Rate Constants for the
542	Gas-Phase Reactions of Oh Radicals with Organic-Compounds, International Journal of
543	Chemical Kinetics, 19, 799-828, DOI 10.1002/kin.550190903, 1987.
544	Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin,
545	M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for
546	
547	Chemistry and Physics, 6, 3625-4055, 2006.
548	Brilli, F., Gioli, B., Ciccioli, P., Zona, D., Loreto, F., Janssens, I. A., and Ceulemans, R.: Proton
549 550	Transfer Reaction Time-of-Flight Mass Spectrometric (PTR-TOF-MS) determination of volatile organic compounds (VOCs) emitted from a biomass fire developed under stable
551	nocturnal conditions, Atmospheric Environment, 97, 54-67,
552 553	10.1016/j.atmosenv.2014.08.007, 2014. Cappellin, L., Karl, T., Probst, M., Ismailova, K., Winkler, P. M., Soukoulis, C., Aprea, E.,
554	Mark, T. D., Gasperi, F., and Biasioli, F.: On quantitative determination of volatile
555	organic compound concentrations using proton transfer reaction Time-of-Flight Mass
556	Spectrometry, Environment Science & Technology, 46, 2012.
557	Colman, J. J., Swanson, A. L., Meinardi, S., Sive, B. C., Blake, D. R., and Rowland, F. S.:
558	Description of the analysis of a wide range of volatile organic compounds in whole air
559	samples collected during PEM-Tropics A and B, Analytical Chemistry, 73, 3723-3731,
560	2001.
561	De Gouw, J., Goldan, P., Warneke, C., Kuster, W., Roberts, J. M., Marchewka, M., Bertman, S.
562	B., Pszenny, A., and Keene, W .: Validation of proton transfer reaction-mass spectrometry
563	(PTR-MS) measurements of gas phase organic compounds in the atmosphere during the
564	New England Air Quality Study (NEAQS) in 2002, Journal of Geophysical Research,
565	108, 4682 doi:4610.1029/2003JD003863, 2003.
566	de Gouw, J., and Warneke, C.: Measurements of volatile organic compounds in the earths
567	atmosphere using proton-transfer-reaction mass spectrometry, Mass Spectrom Rev, 26,
568	223-257, 2007a.

- de Gouw, J., and Warneke, C.: Measurements of volatile organic compounds in the earth's
 atmosphere using proton-transfer-reaction mass spectrometry, Mass Spectrom Rev, 26,
 223-257, 10.1002/mas.20119, 2007b.
- 572 Di Carlo, P., Brune, W. H., Martinez, M., Harder, H., Lesher, R., Ren, X. R., Thornberry, T.,
 573 Carroll, M. A., Young, V., Shepson, P. B., Riemer, D., Apel, E., and Campbell, C.:
 574 Missing OH reactivity in a forest: Evidence for unknown reactive biogenic VOCs,
 575 Science, 304, 722-725, Doi 10.1126/Science.1094392, 2004.
- 576 Dillon, T. J., Tucceri, M. E., Dulitz, K., Horowitz, A., Vereecken, L., and Crowley, J. N.:
 577 Reaction of Hydroxyl Radicals with C4H5N (Pyrrole): Temperature and Pressure
 578 Dependent Rate Coefficients, Journal of Physical Chemistry A, 116, 6051-6058,
 579 10.1021/jp211241x, 2012.
- 580 Dolgorouky, C., Gros, V., Sarda-Esteve, R., Sinha, V., Williams, J., Marchand, N., Sauvage, S.,
 581 Poulain, L., Sciare, J., and Bonsang, B.: Total OH reactivity measurements in Paris
 582 during the 2010 MEGAPOLI winter campaign, Atmospheric Chemistry and Physics, 12,
 583 9593-9612, Doi 10.5194/Acp-12-9593-2012, 2012.
- Edwards, P. M., Evans, M. J., Furneaux, K. L., Hopkins, J., Ingham, T., Jones, C., Lee, J. D.,
 Lewis, A. C., Moller, S. J., Stone, D., Whalley, L. K., and Heard, D. E.: OH reactivity in
 a South East Asian tropical rainforest during the Oxidant and Particle Photochemical
 Processes (OP3) project, Atmospheric Chemistry and Physics, 13, 9497-9514, Doi
 10.5194/Acp-13-9497-2013, 2013.
- Fu, T. M., Jacob, D. J., Wittrock, F., Burrows, J. P., Vrekoussis, M., and Henze, D. K.: Global
 budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of
 secondary organic aerosols, Journal of Geophysical Research-Atmospheres, 113, 2008.
- Fuchs, H., Novelli, A., Rolletter, M., Hofzumahaus, A., Pfannerstill, E. Y., Kessel, S., Edtbauer,
 A., Williams, J., Michoud, V., Dusanter, S., Locoge, N., Zannoni, N., Gros, V., Truong,
 F., Sarda-Esteve, R., Cryer, D. R., Brumby, C. A., Whalley, L. K., Stone, D., Seakins, P.
 W., Heard, D. E., Schoemaecker, C., Blocquet, M., Coudert, S., Batut, S., Fittschen, C.,
- 596 Thames, A. B., Brune, W. H., Ernest, C., Harder, H., Muller, J. B. A., Elste, T., Kubistin,
- 597 D., Andres, S., Bohn, B., Hohaus, T., Holland, F., Li, X., Rohrer, F., Kiendler-Scharr, A.,
 598 Tillmann, R., Wegener, R., Yu, Z. J., Zou, Q., and Wahner, A.: Comparison of OH
 599 reactivity measurements in the atmospheric simulation chamber SAPHIR, Atmospheric
 600 Measurement Techniques, 10, 4023-4053, 2017.
- 601 Goldstein, A. H., and Galbally, I. E.: Known and unexplored organic constituents in the earth's
- 602 atmosphere, Environmental Science & Technology, 41, 1514-1521, 2007.
- 603 Gong, D. C., Wang, H., Zhang, S. Y., Wang, Y., Liu, S. C., Guo, H., Shao, M., He, C. R., Chen,
 604 D. H., He, L. Y., Zhou, L., Morawska, L., Zhang, Y. H., and Wang, B. G.: Low-level
 605 summertime isoprene observed at a forested mountaintop site in southern China:
 606 implications for strong regional atmospheric oxidative capacity, Atmospheric Chemistry
- and Physics, 18, 14417-14432, 10.5194/acp-18-14417-2018, 2018.
- Graus, M., Muller, M., and Hansel, A.: High Resolution PTR-TOF: Quantification and Formula
 Confirmation of VOC in Real Time, J Am Soc Mass Spectr, 21, 1037-1044, 2010.
- Gueneron, M., Erickson, M. H., VanderSchelden, G. S., and Jobson, B. T.: PTR-MS
 fragmentation patterns of gasoline hydrocarbons, International Journal of Mass
 Spectrometry, 379, 97-109, 10.1016/j.ijms.2015.01.001, 2015.
- Hansen, R. F., Griffith, S. M., Dusanter, S., Rickly, P. S., Stevens, P. S., Bertman, S. B., Carroll,
 M. A., Erickson, M. H., Flynn, J. H., Grossberg, N., Jobson, B. T., Lefer, B. L., and

