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Abstract. Air pollutant emissions estimates by top-down
methods are subject to a variety of errors and uncertainties.
This work uses a known source, a coal-fired power plant,
to explore those errors. The known emissions amount and
location remove two major types of error, facilitating un-5

derstanding of other types. Biases and random errors are
distinguished. A Lagrangian dispersion model (HYSPLIT)
is run forward in time from the known source, and virtual
measurements of the resulting tracer plume are compared to
actual measurements from research aircraft. Four flights in10

different years are used to illustrate a variety of conditions.
The measurements are analyzed by a mass-balance method,
and the assumptions of that method are discussed. Some of
those assumptions can be relaxed in analysis of the mod-
eled plume, allowing testing of their validity. Meteorological15

fields to drive HYSPLIT are provided by the European Cen-
tre for Medium-Range Weather Forecasts Fifth Reanalysis
(ERA5). A unique feature of this work is the use of an en-
semble of meteorological fields intrinsic to ERA5. This anal-
ysis supports reasonably large (30 %–40 %) uncertainties on20

top-down analyses.

1 Introduction

Emissions of air pollutants must be known for modeling
of exposure and planning for compliance with concentra-
tion standards. Bottom-up and top-down methods are used25

to estimate emissions. Bottom-up methods combine activity

data with emissions factors, essentially counting sources and
multiplying by their individual emissions. This is the main
method used to produce official inventories. Top-down meth-
ods use measurements of atmospheric concentrations to es- 30

timate emissions. Both types of methods are subject to sub-
stantial uncertainty and often disagree (e.g., Hsu et al., 2010).

The main purpose of this work is to evaluate some of the
errors and uncertainties in top-down methods while control-
ling other sources of uncertainty. Evaluating the errors and 35

uncertainties of top-down methods is difficult. Not only the
emissions amounts but their location, distribution, and timing
are often unknown. Attempts to constrain all these matters
simultaneously result in grossly under-determined systems.
Most often the under-determination is dealt with by employ- 40

ing Bayesian statistical methods, which introduce further er-
rors and uncertainties and remove the desired independence
of the top-down and bottom-up methods.

In this work, we start with an emission source known
in quantity, timing, and location. That source is the Mar- 45

tin Lake coal-fired power plant in eastern Texas. It is lo-
cated in reasonably simple, flat terrain. Stack emissions of
several gasses are measured by continuous emissions mon-
itoring systems (CEMSs)CE1 . Concentration measurements
from aircraft are used to estimate emissions by mass bal- 50

ance and to compare with modeled concentrations. Here we
use sulfur dioxide (SO2), nitrogen oxides (NOy), and carbon
dioxide (CO2). SO2 is emphasized because its peak concen-
tration measured in aircraft traverses is well defined above
the regional background. SO2 is lost to surfaces and con- 55
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2 W. M. Angevine et al.: Errors in top-down estimates of emissions

verted to sulfate aerosol, but that conversion is slow com-
pared to the transport time of the main transects we use here,
which are usually 30–60 min downwind of the stack. CEMS
data are also uncertain, but we assume that those uncertain-
ties are small, i.e., < 10 % (Peischl et al., 2010), relative to5

the other uncertainties treated here. For the purposes of this
paper, CEMS data are considered the “reality” with which
other estimates are compared.

Emissions can be estimated from observations alone under
certain non-trivial assumptions. Inverse modeling is used to10

allow relaxation of some of those assumptions. In this work,
we replace some of the observations with (forward) modeled
values, in varying combinations. This allows us to character-
ize and estimate errors arising from the models, and it is a
step toward understanding errors and uncertainties in inverse15

modeling.
We attempt to distinguish between error and uncertainty

within this work. Error is the difference between an ana-
lyzed value and the true value, in this case, of the emission
rate. Uncertainty is an estimate of the error that we expect in20

the absence of knowledge of the truth (Joint Committee for
Guides in Metrology, 2008)CE2 . Error and uncertainty have
systematic and random components. Systematic error is syn-
onymous with bias, that is, persistent differences of one sign
between reality and a result of analysis. The distinction is25

neither precise nor crisp, and terms are not always used care-
fully. Atmospheric measurements rarely have enough sam-
ples to reliably distinguish the two. Bias can be introduced
by the use of methods or assumptions that most often move
the result in one direction. For example, a low bias in a wind30

speed measurement will result in a low bias in the emissions
estimated by mass balance. Random differences have many
possible causes, one important cause being sampling uncer-
tainty, that is, the difference between the mean of a quantity
measured with a small number of samples and the true (en-35

semble) mean (Wilks, 2011). The distinction is important for
several reasons. Reporting a small uncertainty with possibly
large unknown biases can lead to incorrect policy decisions.
Bayesian analyses assume that the measurements and prior
have zero mean error and (usually) Gaussian uncertainty, and40

the proper characterization of the error covariances is criti-
cal to a good result. From a practical point of view, repeated
measurements can reduce random uncertainty but cannot re-
duce bias.

