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Abstract. Air pollutant emissions estimates by top-down methods are subject to a variety of errors and uncertainties.  

This work uses a known source, a coal-fired power plant, to explore those errors.  The known emissions amount and 

location remove two major types of error, facilitating understanding of other types.  Biases and random errors are 15 

distinguished.  A Lagrangian dispersion model (HYSPLIT) is run forward in time from the known source, and virtual 

measurements of the resulting tracer plume are compared to actual measurements from research aircraft.  Four flights 

in different years are used to illustrate a variety of conditions.  The measurements are analyzed by a mass-balance 

method, and the assumptions of that method are discussed.  Some of those assumptions can be relaxed in analysis of 

the modeled plume, allowing testing of their validity.  Meteorological fields to drive HYSPLIT are provided by the 20 

European Center for Medium Range Weather Forecasts Fifth Reanalysis (ERA5).  A unique feature of this work is the 

use of an ensemble of meteorological fields intrinsic to ERA5.  This analysis supports reasonably large (30-40%) 

uncertainties on top-down analyses. 

 

1 Introduction 25 

Emissions of air pollutants must be known for modeling of exposure and planning for compliance with concentration 

standards.  Bottom-up and top-down methods are used to estimate emissions.  Bottom-up methods combine activity 

data with emissions factors, essentially counting sources and multiplying by their individual emissions.  This is the 

main method used to produce official inventories.  Top-down methods use measurements of atmospheric 

concentrations to estimate emissions.  Both types of methods are subject to substantial uncertainty, and often disagree 30 

(e.g. (Hsu et al., 2010)). 

 

The main purpose of this work is to evaluate some of the errors and uncertainties in top-down methods, while 

controlling other sources of uncertainty.  Evaluating the errors and uncertainties of top-down methods is difficult.  Not 

only the emissions amounts, but their location, distribution, and timing are often unknown.  Attempts to constrain all 35 

these matters simultaneously result in grossly under-determined systems.  Most often the under-determination is dealt 

with by employing Bayesian statistical methods, which introduce further errors and uncertainties, and remove the 

desired independence of the top-down and bottom-up methods. 

 

In this work, we start with an emission source known in quantity, timing, and location.  That source is the Martin Lake 40 

coal-fired power plant in eastern Texas.  It is located in reasonably simple, flat terrain.  Stack emissions of several 

gasses are measured by Continuous Emissions Monitoring Systems (CEMS).  Concentration measurements from 

aircraft are used to estimate emissions by mass balance, and to compare with modeled concentrations.  Here we use 

sulfur dioxide (SO2), nitrogen oxides (NOy), and carbon dioxide (CO2).  SO2 is emphasized because its peak 

concentration measured in aircraft traverses is well-defined above the regional background.  SO2 is lost to surfaces and 45 

converted to sulfate aerosol, but that conversion is slow compared to the transport time of the main transects we use 
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here, which are usually 30-60 minutes downwind of the stack.  CEMS data are also uncertain, but we assume that those 

uncertainties are small, i.e. <10% (Peischl et al., 2010), relative to the other uncertainties treated here. For the purposes 

of this paper, CEMS data are considered the “reality” with which other estimates are compared. 

 50 

Emissions can be estimated from observations alone under certain non-trivial assumptions.  Inverse modeling is used to 

allow relaxation of some of those assumptions.  In this work, we replace some of the observations with (forward) 

modeled values, in varying combinations.  This allows us to characterize and estimate errors arising from the models, 

and is a step toward understanding errors and uncertainties in inverse modeling. 

 55 

We attempt to distinguish between error and uncertainty within this work.  Error is the difference between an analyzed 

value and the true value, in this case, of the emission rate.  Uncertainty is an estimate of the error that we expect in the 

absence of knowledge of the truth (Metrology, 2008). Error and uncertainty have systematic and random components.  

Systematic error is synonymous with bias, that is, persistent differences of one sign between reality and a result of 

analysis.  The distinction is neither precise nor crisp, and terms are not always used carefully.  Atmospheric 60 

measurements rarely have enough samples to reliably distinguish the two.  Bias can be introduced by the use of 

methods or assumptions that most often move the result in one direction.  For example, a low bias in a wind speed 

measurement will result in a low bias in the emissions estimated by mass balance.  Random differences have many 

possible causes, one important cause being sampling uncertainty, that is, the difference between the mean of a quantity 

measured with a small number of samples and the true (ensemble) mean (Wilks, 2011).  The distinction is important 65 

for several reasons.  Reporting a small uncertainty with possibly large unknown biases can lead to incorrect policy 

decisions.  Bayesian analyses assume that the measurements and prior have zero mean error and (usually) Gaussian 

uncertainty, and the proper characterization of the error covariances is critical to a good result.  From a practical point 

of view, repeated measurements can reduce random uncertainty but cannot reduce bias. 

 70 

Errors and uncertainties in the meteorological fields (modeled or measured) used in analyses propagate directly into the 

result.  Since we only measure one realization of the chaotic atmosphere, we never have an ensemble average 

(statistically speaking).  Normally, only a single meteorological field is used.  The numerical weather prediction 

community has been moving steadily toward producing ensemble output, that is, well-designed sets of multiple 

realizations (Palmer, 2018).  These can provide a rough method to distinguish between bias and random uncertainty.  75 

The difference between the result produced from a control run and reality is an estimate of bias.  So is the difference 

between an ensemble mean result and reality.  The statistics of differences between results from all ensemble members 

are estimates of random uncertainty.  The quality of these estimates depends on the design and quality of the ensemble. 

 

Meteorological quantities have been identified as major sources of error and uncertainty in emissions estimates.  These 80 

can be divided into several classes.  Wind direction errors displace the plume (or the source in an inverse analysis).  

Wind speed errors change the magnitude of the plume and its timing with respect to time-varying emissions.  Mistaken 

diagnosis of the mixing height affects the concentrations and may contribute to violation of the well-mixed assumption.  

Errors in the transport model are also important.  Under- or over-estimation of horizontal dispersion changes the plume 

width.  Discretization in either horizontal or vertical dimensions may add noise or uncertainty.  Physical situations that 85 

are correctly handled in the models may still lead to errors in some analyses, for example temporal variation 

(unsteadiness) of wind can result in storage of pollutant that violates the assumption of steady wind in mass balance 

analysis.  This can be exacerbated if the winds are not updated often enough in the transport model. 

 

2 Data 90 

 

The Martin Lake power plant complex is located in fairly simple terrain in east Texas (32.260ºN, 94.570ºW).  It has 

three stacks that are each 452 ft (138 m) high. The stacks are spaced 100 m apart. 