- Wallace, H. W.: Measurements of total hydroxyl radical reactivity during CABINEX
 2009-Part 1: field measurements, Atmospheric Chemistry and Physics, 14, 2923-2937,
- 617 10.5194/acp-14-2923-2014, 2014.
- Hansen, R. F., Blocquet, M., Schoemaecker, C., Leonardis, T., Locoge, N., Fittschen, C.,
 Hanoune, B., Stevens, P. S., Sinha, V., and Dusanter, S.: Intercomparison of the
 comparative reactivity method (CRM) and pump-probe technique for measuring total OH
 reactivity in an urban environment, Atmospheric Measurement Techniques, 8, 42434264, 10.5194/amt-8-4243-2015, 2015.
- Henry, S. B., Kammrath, A., and Keutsch, F. N.: Quantification of gas-phase glyoxal and
 methylglyoxal via the Laser-Induced Phosphorescence of (methyl)GLyOxal
 Spectrometry (LIPGLOS) Method, Atmospheric Measurement Techniques, 5, 181-192,
 10.5194/amt-5-181-2012, 2012.
- Herndon, S. C., Jayne, J. T., Zahniser, M. S., Worsnop, D. R., Knighton, B., Alwine, E., Lamb,
 B. K., Zavala, M., Nelson, D. D., McManus, J. B., Shorter, J. H., Canagaratna, M. R.,
 Onasch, T. B., and Kolb, C. E.: Characterization of urban pollutant emission fluxes and
 ambient concentration distributions using a mobile laboratory with rapid response
- 631 instrumentation, Faraday Discussions, 130, 327-339, 10.1039/b500411j, 2005.
- Hewitt, C. N., Lee, J. D., MacKenzie, A. R., Barkley, M. P., Carslaw, N., Carver, G. D.,
 Chappell, N. A., Coe, H., Collier, C., Commane, R., Davies, F., Davison, B., Di Carlo, P.,
 Di Marco, C. F., Dorsey, J. R., Edwards, P. M., Evans, M. J., Fowler, D., Furneaux, K.
- 635 L., Gallagher, M., Guenther, A., Heard, D. E., Helfter, C., Hopkins, J., Ingham, T., Irwin,
- 636 M., Jones, C., Karunaharan, A., Langford, B., Lewis, A. C., Lim, S. F., MacDonald, S.
- M., Mahajan, A. S., Malpass, S., McFiggans, G., Mills, G., Misztal, P., Moller, S.,
 Monks, P. S., Nemitz, E., Nicolas-Perea, V., Oetjen, H., Oram, D. E., Palmer, P. I.,
- 639 Phillips, G. J., Pike, R., Plane, J. M. C., Pugh, T., Pyle, J. A., Reeves, C. E., Robinson, N.
- H., Stewart, D., Stone, D., Whalley, L. K., and Yin, X.: Overview: oxidant and particle
 photochemical processes above a south-east Asian tropical rainforest (the OP3 project):
 introduction, rationale, location characteristics and tools, Atmospheric Chemistry and
 Physics, 10, 169-199, 10.5194/acp-10-169-2010, 2010.
- Holzinger, R., Lee, A., Paw, K. T., and Goldstein, A. H.: Observations of oxidation products
 above a forest imply biogenic emissions of very reactive compounds, Atmospheric
 Chemistry and Physics, 5, 67-75, DOI 10.5194/acp-5-67-2005, 2005.
- Holzinger, R.: PTRwid: A new widget tool for processing PTR-TOF-MS data, Atmospheric
 Measurement Techniques, 8, 3903-3922, 10.5194/amt-8-3903-2015, 2015.
- Jacob, D. J., Field, B. D., Jin, E. M., Bey, I., Li, Q. B., Logan, J. A., Yantosca, R. M., and Singh,
 H. B.: Atmospheric budget of acetone, Journal of Geophysical Research-Atmospheres,
 107. Artn 4100
- 652 10.1029/2001jd000694, 2002.
- Jenkin, M. E., Saunders, S. M., and Pilling, M. J.: The tropospheric degradation of volatile
 organic compounds: A protocol for mechanism development, Atmospheric Environment,
 31, 81-104, Doi 10.1016/S1352-2310(96)00105-7, 1997.
- Jeong, D., Seco, R., Gu, D., Lee, Y. R. O., Nault, B. A., Knote, C. J., Mcgee, T., Sullivan, J. T.,
- 57 Jimenez, J. L., Campuzano-Jost, P., Blake, D. R., Sanchez, D., Guenther, A. B., Tanner,
- 658 D., Huey, L. G., Long, R., Anderson, B. E., Hall, S. R., Ullmann, K., Shin, H. J.,
- 659 Herndon, S. C., Lee, Y. A. E., Kim, D., Ahn, O. O. Y., and Kim, S.: Integration of
- airborne and ground observations of nitryl chloride in the Seoul metropolitan area and the

