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Abstract. Modern-Era Retrospective analysis for Research and Applications v.2 (MERRA-2), Copernicus Atmosphere Mon-

itoring Service Operational Analysis (CAMS-OA), and a high-resolution regional Weather Research and Forecasting model

coupled with Chemistry (WRF-Chem) were used to evaluate natural and anthropogenic Particulate Matter (PM) air pollution

in the Middle East (ME) during 2015-2016. Two Moderate Resolution Imaging Spectrometer (MODIS) retrievals: combined

product Deep Blue and Deep Target (MODIS-DB&DT), Multi-Angle Implementation of Atmospheric Correction (MAIAC),5

and Aerosol Robotic Network (AERONET) aerosol optical depth (AOD) observations, as well as in situ PM measurements for

2016, were used for validation of the WRF-Chem output and both assimilation products.

MERRA-2 and CAMS-OA assimilate AOD observations. WRF-Chem is a free-running model, but dust emission in WRF-

Chem is tuned to fit AOD and aerosol volume size distributions obtained from AERONET. MERRA-2 was used to construct

WRF-Chem initial and boundary conditions both for meteorology and chemical/aerosol species. SO2 emissions in WRF-Chem10

are based on the novel OMI-HTAP SO2 emission dataset.

The correlation with the AERONET AOD is highest for MERRA-2 (0.72-0.91), MAIAC (0.63-0.96), and CAMS-OA (0.65-

0.87), followed by MODIS-DB&DT (0.56-0.84) and WRF-Chem (0.43-0.85). However, CAMS-OA has a relatively high

positive mean bias with respect to AERONET AOD. The spatial distributions of seasonally averaged AODs from WRF-Chem,

assimilation products, and MAIAC are well correlated with MODIS DB&DT AOD product. MAIAC has the highest correlation15

(R=0.8) followed by MERRA-2 (R=0.66), CAMS-OA (R=0.65), and WRF-Chem (R=0.61). WRF-Chem, MERRA-2, and

MAIAC underestimate, and CAMS-OA overestimates MODIS-DB&DT AOD.

The simulated and observed PM concentrations might differ of a factor of two, because of it is more challenging to the model

and the assimilation products to reproduce PM concentration measured within the city. Although aerosol fields in WRF-Chem

and assimilation products are entirely consistent, WRF-Chem, due to its higher spatial resolution and better SO2 emissions,20

is preferable for analysis of regional air-quality over the ME. The WRF-Chem’s PM background concentrations exceed the

World Health Organization (WHO) guidelines over the entire ME. Mineral dust makes the major contributor to PM (⇡75–95%)

compared to other aerosol types. Near and down the wind from the SO2 emission sources, non-dust aerosols (primarily sulfate)
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contribute up to 30% into PM2.5. The contribution of sea salt into PM in coastal regions can reach 5%. The contributions of

organic matter, black and organic carbon into PM over the Middle East are insignificant. In the major cities over the Arabian25

peninsula, the 90th percentile of PM10 and PM2.5 daily mean surface concentrations exceed the corresponding Kingdom Saudi

Arabia air-quality limits. The contribution of the non-dust component to PM2.5 is < 25%, which limits the emission control

effect on air quality. The mitigation of the dust effect on air quality requires the development of environment-based approaches

like growing tree belts around the cities and enhancing in-city vegetation cover. The presented in this study WRF-Chem

configuration could be a prototype of a future air quality forecast system that warn the population against air pollution hazards.30

1 Introduction

PM is a complex mixture of sea salt, sulfate, black carbon, organic matter, and mineral dust, suspended in the air. The dramatic

increase in the level of air pollution in developing countries over the last decades is forced by rapid economic and population

growth, burning of fossil fuels, construction, and agricultural activities (Janssens-Maenhout et al., 2015). However, the primary

cause of air pollution in the ME is mineral dust, and it is on the rise (Klingmüller et al., 2016). Along with Asia and Africa,35

the ME significantly contributes to global dust emissions, which are in the range of 1000-2000 Tg/year (Zender et al., 2004).

According to Prospero et al. (2002), the Middle East and North Africa (MENA) regions account for about half of global dust

emissions. By integrating surface emissions in MERRA-2 reanalysis we found that, the total global dust emission averaged

over the 2015-2016 period is about 1600 Tg/year, right in the middle of the Zender et al. (2004) estimate. The dust emission

from our simulation domain (see Fig. 1) that covers the ME and nearby areas is about 500 Tg/year, contributing ⇡30% to the40

global dust emission budget. Also, frequent inflows of pollutants from Europe, Africa, and India, worsen the air quality over

the Arabian Peninsula (Jish Prakash et al., 2015; Kalenderski et al., 2013; Notaro et al., 2013; Reid et al., 2008; Mohalfi et al.,

1998; Kalenderski and Stenchikov, 2016; Parajuli et al., 2019). Because of the large amount of dust, the ME is one of the most

polluted areas in the world. Located in the center of the northern subtropical dust belt, the Arabian Desert is the third-largest

(after the Sahara and the East Asian deserts) region of dust generation, where dust plays a significant role in controlling regional45

climate (Cahill et al., 2017; Banks et al., 2017; Jish Prakash et al., 2016; Farahat, 2016; Kalenderski and Stenchikov, 2016;

Munir et al., 2013; Alghamdi et al., 2015; Lihavainen et al., 2016; Anisimov et al., 2017; Osipov and Stenchikov, 2018).

In addition to natural dust aerosols, the ME receives high concentrations of anthropogenic PM (Karagulian et al., 2015;

Al-Taani et al., 2019; Alharbi et al., 2015; Khodeir et al., 2012). The most important anthropogenic aerosol in ME is sulfate

with SO2 as a precursor, the contributions of other types of aerosols in PM, sea salt, organic matter, and black carbon are of50

lesser importance in the ME (Randles et al., 2017). ME emits about 10% of the total global anthropogenic SO2 (Klimont et al.,

2013). SO2 produced in the course of power generation, water desalination, and oil recovery operations (Al-Jahdali and Bisher,

2008) is converted photochemically into sulfate aerosol, which contributes to PM and has significant adverse effects on human

health (Lelieveld et al., 2015). Ukhov et al. (2020b) simulated SO2 transport and distribution over the Middle east using the

high-resolution WRF-Chem model and demonstrated high surface concentrations of SO2 along the west and east coasts of55

Arabian Peninsula.
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The impact of aerosols on air-quality is characterized by near-surface concentrations of PM, which comprise both PM10 and

PM2.5 (particles with diameters less than 10 µm and 2.5 µm, correspondingly). Extended exposure to PM may cause cardiovas-

cular and respiratory disease, lung cancer, and cause premature mortality on a global scale (Lelieveld et al., 2015). According

to the WHO, outdoor air pollution caused 4.2 million premature deaths worldwide in 2016 (WHO, 2018). To protect human60

health and the environment WHO (WHO, 2006), and the National Agencies, e.g., the United States Environmental Protection

Agency (US-EPA) (USEPA, 2010), European Commission (EC) (EUEA, 2008), and Kingdom Saudi Arabia Presidency of

Meteorology and Environment (KSA-PME) (PME, 2012) issued the air quality regulations for PM that are presented in Table

1. The WHO regulations are the strictest, while KSA-PME regulations are the softest.

Figure 1. Simulation domain with marked locations of the AQMS and AERONET sites.

Global satellite observations of aerosol optical depth (AOD) inform about vertically-integrated aerosol loading in an entire65

atmospheric column. But the near-surface PM concentration can not be observed from the space. These measurements could

be conducted only in situ in a limited number of locations. Along with instrumental observations, modern data assimilation

products provide valuable information about AOD and near-surface PM concentration even in areas where satellite sensors

are unreliable due to factors such as the high reflectivity of land surfaces (Shi et al., 2011). Assimilation products improve
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Table 1. Air quality regulations for PM2.5 and PM10 prescribed by WHO, US-EPA, EC, and KSA-PME, µg/m3.

Aver. period WHO US-EPA EC KSA-PME

PM2.5 24 hours 25 351 - 35

1 year 10 152 25 15

PM10 24 hours 50 1504 503 340

1 year 20 - 40 80
1 98th percentile, averaged over 3 years
2 annual mean, averaged over 3 years
3 35 permitted exceedances per year
4 not to be exceeded more than once per year on average over 3 years

the aerosol total column loadings through the assimilation of observed AOD but are not capable of assimilating the aerosol70

vertical structure and chemical composition. There are two well known data assimilation products that assimilate atmospheric

constituents: MERRA-2 (Randles et al., 2017; Buchard et al., 2017) from National Aeronautics and Space Administration

(NASA) Goddard Space Flight Center (GSFC) and CAMS-OA (Inness et al., 2019; Flemming et al., 2015; Inness et al., 2015)

from European Centre for Medium-range Weather Forecast (ECMWF). These data assimilation products adequately reproduce

AOD and PM concentrations at different regions of the world (Provençal et al., 2017; Buchard et al., 2017; Cesnulyte et al.,75

2014; Cuevas et al., 2014). E.g., Provençal et al. (2017) tested PM surface concentrations from the MERRA Aerosol Reanalysis

(predecessor of MERRA-2) against observations over Europe. Buchard et al. (2017) evaluated MERRA-2 surface PM2.5 on

the global scale and over the continental United States. Excessive validation of the Monitoring Atmospheric Composition and

Climate (MACC) reanalysis (predecessor of CAMS) has been conducted by Cesnulyte et al. (2014), who compared the model

AOD with the AERONET observations. Cuevas et al. (2014) evaluated atmospheric mineral dust from the MACC reanalysis has80

been evaluated over the MENA region for 2007–2008 using satellite and ground-based observations. MERRA-2 and CAMS-

OA are global and have a relatively low spatial resolution (in comparison with the regional models), which diminishes their

ability to resolve fine-scale regional spatial features. Like any other model, MERRA-2 and CAMS-OA use emission inventories

of anthropogenic pollutants that may be outdated and incomplete, especially in the rapidly developing parts of the world, like

the ME region (McLinden et al., 2016). E.g., SO2 emissions used in MERRA-2 and CAMS-OA differ by 45-50% in some ME85

regions (Ukhov et al., 2020b).

In this study, we evaluate aerosol outputs from MERRA-2, CAMS-OA, and WRF-Chem over the ME, against satellite,

ground-based AOD observations, and in situ PM2.5 and PM10 measurements during 2015-2016 period, and assess air pollution

over the ME focusing on the following science questions:

1. How accurately do WRF-Chem, MERRA-2, and CAMS-OA capture the abundance of dust aerosol, its volume size, and90

spatial distributions over the ME, in comparison with AERONET and satellite observations?

2. How accurately do WRF-Chem, MERRA-2, and CAMS-OA capture PM surface concentrations compared with in situ

measurements?
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3. What are the contributions of dust, sea salt, sulfate, black carbon, and organic matter in PM surface concentrations?

4. What is the overall impact of PM pollution on air quality over the ME region and in the ME major cities?95

The paper is organized as follows: Section 2 describes the observational datasets used in this study. Section 3 characterizes

data assimilation products. In Section 4, the WRF-Chem model setup is described. In Section 5, the capabilities of WRF-Chem,

MERRA-2, and CAMS-OA to simulate dust aerosol abundance over the ME are compared; the PM spatial distributions and PM

air pollution in the ME major cities obtained from the WRF-Chem simulations are also discussed. Conclusions are presented

in Section 6.100

2 Observational datasets

To evaluate the data assimilation products and WRF-Chem output, we use Moderate Resolution Imaging Spectrometer (MODIS)

AOD retrievals, ground-based Aerosol Robotic Network (AERONET) AOD observations, and aerosol volume size distribution

retrievals, as well as in situ measurements of PM surface concentrations.