 

The measurements used here were taken by NOAA scientists aboard NOAA or NCAR research aircraft.  Flights 95 

downwind of the Martin Lake power plant were made in four years (2000, 2006, 2013, and 2015).  Dates are shown in 

Table 1.  The flights were planned to intercept the plume at least once and usually several times.  Downwind distances 

were chosen to satisfy the conditions for mass balance analysis (see below), far enough downwind for the plume to be 
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well-mixed through the boundary layer in the vertical but close enough for the concentration signal to be strong and to 

minimize chemical transformations. 100 

 

For all four flights, SO2 was measured using a modified, commercial, pulsed UV fluorescence instrument, a Thermo 

Environmental Instruments, Inc., model 43S (Ryerson et al., 1998).  The 1 Hz measurements have an estimated 1-

sigma precision of ±0.3–1 ppbv and a 1-sigma uncertainty of ±10–12%, depending on year.  NOy was measured by 

chemiluminescence after conversion to NO in a heated gold catalyst (Ryerson et al., 1999).  The 1-Hz precision ranged 105 

from 0.015–0.4 ppbv, and uncertainty ranged from ±10–12%, depending on year.  CO2 was measured by infrared 

absorption using a LI-COR 6262 in 2000 and 2006 (Peischl et al., 2010), and a Picarro 1301-m in 2013 and 2015 

(Peischl et al., 2012).  The 1-Hz precision was at or below ±0.1 ppm for all flight years, and the measurement 

uncertainty was ±3% in 2000, and approximately ±0.15 ppm for the other flights. 

 110 

Pursuant to federal regulation, commercial electric utility steam generating units with a capacity greater than 25 MW 

are required to monitor stack emissions and report them to the Environmental Protection Agency.  The full capacity of 

each of the three units at Martin Lake are greater than 700 MW, thus subject to reporting requirements.  The relative 

accuracy of the SO2, NOx, CO2, and flow measurements are all required to be less than 10%.  Therefore, we expect the 

uncertainty of a mass flow value or a ratio of two pollutant concentrations to be less than 14% after quadrature addition 115 

of the uncertainties.  The ratio of pollutants was verified by top-down measurements of 11 Texas power plants, 

including Martin Lake, in a 2006 study (Peischl et al., 2010), but a determination of the mass flux has not.    

 

3 Methods 

3.1 Mass balance 120 

 

In the mass balance method the object is to determine the amount of mass flowing through a plane downwind of a 

source. The mass flow rate through this plane is used as an estimate for the emission rate from the source.  Mass 

balance is a time-honored method of converting concentration measurements to emissions with minimal reference to 

models (e.g. (White et al., 1976; Trainer et al., 1995; Karion et al., 2015; Turnbull et al., 2011; Karion et al., 2013)).  In 125 

the simplest cases, such as those presented below, it assumes that a plume is well-mixed in the vertical to a well-

defined height and that the wind speed and direction are steady.  A robust estimate of the background (concentration 

not attributable to the source of interest) is required, either with a transect upwind of the source, and/or by interpolating 

the concentrations at the edges of the plume.  The background uncertainty is greater if only the latter case is used, but 

less so when the plume is only a few kilometres wide, as is typical for a power plant plume.  We generally use the 130 

interpolation method here, and our background uncertainty assumptions are further supported by multiple years of 

regional transects upwind and downwind of the Martin Lake power plant that reveal few point sources of SO2, NOx, 

and CO2 of a magnitude to interfere with the Martin Lake plumes in this region.  At least one transect across the plume 

is made at a height well within the mixed layer.  The mixed layer height is usually determined by examining 

temperature, potential temperature, and trace gas concentrations during vertical profiles at the ends of some transects. 135 

More elaborate methods involve multiple downwind transects, often accompanied by 2-D interpolation of downwind 

measurements (Mays et al., 2009).  Detailed analysis of related methods in the context of column measurements is 

given by Varon et al. (2018). 

 

Sources of error are (1) error in determining the mass flow rate through the plane; (2) the emission rate at the source 140 

may be different than the mass flow rate through the plane; and (3) pollutant may be lost to deposition and/or chemical 

transformation. Determining the mass flow rate through the plane is done by estimating the concentration at each point 

in the plane, multiplying by the area to get a linear mass density and then multiplying by the wind speed perpendicular 

to the plane to obtain a mass flow rate. Usually one or more transects is flown through a plume during presumably well 

mixed conditions. Thus the concentrations at a single height may be used as an estimate for concentrations from the 145 

ground to a well-defined mixing height. Errors may arise because the plume is not well mixed causing concentrations 

to vary significantly in the vertical direction, the planetary boundary layer height is not well known, or significant mass 

has been transported above the boundary layer. The other source of error is that the mass flow rate through the plane 

may be significantly different than the emission rate from the source. This may occur when winds are variable in speed 

and/or direction in time and/or space.  150 
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3.2 Models 

 

By using a model, we can virtually eliminate errors arising from (1).  In the simulated world, simulated concentrations 

and model wind speeds at every point in the plane are known so there is no need to estimate a mixing height.  In 155 

addition, the emission from the source is also known in the simulated world. Thus mismatch between the emission rate 

from the source and the mass flow rate from the analysis plane is only caused by variable winds and can be explored in 

detail.  Uncertainties due to losses to deposition and/or transformation (3) are also eliminated in the simulations. 

 

The mass balance method can also be applied to the simulated fields by using only simulated concentrations from a 160 

single transect and the model mixing height. The tracer profile is known exactly in the simulated world, but the mixing 

height may still not be well defined. Tracer profiles may not have a sharp cutoff in the vertical. Significant mass is 

often found above the boundary layer height specified to the simulation because the model is designed to allow 

transport above the boundary layer and also because the boundary layer height changes in space and time. It is difficult 

to tell, however, if this accurately reflects vertical mixing in the real world.   165 

 

 

Fully model-based retrievals of emissions from concentration measurements are usually done with a Bayesian analysis 

in order to overcome the under-constrained nature of the problem.  A Lagrangian dispersion model is run backwards in 

time from the sites of measurements to produce footprints, which are convolved with a prior inventory.  The 170 

differences between modeled and measured concentrations are then optimized by a mathematical algorithm.  Weights 

(error covariances) are applied to the measurements and the prior, expressing relative confidence in their correctness.  

Bayesian analysis requires assumptions about the PDF of errors (usually Gaussian, always with zero mean). 

 

Here we use hybrid or intermediate methods to examine the consequences of different classes of error.  The 175 

meteorological model (reanalysis) produces full fields of wind speed and direction and of mixing height.  The 

Lagrangian transport model then produces a full four-dimensional view of the plume.  From these we can calculate the 

concentrations at the aircraft location for direct comparison and for standard mass balance analysis, as in (Karion et al., 

2019).  We can also calculate other estimates by considering different heights within the plume, a range of heights, or 

the whole plume.  We can use measured or modeled mixing heights, and measured or modeled winds.  We can choose 180 

whether to be sensitive to horizontal displacement of the plume. 

 

The ECMWF fifth-generation reanalysis (ERA5) [Copernicus Climate Change Service (C3S) (2017): ERA5: Fifth 

generation of ECMWF atmospheric reanalyses of the global climate . Copernicus Climate Change Service Climate 

Data Store (CDS), accessed March 2019. https://cds.climate.copernicus.eu/cdsapp#!/home]  is used to provide 185 

meteorological fields for this study.  It consists of a control (high resolution) run and 10 ensemble members.  The 

control run is available hourly on a 0.25x0.25 degree latitude-longitude grid, with 37 pressure levels.  The ensemble 

members are available every 3 hours on a coarser 0.5x0.5 degree grid. 