- implications on regional oxidation capacity during KORUS-AQ 2016, Atmospheric
 Chemistry and Physics, 19, 12779-12795, 10.5194/acp-19-12779-2019, 2019.
- Jordan, A., Haidacher, S., Hanel, G., Hartungen, E., Mark, L., Seehauser, H., Schottkowsky, R.,
 Sulzer, P., and Mark, T. D.: A high resolution and high sensitivity proton-transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS), International Journal of Mass
- Spectrometry, 286, 122-128, 2009a.
 Jordan, A., Haidacher, S., Hanel, G., Hartungen, E., Märk, L., Seehauser, H., Schottkowsky, R.,
- Jordan, A., Haldacher, S., Hanel, G., Hartungen, E., Mark, L., Scenauser, H., Schottkowsky, R.,
 Sulzer, P., and Märk, T. D.: A high resolution and high sensitivity proton-transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS), Int J Mass Spectrom, 286,
 122-128, http://dx.doi.org/10.1016/j.jims.2009.07.005, 2009b.
- Kaiser, J., Skog, K. M., Baumann, K., Bertman, S. B., Brown, S. B., Brune, W. H., Crounse, J.
 D., de Gouw, J. A., Edgerton, E. S., Feiner, P. A., Goldstein, A. H., Koss, A., Misztal, P.
 K., Nguyen, T. B., Olson, K. F., St Clair, J. M., Teng, A. P., Toma, S., Wennberg, P. O.,
 Wild, R. J., Zhang, L., and Keutsch, F. N.: Speciation of OH reactivity above the canopy
 of an isoprene-dominated forest, Atmospheric Chemistry and Physics, 16, 9349-9359,
- 676 10.5194/acp-16-9349-2016, 2016.
- Kim, S., Karl, T., Guenther, A., Tyndall, G., Orlando, J., Harley, P., Rasmussen, R., and Apel,
 E.: Emissions and ambient distributions of Biogenic Volatile Organic Compounds
 (BVOC) in a ponderosa pine ecosystem: interpretation of PTR-MS mass spectra,
 Atmospheric Chemistry and Physics, 10, 1759-1771, 2010.
- Kim, S., Guenther, A., Karl, T., and Greenberg, J.: Contributions of primary and secondary
 biogenic VOC total OH reactivity during the CABINEX (Community Atmosphere Biosphere INteractions Experiments)-09 field campaign, Atmospheric Chemistry and
 Physics, 11, 8613-8623, 10.5194/acp-11-8613-2011, 2011.
- Kim, S., Wolfe, G. M., Mauldin, L., Cantrell, C., Guenther, A., Karl, T., Turnipseed, A.,
 Greenberg, J., Hall, S. R., Ullmann, K., Apel, E., Hornbrook, R., Kajii, Y., Nakashima,
 Y., Keutsch, F. N., DiGangi, J. P., Henry, S. B., Kaser, L., Schnitzhofer, R., Graus, M.,
 Hansel, A., Zheng, W., and Flocke, F. F.: Evaluation of HOx sources and cycling using
 measurement-constrained model calculations in a 2-methyl-3-butene-2-ol (MBO) and
 monoterpene (MT) dominated ecosystem, Atmospheric Chemistry and Physics, 13, 20312044, Doi 10.5194/Acp-13-2031-2013, 2013a.
- Kim, S., Kim, S. Y., Lee, M., Shim, H., Wolfe, G. M., Guenther, A. B., He, A., Hong, Y., and
 Han, J.: Impact of isoprene and HONO chemistry on ozone and OVOC formation in a
 semirural South Korean forest, Atmospheric Chemistry and Physics, 15, 4357-4371, Doi
 10.5194/Acp-15-4357-2015, 2015.
- Kim, S., Sanchez, D., Wang, M. D., Seco, R., Jeong, D., Hughes, S., Barletta, B., Blake, D. R.,
 Jung, J., Kim, D., Lee, G., Lee, M., Ahn, J., Lee, S.-D., Cho, G., Sung, M.-Y., Lee, Y.H., Kim, D. B., Kim, Y., Woo, J. H., Jo, D., Park, R., Park, J. H., Hong, Y.-D., and Hong,
 J.-H.: OH Reactivity in Urban and Suburban regions in Seoul, South Korea-An East Asia
 megacity in a rapid transition, Faraday Discussions, DOI:10.1039/C5FD00230C,
- 701 DOI:10.1039/C1035FD00230C, 2016.
- Kim, S., Jeong, D., Sanchez, D., Wang, M., Seco, R., Blake, D., Meinardi, S., Barletta, B.,
 Hughes, S., Jung, J., Kim, D., Lee, G., Lee, M., Ahn, J., Lee, S.-D., Cho, G., Sung, M.Y., Lee, Y.-H., and Park, R.: The Controlling Factors of Photochemical Ozone
- 705 Production in Seoul, South Korea, Aerosol Air Qual Res, 18, 2253-2261,
- 706 10.4209/aaqr.2017.11.0452, 2018.