2.1 AERONET105

AERONET comprises more than 1000 observation sites equipped with CIMEL sunphotometers and PREDE skyradiometers

manufactured in France by CIMEL and in Japan by PREDE. They measure direct sun and sky radiances at eight wavelengths

(340, 380, 440, 500, 670, 870, 940, and 1020 nm) every 15 minutes during daylight time (Holben et al., 1998). In 2012 we

established the KAUST Campus site, which is currently the only permanently operational AERONET site in Saudi Arabia.

For this study we have chosen three AERONET sites (KAUST Campus, Mezaira, and Sede Boker, see Fig. 1) that routinely110

collected data in 2015-2016 and are located within our domain. We utilized level 2.0 (cloud screened and quality assured)

AERONET AOD data. To facilitate comparison with the model output the 550 nm AOD is calculated using the following

relation:

⌧�
⌧�0

=

✓
�

�0

◆�↵

(1)

where ↵ is the Ångström exponent for the 440-675 nm wavelength range provided by AERONET, ⌧� is the optical thickness115

at wavelength �, and ⌧�0 is the optical thickness at the reference wavelength �0. From here forward, we presume that AOD is

given or calculated at 550 nm.

In addition to direct observations of AOD, the AERONET retrieval algorithm provides column integrated Aerosol Volume

Size Distribution (AVSD) dV/dlnr (µm3/µm2) on 22 logarithmically equidistant discrete points in the range of radii between

0.05 and 15 µm (Dubovik and King, 2000). We use these retrievals to evaluate the AVSDs calculated by WRF-Chem, CAMS-120

OA, and MERRA-2.
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2.2 MODIS

MODIS instruments on-board the NASA TERRA and AQUA satellites provide aerosol properties over both land and ocean

with near-daily global coverage. The standard MODIS AOD aerosol product combines two retrieval algorithms: 1) the MODIS

dark-target (DT) algorithm (Kaufman et al., 1997) is used over the ocean and dark areas with sufficient vegetation, 2) the Deep125

Blue (DB) algorithm is used over bright desert surfaces of the Sahara and the ME. From this combined product (MODIS-

DB&DT v6.1) we use AOD at 550 nm level 2 data from the daily dataset at 10 km spatial resolution, downloaded from

https://ladsweb.modaps.eosdis.nasa.gov/about/purpose (Levy et al., 2015).

Recently, a new MODIS AOD product became available that was obtained using the Multi-Angle Implementation of Atmo-

spheric Correction (MAIAC) algorithm (Lyapustin et al., 2018). This algorithm uses time series analysis and image processing130

to derive the surface bidirectional reflectance function at fine spatial resolution. MAIAC uses empirically tuned, spatially vary-

ing, aerosol properties derived from the AERONET climatology, and provides AOD at 470 and 550 nm with 1 km spatial

resolution over land globally. We include the new MAIAC product (version 6, level 2) in the comparison between simulated

and retrieved AODs.

2.3 Surface in situ PM observations135

To test the model-produced PM concentrations, we use observations conducted by the air quality monitoring stations (AQMS)

that measure surface concentrations of PM2.5 and PM10 in Riyadh, Jeddah, and Dammam (megacities of Saudi Arabia), see Fig.

1. Observations are available starting from 2016. The measurements were conducted by the Saudi Authority for Industrial Cities

and Technology Zones (MODON). MODON uses MP101M analyzer to continuously detect PM2.5 and PM10 concentrations by

measuring the absorption of low-energy �-radiation that is proportional to the mass of aerosol particles independently of their140

physicochemical nature (measurement Method ISO 10473). PM2.5 and PM10 measurement error is ± 5%. The system satisfies

the European Standards EN 12341 and US EPA (40CFR part 53) for PM10 and EN 14907 for PM2.5 continuous monitoring.

The PM measurements are conducted every 15 minutes, and collected data are transmitted in real-time to servers at MODON

for processing and storage. To provide confidence in the operational status of the each AQMS, a comprehensive physical audit

is conducted quarterly by Ricardo-AEA Ltd, (https://www.ctc-n.org/network/network-members/ricardo-aea-ltd).145

3 Data assimilation products

MERRA-2 and CAMS-OA assimilate satellite observations to provide aerosol abundance and air-quality data globally. MERRA-

2 also assimilates AERONET AODs. In contrast, WRF-Chem is a free-running model and does not assimilate observations.

3.1 MERRA-2

MERRA-2 (https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2) provides meteorological and atmospheric composition fields on150

0.625�⇥0.5� latitude-longitude grid and 72 terrain-following hybrid �� p model layers (Randles et al., 2017; Buchard et al.,
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2017). The pressure at the model top equals 0.01 hPa. MERRA-2 uses the Goddard Earth Observing System, version 5

(GEOS-5) atmospheric model (Rienecker et al., 2008), which is interactively coupled to the Goddard Global Ozone Chemistry

Aerosol Radiation and Transport (GOCART) model (Chin et al., 2002, 2014) (i.e., it takes into account the effects of aerosols

on radiation and model dynamics). This model simulates dust and sea salt in five size bins (see Tab. 2), SO2, sulfate, organic155

and black carbon (hydrophobic and hydrophilic), O3, CO, dimethyl sulfide (DMS), and methane sulfonic acid (MSA). The

dust density is 2600 kg/m3 for all sizes. Dust and sea salt emissions are calculated in the model, depending on the near-

surface wind. The dust source function is taken from Ginoux et al. (2001). For anthropogenic emissions, MERRA-2 employs

the EDGAR-4.2 (Janssens-Maenhout et al., 2013) emission inventory available on a 0.1�⇥0.1� grid. MERRA-2 assimilated

AOD at 550 nm from the Advanced Very High-Resolution Radiometer (AVHRR) (Heidinger et al., 2014) over the oceans until160

2002. Since 2000 MERRA-2 started assimilating MODIS and Multiangle Imaging SpectroRadiometer (MISR) (Kahn et al.,

2005) data over land and ocean. Both instruments are on the TERRA satellite which has an equatorial overpass at 10:30 am

UTC, while AVHRR has mostly orbited with the afternoon equatorial crossing time. Therefore MERRA-2 continued using

AVHRR data over the ocean until 2002 when the AQUA satellite was launched. Since AQUA has an orbit with the equator

overpass at 2:30 pm UTC, AVHRR data was no longer needed for coverage. We have to mention that MERRA-2 assimilates165

specially processed MODIS observations, not the standard MODIS-DB&DT aerosol product. It also assimilates AERONET

AODs (Randles et al., 2017).

3.2 CAMS-OA

CAMS-OA (https://atmosphere.copernicus.eu/) has been conducted in almost real-time since July 2012. The CAMS-OA prod-

uct has a resolution of 0.8�⇥0.8� before 21 June 2016, and 0.4�⇥0.4� after that, with 60 vertical levels. It employs the ECMWF170

aerosol data assimilation system developed within the Integrated Forecast System (IFS) (Morcrette et al., 2009; Benedetti et al.,

2009). The extended version of the Carbon Bond chemical mechanism 5 (CB05) (Yarwood et al., 2005) is implemented in the

IFS (Flemming et al., 2015). CB05 describes tropospheric chemistry with 54 species and 126 reactions. The chemistry scheme

is coupled with the aerosol module.

CAMS-OA simulates five aerosol species: dust, sea salt, sulfate, organic carbon, and black carbon. To calculate dust and sea175

salt, it uses three dust-bins (see Tab. 2). The dust density is 2600 kg/m3 for all bins. Emissions of mineral dust and sea salt de-

pend on simulated near-surface wind speed. Dust emission is parameterized following Marticorena and Bergametti (1995) with

the source function adopted from Ginoux et al. (2001). SO2 oxidation into sulfate aerosol is parameterized using a prescribed

latitude-dependent e-folding timescale ranging from 3 days at the equator to 8 days at the poles. The anthropogenic emissions

for the chemical species are taken from the MACCity inventory (Granier et al., 2011), which is available on a 0.5�⇥0.5�180

grid and covers the period 1960–2010. CAMS-OA assimilates MODIS AQUA and TERRA AODs. It uses observations from

Collection 5 since 2009, and Deep Blue since 2015.
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Table 2. Radii ranges (µm) of dust and sea salt bins used in GOCART model (WRF-Chem, MERRA-2) and in CAMS-OA.

Bin

1 2 3 4 5

CAMS-OA dust 0.03-0.55 0.55-0.9 0.9-20.0 - -

CAMS-OA sea salt 0.03-0.5 0.5-5.0 5.0-20.0 - -

GOCART dust 0.1-1.0 1.0-1.8 1.8-3.0 3.0-6.0 6.0-10.0

GOCART sea salt 0.03-0.1 0.1-0.5 0.5-1.5 1.5-5.0 5.0-10.0

4 WRF-Chem

To calculate fine-resolution PM and sulfate fields, we use the Weather Research and Forecasting (WRF) model (Skamarock

et al., 2005) coupled with chemistry (WRF-Chem v3.7.1) (Grell et al., 2005). The WRF-Chem is used for prediction and185

simulation of weather, air quality, and dust storms, accounting for the aerosol effect on radiation. WRF-Chem can be configured

with one of the few gas-phase chemical mechanisms, photolysis, and aerosols parameterization models. WRF-Chem has been

widely used for air quality simulations in different parts of the globe: East Asia (Wang et al., 2010), North America (Kim

et al., 2006; Chuang et al., 2011), Europe (Forkel et al., 2012; Ritter et al., 2013), South America (Archer-Nicholls et al., 2015)

and Middle East (Parajuli et al., 2019). To reduce the clock-time of our two-year calculations, we simulated each month of190

the 2015-2016 period separately. Each simulation starts from the last week of the previous month. This time is considered

a spin-up and is excluded from post-processing. The simulation domain, shown in Fig. 1, is centered at 28�N, 42�E, and a

10⇥10 km2 horizontal grid (450⇥450 grid nodes) is employed. The vertical grid comprises 50 vertical levels with enhanced

resolution closer to the ground comprising 11 model levels within the near-surface 1-km layer. The model top boundary is set

at 50 hPa.195

To improve the representation of the meteorological fields, we apply spectral nudging (Miguez-Macho et al., 2004) above

the planetary boundary layer (PBL) (>5.0 km) to horizontal wind components (U and V ) toward the MERRA-2 wind field.

The nudging coefficient for U and V is set to be 0.0001 s�1. We only nudge waves with wavelengths longer than 450 km.

This allows us to keep the large-scale motions close to reanalysis, and leave the resolved small-scale, high-frequency features

unaffected.200

The aerosol/chemistry initial and boundary conditions (IC&BC) are calculated using MERRA-2 output using the newly

developed Merra2BC interpolation utility (Ukhov and Stenchikov, 2020). To be consistent with aerosol/chemistry IC&BC, we

also define the meteorological IC&BC using MERRA-2 output (see Appendix A1).

The following set of physical parameterizations was used in WRF-Chem runs. The Unified Noah land surface model

(sf_surface_physics=2) and the Revised MM5 Monin-Obukhov scheme (sf_sfclay_physics=1) are chosen to represent land sur-205

face processes and surface layer physics. The Yonsei University scheme is chosen for PBL parameterization (bl_pbl_physics=1).

The WRF single moment microphysics scheme (mp_physics=4) is used for the treatment of cloud microphysics. The New

Grell scheme (cu_physics=5) is used for cumulus parameterization. The Rapid Radiative Transfer Model (RRTMG) for both
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short-wave (ra_sw_physics=4) and long-wave (ra_lw_physics=4) radiation is used for radiative transfer calculations. Only

the aerosol direct radiative effect is accounted for. More details on the physical parameterizations used can be found at210

http://www2.mmm.ucar.edu/wrf/users/phys_references.html.