Errors and uncertainties in the meteorological fields (mod-45

eled or measured) used in analyses propagate directly into the
result. Since we only measure one realization of the chaotic
atmosphere, we never have an ensemble average (statistically
speaking). Normally, only a single meteorological field is
used. The numerical weather prediction community has been50

moving steadily toward producing ensemble output, that is,
well-designed sets of multiple realizations (Palmer, 2018).
These can provide a rough method to distinguish between
bias and random uncertainty. The difference between the re-
sult produced from a control run and reality is an estimate55

of bias. So is the difference between an ensemble mean re-
sult and reality. The statistics of differences between results
from all ensemble members are estimates of random uncer-
tainty. The quality of these estimates depends on the design
and quality of the ensemble. 60

Meteorological quantities have been identified as major
sources of error and uncertainty in emissions estimates.
These can be divided into several classes. Wind direction er-
rors displace the plume (or the source in an inverse analysis).
Wind speed errors change the magnitude of the plume and 65

its timing with respect to time-varying emissions. Mistaken
diagnosis of the mixing height affects the concentrations and
may contribute to violation of the well-mixed assumption.
Errors in the transport model are also important. Under- or
over-estimation of horizontal dispersion changes the plume 70

width. Discretization in either horizontal or vertical dimen-
sions may add noise or uncertainty. Physical situations that
are correctly handled in the models may still lead to errors
in some analyses. For example, temporal variation (unsteadi-
ness) of wind can result in storage of pollutant that violates 75

the assumption of steady wind in mass balance analysis. This
can be exacerbated if the winds are not updated often enough
in the transport model.

2 Data

The Martin Lake power plant complex is located in fairly 80

simple terrain in eastern Texas (32.260◦ N, 94.570◦W). It has
three stacks that are each 452 ft (138 m) high. The stacks are
spaced 100 m apart.

The measurements used here were taken by NOAA scien-
tists aboard NOAA or NCAR research aircraft. Flights down- 85

wind of the Martin Lake power plant were made in four years
(2000, 2006, 2013, and 2015). Dates are shown in Table 1.
The flights were planned to intercept the plume at least once
and usually several times. Downwind distances were chosen
to satisfy the conditions for mass balance analysis (see be- 90

low), far enough downwind for the plume to be well mixed
through the boundary layer in the vertical but close enough
for the concentration signal to be strong and to minimize
chemical transformations.

For all four flights, SO2 was measured using a modified, 95

commercial, pulsed UV fluorescence instrument, a Thermo
Environmental Instruments, Inc., model 43S (Ryerson et al.,
1998). The 1 Hz measurements have an estimated 1σ preci-
sion of ±0.3–1 ppbv and a 1σ uncertainty of ±10 %–12 %,
depending on year. NOy was measured by chemilumines- 100

cence after conversion to NO in a heated gold catalyst (Ry-
erson et al., 1999). The 1 Hz precision ranged from 0.015 to
0.4 ppbv, and uncertainty ranged from ±10 % to 12 %, de-
pending on year. CO2 was measured by infrared absorption
using a LI-COR 6262 in 2000 and 2006 (Peischl et al., 2010), 105

and a Picarro 1301-m in 2013 and 2015 (Peischl et al., 2012).
The 1 Hz precision was at or below ±0.1 ppm for all flight
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Table 1. Values and ranges of SO2 emission rates from several estimates as described in the text. Asterisk denotes ensemble ranges that
do not include the true (CEMS) value. The four primary transects identified for further analysis are in bold type, and full-plane values are
provided only for those four primary transects.

Date CEMS SO2 rate Mass balance SO2 Simulated mass balance Ensemble range Full-plane integration Distance
(yyyymmdd) (kg h−1) rate (bias) SO2 rate (bias) SO2 rate SO2 rate (bias) downwind (km)

20130625 6380 4251 6414 5174–6708
(transect 1) (−2129, −34 %) (34, 5.3 %) (25 %) 51

20130625 6780 6727 8091 7405–8323 7500 16
(transect 2) (53, −7.8 %) (1311, 19 %) (12 %)∗ (720, 10 %)

20130625 6780 5818 6688 5709–7752 46
(transect 3) (−962, −14 %) (−92, −14 %TS1 ) (31 %)

20130625 6780 6318 6903 5533–7988 46
(transect 4) (−462, −6.8 %) (123, 18 %TS2 ) (36 %)

20060916 7403 13227 10287 6501–10187 16
(transect 1) (5824, 79 %) (2884, 40 %) (46 %)

20060916 7403 9273 7045 5472–7923 9052 27
(transect 2) (1870, 25 %) (−358, −4.8 %) (36 %) (1649, 22 %)

20060916 7403 2673 6020 4715–6658 37
(transect 3) (−4730, −64 %) (−1383, −19 %) (34 %)

20060916 7403 3186 5959 4337–7319 52
(transect 4) (−4217, −57 %) (−1444, −20 %) (49 %)

20060916 7403 3914 6247 4371–7136 52
(transect 5) (−3489, −47 %) (−1156, −16 %) (46 %)

20060916 10404 7955 5677 4070–6461 52
(transect 6) (−2449, −24 %) (−4727, −45 %) (43 %)

20000903 9105 8773 10870 7696–12717 13154 10
(transect 1) (-332, -3.6 %) (1765, 19 %) (46 %) (4049, 44 %)

20150425 418 251 461 350–893 299 36
(transect 2) (−167, −40 %) (43, 10 %) (105 %) (−119, −28 %)

years, and the measurement uncertainty was ±3 % in 2000
and approximately ±0.15 ppm for the other flights.

Pursuant to federal regulation, commercial electric utility
steam-generating units with a capacity greater than 25 MW
are required to monitor stack emissions and report them to5

the Environmental Protection Agency. The full capacity of
each of the three units at Martin Lake is greater than 700 MW,
thus subject to reporting requirements. The relative accuracy
of the SO2, NOx , CO2, and flow measurements is all required
to be less than 10 %. Therefore, we expect the uncertainty of10

a mass flow value or a ratio of two pollutant concentrations to
be less than 14 % after quadrature addition of the uncertain-
ties. The ratio of pollutants was verified by top-down mea-
surements of 11 Texas power plants, including Martin Lake,
in a 2006 study (Peischl et al., 2010), but a determination of15

the mass flux was not.