- Kim, S. Y., Jiang, X. Y., Lee, M., Turnipseed, A., Guenther, A., Kim, J. C., Lee, S. J., and Kim,
 S.: Impact of biogenic volatile organic compounds on ozone production at the Taehwa
 Research Forest near Seoul, South Korea, Atmospheric Environment, 70, 447-453, Doi
 10.1016/J.Atmosenv.2012.11.005, 2013b.
- 711 Koss, A., Yuan, B., Warneke, C., Gilman, J. B., Lerner, B. M., Veres, P. R., Peischl, J.,
- Filerman, S., Wild, R., Brown, S. S., Thompson, C. R., Ryerson, T., Hanisco, T., Wolfe,
 G. M., Clair, J. M. S., Thayer, M., Keutsch, F. N., Murphy, S., and de Gouw, J.:
 Observations of VOC emissions and photochemical products over US oil- and gas-
- producing regions using high-resolution H3O+ CIMS (PTR-ToF-MS), Atmos. Meas.
 Tech., 10, 2941-2968, 10.5194/amt-10-2941-2017, 2017a.
- Koss, A., Yuan, B., Warneke, C., Gilman, J. B., Lerner, B. M., Veres, P. R., Peischl, J.,
 Eilerman, S., Wild, R., Brown, S. S., Thompson, C. R., Ryerson, T., Hanisco, T., Wolfe,
 G. M., Clair, J. M. S., Thayer, M., Keutsch, F. N., Murphy, S., and de Gouw, J.:
 Observations of VOC emissions and photochemical products over US oil- and gasproducing regions using high-resolution H3O+ CIMS (PTR-ToF-MS), Atmospheric
 Measurement Techniques, 10, 2941-2968, 10.5194/amt-10-2941-2017, 2017b.
- Kovacs, T. A., Brune, W. H., Harder, H., Martinez, M., Simpas, J. B., Frost, G. J., Williams, E.,
 Jobson, T., Stroud, C., Young, V., Fried, A., and Wert, B.: Direct measurements of urban
 OH reactivity during Nashville SOS in summer 1999, Journal of Environmental
 Monitoring, 5, 68-74, 10.1039/b204339d, 2003.
- Kwok, E. S. C., and Atkinson, R.: Estimation of Hydroxyl Radical Reaction-Rate Constants for
 Gas-Phase Organic-Compounds Using a Structure-Reactivity Relationship an Update,
 Atmospheric Environment, 29, 1685-1695, Doi 10.1016/1352-2310(95)00069-B, 1995.
- Lee, A., Goldstein, A. H., Kroll, J. H., Ng, N. L., Varutbangkul, V., Flagan, R. C., and Seinfeld,
 J. H.: Gas-phase products and secondary aerosol yields from the photooxidation of 16
 different terpenes, Journal of Geophysical Research-Atmospheres, 111, Artn D17305
 10.1029/2006jd007050, 2006.
- Mao, J. Q., Ren, X. R., Chen, S. A., Brune, W. H., Chen, Z., Martinez, M., Harder, H., Lefer, B.,
 Rappengluck, B., Flynn, J., and Leuchner, M.: Atmospheric oxidation capacity in the
 summer of Houston 2006: Comparison with summer measurements in other metropolitan
 studies, Atmospheric Environment, 44, 4107-4115, 10.1016/j.atmosenv.2009.01.013,
 2010.
- Muller, M., Graus, M., Wisthaler, A., Hansel, A., Metzger, A., Dommen, J., and Baltensperger,
 U.: Analysis of high mass resolution PTR-TOF mass spectra from 1,3,5-trimethylbenzene
 (TMB) environmental chamber experiments, Atmospheric Chemistry and Physics, 12,
 829-843, 10.5194/acp-12-829-2012, 2012.
- Nakashima, Y., Kato, S., Greenberg, J., Harley, P., Karl, T., Turnipseed, A., Apel, E., Guenther,
 A., Smith, J., and Kajii, Y.: Total OH reactivity measurements in ambient air in a
 southern Rocky mountain ponderosa pine forest during BEACHON-SRM08 summer
 campaign, Atmospheric Environment, 85, 1-8, 2014.
- Nolscher, A. C., Williams, J., Sinha, V., Custer, T., Song, W., Johnson, A. M., Axinte, R.,
 Bozem, H., Fischer, H., Pouvesle, N., Phillips, G., Crowley, J. N., Rantala, P., Rinne, J.,
- Kulmala, M., Gonzales, D., Valverde-Canossa, J., Vogel, A., Hoffmann, T., Ouwersloot,
- 750 H. G., de Arellano, J. V. G., and Lelieveld, J.: Summertime total OH reactivity
- 751 measurements from boreal forest during HUMPPA-COPEC 2010, Atmospheric
- 752 Chemistry and Physics, 12, 8257-8270, Doi 10.5194/Acp-12-8257-2012, 2012.