4.1 Gas-phase chemistry and aerosols

To calculate the atmospheric chemistry within WRF-Chem, we employ the Regional Atmospheric Chemistry Mechanism

(RACM, chem_opt=301) (Stockwell et al., 1997) containing 77 species and 237 reactions, which include 23 photolysis reac-

tions, but no heterogeneous chemistry. The RACM chemical module is embedded into WRF-Chem using the Kinetic PrePro-215

cessor (KPP) (Damian et al., 2002). The role of KPP is to integrate the system of stiff nonlinear ordinary differential equations,

which represents the specified set of chemical reactions. The photolysis rates are calculated on-line according to Madronich

(1987) (phot_opt=1). Similar to MERRA-2, the GOCART chemistry module is used to calculate SO2 to sulfate oxidation

(Chin et al., 2002, 2014) by the hydroxyl radical OH whose abundance is interactively simulated by RACM.

We use the novel OMI-HTAP SO2 emission dataset (Liu et al., 2018) based on the combination of distributed SO2 emissions220

from residential and transportation sectors, taken from the HTAP-2.2 inventory (Janssens-Maenhout et al., 2015) with the

catalogue of the strong (>30 kt/year) SO2 point emissions (Fioletov et al., 2016) built using satellite observations by Ozone

Monitoring Instrument (OMI) (Levelt et al., 2006; Li et al., 2013). The catalogue contains more than 500 point sources of

industrial origin, some of which are not present in the widely used EDGAR-4.2 and HTAP-2.2 emission datasets. For example,

14 previously unaccounted SO2 point emissions located in the ME (mostly in the Arabian Gulf) were detected, most of them are225

related to oil and gas industry. OMI-HTAP divides SO2 emissions into surface and elevated ones. We distribute the surface SO2

emissions with a constant mixing ratio in the 0-1000 m layer, and elevated emissions in 120-1000 m layer. All other constituents

(other PM from biogenic and fossil components, black and organic carbon, etc.), including SO2 shipping emissions, are taken

from the HTAP-2.2 inventory and are treated as surface emissions. OMI-HTAP SO2 emissions are provided on 0.1�⇥0.1� grid

(Liu et al., 2018). We conservatively interpolated them on the WRF-Chem 10⇥10 km2 grid. See Ukhov et al. (2020b) for230

details.

To calculate aerosols we employ the GOCART (Chin et al., 2002) aerosol model (chem_opt=301). It is the same microphys-

ical model as that used in MERRA-2 (see Sec. 3.1). Dust and sea salt size distributions in WRF-Chem are approximated by

the same five dust and sea-salt size bins as those in MERRA-2 (Tab. 2). However, only the last four "salt" bins in Tab. 2 are

used in WRF-Chem, as the first bin appears to be very poorly populated. Dust density is assumed to be 2500 kg/m3 for the235

first dust-bin and 2650 kg/m3 for 2-5 dust-bins. Emission of sea salt is calculated according to Gong (2003). Dust emission

from the surface is calculated using the GOCART emission scheme (Ginoux et al., 2001) (dust_opt=1). Dust emission mass

flux, Fp (µg m�2 s�1) in each dust-bin p=1,2,...,5 is defined by the relation:

Fp =

8
><

>:

CSspu2
10m(u10m �ut), if u10m > ut

0, otherwise
(2)
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where, C has the dimension of (µg s2 m�5) and is a spatially uniform factor which controls the magnitude of dust emission

flux; S is the spatially varying topographic source function (Ginoux et al., 2001) that characterizes the spatial distribution of240

dust emissions; u10m is the horizontal wind speed at 10 m height; ut is the threshold velocity, which depends on particle size

and surface wetness; sp is a fraction of dust mass emitted into dust-bin p,
P

sp = 1.

To avoid natural dust emission in urban areas, we use the built-in WRF-Chem the U.S. Geological Survey (USGS) 24-

category land-use data set (Anderson, 1976). We modify the source function S using the following expression:

S0 = (1.0�URBAN_MASK) ·S (3)245

where S0 is the modified topographic source function, URBAN_MASK is the USGS “Urban and Built-up Land” mask

field. It has the sense of a fraction of urban area in a grid-cell and ranges from 0 to 1. Grid cells with URBAN_MASK=1 do

not produce natural dust emissions. We do not account for anthropogenic dust emissions within cities, and therefore potentially

underestimate urban dust pollution.

As in our previous studies (Kalenderski et al., 2013; Jish Prakash et al., 2015; Anisimov et al., 2017), we tune dust emissions250

to fit the AOD from the AERONET stations located within the domain. For this purpose, the factor C from Eq. (2) has been

adjusted to achieve the best agreement between simulated and observed AOD at KAUST Campus, Mezaira, and Sede Boker

AERONET sites, see Fig. 1. Assuming that factor C does not depend on time and geographical coordinates, we can only

tune the annual average AOD bias. Both simulations and observations represent the total AOD with contributions from all

types of aerosols. Because dust dominates all other aerosols in the ME, we choose to tune only the dust emissions. Obtained255

during test runs, C value of 0.5 is kept constant in all subsequent production runs. We also tune sp from Eq. (2) to better

reproduce the AVSDs provided by AERONET inversion algorithm. This tuning and the comparisons of AOD and AVSDs from

the assimilation products and WRF-Chem simulations are discussed in detail below.

In situ air quality observations in the Middle east are scarce. It is one of the known problems for air quality research in

this area. The things are simplified a bit by the fact that in the ME dust dominates aerosol pollution. E.g., Cloud-Aerosol260

Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) (Vaughan et al., 2004) records dust in 95% of profiles (Os-

ipov et al., 2015). The effect of nitrates, ammonia, and organics on AOD and PMs is insignificant; therefore, the employed

aerosol-chemical scheme (GOCART-RACM) is adequate for the ME conditions. To support this conclusion, we have conducted

laboratory analysis of the chemical composition of soil and dust deposition samples that show a little presence of organics and

ammonium (Jish Prakash et al., 2016; Engelbrecht et al., 2017). According to Engelbrecht et al. (2017), in 2015, the annual265

average weight percentages of soluble ions of ammonium (NH4) and sulfate in deposition samples taken at four sites at the

KAUST Campus are 0.05% and 2.513%, respectively. It means that available ammonium may neutralize at a maximum of 5%

of sulfate mass. The actual contribution of ammonium sulfate should be lower, as some ammonium may also be bound as

ammonium nitrate, ammonium phosphate, or ammonium chloride.
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4.2 WRF-Chem code modification270

We have corrected the source code of the WRF-Chem v3.7.1 with GOCART aerosol module in several places. These corrections

were implemented in the WRF-Chem v4.1.3 official release. We evaluate how they change the results in the forthcoming

technical publication
::::::::::::::::
Ukhov et al. (2020a). Here we only briefly discuss the introduced changes and their effects. Firstly, the

diagnostic output of PM concentrations was corrected, because contributions of the individual dust and sea salt bins were

incorrectly calculated. Therefore, PM2.5 surface concentrations were erroneously underestimated by 7% while PM10 - were275

overestimated by 5%. Secondly, we found that the contribution of fine dust particles with radii <0.46 µm was omitted in the

calculation of AOD, AOD was consequently underestimated by 25-30%. This led to an overestimation of the dust emission flux

because we force the simulated AOD to match the AERONET observations. Thirdly, we fixed the dust and sea salt gravitational

settling subroutine, since initially, the calculations of mass fluxes of settling particles did not account for changes in air density.

Due to this error, the total mass of dust and sea salt aerosols increased, violating mass conservation.280

5 Results

5.1 Regional climate and circulation

The ME is one of the hottest and driest regions on the Earth. Summer in the ME is long and hot with little precipitation.

Precipitation mainly occurs in the south-west of the Arabian Peninsula. Winter is mild, with rainfall being mostly associated

with cold fronts and cyclones propagating from the Eastern Mediterranean (Climate.com, 2018). Emission and transport of dust285

are driven by winds. Emission and deposition of dust are also sensitive to soil moisture and precipitation (Furman, 2003; Shao,

2008; Yu et al., 2015). However, because the ME is an arid region, the soil moisture and precipitation effects are insignificant.

Figure 2 shows contours of sea level pressure, topographic source function S (Ginoux et al., 2001), and seasonally 2015-2016

averaged wind speed barbs at 10 m height over the ME during winter (DJF) and summer (JJA) from WRF-Chem simulations.

Over northeast Africa in winter (see Fig. 2a), the strong pressure gradient between the Red Sea trough and the stationary290

high-pressure system over Egypt predominantly generates moderate north-easterly winds (up to 10 m/s). Therefore in winter,

dust storms occur more frequently in the west of the Arabian Peninsula. Over the Central and Eastern Arabian Peninsula and

the eastern part of the ME, winds are relatively weak and do not have a clear direction. However, cold fronts generated by

Mediterranean cyclones can cause dust storms and dust transport to central regions of the Arabian Peninsula.

In summer (see Fig. 2b) the high-pressure system over the eastern Mediterranean and low-pressure system over the Arabian295

Gulf promote moderate north-northwesterly winds known as Shamal (Yu et al., 2016; Hamidi et al., 2013), which dominate

over the central part of the Arabian peninsula. Shamal is the primary driver of dust storm events over this area (Yu et al., 2016;

Shao, 2001; Middleton, 1986; Goudie and Middleton, 2006; Notaro et al., 2015). Shamal brings dust to the Arabian Gulf,

north, and central part of Saudi Arabia, from the Tigris-Euphrates basin of Syria and Iraq (Anisimov et al., 2018).

Figure 3 shows wind speed seasonally averaged for 2015-2016 at 10 m from MERRA-2, CAMS-OA, and WRF-Chem during300

winter (DJF) and summer (JJA). WRF-Chem spatial distributions of wind speed agree well with MERRA-2 and CAMS-OA,
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Figure 2. Seasonally averaged for 2015-2016 wind barbs (m/s) at 10 m, sea level pressure (contours), and erodibility function (shading)

(Ginoux et al., 2001). a) Winter (DJF), b) Summer (JJA).

but due to the higher spatial resolution, WRF-Chem better resolves the fine-scale spatial structures of the 10 m-wind field over

complex terrain. All panels have similar seasonal variations of wind speed. In winter, maximum winds are stronger over the

south-east of the domain. In the Central and northern parts of the domain winds are weak. In summer, wind speed increases in

the northern and central parts of the ME. Somali Jet produces strong (10-15 m/s) winds in the Arabian Sea along the coasts of305

Somalia and Oman.

To conduct the statistical analysis, we interpolated the seasonally averaged 2015-2016 zonal and meridional wind compo-

nents (U and V ) at 10 m from WRF-Chem, and CAMS-OA on MERRA-2 grid and calculated Pearson correlation coefficient

(R), and root mean square differences (RMSD) between each pair, see Tab. 3, correspondingly. RMSD is calculated us-

ing the same formula as the root mean square error (RMSE). The procedure of calculation of these parameters is given in310

Appendix A2. Pearson correlation coefficients provided in Tab. 3 are close to 1. The highest correlation is achieved between

MERRA-2 and CAMS-OA. WRF-Chem’s correlation coefficient with respect to MERRA-2 is smaller but exceeds that of the

WRF-Chem - CAMS-OA pair. The WRF-Chem and MERRA-2 wind fields are close partly because WRF-Chem boundary

conditions are built using MERRA-2 reanalysis, and the large-scale winds are nudged (see Sec. 4) to the ones from MERRA-2

over the PBL.315
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Figure 3. Seasonally averaged 2015-2016 wind speed at 10 m from WRF-Chem, MERRA-2, and CAMS-OA during winter (DJF), summer

(JJA).