 

HYSPLIT version 944 was used in this study. HYSPLIT is a Lagrangian atmospheric transport and dispersion model 190 

developed by the National Oceanic and Atmospheric Administration’s Air Resources Laboratory (NOAA ARL) (Stein 

et al., 2015). Dispersion of a material is simulated by a number of computational particles which represent a specified 

amount of mass of material. The computational particles are advected by the wind field and dispersed by a turbulent 

component which is calculated by the model from meteorological data fields.  

 195 

HYSPLIT provides a variety of options to optimize for different situations.  We used the default methods for 

determining vertical velocity variances (Kantha-Clayson), and wind and temperature profiles for computing the 

boundary layer stability.  These are the same settings used by Karion et al. (2019). The mixed layer depth was taken 

from the ERA5 input, which is also the default method. HYSPLIT was modified to include the Stochastic Time-

Inverted Lagrangian Transport (STILT) dispersion algorithm, which was employed in this study. The STILT dispersion 200 

algorithm incorporates the (Thomson et al., 1997) reflection/transmission scheme for Gaussian turbulence that 

preserves well mixed distributions for particles moving vertically across interfaces between grid cells as described in 

(Lin et al., 2003). 

 

A tracer was emitted from the location of the Martin Lake stacks (32.26ºN, -94.57º) at 100 m with the rate given by the 205 

hourly CEMS data for SO2.  Heat content of 8.5x107 W was specified for all simulations and used in the plume rise 

calculation. 

https://cds.climate.copernicus.eu/cdsapp#!/home
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Concentrations from HYSPLIT were output on a horizontal grid with increments of 0.011º latitude by 0.009º longitude, 

spanning 0.6º x 0.8º.  Vertical levels (25) were spaced every 100 m up to 2000 m AGL and then every 200 m up to 210 

3000 m AGL.  HYSPLIT concentrations were output as averages between each defined level, so for example the first 

level in the output is the average between 0 and 100 m AGL.  The hourly output represents the average over each hour.  

No deposition was used, and the particles were defined as entirely passive.  Ten thousand particles per hour were used 

to produce a sufficiently smooth concentration field. 

 215 

4 Results 

 

We first examine aircraft observations from the flight on 25 June 2013, which took place in good conditions for mass-

balance analysis as described above.  The plume from the Martin Lake power plant was intercepted by the aircraft four 

times, as shown in Fig. 1.  Figure 2 shows the time series of the observations and the plumes simulated using the 220 

control meteorology and the ten ensemble members.  The simulated plume is well-aligned with the observations in the 

first transect, but displaced in the other three.  Note that the third and fourth transects were flown in opposite directions.  

All the simulated plumes are weaker and wider than observed.  There is little visually apparent spread in the ensemble, 

all the members produce plumes of similar location, magnitude, and width.  As Fig. 3 shows, however, the integrated 

amount of SO2 in the plumes does vary. 225 

 

The next step is to compute the emission rate represented by each transect.  This is done by mass balance using 

observed and modeled values separately.  The observational analysis uses the observed mixing ratios, mixing height, 

and wind speed.  Simulated plumes from the control run are analyzed with the simulated wind speed and mixing 

height.  A full-plane integration of the simulated plume is also conducted, and described below.  Thus we have a total 230 

of three emission rate estimates from the control simulations for each transect to compare with the CEMS 

measurement.  Figure 4 shows these results. The CEMS data show that the aircraft transects all measured emissions 

that came out of the stack during a plateau of relatively constant emissions.  In the lower panel of fig. 4, the emission 

rates are presented as ratios to the CEMS data for each species.  By this means, the three measured species constitute 

separate estimates of the same emissions.  The single simulated tracer, labeled “SO2 sim”, serves for all species. 235 

 

Transect 2, at the shortest downwind distance, best meets the mass balance assumptions.  The error bar shows the 

estimated uncertainty (±30%, one standard deviation) of the observed mass balance estimate.  The estimate itself is 

nearly perfect, falling just below the unity ratio line.  The simulated mass balance estimate is about 20% high, within 

the error bar.  NOy and CO2 observed estimates also fall within the estimated error (not shown).  For the other transects, 240 

the SO2 observed falls consistently below the unity ratio line, although only the farthest transect falls outside the error 

bar.  The 30% error estimate is only shown for transect 2, but is the same for the other transects and species, and is 

described in more detail in the Discussion section below.  NOy and CO2 estimates are scattered, but within the 30% 

uncertainty estimate.  The simulated tracer is nearly perfect for transects 1, 3, and 4, the transects at 45-52 km 

downwind. 245 

 

The set of emission rate estimates resulting from the ensemble meteorology are shown in Fig. 4 with red + marks.  For 

the closest transect (2), the ensemble spread is about 15%, less than the estimate of uncertainty for the observations.  

The ensemble spread contains the control simulation value, but does not span the unity line.  The ensemble estimates 

for the farther transects have greater spread, although still somewhat less than the observation estimate, and all span 250 

both the control simulation values and unity ratio. 

 

The above mass balance analyses are not sensitive to errors in the width or displacement of the plume, since they 

involve integrating across each plume regardless of its exact location or width.  We can also do an analysis that is 

insensitive to mixing height by integrating the simulated plume in a vertical plane along the flight transect, which we 255 

call the full-plane integration. Error in the emission estimate from this method would arise only from deviations from 

the assumption of a steady mass flow rate through the plane. For transect 2 on 25 June 2013, the full-plane integration 

using the control simulation gives an emission rate of 7500 kg h-1 (Table 1) compared to the CEMS value of 6780.  

This is a bias of 11% (all percentage values are with respect to the CEMS value).  The full-plane integration using the 

ensemble meteorology produces estimates ranging from 6900 to 7500 kg h-1, with mean 7130 and median 7140 kg h-1, 260 
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a bias of 5%. The ensemble range of the full-plane estimates does not include the CEMS value or the observation-based 

mass balance value, but does include the control simulation mass balance value.  The ensemble spread is rather small 

(8%).  The simulated plumes are not perfectly well-mixed, with higher concentrations in the lower BL (Fig. 5). 

 

The question of mixing height deserves further exploration.  Figure 5 shows vertical cross sections in a south-north 265 

plane, approximately along the wind direction, of the tracer mixing ratios simulated by HYSPLIT with the control 

meteorology and each of the ten ensemble members.  An observed value of mixing height was subjectively determined 

from potential temperature and water vapor profiles flown at the ends of the transects, shown as an o mark in each of 

the subplots.  A simulated mixing height is estimated from the tracer mixing ratio profiles.  It is the height at which the 

mixing ratio first falls below 50% of its value in the middle height range.  It differs for each ensemble member.  270 

Another possible source of uncertainty in the mixing height is shallow cumulus clouds, which were present on all four 

flight days. 