- Nolscher, A. C., Yanez-Serrano, A. M., Wolff, S., de Araujo, A. C., Lavric, J. V., Kesselmeier,
 J., and Williams, J.: Unexpected seasonality in quantity and composition of Amazon
- 755 rainforest air reactivity, Nature Communications, 7, ARTN 10383
- 756 10.1038/ncomms10383, 2016.
- Ortega, J., Turnipseed, A., Guenther, A. B., Karl, T. G., Day, D. A., Gochis, D., Huffman, J. A.,
 Prenni, A. J., Levin, E. J. T., Kreidenweis, S. M., DeMott, P. J., Tobo, Y., Patton, E. G.,
 Hodzic, A., Cui, Y. Y., Harley, P. C., Hornbrook, R. S., Apel, E. C., Monson, R. K.,
- Eller, A. S. D., Greenberg, J. P., Barth, M. C., Campuzano-Jost, P., Palm, B. B., Jimenez,
 J. L., Aiken, A. C., Dubey, M. K., Geron, C., Offenberg, J., Ryan, M. G., Fornwalt, P. J.,
- 762 Pryor, S. C., Keutsch, F. N., DiGangi, J. P., Chan, A. W. H., Goldstein, A. H., Wolfe, G.
- 763 M., Kim, S., Kaser, L., Schnitzhofer, R., Hansel, A., Cantrell, C. A., Mauldin, R. L., and
- 764 Smith, J. N.: Overview of the Manitou Experimental Forest Observatory: site description
- and selected science results from 2008 to 2013, Atmospheric Chemistry and Physics, 14,
 6345-6367, 10.5194/acp-14-6345-2014, 2014.
- Praplan, A. P., Tykka, T., Chen, D., Boy, M., Taipale, D., Vakkari, V., Zhou, P. T., Petaja, T.,
 and Hellen, H.: Long-term total OH reactivity measurements in a boreal forest,
 Atmospheric Chemistry and Physics, 19, 14431-14453, 10.5194/acp-19-14431-2019,
 2019.
- Ramasamy, S., Nagai, Y., Takeuchi, N., Yamasaki, S., Shojia, K., Ida, A., Jones, C., Tsurumaru,
 H., Suzuki, Y., Yoshino, A., Shimada, K., Nakashima, Y., Kato, S., Hatakeyama, S.,
 Matsuda, K., and Kajii, Y.: Comprehensive measurements of atmospheric OH reactivity
 and trace species within a suburban forest near Tokyo during AQUAS-TAMA campaign,
 Atmospheric Environment, 184, 166-176, 10.1016/j.atmosenv.2018.04.035, 2018.
- Ren, X. R., Harder, H., Martinez, M., Lesher, R. L., Oliger, A., Shirley, T., Adams, J., Simpas, J.
 B., and Brune, W. H.: HOx concentrations and OH reactivity observations in New York
 City during PMTACS-NY2001, Atmospheric Environment, 37, 3627-3637,
 10.1016/S1352-2310(03)00460-6, 2003.
- Ren, X. R., Brune, W. H., Oliger, A., Metcalf, A. R., Simpas, J. B., Shirley, T., Schwab, J. J.,
 Bai, C. H., Roychowdhury, U., Li, Y. Q., Cai, C. X., Demerjian, K. L., He, Y., Zhou, X.
 L., Gao, H. L., and Hou, J.: OH, HO2, and OH reactivity during the PMTACS-NY
 Whiteface Mountain 2002 campaign: Observations and model comparison, Journal of
- 784 Geophysical Research-Atmospheres, 111, Artn D10s03
- 785 10.1029/2005jd006126, 2006.
- Rinne, J., Ruuskanen, T. M., Reissell, A., Taipale, R., Hakola, H., and Kulmala, M.: On-line
 PTR-MS measurements of atmospheric concentrations of volatile organic compounds in
 a European boreal forest ecosystem, Boreal Environ Res, 10, 425-436, 2005.
- Ruuskanen, T. M., Mueller, M., Schnitzhofer, R., Karl, T., Graus, M., Bamberger, I., Hortnagl,
 L., Brilli, F., Wohlfahrt, G., and Hansel, A.: Eddy covariance VOC emission and
 deposition fluxes above grassland using PTR-TOF, Atmospheric Chemistry and Physics,
 11, 611-625, 2011.
- Sanchez, D., Jeong, D., Seco, R., Wrangham, I., Park, J.-H., Brune, W. H., Koss, A., Gilman, J.,
 de Gouw, J., Misztal, P., Goldstein, A., Baumann, K., Wennberg, P. O., Keutsch, F. N.,
 Guenther, A., and Kim, S.: Intercomparison of OH and OH reactivity measurements in a
 high isoprene and low NO environment during the Southern Oxidant and Aerosol Study
- 797 (SOAS), Atmospheric Environment, 174, 227-236, 10.1016/j.atmosenv.2017.10.056,
- 798 2018.