The RMSDs (see Tab. 3) are lower in winter than in summer. All RMSDs are in the range of 0.45-0.85 m/s. The lowest

RMSDs are between MERRA-2 and CAMS-OA. Notably, the correlation coefficients for the meridional component V are

higher, and the RMSDs are lower when compared with the zonal wind component U . This is because the northern winds

are stable since they are maintained by the large-scale processes. In contrast, the zonal wind component, which is affected by

small-scale processes like sea-breezes, is variable. The results of the statistical analysis in Tab. 3 and the clear similarity of the320

spatial patterns (among all products) of the averaged 10 m wind fields presented in Fig. 3, suggest that WRF-Chem captures

the magnitude and spatial distribution of the 10 m wind. Thus, we conclude that WRF-Chem with the selected set of physical

parameterizations satisfactorily simulates both the large- and meso-scale atmospheric processes in the ME.
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Table 3. Pearson correlation coefficient R and root mean square difference RMSD (m/s) for the seasonally averaged 2015-2016 wind

components U and V at 10 m.

Season WRF-Chem wrt CAMS-OA WRF-Chem wrt MERRA-2 CAMS-OA wrt MERRA-2

R RMSD R RMSD R RMSD

U | V U | V U | V U | V U | V U | V

Winter (DJF) 0.918 | 0.954 0.716 | 0.593 0.954 | 0.963 0.572 | 0.537 0.954 | 0.974 0.558 | 0.449

Summer (JJA) 0.929 | 0.981 0.853 | 0.704 0.938 | 0.982 0.833 | 0.669 0.965 | 0.986 0.636 | 0.593

Annual mean 0.924 | 0.968 0.785 | 0.649 0.946 | 0.973 0.703 | 0.603 0.960 | 0.980 0.597 | 0.521

* wrt - with respect to

5.2 AOD

In this section, we evaluate the ability of WRF-Chem, CAMS-OA, and MERRA-2 to reproduce the aerosol content in the325

atmosphere accurately. This content is characterized by AOD. In the ME, mineral dust contribution to the total AOD is dominant

(⇡87%) (Kalenderski and Stenchikov, 2016; Osipov et al., 2015). The treatment of optically active dust within the model is

therefore vitally important. AOD is calculated based on aerosol concentrations and aerosol optical properties, which depend

upon aerosol size distribution. We, therefore, evaluate how well WRF-Chem and assimilation products reproduce aerosol

volume size distribution.330

5.2.1 Aerosol volume size distributions

Dust particles are emitted into the lower atmospheric layer with some predominant size distribution (Martin and Kok, 2017;

Kok, 2011). Emitted dust is processed by the atmosphere to produce the atmospheric dust size distribution that is retrieved by

the AERONET inversion algorithm (Dubovik and King, 2000) and reported as column integrated AVSD. Strictly speaking,

AERONET AVSD incorporates contributions from all types of aerosols. But the size distribution of emitted dust has the335

strongest effect on column integrated AVSD, because dust dominates all other aerosols in the ME. Therefore, we have to tune

the dust emission parameters in the first place.

Eq. (2) assumes that emission mass fluxes into five dust size bins are controlled by the sp fractions. In WRF-Chem the

default values of sp fractions for the five dust-bins (see Tab. 2) are {0.1, 0.25, 0.25, 0.25, 0.25}. We found that with these

default sp fractions, WRF-Chem underestimated the volume of fine dust particles in first bin 0.1 µm< r <1 µm compared with340

AERONET AVSD, whereas the volume of the second bin 1 µm< r <1.8 µm was overestimated. In combination with fitting the

observed AOD by tuning of factor C, this led to an the increase of the total emitted dust mass, since fine particles are optically

more efficient per unit mass than coarse particles. To achieve a better agreement between the simulated and AERONET AVSDs

we adjusted fractions sp to be {0.15, 0.1, 0.25, 0.4, 0.1}. A similar approach was implemented in Khan et al. (2015) using the

MADE/SORGAM chemistry/aerosol scheme. This sp modification is in line with (Adebiyi and Kok, 2020) as it effectively345
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decreased emission of dust particles with radii r<2.5 µm and increased emission of coarse particles with radii r>2.5 µm (see

Appendix A3). We use the updated sp values in all our WRF-Chem simulations.

Figure 4 shows seasonally averaged 2015-2016 volume size distributions obtained from MERRA-2, CAMS-OA, AERONET

and WRF-Chem with updated sp fractions. The comparison is conducted for the KAUST Campus, Mezaira, Sede Boker

AERONET sites (see Fig. 1), since only these sites have information on AVSDs during the 2015-2016 period. The effect350

of sp modification could be seen in Fig. 4 by comparing AVSDs from WRF-Chem with updated set of sp and MERRA-2 that

uses the default sp set. A direct comparison of AVSDs from the WRF-Chem runs with the updated and default sp sets is shown

in Appendix A3.

Both MERRA-2 and WRF-Chem use the GOCART aerosol scheme with the same five dust-bins, and they approximate the

shape of the AERONET AVSD relatively well. CAMS-OA uses only three dust-bins (see Tab. 2) and fails to reproduce the355

AERONET AVSD even qualitatively. It overestimates the volume of particles with radii of 0.55-0.9 µm and underestimates

the volume of particles with radii of 0.9-20 µm. With the latest system upgrade in 2019, this weakness of CAMS-OA has been

corrected by introducing of a new dust scheme (Nabat et al., 2012).

The volume size distributions from the model and assimilation products demonstrate pronounced seasonal variability with

the increased amount of dust in the atmosphere during spring and summer. Since the KAUST Campus and Mezaira sites are360

located in the vicinity of the strong dust sources, the coarse mode at these sites is more pronounced than at the Sede Boker site,

which is farther from the strong dust emission sources.

The fine mode in the AERONET AVSD is more pronounced at the KAUST Campus in comparison with the other AERONET

sites due to its proximity to strong SO2 sources located along the west coast of Saudi Arabia (Ukhov et al., 2020b). This

proximity leads to a higher contribution of fine sulfate particles to the fine mode. The smaller volume of fine particles in the365

WRF-Chem and MERRA-2 simulated AVSD (see Fig. 4) is in part because the simulated AVSDs show only dust omitting the

contributions of sulfate and sea salt. Sea salt particles/droplets are relatively large and mostly contribute to the coarse mode.

Figure 5 shows the contributions of dust, sea salt, and sulfate aerosols into the AVSD at the KAUST Campus AERONET site

in WRF-Chem simulation averaged for two summer seasons (JJA) of 2015-2016. In WRF-Chem, sulfate aerosol is computed

using a bulk approach. For calculating of aerosol optical properties, it is assumed that sulfate aerosol comprises two log-370

normal modes: nuclei and accumulation. According to WRF-Chem source code, the nuclei mode median radii µnuc=0.005 µm

and geometric width �nuc=1.7, the accumulation mode median radii µacc=0.035 µm and geometric width �acc=2.0. The nuclei

mode comprises 25% of the sulfate aerosol mass, and accumulation mode - 75%. It is assumed that sulfate aerosol density is

1800 kg/m3 and sea salt density is 2200 kg/m3. Figure 5 demonstrates that the contribution of the sulfate nuclei mode in the

aerosol volume is almost negligible, while the sulfate accumulation mode adds in the volume of aerosol particles with radii <1375

µm. The contribution of the sea salt aerosol into AVSD in WRF-Chem simulations is very little.

5.2.2 Comparison with AERONET AOD

The comparison of the daily averaged AOD time series and corresponding scatter plots calculated using WRF-Chem, MERRA-

2, CAMS-OA, MODIS-DB&DT, and MAIAC data with AERONET AOD observations conducted at KAUST Campus, Mezaira
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Figure 4. Seasonally averaged 2015-2016 AVSDs (µm3
/µm2) obtained from MERRA-2, CAMS-OA, WRF-Chem, and from the AERONET

inversion algorithm at a) KAUST Campus, b) Mezaira and c) Sede Boker AERONET sites. Winter (DJF), spring (MAM), summer (JJA) and

autumn (SON).
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Figure 5. Summer (JJA) averaged 2015-2016 AVSD (µm3
/µm2) at KAUST Campus AERONET site obtained from the AERONET inversion

algorithm and from WRF-Chem.

Table 4. Pearson correlation coefficient R and mean bias calculated for daily averaged AOD time-series from WRF-Chem, CAMS-OA,

MERRA-2, MODIS-DB&DT, and MAIAC with respect to AERONET AOD observations.

WRF-Chem CAMS-OA MERRA-2 MODIS-DB&DT MAIAC

bias R bias R bias R bias R bias R

2015

KAUST Campus -0.04 0.74 0.01 0.86 -0.05 0.85 0.06 0.81 -0.08 0.89

Mezaira 0.07 0.73 0.11 0.81 0.04 0.83 0.07 0.79 -0.07 0.88

Sede Boker -0.01 0.43 0.07 0.65 0.02 0.72 0.06 0.84 0.04 0.96

2016

KAUST Campus -0.01 0.75 0.01 0.76 -0.03 0.88 0.06 0.73 -0.05 0.74

Mezaira 0.09 0.62 0.12 0.87 0.06 0.85 0.08 0.77 -0.04 0.83

Sede Boker 0.03 0.85 0.09 0.83 0.04 0.91 0.08 0.56 0.05 0.63

and Sede Boker during 2015-2016 period is presented in Fig. 6. Because AERONET conducts observations only during the380

daylight time, we interpolated WRF-Chem, MERRA-2, CAMS-OA AODs to the AERONET measurements times and then

conducted time averaging to make simulated and observed AODs consistent. AODs from MODIS-DB&DT and MAIAC are

provided as a daily average. Although MODIS routinely provides observations only twice a day during daylight time, up to

four observations might be collected on some days due to overlap of the TERRA and AQUA orbits at some locations.
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Figure 6. Daily averaged AOD at three AERONET sites (KAUST Campus, Mezaira, Sede Boker) and corresponding scatter plots computed

for WRF-Chem, AERONET, MERRA-2, CAMS-OA, MODIS-DB&DT, and MAIAC: a) 2015, b) 2016.

The scatter plots show that the model and assimilation products are capable of reproducing the magnitude and temporal385

evolution of the observed AERONET AOD at all sites. During both years, KAUST Campus and Mezaira sites show higher
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AOD in summer and lower AOD in winter. To quantify the capability of the WRF-Chem, MERRA-2, and CAMS-OA models,

and the MODIS-DB&DT and MAIAC products to reproduce the AERONET AOD, we calculate Pearson correlation coefficient

R and mean bias (see Appendix A2) with respect to the AERONET AOD observations for the 2015-2016 period, see Tab. 4.

The correlation coefficients are the highest for MERRA-2 and MAIAC. MAIAC shows better correlation than MERRA-2390

during 2015 (0.88-0.96), but MERRA-2 is better correlated with AERONET (0.85-0.91) than MAIAC in 2016. CAMS-OA,

despite it does not assimilate AERONET, shows better correlations (0.65-0.87) than MODIS-DB&DT (0.56-0.84). However,

CAMS-OA overestimates AOD, particularly during acute dust events, and has a relatively high positive mean bias. The R

coefficient for the WRF-Chem AOD is (0.43-0.85). MERRA-2 and WRF-Chem have the lowest mean bias in comparison with

the other models and products. MODIS-DB&DT mean bias is positive in 2015 and 2016, while MAIAC mean bias is negative395

for KAUST Campus and Mezaira and positive for Sede Boker during both years.