 

Flux estimates for SO2 for all four transects on 25 June 2013 are given in numerical form in Table 1.  The estimates 

from observations are within ±14% for three of the transects (2, 3, and 4).  Simulated values from the control run are 5-275 

19% high for transects 1, 2, and 4, and 14% low for transect 3. The observational estimate for transect 1 has a 

substantial low bias (34%), for which we do not have a convincing explanation. 

 

Seeing that the observations and control simulations produce small biases for transects 2, 3, and 4, we now examine the 

ensemble simulations.  These are shown in Fig. 4, and numbers are given in Table 1.  The ensemble does not span 280 

reality for transect 2, but does cover the control estimate.  The ensemble spread is 12% for transect 2 and 25-36% for 

the other transects.   

 

Another flight with several transects took place on 16 September 2006 (Fig. 6). Transect 2 has the best match to the 

mass balance assumptions.  The emission rate analysis from observations has a high bias of 25%, while the estimate 285 

from the control simulation is biased 5% low.  The observational estimates for CO2 and NOy are close to their 

respective CEMS values (Table 2). The full-plane estimate agrees closely with the observational estimate for SO2 

(Table 1). The ensemble estimates have a spread of 36%, cover the CEMS value, and are nearly centered around the 

control simulation value. As for the other transects, the closest transect gives a high-biased observational estimate.  The 

transects farther downwind all produce low-biased observational and simulated estimates, except for CO2 and NOy at 290 

the farthest distance (not shown). The emissions as measured by CEMS are increasing during the span of time when the 

plume was emitted, adding substantial uncertainty to the comparison. Examining the vertical cross-sections of the 

plume (Fig. 7) we see that the plume is approximately well-mixed at the latitude of transect 2 (32.5ºN) in all but one 

ensemble member (em8), but not well-mixed at 32.4ºN, the latitude of transect 1.   

 295 

On 3 September 2000, only one transect is usable (Table 1, Fig. 8). The observational analysis produces an emission 

rate within 4% of CEMS.  The control simulation overestimates by 19%.  The ensemble estimates have substantial 

spread (46%), which covers the values from the observations and the control simulation.  The full-plane integration has 

a 44% high bias. Some of the difficulty in the simulations is due to unrealistically large mixing heights in ERA5. 

HYSPLIT cannot produce a well-mixed plume in these conditions.  Agreement between the observational analysis and 300 

CEMS reflects a reasonable mixing height estimate but may involve some element of good luck.  We do not know 

whether the real plume was well-mixed. Potential temperature profiles (not shown) before the transect show relatively 

shallow mixing heights consistent with the manual estimate.  Observed profiles after the transect show a deep BL 

~2500 m AGL, although not as deep as in ERA5 (3000-3600 m).  This is an indication that the mixing height was 

changing during the time of the observations. Both profiles are at some distance from the plume location, so their 305 

applicability is questionable.  The emissions measured by CEMS are increasing substantially around the time the plume 

was emitted, which adds to the uncertainty. 

 

The flight on 25 April 2015 took place after the SO2 emissions of the power plant had been substantially reduced by 

scrubbing, so the SO2 plume was much weaker.  Analysis of the observations requires estimating the background, and 310 

uncertainty in that estimate is more important when the plume is weaker.  The observational analysis produces a flux 

estimate biased 40% low; the control simulation is biased only 10% high (Table 1, Fig. 8).  The ensemble estimates 

have large spreads, more than 100%.  The spread is due mostly to a single high member.  We cannot justify removing 

that member, which is not obviously wrong.  Wind speed is biased low and mixing height is biased high in the 

simulations (Table 3).  Several members produce concentration profiles that are not well-mixed at the observation 315 



 7 

plane (not shown). Potential temperature profiles before and after the transect (not shown) are consistent with the 

respective model and observed BLHs. 

 

5 Discussion 

 320 

In this section, we use the collection of emissions estimates described above to explore the uncertainty of such 

estimates.  Several approaches are used: 

1. Manual uncertainty estimates for the observational mass balance 

2. Errors from the observational mass balance for the four flights, including multiple species 

3. Errors from the simulated mass balance for the four flights 325 

4. Errors from the simulated full-plane integrations for the four flights 

5. Errors from simulated mass balance using the meteorological ensemble 

 

Uncertainty estimates for mass balance calculations from observations alone are described in detail by (Peischl et al., 

2015; Peischl et al., 2018) for the Haynesville shale area, which includes the Martin Lake power plant, using the same 330 

flight data used here for 25 June 2013 and 25 April 2015.  They estimate uncertainties of 300m (about 20%) for mixing 

height and about 28% for wind speed.  These are the dominant uncertainties in their presentation.  Combined, all 

sources yield flux uncertainties (for methane from the oil and gas field) of about 35%.  We refer to these as the 

“manual” uncertainty estimates (list item 1 above). We estimate the total uncertainty in the mass balance emission rate 

by summing in quadrature the following sources of uncertainty: The accuracy of the gas species measurement (±0.10 335 

ppmv + 3% in 2000, ±0.15 ppmv otherwise for CO2 ; ±10% for SO2, ±12% for NOy); the background determination of 

the gas species measurement (±20% for CO2; ±5% for SO2; ±10% for NOy), the boundary layer depth (±200 m), and 

the wind speed (±1 m/s). This results in a total 1-sigma uncertainty between ±22% and ±32% for the emission 

estimates presented here.  For clarity of presentation in Figures 4 and 6, this is represented by a ±30% error bar. 

 340 

5.1 Errors in individual flights 

 

 Of the transects in Table 1, many have large biases, but these problematic transects are either far from the source or 

very close.  We chose one “primary” transect for each day, flown at a roughly optimal distance from the source.  The 

primary transects are highlighted in Table 1, and emissions of all three species are included in Table 2. Because the 345 

simulation uses a passive tracer, values scaled to the CEMS emission rates are applicable to all three species.  Of these 

four transects, three have observational estimates within the manually estimated uncertainty for all three species.  The 

outlying observational estimate, for 25 April 2015, is subject to uncertainty in the background, which may be 

underestimated, and which does not affect the simulations.  The CO2 observational estimate is within the uncertainty on 

this day.  It is not clear how to rigorously combine uncertainties for different flight days and species, so we do not 350 

present a single number for this collection (list item 2 above).  An uncertainty estimate of less than 23% would leave 

four outliers rather than two. We therefore choose an estimate of approximately 25% to avoid being too optimistic. 

 

All four estimates for SO2 from the primary transects using the control simulation are within the manually estimated 

uncertainty (Table 1 and Fig. 8).  Again, no rigorous combined uncertainty can be computed (list item 3 above) but 355 

anything less than 20% would be too optimistic, leaving out two of the four estimates.  The full-plane integration (list 

item 4) eliminates one source of uncertainty, the estimation of mixing height.  Somewhat counter to our expectation, 

however, this reduces the error in only two of the four cases.  The error in mixing height must be offsetting an error due 

to unsteady winds in the other two cases.  The collection suggests a lower limit of 30% or so on the uncertainty. 