- Sanchez, D.: Towards the closure of OH reactivity and volatile organic compound budget in the
 troposphere using in situ observations, Ph. D., Deaprtment of Earth System Science,
 University of California, Irvine, 2019.
- Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J.: Protocol for the development
 of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non aromatic volatile organic compounds, Atmospheric Chemistry and Physics, 3, 161-180,
 2003.
- Seco, R., Penuelas, J., and Filella, I.: Short-chain oxygenated VOCs: Emission and uptake by
 plants and atmospheric sources, sinks, and concentrations, Atmospheric Environment, 41,
 2477-2499, 10.1016/j.atmosenv.2006.11.029, 2007.
- Shirley, T. R., Brune, W. H., Ren, X., Mao, J., Lesher, R., Cardenas, B., Volkamer, R., Molina,
 L. T., Molina, M. J., Lamb, B., Velasco, E., Jobson, T., and Alexander, M.: Atmospheric
 oxidation in the Mexico City Metropolitan Area (MCMA) during April 2003,
 Atmospheric Chemistry and Physics, 6, 2753-2765, DOI 10.5194/acp-6-2753-2006,
 2006.
- Sinha, V., Williams, J., Crowley, J. N., and Lelieveld, J.: The comparative reactivity method a
 new tool to measure total OH reactivity in ambient air, Atmospheric Chemistry and
 Physics, 8, 2213-2227, 2008a.
- Sinha, V., Williams, J., Lelieveld, J., Ruuskanen, T. M., Kajos, M. K., Patokoski, J., Hellen, H.,
 Hakola, H., Mogensen, D., Boy, M., Rinne, J., and Kulmala, M.: OH Reactivity
 Measurements within a Boreal Forest: Evidence for Unknown Reactive Emissions,
 Environmental Science & Technology, 44, 6614-6620, Doi 10.1021/Es101780b, 2010.
- Sinha, V., Williams, J., Diesch, J. M., Drewnick, F., Martinez, M., Harder, H., Regelin, E.,
 Kubistin, D., Bozem, H., Hosaynali-Beygi, Z., Fischer, H., Andres-Hernandez, M. D.,
 Kartal, D., Adame, J. A., and Lelieveld, J.: Constraints on instantaneous ozone
 production rates and regimes during DOMINO derived using in-situ OH reactivity
 measurements, Atmospheric Chemistry and Physics, 12, 7269-7283, Doi 10.5194/Acp12-7269-2012, 2012.
- Sullivan, J. T., McGee, T. J., Stauffer, R. M., Thompson, A. M., Weinheimer, A., Knote, C.,
 Janz, S., Wisthaler, A., Long, R., Szykman, J., Park, J., Lee, Y., Kim, S., Jeong, D.,
 Sanchez, D., Twigg, L., Sumnicht, G., Knepp, T., and Schroeder, J. R.: Taehwa Research
 Forest: a receptor site for severe domestic pollution events in Korea during 2016,
- Atmospheric Chemistry and Physics, 19, 5051-5067, 10.5194/acp-19-5051-2019, 2019.
 Whalley, L. K., Stone, D., Bandy, B., Dunmore, R., Hamilton, J. F., Hopkins, J., Lee, J. D.,
 Lewis, A. C., and Heard, D. E.: Atmospheric OH reactivity in central London:
- observations, model predictions and estimates of in situ ozone production, Atmospheric
 Chemistry and Physics, 16, 2109-2122, 10.5194/acp-16-2109-2016, 2016.
- Williams, J., Poschl, U., Crutzen, P. J., Hansel, A., Holzinger, R., Warneke, C., Lindinger, W.,
 and Lelieveld, J.: An atmospheric chemistry interpretation of mass scans obtained from a
 proton transfer mass spectrometer flown over the tropical rainforest of Surinam, Journal
- of Atmospheric Chemistry, 38, 133-166, Doi 10.1023/A:1006322701523, 2001.

