1 Supplemental Materials

- 2
- 3

4 Sensitivity Analysis of the Surface Ozone and Fine

5 Particulate Matter to Meteorological Parameters in China

- 6 Zhihao Shi¹, Lin Huang¹, Jingyi Li¹, Qi Ying², Hongliang Zhang^{3,4}, Jianlin Hu^{1*}
- 7
- 8 ¹Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution
 - 9 Control, Collaborative Innovation Center of Atmospheric Environment and
 - 10 Equipment Technology, Nanjing University of Information Science & Technology,
 - 11 Nanjing 210044, China
 - ¹² ²Zachry Department of Civil and Environmental Engineering, Texas A&M University,
 - 13 College Station, TX 77843, USA
 - ¹⁴ ³Department of Environmental Science and Engineering, Fudan University, Shanghai
 - 15 200438, China
 - ⁴Institute of Eco-Chongming (SIEC), Shanghai 200062, China
 - 17
 - 18

19 ^{*}Corresponding authors:

Jianlin Hu, Email: jianlinhu<u>@nuist.edu.cn</u>. Phone: +86-25-58731504.

Fig.S1 Changes in monthly average O₃-8h (ppb) in January and July, 2013 due to (a) T+1.5K, (b)
WS-20%, (c) AH+20%, (d) PBLH-30%, (e) CLW+20%, (f) PCP+20%.

Fig.S2 Changes in monthly average O_3 -8h (ppb) in January and July, 2013 due to (a) T+0.5K, (b)

27 WS+5%, (c) AH+5%, (d) PBLH+10%, (e) CLW+5%, (f) PCP+5%.

Fig. S3 Changes in monthly average O₃-8h (ppb) in January and July, 2013 due to (a) T-0.5K, (b)
WS-5%, (c) AH-5%, (d) PBLH-10%, (e) CLW-5%, (f) PCP-5%.

Fig.S4 Changes in monthly average $PM_{2.5}$ concentration (µg m⁻³) in January and July, 2013 due to (a) T+1.5K, (b) WS-20%, (c) AH+20%, (d) PBLH-30%, (e) CLW+20%, (f) PCP+20%.

Fig.S5 Changes in monthly average $PM_{2.5}$ concentration (µg m⁻³) in January and July, 2013 due to (a) T+0.5K, (b) WS+5%, (c) AH+5%, (d) PBLH +10%, (e) CLW+5%, (f) PCP+5%.

Fig.S6 Changes in monthly average $PM_{2.5}$ concentration (µg m⁻³) in January and July, 2013 due to (a) T-0.5K, (b) WS-5%, (c) AH-5%, (d) PBLH-10%, (e) CLW-5%, (f) PCP-5%.

Fig.S8 Changes of O₃-8h concentration (ppb) in January and July 2013 caused by temperature
perturbation: (a) is Beijing; (b) is Shanghai; (c) is Guangzhou; (d) is Chongqing; (e) is Xi'an

Fig.S9 Same as Fig. S8, but meteorological perturbation is wind speed.

Fig.S10 Same as Fig. S8, but meteorological perturbation is relative humidity.

Fig.S11 Change of total $PM_{2.5}$ concentration ($\mu g m^{-3}$) in January and July 2013 caused by

temperature perturbation: (a) is Beijing; (b) is Shanghai; (c) is Guangzhou; (d) is Chongqing; (e) is
Xi'an.

Fig.S12 Same as Fig.S11, but meteorological perturbation is wind speed.

Fig.S13 Same as Fig. S11, but meteorological perturbation is relative humidity.