 360 

Estimating probabilities or confidence intervals from small ensembles is challenging (Leutbecher, 2019; Wilks, 2011).  

Too few members will generally produce too small a spread.  Ensemble spread is often expressed as a standard 

deviation, but if each member is equally likely, the range is a better measure.  Even so, most ensembles have too little 

spread, and do not encompass the true value.  If biases occur, for example because of model errors common to all 

members, the spread probably should not encompass the true value.  In other words, increased random spread is not an 365 

adequate substitute for diagnosis and correction of biases.  Bias correction as part of ensemble calibration should be 

used.  However, sufficient and reliable observations are often unavailable with which to correct biases, as is the case 

here.   
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The example of 25 June 2013 transect 2 is instructive (Table 1).  Emission rates from the ensemble range 12%, but do 370 

not cover the true value.  If we call the ensemble range the uncertainty of the rate estimate, it would be too small 

(overconfident).  If we used the ensemble standard deviation, the uncertainty estimate would be even smaller, about 

5%, which is clearly unreasonable.  For the same transect (25 June 2013 transect 2) the rate calculated from 

observations is 8% low relative to reality, and the rate calculated from the control simulation is 19% high.  Both 

estimates fall within the estimated uncertainty of the manual analysis. 375 

 

Taking the other primary transects in order starting with the worst control flux estimate, for 3 Sept. 2000 we have a 

19% high bias.  The ensemble range is 46%.  These differences suggest a somewhat larger uncertainty than the manual 

estimate.  Other clues to problems with this plume include very high BLH from ERA5 and a large difference between 

mixing heights estimated from the aircraft profiles before and after the transect.  However, if mixing height were the 380 

only problem, the full plane integration would produce a correct estimate, since it is not sensitive to mixing height or to 

the well-mixed assumption.  The remaining source of error is the variability of the winds leading to storage of pollutant 

within the volume between the source and the measurement plane, which accounts for the rest of the bias (control) and 

spread (ensemble).  The winds were light and variable during the night and early morning. 

 385 

Transect 2 on 16 Sept. 2006 has emission rate estimates from the observations that are 25% high, and from the control 

simulation 5% low.  The full plane integration returns a 22% high bias.  The ensemble range is 36%, and covers reality.  

The other transects on this day are either too close for the plume to be well-mixed (transect 1) or too far away for the 

assumption that SO2 is roughly conserved to be valid. 

 390 

Transect 2 on 25 April 2015 has already been mentioned as suffering from background uncertainty.  The control-based 

estimate is close to reality.  The full plane integration is biased 28% low, still within the manually-estimated 

uncertainty.  One outlying member produces the very large ensemble spreads.  There is nothing to justify removing this 

member, which again emphasizes the difficulty of estimating spread from a small number of members. 

 395 

Overall, the ensemble ranges give uncertainty estimates of 12-105% on different days (list item 5).  This is information 

that cannot be obtained in any other way. We must caution, however, that the small range on 25 June 2013 is probably 

underestimated. 

 

5.2 Main sources of error 400 
 

Mixing height and the well-mixed assumption are important uncertainties in the mass balance framework (White et al., 

1983; Karion et al., 2019).  This is not very surprising considering that the definition of a single mixing height involves 

several unsafe assumptions.  For the boundary layer to be well-mixed, there must be a substantial surface buoyancy 

flux, a well-defined capping layer (not necessarily an inversion per se), and minimal change of advection with height.  405 

Boundary layers are commonly well-mixed in potential temperature but not in water vapor mixing ratio (Gao et al., 

2018), because the entrainment fluxes at the top of the boundary layer are of opposite sign (warming for temperature, 

drying for water vapor).  Additional conditions are required for a plume to be well-mixed, specifically there must be 

enough time (several boundary layer turnover times) between emission and measurement.  It is worth noting that 

plumes that are not well-mixed can sometimes give reasonable mass balance estimates if the measurement transect is 410 

flown close to the middle of the boundary layer, where the measured value approximates the mean of the (roughly 

linear) vertical profile.  To reduce these uncertainties in the mass balance calculation, an aircraft will typically perform 

multiple vertical profiles, probing the mixing height and how it evolves throughout the study period, and will transect 

the plume at different altitudes (Peischl et al., 2015). 

 415 

Wind speed is another important uncertainty.  The usual assumption is that the wind speed at the measurement transect 

is representative for the entire plume transit.  If the wind is light and therefore variable, or if the wind speed has 

changed substantially over the  transit time, it is unclear what wind speed to use in the calculation.  Sometimes modeled 

wind speeds are used (Karion et al., 2015).  Looking at Table 3, we see substantial biases in wind speed (low) and 

mixing height (high), the smallest biases occurring on 25 June 2013.  These biases are with respect to the winds and 420 

mixing height observed on the aircraft, and therefore also include substantial uncertainties.  The ensemble ranges can 

be compared with the manual estimates of uncertainty.  For wind speed, the ensemble ranges are comparable to the 

manual estimates or smaller.  For mixing height, the ensemble ranges are larger.  Combining simulated and observed 

values, for example using simulated wind speeds with observed mixing heights, would incur large errors.   
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 425 

The methods used here are not sensitive to some common sources of error.  None of these methods are sensitive to 

plume displacement caused by errors in wind direction, as long as the plume is fully covered by the transect.  The full 

plane integration is not sensitive to the mixing height estimation or to violations of the well-mixed assumption.  The 

fact that the full-plane estimate is farther from reality than the traditional mass balance estimate for three of the four 

primary transects suggests that compensating errors are present.  Significant uncertainties remain in all methods.   430 

 

This work was partly inspired by the study of Karion et al. (2019).  The main emphasis of that work was on large 

(factor of 2 or greater) biases due primarily to errors in vertical mixing in the Lagrangian transport models.  We should 

keep in mind, however, that the true emissions in that study are not known.  The true vertical mixing is not known in 

either that study or this one.  Karion et al. (2019) also reported large uncertainties (error bars) based on multiple flights 435 

and multiple models.  Variability from a small ensemble of meteorology in one configuration (WRF2-FP) was 20-30%. 

 

An earlier study by Angevine et al. (2014) used a six-member WRF ensemble driving forward runs of the Flexible 

Particle (FLEXPART) Lagrangian dispersion model to estimate uncertainty due to meteorology.  A passive tracer 

representing national inventory emissions of carbon monoxide (CO) was transported by the models.  That study found 440 

30-40% spread in CO concentrations.  The ensemble spread was insufficient to cover the errors in wind and 

temperature, as would be expected for a small ensemble using a single model framework. 

 

6 Conclusions 

 445 

Errors in top-down emissions estimates are substantial even under good conditions.  Using a known source in forward 

runs driven by ensemble meteorology, we have shown errors ranging from a few percent to over 100%.  No single 

robust estimate of either bias or random error can be derived from these results.  Identification and removal of cases 

that are clearly bad reduces the error, but if the source is unknown, some bad cases cannot be clearly identified.  