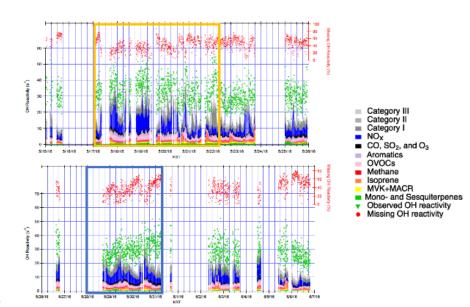
843	Yang, Y. D., Shao, M., Wang, X. M., Nolscher, A. C., Kessel, S., Guenther, A., and Williams, J.:
844	Towards a quantitative understanding of total OH reactivity: A review, Atmospheric
845	Environment, 134, 147-161, 10, 1016/i atmoseny, 2016, 03, 010, 2016,

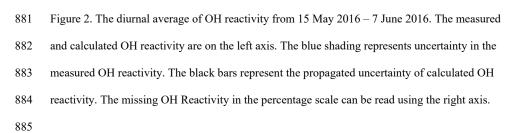
- Yang, Y. D., Shao, M., Kessel, S., Li, Y., Lu, K. D., Lu, S. H., Williams, J., Zhang, Y. H., Zeng,
 L. M., Noelscher, A. C., Wu, Y. S., Wang, X. M., and Zheng, J. Y.: How the OH
 reactivity affects the ozone production efficiency: case studies in Beijing and Heshan,
 China, Atmospheric Chemistry and Physics, 17, 7127-7142, 10.5194/acp-17-7127-2017,
 2017.
- Yuan, B., Warneke, C., Shao, M., and de Gouw, J. A.: Interpretation of volatile organic
 compound measurements by proton-transfer-reaction mass spectrometry over the
 deepwater horizon oil spill, International Journal of Mass Spectrometry, 358, 43-48,
 10.1016/j.ijms.2013.11.006, 2014.
- Zannoni, N., Gros, V., Esteve, R. S., Kalogridis, C., Michoud, V., Dusanter, S., Sauvage, S.,
 Locoge, N., Colomb, A., and Bonsang, B.: Summertime OH reactivity from a receptor
 coastal site in the Mediterranean Basin, Atmospheric Chemistry and Physics, 17, 12645 12658, 2017.
- Zhao, J., Zhang, R. Y., Fortner, E. C., and North, S. W.: Quantification of hydroxycarbonyls
 from OH-isoprene reactions, J Am Chem Soc, 126, 2686-2687, 10.1021/ja0386391,
 2004.
- 862
- 863
- 864
- 865

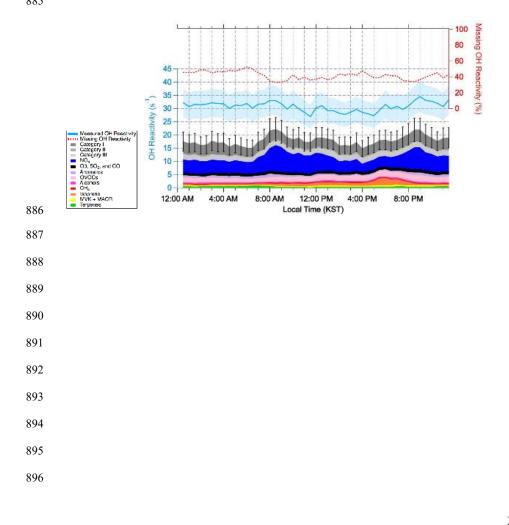
866 **Tables and Figures**

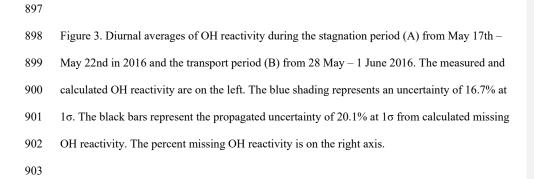
867

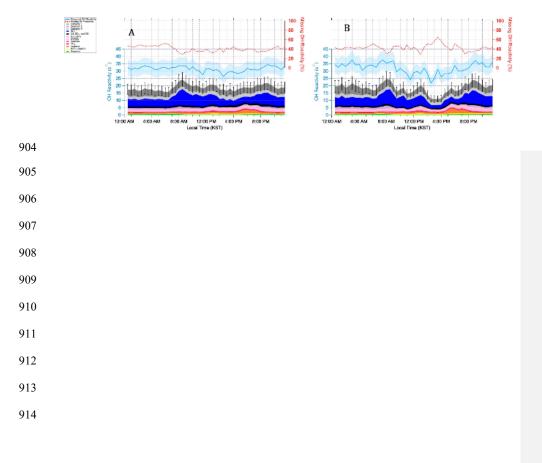
868 Table 1. Description of instrument and measured parameters.