3 Methods

3.1 Mass balance

In the mass balance method the object is to determine the
amount of mass flowing through a plane downwind of a 20

source. The mass flow rate through this plane is used as an
estimate for the emission rate from the source. Mass balance
is a time-honored method of converting concentration mea-
surements to emissions with minimal reference to models
(e.g., White et al., 1976; Trainer et al., 1995; Karion et al., 25

2015; Turnbull et al., 2011; Karion et al., 2013). In the sim-
plest cases, such as those presented below, it assumes that a
plume is well mixed in the vertical to a well-defined height
and that the wind speed and direction are steady. A robust
estimate of the background (concentration not attributable 30

to the source of interest) is required, either with a transect
upwind of the source and/or by interpolating the concentra-
tions at the edges of the plume. The background uncertainty
is greater if only the latter case is used but less so when the
plume is only a few kilometers wide, as is typical for a power 35
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plant plume. We generally use the interpolation method here,
and our background uncertainty assumptions are further sup-
ported by multiple years of regional transects upwind and
downwind of the Martin Lake power plant that reveal few
point sources of SO2, NOx , and CO2 of a magnitude to inter-5

fere with the Martin Lake plumes in this region. At least one
transect across the plume is made at a height well within the
mixed layer. The mixed layer height is usually determined by
examining temperature, potential temperature, and trace gas
concentrations during vertical profiles at the ends of some10

transects. More elaborate methods involve multiple down-
wind transects, often accompanied by 2-D interpolation of
downwind measurements (Mays et al., 2009). Detailed anal-
ysis of related methods in the context of column measure-
ments is given by Varon et al. (2018).15

Sources of error are (1) error in determining the mass flow
rate through the plane; (2) the emission rate at the source
may be different than the mass flow rate through the plane;
and (3) pollutant may be lost to deposition and/or chemical
transformation. Determining the mass flow rate through the20

plane is done by estimating the concentration at each point
in the plane, multiplying by the area to get a linear mass
density and then multiplying by the wind speed perpendic-
ular to the plane to obtain a mass flow rate. Usually one or
more transects is flown through a plume during presumably25

well-mixed conditions. Thus the concentrations at a single
height may be used as an estimate for concentrations from
the ground to a well-defined mixing height. Errors may arise
because the plume is not well mixed, causing concentrations
to vary significantly in the vertical direction; the planetary30

boundary layer height is not well known; or significant mass
has been transported above the boundary layer. The other
source of error is that the mass flow rate through the plane
may be significantly different than the emission rate from the
source. This may occur when winds are variable in speed35

and/or direction in time and/or space.

3.2 Models

By using a model, we can virtually eliminate errors arising
from (1). In the simulated world, simulated concentrations
and model wind speeds at every point in the plane are known,40

so there is no need to estimate a mixing height. In addition,
the emission from the source is also known in the simulated
world. Thus mismatch between the emission rate from the
source and the mass flow rate from the analysis plane is only
caused by variable winds and can be explored in detail. Un-45

certainties due to losses to deposition and/or transformation
(3) are also eliminated in the simulations.

The mass balance method can also be applied to the sim-
ulated fields by using only simulated concentrations from a
single transect and the model mixing height. The tracer pro-50

file is known exactly in the simulated world, but the mixing
height may still not be well defined. Tracer profiles may not
have a sharp cutoff in the vertical. Significant mass is of-

ten found above the boundary layer height specified to the
simulation because the model is designed to allow trans- 55

port above the boundary layer and also because the boundary
layer height changes in space and time. It is difficult to tell,
however, if this accurately reflects vertical mixing in the real
world.

Fully model-based retrievals of emissions from concentra- 60

tion measurements are usually done with a Bayesian analy-
sis in order to overcome the under-constrained nature of the
problem. A Lagrangian dispersion model is run backwards
in time from the sites of measurements to produce footprints,
which are convolved with a prior inventory. The differences 65

between modeled and measured concentrations are then op-
timized by a mathematical algorithm. Weights (error covari-
ances) are applied to the measurements and the prior, ex-
pressing relative confidence in their correctness. Bayesian
analysis requires assumptions about the PDF of errors (usu- 70

ally Gaussian, always with zero mean).
Here we use hybrid or intermediate methods to examine

the consequences of different classes of error. The meteoro-
logical model (reanalysis) produces full fields of wind speed
and direction and of mixing height. The Lagrangian trans- 75

port model then produces a full four-dimensional view of the
plume. From these we can calculate the concentrations at the
aircraft location for direct comparison and for standard mass
balance analysis, as in Karion et al. (2019). We can also cal-
culate other estimates by considering different heights within 80

the plume, a range of heights, or the whole plume. We can
use measured or modeled mixing heights and measured or
modeled winds. We can choose whether to be sensitive to
horizontal displacement of the plume.

The ECMWF fifth-generation reanalysis (ERA5) (Coper- 85

nicus Climate Change Service (C3S) (2017): ERA5: Fifth
generation of ECMWF atmospheric reanalyses of the
global climate. Copernicus Climate Change Service Climate
Data Store (CDS), https://cds.climate.copernicus.eu/cdsapp#
!/home, last access: March 2019) is used to provide meteo- 90

rological fields for this study. It consists of a control (high-
resolution) run and 10 ensemble members. The control run is
available hourly on a 0.25◦× 0.25◦ latitude–longitude grid,
with 37 pressure levels. The ensemble members are available
every 3 h on a coarser 0.5◦× 0.5◦ grid. 95