Investigator judgement is vital.  Using forward modeling and examining the structure of the plumes it produces can be 450 

helpful in identifying better or worse cases.  Using an ensemble provides another dimension for diagnosis, since the 

spread of the ensemble results can indicate the possibility of outlying solutions that are not apparent in a single 

deterministic run. 

 

The largest source of error is the vertical mixing, as was also shown by Karion et al. (2019).  This is not simply a 455 

question of finding a correct mixing height, although that is a major problem.  In several of the cases shown here, the 

plumes are not well-mixed, and the mixing height is therefore not well defined.   

 

Wind speed is another important source of error (Table 3).  The wind speed on the aircraft transect may be the only 

source of data for comparison to the models.  However, even if it compares perfectly, unsteadiness of the wind 460 

previous to the measurement can cause poorly-characterized errors. 

 

Losses of pollutant to deposition or chemical transformation can be important for observations taken at longer 

downwind distances (greater than ~20 km), as seen in Figures 4 and 6.  These losses can be estimated if sufficient 

information is available, for example measurements of product species, but those estimates will necessarily introduce 465 

additional uncertainty. 

 

These results are not sensitive to errors in plume location or width.  In future work, we will explore the sensitivity of 

Bayesian inversion methods to those errors as well as to the kinds of errors shown here. 

 470 

Our results are consistent with uncertainty estimates from rigorous analysis of observations, as performed by Peischl et 

al. (2015).  The minimum emissions flux uncertainty that can be supported by these results is 30%.  Under less than 

ideal conditions, errors can be much larger.   

 

Code and Data Availability 475 
Observational data used here are available from https://esrl.noaa.gov/csd/field.html. The HYSPLIT model and 

documenation are available from https://www.arl.noaa.gov/hysplit/hysplit/. HYSPLIT output used in this work is 
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use that may be made of the Copernicus Information or Data it contains." 480 

 

Author Contributions 

WMA and JP designed the study.  JP did the observational mass flux analysis including its uncertainties. WMA ran the 

HYSPLIT model with help from AC and CPL.  WMA analyzed the model results and wrote the paper with input from 

the coauthors.  IBP and CRT were involved in taking the measurements. 485 

 

Competing Interests 

The authors declare that they have no conflict of interest. 

 

Acknowledgements 490 
We are grateful for many enlightening discussions with Michael Trainer and Anna Karion.  John Holloway, David 

Parrish, Steven Sjostedt, and Thomas Ryerson were involved in taking the measurements in one or more of the flights 

used here.  

   

 495 

References 

Angevine, W. M., Brioude, J., McKeen, S., and Holloway, J. S.: Uncertainty in Lagrangian 

pollutant transport simulations due to meteorological uncertainty from a mesoscale WRF ensemble, 

Geosci. Model Dev., 7, 2817-2829, 10.5194/gmd-7-2817-2014, 2014. 

Gao, Z., Liu, H., Li, D., Katul, G. G., and Blanken, P. D.: Enhanced temperature-humidity 500 

similarity caused by entrainment processes with increased wind shear, J. Geophys. Res., 123, 4110-

4121, 10.1029/2017JD028195, 2018. 

Hsu, Y.-K., VanCuren, T., Park, S., Jakober, C., Herner, J., FitzGibbon, M., Blake, D. R., and 

Parrish, D. D.: Methane emissions inventory verification in southern California, Atmospheric 

Environment, 44, 1-7, https://doi.org/10.1016/j.atmosenv.2009.10.002, 2010. 505 

Karion, A., Sweeney, C., Pétron, G., Frost, G., Michael Hardesty, R., Kofler, J., Miller, B. R., 

Newberger, T., Wolter, S., Banta, R., Brewer, A., Dlugokencky, E., Lang, P., Montzka, S. A., 

Schnell, R., Tans, P., Trainer, M., Zamora, R., and Conley, S.: Methane emissions estimate from 

airborne measurements over a western United States natural gas field, Geophysical Research 

Letters, 40, 4393-4397, 10.1002/grl.50811, 2013. 510 

Karion, A., Sweeney, C., Kort, E. A., Shepson, P. B., Brewer, A., Cambaliza, M., Conley, S. A., 

Davis, K., Deng, A., Hardesty, M., Herndon, S. C., Lauvaux, T., Lavoie, T., Lyon, D., Newberger, 

T., Pétron, G., Rella, C., Smith, M., Wolter, S., Yacovitch, T. I., and Tans, P.: Aircraft-Based 

Estimate of Total Methane Emissions from the Barnett Shale Region, Environmental Science & 

Technology, 49, 8124-8131, 10.1021/acs.est.5b00217, 2015. 515 

Karion, A., Lauvaux, T., Lopez Coto, I., Sweeney, C., Mueller, K., Gourdji, S., Angevine, W., 

Barkley, Z., Deng, A., Andrews, A., Stein, A., and Whetstone, J.: Intercomparison of atmospheric 

trace gas dispersion models: Barnett Shale case study, Atmos. Chem. Phys., 19, 2561-2576, 

10.5194/acp-19-2561-2019, 2019. 

Leutbecher, M.: Ensemble size: How suboptimal is less than infinity, Quarterly Journal of the 520 

Royal Meteorological Society, 145, 107-128, 10.1002/qj.3387, 2019. 

Lin, J. C., Gerbig, C., Wofsy, S. C., Andrews, A. E., Daube, B. C., Davis, K. J., and Grainger, C. 

A.: A near-field tool for simulating the upstream influence of atmospheric observations: The 

https://esrl.noaa.gov/csd/groups/csd4/modeldata/
https://doi.org/10.1016/j.atmosenv.2009.10.002


 11 

Stochastic Time-Inverted Lagrangian Transport (STILT) model, J. Geophys. Res., 108, 4493, 

10.1029/2002JD003161, 2003. 525 

Mays, K. L., Shepson, P. B., Stirm, B. H., Karion, A., Sweeney, C., and Gurney, K. R.: Aircraft-

Based Measurements of the Carbon Footprint of Indianapolis, Environmental Science & 

Technology, 43, 7816-7823, 10.1021/es901326b, 2009. 

Metrology, J. C. f. G. i.: JCGM 100 - Evaluation of measurement data - Guide to the expression of 

uncertainty in measurement, JCGM, 2008. 530 

Palmer, T.: The ECMWF ensemble prediction system: Looking back (more than) 25 years and 

projecting forward 25 years, Quarterly Journal of the Royal Meteorological Society, 145, 12-24, 

10.1002/qj.3383, 2018. 

Peischl, J., Ryerson, T. B., Holloway, J. S., Parrish, D. D., Trainer, M., Frost, G. J., Aikin, K. C., 

Brown, S. S., Dubé, W. P., Stark, H., and Fehsenfeld, F. C.: A top-down analysis of emissions from 535 

selected Texas power plants during TexAQS 2000 and 2006, Journal of Geophysical Research: 

Atmospheres, 115, 10.1029/2009JD013527, 2010. 