We have to mention here that the satellite retrievals and MERRA-2 use AERONET observations for calibration. WRF-Chem

is tuned to reduce the annual mean bias with respect to AERONET observations. CAMS-OA does not assimilate AERONET

AODs. In WRF-Chem, we did not tune the temporal correlation between the model and AERONET AOD. In this sense, the

correlation coefficient between WRF-Chem and AERONET AOD provides an independent evaluation of the model perfor-400

mance (see Tab. 4). It is expected that the temporal correlation for the assimilation products and satellite retrievals will be

higher than for the free-running WRF-Chem.

5.2.3 Comparison of spatial AOD distributions

We also examine how well MERRA-2, CAMS-OA, MAIAC, and WRF-Chem reproduce spatial patterns and seasonal vari-

ability of the AOD in comparison with the conventional MODIS-DB&DT retrievals. The seasonally and annually-averaged405

2015-2016 AOD fields from WRF-Chem, CAMS-OA, MERRA-2, and the two MODIS retrievals DB&DT and MAIAC are

presented in Fig. 7. The seasonally averaged AOD’s from WRF-Chem, MERRA-2, CAMS-OA are shown at their original

spatial resolution and were calculated using only daytime (6 am-2 pm UTC or 9 am-5 pm local time) output. The AODs were

sampled under all-sky conditions, which in the ME does not make much of a difference, as cloud fraction is low. For the sta-

tistical comparison, we interpolated AOD fields (preserving the area average AODs) on the MERRA-2 grid and calculated the410

Pearson correlation coefficient R root mean square error RMSE and mean bias with respect to MODIS-DB&DT AOD, see

Tab. 5. When conducting statistical analysis, the grid-cells with undefined pixels in MODIS-DB&DT and MAIAC retrievals

were excluded.

The statistical scores provided in Tab. 5 show that the annual mean AOD from MAIAC has the highest correlation (R=0.796),

but also the highest RMSE=0.123, and the biggest bias=-0.095 with respect to MODIS-DB&DT AOD. MERRA-2 annual415

mean AOD has R=0.663 with respect to MODIS-DB&DT AOD, CAMS-OA - R=0.650), and WRF-Chem - R=0.609 with

RMSE’s=0.116 for all of them. WRF-Chem, MERRA-2, and CAMS-OA demonstrate similar AOD patterns, but WRF-Chem

and MERRA-2 underestimate, and CAMS-OA overestimates MODIS-DB&DT AOD during all seasons with the annual mean

bias=-0.009, -0.042, 0.039, correspondingly. MAIAC underestimates AOD in comparison with MODIS-DB&DT, which is

consistent with the MAIAC and MODIS-DB&DT AOD comparison with AERONET AOD (see Tab. 4 and Fig. 6).420
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Figure 7. Seasonally averaged 2015-2016 AOD. Right column is annual mean AOD. Rows: a) WRF-Chem, b) MERRA-2, c) CAMS-OA, d)

MODIS-DB&DT, and e) MAIAC. Winter (DJF), spring (MAM), summer (JJA), and autumn (SON). White dots are undefined pixels. Black

triangles denote locations of KAUST Campus, Mezaira, and Sede Boker AERONET stations.
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Table 5. Pearson correlation coefficient (R), root mean square error (RMSE) and mean bias calculated for seasonally and annually averaged

2015-2016 AOD geographic distributions from CAMS-OA, MAIAC, MERRA-2, and WRF-Chem with respect to MODIS-DB&DT AOD.

CAMS-OA MAIAC MERRA-2 WRF-Chem

R RMSE bias R RMSE bias R RMSE bias R RMSE bias

Winter (DJF) 0.599 0.084 0.019 0.794 0.092 -0.072 0.569 0.090 -0.033 0.473 0.092 -0.008

Spring (MAM) 0.700 0.129 0.052 0.802 0.142 -0.107 0.717 0.127 -0.047 0.661 0.124 -0.007

Summer (JJA) 0.702 0.152 0.069 0.782 0.160 -0.117 0.742 0.133 -0.050 0.685 0.148 0.000

Autumn (SON) 0.559 0.111 0.027 0.717 0.111 -0.084 0.595 0.108 -0.027 0.497 0.116 -0.015

Annual mean 0.650 0.116 0.039 0.796 0.123 -0.095 0.663 0.116 -0.042 0.609 0.116 -0.009

Based on the comparison of WRF-Chem AOD with the AOD from MODIS and AERONET observations, we conclude

that spatial and temporal WRF-Chem’s AOD distribution is in good agreement with the available satellite and ground-based

observations, i.e. annual mean correlation R exceeds 0.6 (see Tab. 5) and correlation with AERONET is 0.43-0.85 (see Tab. 4).

5.3 PM air pollution

To test the ability of the data assimilation products and models to characterize PM air pollution in the ME, we compare surface425

daily mean PM2.5 and PM10 concentrations from WRF-Chem, MERRA-2, and CAMS-OA, with daily averaged measurements

conducted by the three AQMS, see Fig. 8 and 9. The AQMS are installed in Jeddah, Riyadh, and Dammam (Fig. 1), the Saudi

Arabian mega-cities. PM measurements conducted by MODON (see Sec. 2.3) are available starting from 2016. The modeled

PM2.5 and PM10 concentrations were sampled from the model fields at the exact AQMS locations. The following formulas

were used to calculate PM2.5 and PM10 surface concentrations using WRF-Chem and MERRA-2 output:430

PM2.5 = DUST1 +DUST2 ⇤ 0.38+SEAS1 +SEAS2 +SEAS3 ⇤ 0.83

+sulfate+(OC1 +OC2) ⇤OCmfac +BC1 +BC2

PM10 = DUST1 +DUST2 +DUST3 +DUST4 ⇤ 0.74+SEAS1 +SEAS2 +SEAS3 +SEAS4

+sulfate+(OC1 +OC2) ⇤OCmfac +BC1 +BC2 (4)

where DUST1,2,3,4, SEAS1,2,3,4, OC1,2, BC1,2, and sulfate are respectively the concentrations of the dust, and sea-salt435

in the first four bins, organic and black carbon (hydrophobic and hydrophilic) and sulfate ion (SO2�
4 ). As was mentioned in

Sec. 4.1, SEAS1 is not present in the WRF-Chem output. So for WRF-Chem we assume SEAS1= 0. The factor OCmfac =

1.8 accounts for the conversion of organic carbon into organic matter.

CAMS-OA PM2.5 and PM10 were calculated using the following relations (https://confluence.ecmwf.int/display/CUSF/

PM10+and+PM25+global+products):440
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PM2.5 = DD1 +DD2 +SS1/4.3+0.5 ⇤SS2/4.3+0.7 ⇤ (OM1 +OM2 + sulfate)+BC1 +BC2

PM10 = DD1 +DD2 +DD3 ⇤ 0.4+SS1/4.3+SS2/4.3+OM1 +OM2 + sulfate+BC1 +BC2 (5)

where DD1,2,3, SS1,2, sulfate, BC1,2, OM1,2 are surface concentration of dust in three bins, sea salt in two bins, sulfate,

black carbon, and organic matter (hydrophobic and hydrophilic). The size ranges of dust and sea salt bins from CAMS-OA are

presented in Tab. 2.445

The histograms at the right-side panels in Fig. 8 and 9 show the annual mean PM concentrations from WRF-Chem, MERRA-

2, and CAMS-OA split into the dust and non-dust components. The dashed and dash-dotted horizontal lines correspond to

KSA-PME limits and WHO air quality guidelines for daily (on the left-side panels) and annual mean (on the right-side panels)

PM concentrations. We also calculated the separate contributions of sulfate, sea salt, organic matter, and black carbon into the

non-dust PM2.5 and PM10, see Tab. 6 and 7, respectively.450

The sporadic peaks in the observations which are not captured by the model and assimilation products are due to unaccounted

factors, such as nearby traffic, construction works, and local anthropogenic or natural emissions, which are not present in the

emission inventories, or due to meteorological fluctuations that are not resolved in the models. Talking about extreme dust

pollution cases, we analyzed dust surface concentrations using WRF-Chem output during the dust storm, which took place in

the Jeddah region on 8th July in 2016. The calculated surface concentrations in all dust-bins DUST1,2,3,4,5 at the peak of the455

storm were {55,58,63,111,11} µg/m3, respectively. The sum of all dust-bins yields the total dust concentration of 298 µg/m3.

5.3.1 PM2.5

Fig. 8 shows that the daily averaged PM2.5 concentrations observed by MODON AQMS at all locations never drop below

the WHO limit of 25 µg/m3. During the severe dust events, this limit is exceeded in 2016 10-15 times. The less restrictive

KSA-PME limit of 35 µg/m3 is exceeded 7-11 times during the dust outbreaks. Annually averaged MODON measurements460

are 8-18 times higher than the 10 µg/m3 WHO limit and 5-12 times higher than the 15 µg/m3 KSA-PME limit for annual

mean PM2.5 concentrations.

Both data assimilation products and WRF-Chem underestimate ⇡3 times annual mean PM2.5 concentrations in Jeddah

and Riyadh and slightly overestimate, though WRF-Chem slightly underestimates, PM2.5 in Dammam in comparison with

observed concentrations during 2016. The CAMS-OA annual mean surface PM2.5 concentrations in Jeddah and Riyadh are465

higher than those from WRF-Chem and MERRA-2, providing the best fit for MODON observations, at least on an annual

mean (during 2016) basis.

Annual mean PM2.5 concentrations from WRF-Chem and MERRA-2 exceed the WHO limit of 10 µg/m3 ⇡4-7 and ⇡6-10

times, respectively, in all locations. The KSA-PME limit of 15 µg/m3 for annual average PM2.5 concentrations is exceeded

⇡2.5-4.5 and ⇡4-6.5 times, respectively, for WRF-Chem and MERRA-2.470

In Jeddah and Dammam, WRF-Chem and MERRA-2 show similar relative contributions of non-dust components to PM2.5

(30-34% in Jeddah and 12-14% in Dammam), but in MERRA-2 sea salt is a major contributor into non-dust PM2.5, while
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Figure 8. Left: WRF-Chem daily averaged PM2.5 surface concentrations (µg/m3) with MODON observations, MERRA-2, CAMS-OA at

Jeddah, Riyadh, Dammam. The dash-dotted line corresponds to the 25 µg/m3 WHO daily average guideline. Right: stacked bars show the

decomposition of the PM2.5 annual mean surface concentrations into dust and non-dust components. The dash-dotted line corresponds to the

10 µg/m3 WHO annual guideline. Numbers on the right hand side of WRF-Chem, CAMS-OA, and MERRA-2 bars show the contribution

(%) of the dust and non-dust into the total PM2.5 concentration. a) 2015, b) 2016.

in WRF-Chem it is sulfate, see Tab. 6. This difference between WRF-Chem and MERRA-2 is mainly because MERRA-2

generates more sea salt, but also because MERRA-2 underestimates SO2 emissions located in the Arabian Gulf and along the

west coast of Saudi Arabia (Ukhov et al., 2020b), and hence underestimates sulfate concentrations, as discussed in Sec. 4.1. In475

Riyadh, the contribution of the non-dust component to PM2.5 is ⇡9-12% for both MERRA-2 and WRF-Chem. In CAMS-OA,
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the contribution of non-dust particulates to PM2.5 in Jeddah and Dammam is ⇡7-10%, and the contribution of sea salt is little.

According to Tab. 6, in all considered cities, the contribution of black carbon (BC) to PM2.5 is not significant for all models.