HYSPLIT version 944 was used in this study. HYSPLIT
is a Lagrangian atmospheric transport and dispersion model
developed by the National Oceanic and Atmospheric Admin-
istration’s Air Resources Laboratory (NOAA ARL) (Stein et
al., 2015). Dispersion of a material is simulated by a num- 100

ber of computational particles which represent a specified
amount of mass of material. The computational particles are
advected by the wind field and dispersed by a turbulent com-
ponent which is calculated by the model from meteorological
data fields. 105

HYSPLIT provides a variety of options to optimize for
different situations. We used the default methods for de-
termining vertical velocity variances (Kantha–Clayson) and

Atmos. Chem. Phys., 20, 1–14, 2020 https://doi.org/10.5194/acp-20-1-2020
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wind and temperature profiles for computing the boundary
layer stability. These are the same settings used by Karion
et al. (2019). The mixed layer depth was taken from the
ERA5 input, which is also the default method. HYSPLIT
was modified to include the Stochastic Time-Inverted La-5

grangian Transport (STILT) dispersion algorithm, which was
employed in this study. The STILT dispersion algorithm in-
corporates the Thomson et al. (1997) reflection–transmission
scheme for Gaussian turbulence that preserves well-mixed
distributions for particles moving vertically across interfaces10

between grid cells as described in Lin et al. (2003).
A tracer was emitted from the location of the Martin Lake

stacks (32.26◦ N, −94.57◦) at 100 m with the rate given by
the hourly CEMS data for SO2. Heat content of 8.5× 107 W
was specified for all simulations and used in the plume rise15

calculation.
Concentrations from HYSPLIT were output on a horizon-

tal grid with increments of 0.011◦ latitude by 0.009◦ longi-
tude, spanning 0.6◦× 0.8◦. Vertical levels (25) were spaced
every 100 m up to 2000 m a.g.l. and then every 200 m up to20

3000 m a.g.l. HYSPLIT concentrations were output as aver-
ages between each defined level, so for example the first level
in the output is the average between 0 and 100 m a.g.l. The
hourly output represents the average over each hour. No de-
position was used, and the particles were defined as entirely25

passive. Ten thousand particles per hour were used to pro-
duce a sufficiently smooth concentration field.

4 Results

We first examine aircraft observations from the flight on 25
June 2013, which took place in good conditions for mass-30

balance analysis as described above. The plume from the
Martin Lake power plant was intercepted by the aircraft four
times, as shown in Fig. 1. Figure 2 shows the time series
of the observations and the plumes simulated using the con-
trol meteorology and the 10 ensemble members. The simu-35

lated plume is well aligned with the observations in the first
transect but displaced in the other three. Note that the third
and fourth transects were flown in opposite directions. All
the simulated plumes are weaker and wider than observed.
There is little visually apparent spread in the ensemble; all40

the members produce plumes of similar location, magnitude,
and width. As Fig. 3 shows, however, the integrated amount
of SO2 in the plumes does vary.

The next step is to compute the emission rate represented
by each transect. This is done by mass balance using ob-45

served and modeled values separately. The observational
analysis uses the observed mixing ratios, mixing height, and
wind speed. Simulated plumes from the control run are ana-
lyzed with the simulated wind speed and mixing height. A
full-plane integration of the simulated plume is also con-50

ducted and described below. Thus we have a total of three
emission rate estimates from the control simulations for each

Figure 1. SO2 mixing ratios (ppbv) observed along four transects
by the aircraft (a) and modeled at the same locations (b) in the con-
trol run on 25 June 2013. The × marks the power plant location.

transect to compare with the CEMS measurement. Figure 4
shows these results. The CEMS data show that the aircraft
transects all measured emissions that came out of the stack 55

during a plateau of relatively constant emissions. In the lower
panel of Fig. 4, the emission rates are presented as ratios to
the CEMS data for each species. By this means, the three
measured species constitute separate estimates of the same
emissions. The single simulated tracer, labeled “SO2 sim”, 60

serves for all species.
Transect 2, at the shortest downwind distance, best meets

the mass balance assumptions. The error bar shows the esti-
mated uncertainty (±30 %, 1 standard deviation) of the ob-
served mass balance estimate. The estimate itself is nearly 65

perfect, falling just below the unity ratio line. The simu-
lated mass balance estimate is about 20 % high, within the
error bar. NOy- and CO2-observed estimates also fall within
the estimated error (not shown). For the other transects, the
SO2 observed falls consistently below the unity ratio line, al- 70

though only the farthest transect falls outside the error bar.
The 30 % error estimate is only shown for transect 2, but is

https://doi.org/10.5194/acp-20-1-2020 Atmos. Chem. Phys., 20, 1–14, 2020
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Figure 2. Time series of observed (red) and modeled (control in
black, ensemble members in blue) SO2 mixing ratio along the flight
tracks on 25 June 2013. Plots (b, c, d) zoom in on the relevant seg-
ments of the upper time series (a) to show details of the plume mag-
nitudes and positions.

Figure 3. Integrated plume amounts for the four transects on 25
June 2013, comparing observations and simulations. Large circles
are from the control simulation, × marks are from the ensemble
members. The amounts are found by integrating the mixing ratio in
time across each of the plumes shown in Fig. 2.