Peischl, J., Ryerson, T. B., Holloway, J. S., Trainer, M., Andrews, A. E., Atlas, E. L., Blake, D. R., 

Daube, B. C., Dlugokencky, E. J., Fischer, M. L., Goldstein, A. H., Guha, A., Karl, T., Kofler, J., 

Kosciuch, E., Misztal, P. K., Perring, A. E., Pollack, I. B., Santoni, G. W., Schwarz, J. P., 540 

Spackman, J. R., Wofsy, S. C., and Parrish, D. D.: Airborne observations of methane emissions 

from rice cultivation in the Sacramento Valley of California, Journal of Geophysical Research: 

Atmospheres, 117, n/a-n/a, 10.1029/2012JD017994, 2012. 

Peischl, J., Ryerson, T. B., Aikin, K. C., de Gouw, J. A., Gilman, J. B., Holloway, J. S., Lerner, B. 

M., Nadkarni, R., Neuman, J. A., Nowak, J. B., Trainer, M., Warneke, C., and Parrish, D. D.: 545 

Quantifying atmospheric methane emissions from the Haynesville, Fayetteville, and northeastern 

Marcellus shale gas production regions, Journal of Geophysical Research: Atmospheres, 120, 

2119-2139, 10.1002/2014JD022697, 2015. 

Peischl, J., Eilerman, S. J., Neuman, J. A., Aikin, K. C., de Gouw, J., Gilman, J. B., Herndon, S. C., 

Nadkarni, R., Trainer, M., Warneke, C., and Ryerson, T. B.: Quantifying Methane and Ethane 550 

Emissions to the Atmosphere From Central and Western U.S. Oil and Natural Gas Production 

Regions, Journal of Geophysical Research: Atmospheres, 123, 7725-7740, 10.1029/2018jd028622, 

2018. 

Ryerson, T., Buhr, M. P., Frost, G. J., Goldan, P. D., Holloway, J., Huebler, G., Jobson, B. T., 

Kuster, W. C., McKeen, S., Parrish, D. D., Roberts, J. M., Sueper, D. T., Trainer, M., Williams, J., 555 

and Fehsenfeld, F. C.: Emissions lifetimes and ozone formation in power plant plumes, J. Geophys. 

Res., 103, 22569-22583, 1998. 

Ryerson, T., Huey, L. G., Knapp, K., Neuman, J. A., Parrish, D. D., Sueper, D. T., and Fehsenfeld, 

F. C.: Design and initial characterization of an inlet for gas-phase NOy measurement from aircraft, 

J. Geophys. Res., 104, 5483-5492, 1999. 560 

Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F.: NOAA’s 

HYSPLIT Atmospheric Transport and Dispersion Modeling System, Bulletin of the American 

Meteorological Society, 96, 2059-2077, 10.1175/bams-d-14-00110.1, 2015. 

Thomson, D. J., Physick, W. L., and Maryon, R. H.: Treatment of interfaces in random walk 

dispersion models, J. Applied Meteorology, 36, 1284-1295, 1997. 565 

Trainer, M., Ridley, B. A., Buhr, M. P., Kok, G., Walega, J., Hübler, G., Parrish, D. D., and 

Fehsenfeld, F. C.: Regional ozone and urban plumes in the southeastern United States: 

Birmingham, A case study, Journal of Geophysical Research: Atmospheres, 100, 18823-18834, 

10.1029/95JD01641, 1995. 



 12 

Turnbull, J. C., Karion, A., Fischer, M. L., Faloona, I., Guilderson, T., Lehman, S. J., Miller, B. R., 570 

Miller, J. B., Montzka, S., Sherwood, T., Saripalli, S., Sweeney, C., and Tans, P. P.: Assessment of 

fossil fuel carbon dioxide and other anthropogenic trace gas emissions from airborne measurements 

over Sacramento, California in spring 2009, Atmos. Chem. Phys., 11, 705-721, 10.5194/acp-11-

705-2011, 2011. 

Varon, D. J., Jacob, D. J., McKeever, J., Jervis, D., Durak, B. O. A., Xiu, Y., and Huang, Y.: 575 

Quantifying methane point sources from fine-scale satellite observations of atmospheric methane 

plumes, Atmos. Meas. Tech., 11, 5673-5686, 10.5194/amt-11-5673-2018, 2018. 

White, W. H., Anderson, J. A., Blumenthal, D. L., Husar, R. B., Gillani, N. V., Husar, J. D., and 

Wilson, W. E.: Formation and transport of secondary air pollutants: ozone and aerosols in the St. 

Louis urban plume, Science, 194, 187, 10.1126/science.959846, 1976. 580 

White, W. H., Patterson, D. E., and Wilson Jr., W. E.: Urban exports to the nonurban troposphere: 

Results from Project MISTT, Journal of Geophysical Research: Oceans, 88, 10745-10752, 

10.1029/JC088iC15p10745, 1983. 

Wilks, D. S.: Statistical methods in the atmospheric sciences, Third ed., Academic Press, Oxford, 

676 pp., 2011. 585 

 

  



 13 

Tables and Figures 588 

Date CEMS SO2 

rate  

(kg h-1) 

Mass balance 

SO2 rate 

[bias]  

Simulated mass 

balance SO2 rate 

[bias] 

Ensemble 

range SO2 rate  

Full plane 

integration SO2 rate 

[bias] 

Distance 

downwind (km) 

20130625 

(transect 1) 

 

6380 4251 

[-2129, -34%] 

6414 

[34, 5.3%] 

5174-6708 

(25%) 

 51 

20130625 

(transect 2) 

 

6780 6727 

[53, -7.8%] 

8091 

[1311, 19%] 

7405-8323 

 (12%)* 

7500 

[720, 10%] 

16 

20130625 

(transect 3) 

 

6780 5818 

[-962, -14%] 

6688 

[-92, -14%] 

5709-7752 

(31%) 

 46 

20130625 

(transect 4) 

 

6780 6318 

[-462, -6.8%] 

6903 

[123, 18%] 

5533-7988 

(36%) 

 46 

20060916 

(transect 1) 

 

7403 13227 

[5824, 79%] 

10287 

[2884, 40%] 

6501-10187 

(46%) 

 16 

20060916 

(transect 2) 

 

7403 9273 

[1870, 25%] 

7045 

[-358, -4.8%] 

5472-7923 

(36%) 

9052 

[1649, 22%] 

27 

20060916 

(transect 3) 

 

7403 2673 

[-4730, -64%] 

6020 

[-1383, -19%] 

4715-6658 

(34%) 

 37 

20060916 

(transect 4) 

 

7403 3186 

[-4217, -57%] 

5959 

[-1444, -20%] 

4337-7319 

(49%) 

 52 

20060916 

(transect 5) 

 

7403 3914 

[-3489, -47%] 

6247 

[-1156, -16%] 

4371-7136 

(46%) 

 52 

20060916 

(transect 6) 

 

10404 7955 

[-2449, -24%] 

5677 

[-4727, -45%] 

4070-6461 

(43%) 

 52 

20000903 

(transect 1) 

 

9105 8773 

[-332, -3.6%] 