In MERRA-2, the contribution of organic matter (OM ) to PM2.5 is more substantial (but still minor) in comparison with

WRF-Chem and CAMS-OA. In general, among all models contribution of dust to PM2.5 in Jeddah is 65-90%, while in Riyadh480

and Dammam this contribution is 85-95%, see Tab. 6.

Table 6. Contributions (%) of dust and non-dust components into PM2.5 for Jeddah, Riyadh, and Dammam during 2015-2016.

Jeddah Riyadh Dammam

W
RF-C

he
m

CAMS-O
A

MERRA-2

W
RF-C

he
m

CAMS-O
A

MERRA-2

W
RF-C

he
m

CAMS-O
A

MERRA-2

2015

dust 68.6 90.9 70.6 88.1 96.8 90.8 87.0 93.0 88.1

sulf 19.9 5.1 6.1 9.0 2.1 5.0 10.0 3.9 3.6

BC 2.1 0.7 0.6 0.1 0.2 0.3 0.1 0.7 0.3

OM 4.0 3.1 5.1 1.8 0.8 2.7 1.5 2.3 3.1

salt 5.5 0.1 17.6 0.8 0.1 1.3 1.3 0.1 4.9

2016

dust 65.4 89.9 66.8 87.4 96.8 89.6 85.3 90.9 85.5

sulf 23.2 5.7 6.8 9.5 1.9 5.7 11.3 4.7 4.3

BC 2.1 0.8 0.7 0.2 0.3 0.3 0.2 0.9 0.4

OM 4.0 3.4 5.4 2.1 0.9 2.9 1.8 3.4 4.1

salt 5.4 0.1 20.4 0.9 0.1 1.4 1.5 0.1 5.7
⇤ for WRF-Chem and MERRA-2: dust = DUST1 +DUST2 ⇤ 0.38, BC = BC1 +BC2, sulf = sulfate, OM = (OC1 +OC2) ⇤OCmfac,

salt = SS1 +SS2 +SS3 ⇤ 0.83
⇤⇤for CAMS: dust = DD1 +DD2, sulf = 0.7 ⇤ sulfate, BC = BC1 +BC2, OM = 0.7 ⇤ (OM1 +OM2),

salt = SS1/4.3+ 0.5 ⇤SS2/4.3

Abbreviations of the aerosols’ names correspond to those given in Sec. 5.3.

5.3.2 PM10

Daily averaged MODON measurements almost continuously exceed the WHO guideline of 50 µg/m3 at all locations, see Fig.

9. In Riyadh and Dammam, PM10 concentration is higher than in Jeddah, where the KSA-PME limit of 340 µg/m3 for daily

averaged PM10 is exceeded in 2016 about a dozen times. In Dammam, this limit is more frequently exceeded, especially during485

the summer period. During acute dust events in Dammam, daily averaged PM10 concentrations can exceed the WHO guideline

limit by more than 10-20 times. Annually averaged MODON measurements are 7-11 times higher than the 20 µg/m3 WHO

guideline, and in 2-3 times higher than the 80 µg/m3 KSA-PME limits for annual mean PM10 concentrations.
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Figure 9. Left: WRF-Chem daily averaged PM10 surface concentrations (µg/m3) with the MODON observations and MERRA-2 and

CAMS-OA, at Jeddah, Riyadh, and Dammam. The dash-dotted line corresponds to the 50 µg/m3 WHO daily - guideline. Right: stacked

bars show the decomposition of the PM10 annual mean surface concentrations into dust and non-dust components. The dash-dotted line

corresponds to the 20 µg/m3 WHO annual guideline. Numbers on the right-hand side of WRF-Chem, CAMS-OA, and MERRA-2 bars show

the contribution (%) of the dust and non-dust particulates to the total PM10 concentration. a) 2015, b) 2016 year.

In contrast with MERRA-2 and CAMS-OA, WRF-Chem compares better with PM10 observations by MODON in all lo-

cations. MERRA-2 overestimates ⇡1.2-1.8 times and CAMS-OA underestimates ⇡1.5-2 times annual mean PM10 MODON490

observations in all locations. This is in agreement with Cuevas et al. (2014), who stated that MACC (the predecessor of CAMS-

OA) underestimates PM10 daily and monthly means all year long, and with our findings in Sec. 5.2.1, where we have shown that
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CAMS-OA underestimates the volume of particles with radii 0.9-20 µm. Annual mean PM10 concentrations from WRF-Chem

and MERRA-2 exceed the WHO limit of 20 µg/m3 ⇡6-15 and ⇡10-20 times, respectively, in all locations. The KSA-PME

limit of 80 µg/m3 for annual average PM10 concentrations is exceeded ⇡1.5-4 and ⇡1.5-5 times, respectively, for WRF-Chem495

and MERRA-2.

According to Tab. 7 MERRA-2 shows the highest contribution of the sea salt into PM10 in the coastal cities of Jeddah (⇡21-

25%) and Dammam (⇡6-7%). MERRA-2 demonstrates the lowest (⇡1-2%) contribution of sulfate to PM10, while WRF-Chem

and CAMS-OA produce similar sulfate contribution to PM10 in Jeddah ((⇡7%)) and Riyadh ((⇡2.4%)). MERRA-2 also shows

the lowest contribution (⇡0.1-0.2%) of black carbon (BC) to PM10 in all considered cities. CAMS-OA organic matter (OM )500

contribution to PM10 is prevailing in 2-8 times over the WRF-Chem and MERRA-2 contributions. CAMS-OA demonstrates

the lowest (0.1-0.2%) contribution of sea salt to PM10. Contribution of dust to PM10 in Jeddah is 70-90%, while in Riyadh and

Dammam this contribution is 90-96%. Minimal contribution (⇡3.5-4%) of non-dust components to PM10 is observed among

all models in Riyadh.

Table 7. Contributions (%) of dust and non-dust components into PM10 for Jeddah, Riyadh, and Dammam during 2015-2016.

Jeddah Riyadh Dammam

W
RF-C

he
m

CAMS-O
A

MERRA-2

W
RF-C

he
m

CAMS-O
A

MERRA-2

W
RF-C

he
m

CAMS-O
A

MERRA-2

2015

dust 87.5 89.2 75.6 96.6 96.2 96.5 96.2 91.6 92.2

sulf 6.3 6.2 1.7 2.4 2.6 1.4 2.6 4.8 0.9

BC 0.7 0.6 0.2 0.0 0.2 0.1 0.0 0.6 0.1

OM 1.3 3.8 1.4 0.5 1.0 0.7 0.4 2.8 0.8

salt 4.2 0.2 21.2 0.5 0.1 1.4 0.8 0.2 6.0

2016

dust 85.8 87.8 71.7 96.4 96.2 96.1 95.7 89.1 90.8

sulf 7.8 7.0 1.9 2.5 2.3 1.6 2.9 5.7 1.1

BC 0.7 0.7 0.2 0.0 0.2 0.1 0.0 0.8 0.1

OM 1.3 4.2 1.5 0.5 1.1 0.8 0.5 4.2 1.1

salt 4.4 0.2 24.8 0.5 0.1 1.5 0.9 0.2 6.8
⇤ for WRF-Chem and MERRA-2: dust = DUST1 +DUST2 +DUST3 +DUST4 ⇤ 0.74, sulf = sulfate, BC = BC1 +BC2,

OM = (OC1 +OC2) ⇤OCmfac, salt = SS1 +SS2 +SS3 +SS4

⇤⇤for CAMS: dust = DD1 +DD2 +DD3 ⇤ 0.4, sulf = sulfate, BC = BC1 +BC2, OM = OM1 +OM2, salt = SS1/4.3+SS2/4.3

Abbreviations of the aerosols’ names correspond to those given in Sec. 5.3.
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5.3.3 Spatial patterns of PM air pollution505

In this section we use WRF-Chem output averaged for 2015-2016 to discuss the spatial patterns of aerosol pollution and partial

contributions from natural and anthropogenic aerosols into PM over the ME.

Figures 10 a, b, c show the spatial distributions of the PM2.5 and PM10 surface concentrations and the PM2.5/PM10 ratio. The

left limits of the color bars for PM2.5 and PM10 are set to be equal to the corresponding WHO annual guideline concentrations.

Over the whole domain, the annual mean surface concentrations of PM2.5 and PM10 exceed WHO guidelines of 10 and 20510

µg/m3, correspondingly. The regions of high surface concentrations coincide with the main dust sources, which span from

Northern Iraq to Oman, include Sudan, Egypt, Libya, and Turkmenistan. PM concentrations in these regions exceed even the

less restrictive KSA-PME air quality limit for annual mean PM2.5 and PM10 concentrations by more than 5 times.

In the entire domain, the max, min, and mean values of the PM2.5/PM10 ratio (see Fig. 10c) are 0.73, 0.20, and 0.31

respectively. As expected, the lower PM2.5/PM10 ratios (0.2-0.3) are observed over the dust source regions (i.e., along the515

eastern Arabian peninsula, Iraq, and northern Africa), where both coarse and fine particles are generated. However, large

particles can not be transported as far from source regions as small particles, due to the shorter lifetime of large particles

compared with small particles with respect to deposition processes. The higher values (0.4-0.6) of the PM2.5/PM10 ratio are

observed over south-eastern Europe, Turkey, Ethiopia, and western parts of the Arabian Peninsula that are farther from the

main dust sources.520

Figure 10d shows the sum of surface concentrations of organic matter and black carbon (OC1 +OC2) ⇤OCmfac +BC1 +

BC2). Their max, min, and mean concentration values are 31.8, 0.2, and 1.3 µg/m3 respectively. Their contribution to aerosol

pollution over the Arabian Peninsula in WRF-Chem simulations is insignificant. Figure 10e shows the surface concentration

of sea salt calculated as a sum of concentrations in each bin SEAS2+SEAS3+SEAS4. Over the seas and coastal areas, the

average concentration of sea salt is 3-12 µg/m3. In summer, strong winds in Somali jet (see Fig. 3b intensify sea salt emission525

over the Arabian Sea, creating high surface concentrations of sea salt (27-42 µg/m3) along the coasts of Somalia and Oman.

Due to prevailing northern winds, the transport of sea salt from the Mediterranean Sea to Egypt and Libya is observed.

The relatively high sulfate surface concentration (see Fig. 10f) is observed in the vicinity of the strong SO2 sources located

along the west and east coast of Saudi Arabia and over the Arabian Gulf, as well as downwind from those sources, see (Ukhov

et al., 2020b) for details. Figure 10f also denotes the locations of the AERONET stations, as in Fig. 1. The sulfate concentration530

at the KAUST Campus site is higher than at the Mezaira and Sede Boker AERONET sites (see Sec. 5.2.1) so it experiences

more pronounced contribution of sulfate particulates into the fine mode of the AVSD (see Fig. 4a and Fig. 5). Due to the

prevailing northern winds along the Red Sea, sulfate aerosols originating from SO2 emissions along the Red Sea coast spread

along the west coast of the Arabian Peninsula towards Yemen. The drift of sulfate from the Arabian Gulf into the interior of the

Eastern part of the Arabian Peninsula is also seen. The sulfate annual mean background surface concentration over the US for535

the period 2003–2012, obtained in Buchard et al. (2016), is 2-3 µg/m3, similar to the background concentrations we see in the

ME. But in the downwind or in the vicinity of strong SO2 point emissions, sulfate concentrations are 3-4 times higher. Similar

sulfate surface concentrations for the period 2000-2016 over the US were obtained in van Donkelaar et al. (2019), where the
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Figure 10. WRF-Chem’s average 2015-2016 surface concentrations, (µg/m3): a) PM2.5, b) PM10; c) ratio PM2.5/PM10; d) black carbon

and organic matter ((OC1 +OC2) ⇤OCmfac +BC1 +BC2), (µg/m3), e) sea salt (SEAS2 +SEAS3 +SEAS4), (µg/m3), f) sulfate,

(µg/m3) and locations of AERONET stations, g) ratio dust PM2.5/(total PM2.5), h) ratio dust PM10/(total PM10), i) ratio sulfate/(PM2.5 total

non-dust). Abbreviations of the aerosols’ names correspond to those given in Sec. 5.3.

concentrations reach ⇡10 µg/m3 over the eastern part of the US during summer. In Al-Taani et al. (2019) the average 1980-

2016 sulfate concentration computed for UAE is 2.5-3 times lower. This difference is caused by the fact that Al-Taani et al.540
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(2019) took the sulfate fields from MERRA-2 reanalysis, which underestimates the SO2 emissions as shown in (Ukhov et al.,

2020b).