Figure 4. Emission rate estimates from mass balance for four tran-
sects on 25 June 2013. (a) CEMS emission rate through the day with
observed and simulated emission estimates shown at estimated time
of emission. (b) Ratio of emission rate derived from different esti-
mates (method and species, symbols as in legend) to CEMS emis-
sion at estimated time of emission. Explanation of legend: “obs”
is mass balance using observations; “Ctl sim” is mass balance us-
ing control simulated tracer, wind, and mixing height; “full plane”
is derived by integrating the full x–z plane in the simulation at the
transect latitude; “ensemble” is mass balance using simulated tracer,
wind, and mixing height for each ensemble member. Vertical bar is
uncertainty estimate (1 standard deviation, ±30 %) on observation-
based mass balance for transect 2, and its length applies to all tran-
sects. The four transects are colored blue, red, yellow, and purple
respectively. Ensemble estimates are offset slightly along the x axis
for clarity.

the same for the other transects and species and is described
in more detail in the Discussion section below. NOy and CO2
estimates are scattered but within the 30 % uncertainty esti-
mate. The simulated tracer is nearly perfect for transects 1,
3, and 4, the transects at 45–52 km downwind. 5

The set of emission rate estimates resulting from the en-
semble meteorology are shown in Fig. 4 with + marks. For
the closest transect (2), the ensemble spread is about 15 %,
less than the estimate of uncertainty for the observations.
The ensemble spread contains the control simulation value 10

but does not span the unity line. The ensemble estimates for

Atmos. Chem. Phys., 20, 1–14, 2020 https://doi.org/10.5194/acp-20-1-2020
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the farther transects have greater spread, although still some-
what less than the observation estimate, and all span both the
control simulation values and unity ratio.

The above mass balance analyses are not sensitive to errors
in the width or displacement of the plume, since they involve5

integrating across each plume regardless of its exact location
or width. We can also do an analysis that is insensitive to
mixing height by integrating the simulated plume in a vertical
plane along the flight transect, which we call the full-plane
integration. Error in the emission estimate from this method10

would arise only from deviations from the assumption of a
steady mass flow rate through the plane. For transect 2 on 25
June 2013, the full-plane integration using the control simu-
lation gives an emission rate of 7500 kg h−1 (Table 1) com-
pared to the CEMS value of 6780. This is a bias of 11 %15

(all percentage values are with respect to the CEMS value).
The full-plane integration using the ensemble meteorology
produces estimates ranging from 6900 to 7500 kg h−1, with
mean 7130 and median 7140 kg h−1, a bias of 5 %. The en-
semble range of the full-plane estimates does not include the20

CEMS value or the observation-based mass balance value,
but it does include the control simulation mass balance value.
The ensemble spread is rather small (8 %). The simulated
plumes are not perfectly well mixed, with higher concentra-
tions in the lower boundary layer (Fig. 5).25

The question of mixing height deserves further explo-
ration. Figure 5 shows vertical cross sections in a south–north
plane, approximately along the wind direction, of the tracer
mixing ratios simulated by HYSPLIT with the control mete-
orology and each of the 10 ensemble members. An observed30

value of mixing height was subjectively determined from po-
tential temperature and water vapor profiles flown at the ends
of the transects, shown as an o mark in each of the subplots. A
simulated mixing height is estimated from the tracer mixing
ratio profiles. It is the height at which the mixing ratio first35

falls below 50 % of its value in the middle height range. It dif-
fers for each ensemble member. Another possible source of
uncertainty in the mixing height is shallow cumulus clouds,
which were present on all four flight days.

Flux estimates for SO2 for all four transects on 25 June40

2013 are given in numerical form in Table 1. The estimates
from observations are within ±14 % for three of the tran-
sects (2, 3, and 4). Simulated values from the control run
are 5 %–19 % high for transects 1, 2, and 4, and 14% low
for transect 3. The observational estimate for transect 1 has45

a substantial low bias (34 %), for which we do not have a
convincing explanation.

Seeing that the observations and control simulations pro-
duce small biases for transects 2, 3, and 4, we now examine
the ensemble simulations. These are shown in Fig. 4, and50

numbers are given in Table 1. The ensemble does not span
reality for transect 2, but it does cover the control estimate.
The ensemble spread is 12 % for transect 2 and 25 %–36 %
for the other transects.

Another flight with several transects took place on 16 55

September 2006 (Fig. 6). Transect 2 has the best match to
the mass balance assumptions. The emission rate analysis
from observations has a high bias of 25 %, while the es-
timate from the control simulation is biased 5 % low. The
observational estimates for CO2 and NOy are close to their 60

respective CEMS values (Table 2). The full-plane estimate
agrees closely with the observational estimate for SO2 (Ta-
ble 1). The ensemble estimates have a spread of 36 %, cover
the CEMS value, and are nearly centered around the control
simulation value. As for the other transects, the closest tran- 65

sect gives a high-biased observational estimate. The transects
farther downwind all produce low-biased observational and
simulated estimates, except for CO2 and NOy at the farthest
distance (not shown). The emissions as measured by CEMS
are increasing during the span of time when the plume was 70

emitted, adding substantial uncertainty to the comparison.
Examining the vertical cross sections of the plume (Fig. 7),
we see that the plume is approximately well mixed at the lat-
itude of transect 2 (32.5◦ N) in all but one ensemble member
(em8), but not well mixed at 32.4◦ N, the latitude of tran- 75

sect 1.
On 3 September 2000, only one transect is usable (Table 1,

Fig. 8). The observational analysis produces an emission rate
within 4 % of CEMS. The control simulation overestimates
by 19 %. The ensemble estimates have substantial spread 80

(46 %), which covers the values from the observations and
the control simulation. The full-plane integration has a 44 %
high bias. Some of the difficulty in the simulations is due to
unrealistically large mixing heights in ERA5. HYSPLIT can-
not produce a well-mixed plume in these conditions. Agree- 85

ment between the observational analysis and CEMS reflects a
reasonable mixing height estimate but may involve some el-
ement of good luck. We do not know whether the real plume
was well mixed. Potential temperature profiles (not shown)
before the transect show relatively shallow mixing heights 90

consistent with the manual estimate. Observed profiles after
the transect show a deep boundary layer ∼ 2500 m a.g.l., al-
though not as deep as in ERA5 (3000–3600 m). This is an
indication that the mixing height was changing during the
time of the observations. Both profiles are at some distance 95

from the plume location, so their applicability is question-
able. The emissions measured by CEMS are increasing sub-
stantially around the time the plume was emitted, which adds
to the uncertainty.