10870 

[1765, 19%] 

7696-12717 

(46%) 

13154 

[4049, 44%] 

10 

20150425 

(transect 2) 

 

418 251 

[-167, -40%] 

461 

[43, 10%] 

350-893 

(105%) 

299 

[-119, -28%] 

36 
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Table 1:  Values and ranges of SO2 emission rates from several estimates as described in the text.  Asterisk denotes ensemble ranges that do not include the true 590 

(CEMS) value.  The four primary transects identified for further analysis are in bold type, and full-plane values are provided only for those four primary 591 

transects.592 
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Date CEMS 

SO2 rate  

(kg h-1) 

Mass balance 

SO2 rate 

[bias]  

CEMS NOx 

rate (kg h-1) 

Mass balance 

NOx rate [bias] 

CEMS CO2 

rate  

(kg h-1) 

Mass balance 

CO2 rate 

[bias]  

20130625 

(transect 2) 

 

6780 6727 

[-7.8%] 

1610 

 

1782 

[11%] 

2.51e6 

 

2.39e6 

[-4.7%] 

20060916 

(transect 2) 

 

7403 9273 

[25%] 

1950 

 

1941 

[-0.5%] 

2.55e6 

 

2.25e6 

[-12%] 

20000903 

(transect 1) 

 

9105 8773 

[-3.6%] 

3173 

 

3077 

[-3.0%] 

2.40e6 

 

2.53e6 

[5.4%] 

20150425 

(transect 2) 

 

418 251 

[-40%] 

398 

 

132 

[-67%] 

4.21e5 

 

3.26e5 

[-23%] 

Table 2:  CEMS and observed emission rates for SO2, NOy, and CO2 for the four primary transects.  SO2 values are 593 

repeated from Table 1. 594 

 595 

  596 
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Date Wind 

speed 

mean  

(m s-1) 

[bias] 

Wind 

speed ensemble 

range 

Mixing height 

(m)  

[bias] 

Mixing 

height ensemble 

range 

20130625 

(transect 2) 

 

6.4 

[-0.77, -11%] 

1.4 (21%) 1900 

[170, 9.8%] 

500 (26%) 

20060916 

(transect 2) 

 

5.1 

[-1.8, -26%] 

0.95 

(19%) 

1617 

[398, 33%] 

800 (44%) 

20000903 

(transect 1) 

 

4.7 

[-0.88, -16%] 

1.5 (32%) 1900 

[681, 56%] 

1300 (58%) 

20150425 

(transect 2) 

 

5.5 

[-1.7, -23%] 

1.3 (23%) 1600 

[614, 62%] 

600 (43%) 

 597 

Table 3:  Values and ranges of wind speed and mixing height in the simulations, and their biases with respect to the 598 

observed values. 599 

600 
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Figure 1:  SO2 mixing ratios (ppbv) observed along four transects by the aircraft (a) and modeled at the same locations 601 

(b) in the control run on 25 June 2013.  The x marks the power plant location. 602 

603 
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Figure 2:  Time series of observed (red) and modeled (control in black, ensemble members in blue) SO2 mixing ratio 604 

along the flight tracks on 25 June 2013.  Plots (b),(c), and (d) zoom in on the relevant segments of the upper time series 605 

(a) to show details of the plume magnitudes and positions. 606 

 607 
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Figure 3:  Integrated plume amounts for the four transects on 25 June 2013, comparing observations and simulations.  608 

Large circles are from the control simulation, x marks are from the ensemble members.  The amounts are found by 609 

integrating the mixing ratio in time across each of the plumes shown in figure 2. 610 

 611 

  612 
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Figure 4:  Emission rate estimates from mass balance for four transects on 25 June 2013.  (a) CEMS emission rate 613 

through the day with observed and simulated emission estimates shown at estimated time of emission.  (b)  Ratio of 614 

emission rate derived from different estimates (method and species, symbols as in legend) to CEMS emission at 615 

estimated time of emission.  Explanation of legend:  “obs” is mass balance using observations; “Ctl sim” is mass 616 
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balance using control simulated tracer, wind, and mixing height; “full plane” is derived by integrating the full x-z plane 617 

in the simulation at the transect latitude; “ensemble” is mass balance using simulated tracer, wind, and mixing height 618 

for each ensemble member.  Vertical bar is uncertainty estimate (one standard deviation, ±30%) on observation-based 619 

mass balance for transect 2, and its length applies to all transects.  The four transects are colored blue, red, yellow, and 620 

purple respectively. Ensemble estimates are offset slightly along the x axis for clarity. 621 

 622 

  623 
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Figure 5:  Latitude – height cross sections of SO2 mixing ratio simulated with the control meteorology and each of the 624 

ensemble members on 25 June 2013.  The cross sections are shown at 1300 CST.  The color scale is linear and is 625 

allowed to saturate near the source.  Two estimates of the mixing height are shown at the latitude of transect 2:  626 

Observed (o, one value for all subplots), and determined from the concentration profile (+).  See text for details. 627 

 628 

  629 
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Figure 6:  Emission rate estimates from mass balance for six transects on 16 September 2006.  (a)  CEMS SO2 emission 630 

rate with observed and simulated emission estimates shown at estimated time of emission.  (b)  Ratio of emission rate 631 

derived from different estimates (method and species) to CEMS emission at estimated time of emission.  Explanation 632 

of legend:  “obs” is mass balance using observations; “Ctl sim” is mass balance using control simulated tracer, wind, 633 

and mixing height; “full plane” is derived by integrating the full x-z plane in the simulation at the transect latitude; 634 

“Ensemble” is mass balance using simulated tracer, wind, and mixing height for each ensemble member.  Vertical bar 635 
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is uncertainty estimate (one standard deviation, ±30%) on observation-based mass balance for transect 2. The six 636 

transects are colored blue, red, yellow, purple, green, and cyan respectively. Ensemble estimates are offset slightly 637 

along the x axis for clarity. 638 

  639 
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Figure 7:  Latitude – height cross sections of tracer mixing ratio simulated with the control meteorology and each of the 640 

ensemble members on 16 September 2006.  The cross sections are shown at 1100 CST.  The color scale is linear and is 641 

allowed to saturate near the source.  Two estimates of the mixing height are shown at the latitude of transect 2:  642 

Observed (o, one value for all subplots), and determined from the concentration profile (+).  See text for details. 643 

  644 
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Figure 8:  Emission rate estimates from mass balance for the four primary transects highlighted in table 1.  (a)  645 

Absolute SO2 emission rates.  (b)  Ratio of SO2 emission rates derived from different estimates (method and species) to 646 

CEMS emission at estimated time of emission.  Explanation of legend:  “obs” is mass balance using observations; 647 

“sim” is mass balance using simulated tracer, wind, and mixing height; “full plane” is derived by integrating the full x-648 

z plane in the simulation at the transect latitude; “Ensemble” is mass balance using simulated tracer, wind, and mixing 649 

height for each ensemble member.  Vertical bar is uncertainty estimate on observation-based mass balance. 650 