Contributions of dust to PM2.5 and PM10 calculated as ratios of dust PM2.5 to total PM2.5, and dust PM10 to total PM10,

are shown in Fig. 10g and 10h, respectively. Due to relatively low dust surface concentrations over the eastern Mediterranean,

Turkey, and south-eastern Europe, the contribution of dust to PM2.5 and PM10 is 20-50% and 50-80%, respectively. In other545

areas that are closer to the dust source regions, the contribution of dust to PM is above 80%.

Figure 10i shows the ratio between the concentration of sulfate aerosol with respect to the total concentration of PM2.5

non-dust aerosols. The max, min, and mean values of this ratio are 0.84, 0.07, and 0.52, respectively. This ratio is low over

the seas where sea salt is prevalent but consistently exceeds 0.6 over land. Sulfate, therefore, is the primary anthropogenic

pollutant over land. In the central and southern parts of Saudi Arabia, and over Iran, sulfate contributes 60-90% to the total550

PM2.5 non-dust aerosols concentration. Over the other parts of the Arabian Peninsula, the northern part of Sudan, Libya, and

Egypt, sulfate contributes approximately 40-60% to total PM2.5 non-dust aerosols concentration.

5.3.4 PM air pollution in the ME major cities

To evaluate the air-quality in the ME’s major cities, we calculate for their locations the average for 2015-2016 daily PM2.5 and

PM10 surface concentrations, their 90th percentiles, and we also calculate the contribution of the dust and non-dust components555

into PM (see Fig. 11). We calculate the number of days during the 2015-2016 period when the daily PM2.5 and PM10 surface

concentrations exceed the US-EPA air-quality limit of 35 µg/m3 and 150 µg/m3 respectively.

Figure 11 shows that the annually-averaged PM2.5 and PM10 exceed the WHO air-quality guidelines 2-9 and 3-20 times,

respectively in all major cities of the ME, except Ankara. The KSA-PME air-quality limit for annual mean PM2.5 is exceeded

by up to 6 times, and by up to 5 times for PM10. Due to the lack of strong dust sources nearby, air-quality conditions in the560

cities in the eastern Mediterranean are more favorable when compared with those in the Arabian Peninsula. In these cities, the

air pollution shifts from natural to anthropogenic, as the contribution of non-dust aerosols to PM2.5 increases up to 30-45%, in

contrast with the cities located in the Arabian Peninsula, where this contribution is up to 8-25%. Sulfate aerosol is the major

contributor to non-dust PM2.5.

The cities at the eastern coast of the Arabian Peninsula have the highest 90th percentiles of daily mean PM concentrations.565

For example, in Dammam, Abu Dhabi, Doha, and Kuwait City, the 90th percentiles of daily mean surface concentration of

PM10 and PM2.5 are in the range of 400-740 and 130-180 µg/m3 respectively. This is above the KSA-PME air-quality limits

for daily mean PM10 and PM2.5.

In the Eastern Mediterranean cities, within the 2015-2016 period, the US-EPA air-quality daily mean limits are exceeded

40-75 days for PM10 and 60-100 days for PM2.5. In the cities of the Arabian Peninsula, Iraq, and Iran, the US-EPA PM daily570

mean limits are exceeded 94-627 days for PM10 and 213-640 days for PM2.5 during the same period.

29



Figure 11. Annual mean 2015-2016 PM surface concentrations (µg/m3) calculated for the ME major cities and PM decomposition into

dust and non-dust (sulfate, sea salt, black carbon and organic matter) components (stacked bars). Abbreviations of the aerosols’ names

correspond to those given in Sec. 5.3. Hatched bars denote 90th percentiles (µg/m3) calculated using daily mean PM concentrations. WHO

guidelines and KSA-PME air-quality limits for annual averaged PM are shown by dash-dotted and dashed lines. Numbers over the stacked

bars correspond to the number of days during 2015-2016, when daily averaged PM surface concentration exceeded US-EPA air-quality

limit: a) PM2.5. Daily averaged US-EPA air-quality limit is 35 µg/m3. Annual WHO guideline and KSA-PME limit are 10 and 15 µg/m3,

respectively; b) PM10. Daily averaged US-EPA air-quality limit is 150 µg/m3. Annual WHO and KSA-PME limits are 20 and 80 µg/m3,

respectively.
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6 Conclusions

This study assesses the impact of aerosols on air pollution in the Middle East. It presents an evaluation of two aerosol
::::::::
evaluates

:::::::::
MERRA-2

:::
and

::::::::::
CAMS-OA data assimilation products, MERRA-2 and CAMS-OA, as well as

:::
and high-resolution WRF-Chem

simulations
:::::
aiming

::
at

::::::::
assessing

:::
the

::::::
impact

::
of

:::::::
aerosols

:::
on

:::
PM

::
air

::::::::
pollution

:
over the Middle East . In the scope of this study, we575

conducted high-resolution WRF-Chem simulations for the 2015-2016 period. We evaluated the AOD and PM air pollution over

the Arabian Peninsula and in the ME major cities. We also tested
::
It

:::
also

:::::::::
compares the new MODIS AOD retrieval, MAIAC,

with the conventional MODIS-DB&DT and AERONET AOD over the Middle East .

The WRF-Chem v3.7.1 code was fixed to describe the aerosol effects correctly, and
:::::
major

::::
dust

:::::
source

:::::::
regions.

:
MERRA-2

has been used for constructing boundary and initial conditions for meteorological and chemistry/aerosol variables. To improve580

the calculation of sulfate aerosols, the most accurate emission dataset retrieved from OMI observations using the "top-down"

approach was implemented in WRF-Chem calculations. We also tuned in WRF-Chem the dust emission size distribution to

match the retrieved AERONET AVSDs.

MERRA-2 and WRF-Chem use the five-bin GOCART
:::
dust

:
aerosol model and demonstrate a better agreement with the

AERONET observations
:::::::
retrieved

:::
size

::::::::::
distribution

:
than CAMS-OAthat ,

::::::
which uses a three dust-bins microphysical model.585

CAMS-OA overestimates the volume of fine dust particles with radii of 0.55-0.9 µm and underestimates the volume of coarse

dust particles with radii of 0.9-20 µm in comparison with
:::
the AERONET aerosol volume size distribution.

At all considered AERONET sites, WRF-Chem, CAMS-OA, MERRA-2, MODIS-DB&DT, and MAIAC can reproduce

::
are

:::::::
capable

:::
of

::::::::::
reproducing the magnitude and temporal evolution of the AERONET AOD time series during the whole pe-

riod. MAIAC and MERRA-2 have the highest correlation to AERONET AOD. CAMS-OA shows better correlation than590

MODIS-DB&DT, although CAMS-OA overestimates
::::
tends

::
to

:::::::::::
overestimate AERONET AOD, especially during the severe dust

eventsand exhibits a relatively high positive bias. The MODIS-DB&DT and MAIAC retrieval products have similar absolute

values of the mean bias, which is
::::
AOD

:::::
mean

:::::
biases

::::
with

::::::
respect

::
to
::::::::::
AERONET

:::::::::::
observations

::
are

::
of

:::
the

:::::
same

:::::::::
magnitude

:
(slightly

larger than that of MERRA-2and WRF-Chem. The
::
),

:::
but

:::
the MODIS-DB&DT AOD is biased positively, but

:::
and the MAIAC

AOD is biased negatively except for Sede Boker for both years. The spatial AOD fields from WRF-Chem and assimilation595

products exhibit similar
:::::
spatial

:
patterns, but WRF-Chem, MAIAC, and MERRA-2 underestimate, and CAMS-OA overes-

timates MODIS-DB&DT AOD. MAIAC has the highest correlation
:::::
spatial

::::::::::
correlation

::
to

:::
the

:::::::::::
conventional

:::::::::::::::
MODIS-DB&DT

::::
AOD, followed by MERRA-2, CAMS-OA, and WRF-Chem.

The capability of WRF-Chem, MERRA-2, and CAMS-OA in reproducing PM air pollution over the ME
::::::
Middle

::::
East

:
was

tested against in situ measurements.
::::
These

::::
PM

::::::::::::
measurements

:::
are

:::::::::
conducted

::
in

:::
the

::::::::
industrial

::::::
regions

:::
of

::::::
Jeddah,

:::::::
Riyadh,

::::
and600

::::::::
Dammam,

::::::
which

::::::::::
complicates

::::::::::
one-to-one

::::::::::
comparison

::::
with

:::
the

::::::
output

:::::
from

:::::
global

::::
and

:::::::
regional

:::::::
models.

:
Annual mean PM

concentrations from WRF-Chem and MERRA-2 exceed the corresponding WHO limits up to
:::::
WHO

:::::
limit

::::::
almost 20 times.

The KSA-PME limit for annual average concentrations is exceeded up to 6.5 times. The CAMS-OA annual mean PM2.5 fits

the MODON AQMS observations better than other products. CAMS-OA,
:::
also

::::::::
exceeded

:::::
more

::::
than

:
6
::::::

times. MERRA-2 , and

WRF-Chem underestimate ⇡3 times
::
the

::::::::
observed

:
annual mean PM2.5 observed concentrations during 2016 in Jeddah and605
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Riyadh
::::::
almost

:
3
:::::
times. CAMS-OA, MERRA-2 overestimate, and WRF-Chem underestimates observed annual mean PM2.5 in

Dammam. In Jeddah and Dammam, WRF-Chem and MERRA-2 show similar relative contributions of non-dust components to

PM2.5. Still, in MERRA-2, sea salt is a major contributor in non-dust aerosol concentration, while in WRF-Chem, it is a sulfate.

This difference is both because MERRA-2 generates more sea salt and underestimates emissions, hence underestimating sulfate

concentrations. In Jeddah, Dammam, and Riyadh, the contribution of black carbon to PM2.5 is insignificant for all models.610

WRF-Chem results compare better with PM10 MODON observations in all locations than ones from MERRA-2 and CAMS-

OA . MERRA-2 overestimates ⇡1.2-1.8 times. CAMS-OA underestimates ⇡
::::::::::::
underestimates

:
(1.5-2 times

:
) annual mean PM10

MODON observations in all locations primarily due to its deficiency in the
:::::::
deficient

:
dust size distribution. MERRA-2 shows

the highest contribution of the sea salt and the lowest contribution of black carbon and sulfate to PM10 in all locations.
:::
The

CAMS-OA organic matter contribution to PM10 is prevailing over the WRF-Chem and MERRA-2 contributions. CAMS-OA615

demonstrates the lowest contribution of sea salt to PM 10. Minimal contribution of non-dust components to PM10 is observed

among all models in Riyadh.
:::::
annual

:::::
mean

:::::
PM2.5:::

fits
:::
the

::::
PM

::::::::::
observations

:::::
better

::::
than

:::::
other

::::::::
products.