The flight on 25 April 2015 took place after the SO2 emis- 100

sions of the power plant had been substantially reduced by
scrubbing, so the SO2 plume was much weaker. Analysis of
the observations requires estimating the background, and un-
certainty in that estimate is more important when the plume
is weaker. The observational analysis produces a flux esti- 105

mate biased 40 % low; the control simulation is biased only
10 % high (Table 1, Fig. 8). The ensemble estimates have
large spreads, more than 100 %. The spread is due mostly to
a single high member. We cannot justify removing that mem-
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Figure 5. Latitude–height cross sections of SO2 mixing ratio simulated with the control meteorology and each of the ensemble members on
25 June 2013. The cross sections are shown at 13:00 CST. The color scale is linear and is allowed to saturate near the source. Two estimates
of the mixing height are shown at the latitude of transect 2: observed (o, one value for all subplots) and determined from the concentration
profile (+). See text for details.

ber, which is not obviously wrong. Wind speed is biased low
and mixing height is biased high in the simulations (Table 3).
Several members produce concentration profiles that are not
well mixed at the observation plane (not shown). Potential
temperature profiles before and after the transect (not shown)5

are consistent with the respective model and observed bound-
ary layer heights.

5 Discussion

In this section, we use the collection of emissions estimates
described above to explore the uncertainty of such estimates. 10

Several approaches are used:

1. manual uncertainty estimates for the observational mass
balance;

2. errors from the observational mass balance for the four
flights, including multiple species; 15
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Table 2. CEMS and observed emission rates for SO2, NOy , and CO2 for the four primary transects. SO2 values are repeated from Table 1.

Date CEMS SO2 Mass balance CEMS NOx Mass balance CEMS CO2 Mass balance
(yyyymmdd) rate (kg h−1) SO2 rate (bias) rate (kg h−1) NOx rate (bias) rate (kg h−1) CO2 rate (bias)

20130625 6780 6727 1610 1782 2.51e6 2.39e6
(transect 2) (−7.8 %) (11 %) (−4.7 %)

20060916 7403 9273 1950 1941 2.55e6 2.25e6
(transect 2) (25 %) (−0.5 %) (−12 %)

20000903 9105 8773 3173 3077 2.40e6 2.53e6
(transect 1) (−3.6 %) (−3.0 %) (5.4 %)

20150425 418 251 398 132 4.21e5 3.26e5
(transect 2) (−40 %) (−67 %) (−23 %)

Table 3. Values and ranges of wind speed and mixing height in the simulations and their biases with respect to the observed values.

Date Wind speed mean Wind speed Mixing height Mixing height
(yyyymmdd) (m s−1) (bias) ensemble range (m) (bias) ensemble range

20130625 6.4 1.4 1900 500
(transect 2) (−0.77, −11 %) (21 %) (170, 9.8 %) (26 %)

20060916 5.1 0.95 1617 800
(transect 2) (−1.8, −26 %) (19 %) (398, 33 %) (44 %)

20000903 4.7 1.5 1900 1300
(transect 1) (−0.88, −16 %) (32 %) (681, 56 %) (58 %)

20150425 5.5 1.3 1600 600
(transect 2) (−1.7, −23 %) (23 %) (614, 62 %) (43 %)

3. errors from the simulated mass balance for the four
flights;

4. errors from the simulated full-plane integrations for the
four flights;

5. errors from simulated mass balance using the meteoro-5

logical ensemble.

Uncertainty estimates for mass balance calculations from
observations alone are described in detail by Peischl et
al. (2015, 2018) for the Haynesville Shale area, which in-
cludes the Martin Lake power plant, using the same flight10

data used here for 25 June 2013 and 25 April 2015. They es-
timate uncertainties of 300 m (about 20 %) for mixing height
and about 28 % for wind speed. These are the dominant un-
certainties in their presentation. Combined, all sources yield
flux uncertainties (for methane from the oil and gas field) of15

about 35 %. We refer to these as the “manual” uncertainty es-
timates (list item 1 above). We estimate the total uncertainty
in the mass balance emission rate by summing in quadra-
ture the following sources of uncertainty: the accuracy of
the gas species measurement (±0.10 ppmv+ 3 % in 2000,20

±0.15 ppmv otherwise for CO2; ±10 % for SO2, ±12 % for
NOy); the background determination of the gas species mea-
surement (±20 % for CO2; ±5 % for SO2; ±10 % for NOy),

the boundary layer depth (±200 m), and the wind speed
(±1 m s−1). This results in a total 1σ uncertainty between 25

±22 % and±32 % for the emission estimates presented here.
For clarity of presentation in Figs. 4 and 6, this is represented
by a ±30 % error bar.