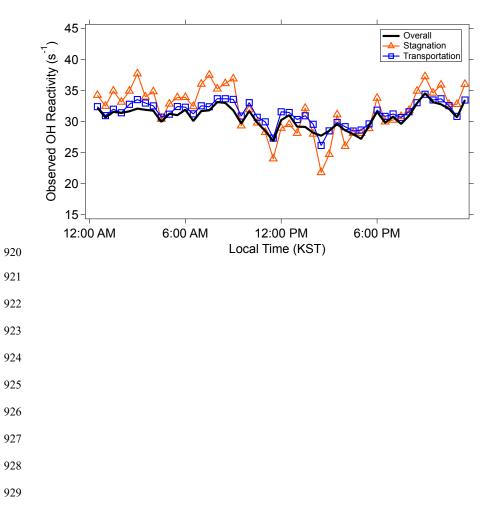

Instrument	Parameters	Measurement Uncertainty (1σ) and lower level of detection limit
Chemical Ionization Spectroscopy - Comparative Reactivity Method (CIMS-CRM)	OH reactivity	16.7% (5 sec-1)
Thermo Scientific 42i	NO	20% (100 ppt)
Cavity Ring Down Spectroscopy	NO ₂	20% (50 ppt)
Thermo Scientific 49i	O ₃	4% (1 ppb)
Lufft 501 C	Temperature	±0.3 °C (NA)
Thermo Scientific 48i TLE	CO	10% (50 ppb)

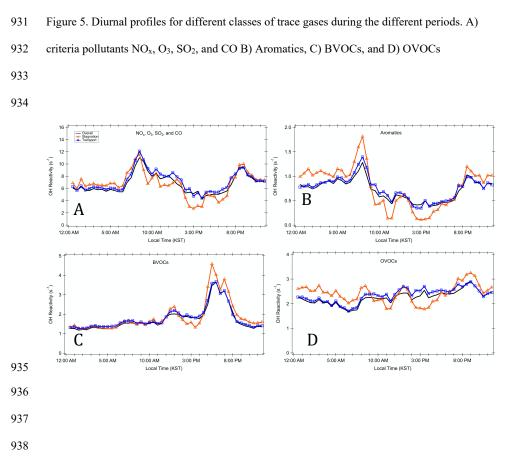

Thermo Scientific 43i TLE	SO ₂	10% (100 ppt)
Mini Tunable Infrared Laser Direct Absorption Spectroscopy (mini-TILDAS) Formaldehyde Monitor(Herndon et al., 2005) (Aerodyne Research, Inc)	HCHO, CH4, CH3OH	5% (few tens ppt)
Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-TOF-MS 8000, IONICON Analytik, GmbH)	Acetaldehyde, Ethanol, Acetone, Isoprene, MVK + MACR, Methyl ethyl ketone, Benzene, Monoterpenes, Toluene, Furfural, Benzaldehyde, Xylenes, Trimethylbenzenes, Sesquiterpenes	Isoprene 9.8% Benzene 6.9% Toluene 6.5% Monoterpenes 9.2% Xylenes 4.0% Other 16.5% (tens ppt)

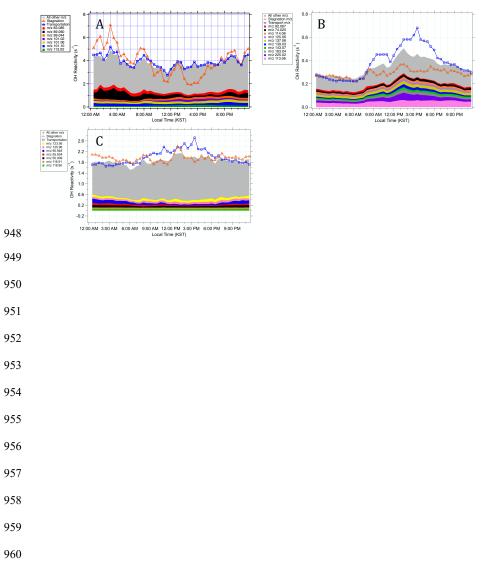


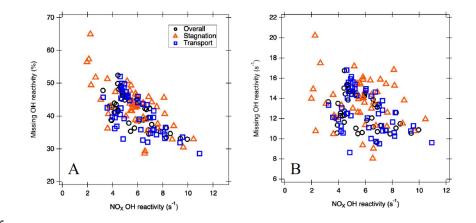

- 875 Figure 1. Observed and calculated OH reactivity during KORUS-AQ 2016. The measured and
- 876 calculated OH reactivity are on the left axis while the missing OH reactivity is on the right axis.
- 877 The yellow box represents the stagnation period and the blue box represents the transport period.








- 917 Figure 4. The observed OH reactivity during the overall campaign, stagnation period, and
- 918 transport period.
- 919



946 Category II and C) Category III

961 Figure 7. The correlation between A) NOx OH reactivity and absolute missing OH reactivity and

962 B) percent missing OH reactivity