The PM composition analysis
::::
over

::::
rural

:::::
areas shows that in WRF-Chem, the annual average PM2.5/PM10 ratio over the ME

is
::::
about

:
0.3. It decreases to 0.25 over the major dust source regions, i.e., in the eastern Arabian peninsula, Iraq, and northern

Africa. In most parts of the ME
::::::
Middle

::::
East, dust is the major contributor to PM. The sulfate aerosol contribution to PM2.5 is620

essential in the areas where strong SO2 sources are present, i.e., in the west and east coasts of Saudi Arabia and over the Arabian

Gulf. In these areas sulfate surface concentration reaches 8-11 µg/m3, while the "clean" background level is 2-4 µg/m3. High

sulfate content along the west coast of Saudi Arabia is consistent with the increased volume of the fine mode in the KAUST

Campus AERONET AVSD
:::
site

:
in comparison with AVSDs from other

::::::
Mezaira

::
and

:::::
Sede

:::::
Boker sites. In WRF-Chem, sulfate is

the major non-dust pollutant over the ME
::::::
Middle

::::
East. Sulfate aerosols contribute 60-90 % to the total PM2.5 non-dust aerosols625

over the central and southern parts of Saudi Arabia and Iran. Over the other parts of the Arabian Peninsula, northern Sudan,

Libya, and Egypt, sulfate contributes approximately 40-60 % to the total PM2.5 non-dust aerosol concentration. In Jeddah and

Dammam, WRF-Chem and MERRA-2 show similar relative contributions of the non-dust component to PM2.5 (30-34% in

Jeddah and 12-14% in Dammam). In MERRA-2, in contrast with WRF-Chem, sea salt is a major non-dust contributor to PM2.5.

In CAMS-OA contribution of the non-dust particulates to PM2.5 in Jeddah and Dammam is ⇡7-10% and the contribution of sea630

salt is little. In Riyadh, the contribution of the non-dust component to PM2.5 is ⇡9-12% for both MERRA-2 and WRF-Chem.

The analysis of the annually averaged PM2.5 and PM10 surface concentrations in the ME
::::::
Middle

::::
East major cities shows a

very high PM pollution level. In Dammam, Abu Dhabi, Doha, and Kuwait City, the 90th percentile of PM10 and PM2.5 annual

mean surface concentrations exceed 400-740 and 130-180 µg/m3 respectively, which is above the KSA-PME air-quality limit.

In the eastern Mediterranean, dust concentration drops, and non-dust aerosols’ contribution to PM2.5 increases up to 30-45%.635

In the cities located in the Arabian Peninsula contribution of the non-dust component to PM2.5 is 8-25%, which limits the

effect of the emission control on air-quality. In the eastern Mediterranean cities during the 2015-2016 period, the daily mean

surface PM concentrations exceed the US-EPA air quality daily mean limit 40-75 days for PM10 and 60-100 days for PM2.5.

In the ME
:::::
major cities over the Arabian peninsula, Iraq, and Iran, the US-EPA air-quality daily mean limit is exceeded 94-

627 days for PM10 and 213-640 days for PM2.5.
::
In

::::::
Jeddah

:::
and

:::::::::
Dammam,

:::::::::::
WRF-Chem

:::
and

:::::::::
MERRA-2

:::::
show

::::::
similar

:::::::
relative640
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:::::::::::
contributions

::
of

:::
the

::::::::
non-dust

::::::::::
component

::
to

::::::
PM2.5::::::::

(30-34%
::
in

::::::
Jeddah

::::
and

:::::::
12-14%

::
in
::::::::::

Dammam).
::::

But
::
in

::::::::::
MERRA-2,

::::
sea

:::
salt

::
is

::
a

:::::
major

::::::::::
contributor

::
in

::::::::
non-dust

::::::
aerosol

::::::::::::
concentration,

::::::
while

::
in

:::::::::::
WRF-Chem,

::
it

::
is

::
a

::::::
sulfate.

::::
This

:::::::::
difference

::
is
:::::

both

::::::
because

::::::::::
MERRA-2

::::::::
generates

:::::
more

:::
sea

:::
salt

::::
and

::::::::::::
underestimates

:
SO2 ::::::::

emissions
::::
and,

::::::::::::
consequently,

::::::
sulfate

::::::::::::
concentrations.

:::
In

:::::::::
CAMS-OA

::::::::::
contribution

:::
of

:::::::
non-dust

::::::::::
particulates

::
to

:::::
PM2.5:::

in
::::::
Jeddah

:::
and

::::::::
Dammam

::
is
::::::::
⇡7-10%

:::
and

:::
the

::::::::::
contribution

::
of

:::
sea

::::
salt

:
is
:::::
little.

::
In

:::::::
Riyadh,

:::
the

::::::::::
contribution

:::
of

:::
the

:::::::
non-dust

::::::::::
component

::
to

:::::
PM2.5::

is
::::::::
⇡9-12%

:::
for

::::
both

:::::::::
MERRA-2

::::
and

::::::::::
WRF-Chem.

:::
In645

::::::
Jeddah,

:::::::::
Dammam,

::::
and

::::::
Riyadh,

:::
the

:::::::::::
contribution

::
of

:::::
black

::::::
carbon

::
to

::::::
PM2.5::

is
::::::::::
insignificant

:::
for

:::
all

::::::::
products.

:::::::::
MERRA-2

::::::
shows

::
the

:::::::
highest

::::::::::
contribution

::
of

:::
sea

:::
salt

::::
and

:::
the

:::::
lowest

::::::::::
contribution

:::
of

::::
black

::::::
carbon

::::
and

:::::
sulfate

::
to
:::::
PM10::

in
:::
all

::::::::
locations.

::::::::::
CAMS-OA

:::::::::::
demonstrates

:::
the

::::::
lowest

::::::::::
contribution

:::
of

:::
sea

:::
salt

:::
to

::::::
PM10.

:::
The

:::::::::
minimum

::::::::::
contribution

:::
of

::::::::
non-dust

::::::::::
components

::
to

::::::
PM10 ::

is

:::::::
observed

::
in

:::::::
Riyadh

:::::
among

:::
all

:::::::
models.

Thus, in this study, we found that MERRA-2 and CAMS-OA assimilation products, as well as WRF-Chem output despite650

some intrinsic uncertainties, could be used for evaluation the PM air pollution over the ME. All products show the dominant

contribution of mineral dust into PM. However, in the Arabian coastal areas where SO2 emissions are high, both contributions

of sulfate and sea salt could be significant. The broad effect of natural aerosols on air quality in the ME puts stricter requirements

on anthropogenic pollution control. The impact of dust could be alleviated by employing specific to desert areas architectural

solutions, increasing in-city vegetation cover, and providing air-quality forecasts to alarm the population on hazardous air655

quality. The developed WRF-Chem modeling framework can be used to simulate other pollutants like NOx and O3. The results

of the current research could serve as the
:
a
:
basis for an improved air-quality forecast system that interactively calculates high-

resolution radiative, dynamical, atmospheric chemistry and aerosol processes, driven by natural and anthropogenic emissions.

This system will be especially valuable for the prediction of extreme pollution events. It will also improve understanding of

the impact of anthropogenic and natural pollution on air quality and human health in the ME region.660

Code availability.

1. Merra2BC interpolation utility is available at http://github.com/saneku/Merra2BC

Data availability.

1. MERRA-2 data are available at https://disc.gsfc.nasa.gov/daac-bin/FTPSubset2.pl

2. CAMS-OA data are available at http://apps.ecmwf.int/datasets/data/cams-nrealtime665

3. MODIS-DB&DT AOD level 2 data are available at https://ladsweb.modaps.eosdis.nasa.gov/about/purpose

4. AERONET data are available at https://aeronet.gsfc.nasa.gov/

5. MAIAC data are available at https://lpdaac.usgs.gov/products/mcd19a2v006/

6. HTAP-2.2 emission inventory is available at http://edgar.jrc.ec.europa.eu/htap_v2/index.php?SECURE=123

7. OMI-HTAP SO2 emission dataset is available at https://avdc.gsfc.nasa.gov/pub/data/project/OMI_HTAP_emis/670
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Appendix A

A1 Meteorological Boundary and Initial Conditions

To be consistent with IC&BC for chemical species and aerosols, we developed a procedure to build meteorological IC&BC

from MERRA-2 reanalysis for all required by WRF-Chem meteorological parameters. In particular, the following 3D param-

eters were processed: pressure (Pa), geopotential height (m), temperature (K), meridional and zonal wind components (m/s),675

relative humidity (%); 2D parameters: surface pressure (Pa), sea level pressure (Pa), meridional and zonal wind components

at 10m (m/s), temperature at 2m (K), relative humidity at 2m (%), skin temperature (K), ice mask (0/1), terrain height (m),

land/sea mask (1/0), soil temperature at 0-10 (cm), 10-40 (cm), 40-100 (cm) and 100-200 (cm); soil moisture at 0-10 (cm),

10-40 (cm), 40-100 (cm) and 100-200 (cm); snow depth (m); snow water equivalent (kg/m2).

A2 Statistics680

We calculated the following statistical parameters to quantify the level of agreement between estimations and observations:

Pearson correlation coefficient (R):

R=

NP
i=1

⇣
Fi � F̄

⌘⇣
Oi � Ō

⌘

s
NP
i=1

⇣
Fi � F̄

⌘2 NP
i=1

⇣
Oi � Ō

⌘2
. (A1)

Root mean square error (RMSE):

RMSE =

vuut 1

N

NX

i=1

⇣
Fi �Oi

⌘2
(A2)685

Mean bias:

bias=
1

N

NX

i=1

⇣
Fi �Oi

⌘
(A3)

where Fi is the estimated value, Oi is the observed value, F̄ = 1
N

NP
i=1

Fi and Ō = 1
N

NP
i=1

Oi their averages and N is the

number of data.

A3 Comparison of AERONET and WRF-Chem volume size distributions690

The GOCART dust emission formula (2) calculates dust mass flux into the atmosphere within five dust-bins. In this formula the

factor C controls the total dust emission mass flux, and the sp fractions split this flux into five different dust-bins. We assume

that
P

sp=1. To match the observed AERONET AVSD we changed the default sp={0.1, 0.25, 0.25, 0.25, 0.25} to {0.15, 0.1,

0.25, 0.4, 0.1}. It means that 15% of the total dust mass flux is coming as clay and 85% as silt.
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In the original formulation the fractions sp are not normalized and
P

sp=1.1. It is not essential, as the total flux is multiplied695

by the factor C that is tuned to fit the observed AOD. So we can normalize the original sp fractions by dividing them to 1.1

and multiplying factor C to 1.1. It will not change any results in eq. (2) but gives the sp set of {0.09, 0.2275, 0.2275, 0.2275,

0.2275} that is normalized to 1 consistently with our approach. Figure A1 compares the AVSDs calculated with the updated

and default sp fractions for Summer (JJA) of 2015.

Figure A1. Volume size distributions at KAUST Campus, Mezaira and Sede Boker AERONET sites averaged for JJA of 2015 from WRF-

Chem (bars) and from AERONET (solid line): a) updated sp={0.15, 0.1, 0.25, 0.4, 0.1}, b) default sp={0.1, 0.25, 0.25, 0.25, 0.25} fractions.

Author contributions. A. Ukhov wrote the manuscript and took part in planning and performing the calculations. S. Mostamandi performed700

the calculations, constructed meteorological IC&BC based on MERRA-2 reanalysis, prepared MAIAC AOD fields, wrote the section on

meteorological conditions, and took part in the discussions. G. Stenchikov planned the calculations, led the discussion, and reviewed and

improved the manuscript. I. Shevchenko maintained the KAUST Campus AERONET station. Y. Alshehri collected, filtered, and validated
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