5.1 Errors in individual flights

Of the transects in Table 1, many have large biases, but these 30

problematic transects are either far from the source or very
close. We chose one “primary” transect for each day, flown
at a roughly optimal distance from the source. The primary
transects are highlighted in Table 1, and emissions of all three
species are included in Table 2. Because the simulation uses a 35

passive tracer, values scaled to the CEMS emission rates are
applicable to all three species. Of these four transects, three
have observational estimates within the manually estimated
uncertainty for all three species. The outlying observational
estimate, for 25 April 2015, is subject to uncertainty in the 40

background, which may be underestimated, and which does
not affect the simulations. The CO2 observational estimate
is within the uncertainty on this day. It is not clear how to
rigorously combine uncertainties for different flight days and
species, so we do not present a single number for this collec- 45
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Figure 6. Emission rate estimates from mass balance for six tran-
sects on 16 September 2006. (a) CEMS SO2 emission rate with ob-
served and simulated emission estimates shown at estimated time
of emission. (b) Ratio of emission rate derived from different es-
timates (method and species) to CEMS emission at estimated time
of emission. Explanation of legend: “obs” is mass balance using ob-
servations; “Ctl sim” is mass balance using control simulated tracer,
wind, and mixing height; “full plane” is derived by integrating the
full x–z plane in the simulation at the transect latitude; “ensemble”
is mass balance using simulated tracer, wind, and mixing height
for each ensemble member. Vertical bar is uncertainty estimate (1
standard deviation, ±30 %) on observation-based mass balance for
transect 2. The six transects are colored blue, red, yellow, purple,
green, and cyan respectively. Ensemble estimates are offset slightly
along the x axis for clarity.

tion (list item 2 above). An uncertainty estimate of less than
23 % would leave four outliers rather than two. We therefore
choose an estimate of approximately 25 % to avoid being too
optimistic.

All four estimates for SO2 from the primary transects us-5

ing the control simulation are within the manually estimated
uncertainty (Table 1 and Fig. 8). Again, no rigorous com-
bined uncertainty can be computed (list item 3 above) but
anything less than 20 % would be too optimistic, leaving out
two of the four estimates. The full-plane integration (list item10

4) eliminates one source of uncertainty, the estimation of
mixing height. Somewhat counter to our expectation, how-

ever, this reduces the error in only two of the four cases. The
error in mixing height must be offsetting an error due to un-
steady winds in the other two cases. The collection suggests 15

a lower limit of 30 % or so on the uncertainty.
Estimating probabilities or confidence intervals from small

ensembles is challenging (Leutbecher, 2019; Wilks, 2011).
Too few members will generally produce too small a spread.
Ensemble spread is often expressed as a standard deviation, 20

but if each member is equally likely, the range is a better
measure. Even so, most ensembles have too little spread
and do not encompass the true value. If biases occur, for
example because of model errors common to all members,
the spread probably should not encompass the true value. In 25

other words, increased random spread is not an adequate sub-
stitute for diagnosis and correction of biases. Bias correction
as part of ensemble calibration should be used. However, suf-
ficient and reliable observations are often unavailable with
which to correct biases, as is the case here. 30

The example of 25 June 2013 transect 2 is instructive (Ta-
ble 1). Emission rates from the ensemble have a range of
12 % but do not cover the true value. If we call the ensem-
ble range the uncertainty of the rate estimate, it would be too
small (overconfident). If we used the ensemble standard devi- 35

ation, the uncertainty estimate would be even smaller, about
5 %, which is clearly unreasonable. For the same transect (25
June 2013 transect 2) the rate calculated from observations
is 8 % low relative to reality, and the rate calculated from the
control simulation is 19 % high. Both estimates fall within 40

the estimated uncertainty of the manual analysis.
Taking the other primary transects in order starting with

the worst control flux estimate, for 3 September 2000 we
have a 19 % high bias. The ensemble range is 46 %. These
differences suggest a somewhat larger uncertainty than the 45

manual estimate. Other clues to problems with this plume
include very high boundary layer height from ERA5 and a
large difference between mixing heights estimated from the
aircraft profiles before and after the transect. However, if
mixing height were the only problem, the full-plane integra- 50

tion would produce a correct estimate, since it is not sensi-
tive to mixing height or to the well-mixed assumption. The
remaining source of error is the variability of the winds lead-
ing to storage of pollutant within the volume between the
source and the measurement plane, which accounts for the 55

rest of the bias (control) and spread (ensemble). The winds
were light and variable during the night and early morning.

Transect 2 on 16 September 2006 has emission rate esti-
mates from the observations that are 25 % high and from the
control simulation 5 % low. The full-plane integration returns 60

a 22 % high bias. The ensemble range is 36 % and covers re-
ality. The other transects on this day are either too close for
the plume to be well mixed (transect 1) or too far away for
the assumption that SO2 is roughly conserved to be valid.

Transect 2 on 25 April 2015 has already been mentioned 65

as suffering from background uncertainty. The control-based
estimate is close to reality. The full-plane integration is bi-
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Figure 7. Latitude–height cross sections of tracer mixing ratio simulated with the control meteorology and each of the ensemble members
on 16 September 2006. The cross sections are shown at 11:00 CST. The color scale is linear and is allowed to saturate near the source.
Two estimates of the mixing height are shown at the latitude of transect 2: observed (o, one value for all subplots) and determined from the
concentration profile (+). See text for details.

ased 28 % low, still within the manually estimated uncer-
tainty. One outlying member produces the very large en-
semble spreads. There is nothing to justify removing this
member, which again emphasizes the difficulty of estimating
spread from a small number of members.5

Overall, the ensemble ranges give uncertainty estimates of
12 %–105 % on different days (list item 5). This is informa-
tion that cannot be obtained in any other way. We must cau-

tion, however, that the small range on 25 June 2013 is prob-
ably underestimated. 10

5.2 Main sources of error

Mixing height and the well-mixed assumption are important
uncertainties in the mass balance framework (White et al.,
1983; Karion et al., 2019). This is not very surprising con-
sidering that the definition of a single mixing height involves 15

several unsafe assumptions. For the boundary layer to be well
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Figure 8. Emission rate estimates from mass balance for the four
primary transects highlighted in Table 1. (a) Absolute SO2 emis-
sion rates. (b) Ratio of SO2 emission rates derived from different
estimates (method and species) to CEMS emission at estimated time
of emission. Explanation of legend: “obs” is mass balance using ob-
servations; “sim” is mass balance using simulated tracer, wind, and
mixing height; “full plane” is derived by integrating the full x–z
plane in the simulation at the transect latitude; “ensemble” is mass
balance using simulated tracer, wind, and mixing height for each en-
semble member. Vertical bar is uncertainty estimate on observation-
based mass balance.

mixed, there must be a substantial surface buoyancy flux, a
well-defined capping layer (not necessarily an inversion per
se), and minimal change of advection with height. Bound-
ary layers are commonly well mixed in potential tempera-
ture but not in water vapor mixing ratio (Gao et al., 2018),5

because the entrainment fluxes at the top of the boundary
layer are of opposite sign (warming for temperature, dry-
ing for water vapor). Additional conditions are required for
a plume to be well mixed; specifically, there must be enough
time (several boundary layer turnover times) between emis-10

sion and measurement. It is worth noting that plumes that are
not well mixed can sometimes give reasonable mass balance
estimates if the measurement transect is flown close to the
middle of the boundary layer, where the measured value ap-
proximates the mean of the (roughly linear) vertical profile.15

To reduce these uncertainties in the mass balance calculation,

an aircraft will typically perform multiple vertical profiles,
probing the mixing height and how it evolves throughout the
study period, and will transect the plume at different altitudes
(Peischl et al., 2015). 20

Wind speed is another important uncertainty. The usual as-
sumption is that the wind speed at the measurement transect
is representative for the entire plume transit. If the wind is
light and therefore variable, or if the wind speed has changed
substantially over the transit time, it is unclear what wind 25

speed to use in the calculation. Sometimes modeled wind
speeds are used (Karion et al., 2015). Looking at Table 3, we
see substantial biases in wind speed (low) and mixing height
(high), the smallest biases occurring on 25 June 2013. These
biases are with respect to the winds and mixing height ob- 30

served on the aircraft, and therefore also include substantial
uncertainties. The ensemble ranges can be compared with the
manual estimates of uncertainty. For wind speed, the ensem-
ble ranges are comparable to the manual estimates or smaller.
For mixing height, the ensemble ranges are larger. Combin- 35

ing simulated and observed values, for example using simu-
lated wind speeds with observed mixing heights, would incur
large errors.

The methods used here are not sensitive to some com-
mon sources of error. None of these methods are sensitive 40

to plume displacement caused by errors in wind direction, as
long as the plume is fully covered by the transect. The full-
plane integration is not sensitive to the mixing height estima-
tion or to violations of the well-mixed assumption. The fact
that the full-plane estimate is farther from reality than the tra- 45

ditional mass balance estimate for three of the four primary
transects suggests that compensating errors are present. Sig-
nificant uncertainties remain in all methods.

This work was partly inspired by the study of Karion et
al. (2019). The main emphasis of that work was on large (fac- 50

tor of 2 or greater) biases due primarily to errors in vertical
mixing in the Lagrangian transport models. We should keep
in mind, however, that the true emissions in that study are not
known. The true vertical mixing is not known in either that
study or this one. Karion et al. (2019) also reported large un- 55

certainties (error bars) based on multiple flights and multiple
models. Variability from a small ensemble of meteorology in
one configuration (WRF2-FP) was 20 %–30 %.

An earlier study by Angevine et al. (2014) used a six-
member WRF ensemble driving forward runs of the Flexible 60

Particle (FLEXPART) Lagrangian dispersion model to esti-
mate uncertainty due to meteorology. A passive tracer rep-
resenting national inventory emissions of carbon monoxide
(CO) was transported by the models. That study found 30 %–
40 % spread in CO concentrations. The ensemble spread was 65

insufficient to cover the errors in wind and temperature, as
would be expected for a small ensemble using a single model
framework.
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6 Conclusions

Errors in top-down emissions estimates are substantial even
under good conditions. Using a known source in forward
runs driven by ensemble meteorology, we have shown er-
rors ranging from a few percent to over 100 %. No single5

robust estimate of either bias or random error can be derived
from these results. Identification and removal of cases that
are clearly bad reduces the error, but if the source is un-
known, some bad cases cannot be clearly identified. Inves-
tigator judgment is vital. Using forward modeling and exam-10

ining the structure of the plumes it produces can be helpful
in identifying better or worse cases. Using an ensemble pro-
vides another dimension for diagnosis, since the spread of
the ensemble results can indicate the possibility of outlying
solutions that are not apparent in a single deterministic run.15

The largest source of error is the vertical mixing, as was
also shown by Karion et al. (2019). This is not simply a ques-
tion of finding a correct mixing height, although that is a ma-
jor problem. In several of the cases shown here, the plumes
are not well mixed, and the mixing height is therefore not20

well defined.
Wind speed is another important source of error (Table

3). The wind speed on the aircraft transect may be the only
source of data for comparison to the models. However, even
if it compares perfectly, unsteadiness of the wind previous to25

the measurement can cause poorly characterized errors.
Losses of pollutant to deposition or chemical transforma-

tion can be important for observations taken at longer down-
wind distances (greater than ∼ 20 km), as seen in Figs. 4 and
6. These losses can be estimated if sufficient information is30

available, for example measurements of product species, but
those estimates will necessarily introduce additional uncer-
tainty.

These results are not sensitive to errors in plume location
or width. In future work, we will explore the sensitivity of35

Bayesian inversion methods to those errors as well as to the
kinds of errors shown here.

Our results are consistent with uncertainty estimates from
rigorous analysis of observations, as performed by Peischl et
al. (2015). The minimum emissions flux uncertainty that can40

be supported by these results is 30 %. Under less than ideal
conditions, errors can be much larger.
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