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Abstract 13 

  Dust aerosol is important in modulating the climate system at local and global scales, yet its spatiotemporal 14 

distributions simulated by global climate models (GCMs) are highly uncertain. In this study, we evaluate the 15 

spatiotemporal variations of dust extinction profiles and dust optical depth (DOD) simulated by the 16 

Community Earth System Model version 1 (CESM1) and version 2 (CESM2), the Energy Exascale Earth 17 

System Model version 1 (E3SMv1), and the Modern-Era Retrospective analysis for Research and 18 

Applications version 2 (MERRA-2) against satellite retrievals from Cloud-Aerosol Lidar with Orthogonal 19 

Polarization (CALIOP), Moderate Resolution Imaging Spectroradiometer (MODIS), and Multi-angle 20 

Imaging SpectroRadiometer (MISR). We find that CESM1, CESM2, and E3SMv1 underestimate dust 21 

transport to remote regions. E3SMv1 performs better than CESM1 and CESM2 in simulating dust transport 22 

and the northern hemispheric DOD due to its higher mass fraction of fine dust. CESM2 performs the worst 23 

in the northern hemisphere due to its lower dust emission than in the other two models but has a better dust 24 

simulation over the Southern Ocean due to the overestimation of dust emission in the southern hemisphere. 25 

DOD from MERRA-2 agrees well with CALIOP DOD in remote regions due to its higher mass fraction of 26 
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fine dust and the assimilation of aerosol optical depth. The large disagreements in the dust extinction profiles 27 

and DOD among CALIOP, MODIS, and MISR retrievals make the model evaluation of dust spatial 28 

distributions challenging. Our study indicates the importance of representing dust emission, dry/wet 29 

deposition, and size distribution in GCMs in correctly simulating dust spatiotemporal distributions. 30 

 31 

1 Introduction 32 

Mineral dust plays an important role in the Earth’s climate system. It can impact the Earth’s radiation 33 

budget directly through scattering and absorbing solar and terrestrial radiation (e.g., Tegen et al., 1996; 34 

Balkanski et al., 2007), and indirectly through acting as cloud condensation nuclei and ice nucleating particles 35 

(e.g., Rosenfeld et al., 2001; DeMott et al., 2003; Shi and Liu, 2019). Dust can reduce the snow albedo when 36 

deposited on snow (e.g., Yasunari et al., 2015; Wu et al., 2018b; Rahimi et al., 2019), participate in the 37 

heterogeneous atmospheric chemistry reactions (e.g., Dentener et al., 1996), and provide nutrients such as 38 

iron to oceans through deposition (e.g., Jickells et al., 2005). Dust aerosols are reported to have a negative 39 

radiative forcing (RF) due to aerosol-radiation interactions (RFari); however, large uncertainties exist in the 40 

dust RFari estimates (Boucher et al., 2013). Whether mineral dust warms or cools the climate is still 41 

controversial (e.g., Boucher et al., 2013; Scanza et al., 2015; Kok et al., 2017).  42 

The large uncertainties in estimating dust RFari can be mainly attributed to the large diversities in the 43 

dust lifecycle (i.e., emission, transport and deposition) simulated by current global climate models (GCMs) 44 

(e.g., Huneeus et al., 2011; Boucher et al., 2013; Kim et al., 2014, 2019; Pu & Ginoux, 2018; Wu et al., 45 

2018a), which is not well constrained by observations. Huneeus et al. (2011) found that global total dust 46 

emission from 14 GCMs participating in the Aerosol Comparisons between Observations and Models 47 

(AeroCom) Phase I ranges from 514 to 4313 Tg yr−1 while global annual mean dust optical depth (DOD) 48 
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ranges from 0.010 to 0.053. Pu and Ginoux (2018) showed that the Coupled Model Intercomparison Project 49 

Phase 5 (CMIP5) models underestimate DOD, especially in spring, compared with land DOD derived from 50 

MODIS. Wu et al. (2018a) found that dust emission from CMIP5 models differs greatly in spatial distribution 51 

and intensity over East Asia. Kim et al. (2014, 2019) compared DOD from 5 GCMs participating in the 52 

AeroCom Phase II with DOD derived from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), 53 

Moderate Resolution Imaging Spectroradiometer (MODIS), and Multiangle Imaging Spectroradiometer 54 

(MISR) in the trans-Atlantic and trans-Pacific regions, respectively. Large diversities are found in the 55 

modeled DOD over the source regions of North Africa and East Asia, implying large uncertainties associated 56 

with dust emissions in these models. The low model biases of DOD across the North Atlantic and North 57 

Pacific indicate that current GCMs underestimate the trans-Atlantic transport of North African dust and the 58 

trans-Pacific transport of East Asian dust, respectively, likely due to an overestimation of dust removal.  59 

Apart from horizontal distribution, the vertical distribution of mineral dust can strongly influence the 60 

radiative effects of dust (e.g., Zhang et al., 2013), which is poorly constrained by observations. Few studies 61 

directly compared dust extinction profiles in GCMs with retrievals from CALIOP onboard Cloud-Aerosol 62 

Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) (e.g., Yu et al. 2010; Johnson et al., 2012; 63 

Kim et al., 2019; Wu et al., 2019). Yu et al. (2010) separated the dust extinction from the total aerosol 64 

extinction in the nighttime cloud-free CALIOP level 2 (CAL-L2) version 2.01 product using the volume 65 

depolarization ratio. They compared the dust extinction simulated by the Goddard Chemistry Aerosol 66 

Radiation Transport (GOCART) model with CALIPSO observations from June 2006 to November 2007. 67 

Johnson et al. (2012) evaluated the dust extinction simulated by GEOS-Chem, a global 3-D chemical 68 

transport model driven by meteorological input from the Goddard Earth Observing System (GEOS), with 69 

CAL-L2 version 3.01 product from March 2009 to February 2010 and found high model biases of dust 70 
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extinction in the lower troposphere over main source regions, similar as Yu et al. (2010). Wu et al. (2019) 71 

compared dust extinction modeled by the Community Earth System Model (CESM) with satellite retrievals 72 

from Luo et al. (2015a, 2015b) (L15), Yu et al. (2015) (Y15), and standard CALIOP level 3 (CAL-L3) product 73 

and found high model biases of dust extinction in the upper troposphere and large uncertainties in different 74 

CALIPSO products over East Asia. 75 

A major challenge in evaluating mineral dust in GCMs is the lack of high-quality and long-term 76 

measurements of dust (Evan et al., 2014). The limited spatiotemporal coverage of ground-based and aircraft 77 

observations is insufficient to provide global scale dust information. Pu and Ginoux (2016) derived DOD 78 

over land from MODIS Deep Blue (DB) aerosol products using Ångström exponent and single scattering 79 

albedo. Compared to coarse mode aerosol optical depth (AOD) from Aerosol Robotic Network (AERONET) 80 

ground-based observations, MODIS DOD over land is slightly underestimated. Yu et al. (2009) derived DOD 81 

over ocean from MODIS Dark Target (DT) aerosol products using prescribed fine mode fractions of 82 

combustion, dust, and marine aerosols. MODIS DOD over ocean shows that Asian dust can contribute 83 

substantially to the aerosol loading over North America (Yu et al., 2012). Luo et al. (2015a) developed a dust 84 

separation method to retrieve dust extinction from CALIOP level 1B (CAL-L1B) product, which gives lower 85 

dust extinction in the lower troposphere (< 4 km) than CAL-L2 product. Luo et al. (2015b) developed a dust 86 

identification method to better detect optically thin dust layers and found significantly frequent dust 87 

occurrences in the upper troposphere than CAL-L2 product. Ridley et al. (2016) estimated the global DOD 88 

to be 0.030 ± 0.005 by combining satellite retrievals of AOD with DOD simulated by four GCMs, which is 89 

close to AeroCom mean (0.028 ± 0.011, Huneeus et al., 2011) but has less uncertainties. 90 

In this study, we compare dust extinction profiles and DOD simulated from CESM1, CESM2, the Energy 91 

Exascale Earth System Model version 1 (E3SMv1) and the Modern-Era Retrospective analysis for Research 92 
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and Applications version 2 (MERRA-2) with satellite retrievals from CALIOP (L15 and Y15), MODIS, and 93 

MISR on a global scale. We pay attention not only to the physical processes responsible for the model biases 94 

of dust but also to the uncertainties in satellite retrievals and the impacts of these uncertainties on the model 95 

evaluation. The goal of this study is to evaluate the performance of CESM1, CESM2, E3SMv1, and MERRA-96 

2 in the simulations of (1) dust mass budgets, (2) dust extinction profiles and DOD, and (3) dust surface 97 

concentrations. The paper is organized as follows. Section 2 first introduces the models (CESM1, CESM2, 98 

E3SMv1, and MERRA-2), and then gives a detailed description of the satellite retrievals used in this study. 99 

Section 3 first shows the global dust mass budgets from the three models and one reanalysis, and then 100 

compares modeled dust extinction profiles and DOD with satellite retrievals. Discussion and conclusions are 101 

presented in section 4. 102 

 103 

2 Models and Data 104 

In this section, we give a brief description of the GCMs (Section 2.1), experiments design (Section 2.2), 105 

and satellite retrievals (Section 2.3) used in this study. Some important model features for simulating dust in 106 

CESM1, CESM2, E3SMv1, and MERRA-2 are summarized in Table 1. 107 

 108 

2.1 Model Description 109 

2.1.1 CESM 110 

In this study, we use the latest CESM2.1 (Danabasoglu et al., 2020) with the Community Atmosphere 111 

Model version 6 (CAM6) and the Community Land Model version 5 (CLM5, Lawrence et al., 2019) as the 112 

atmosphere and land component, respectively. CAM6 has replaced earlier schemes for boundary layer 113 

turbulence, shallow convection and cloud macrophysics with the Cloud Layers Unified by Binormals 114 
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(CLUBB, Golaz et al., 2002; Bogenschutz et al., 2013) scheme. CAM6 uses an improved two-moment cloud 115 

microphysics (MG2, Gettelman and Morrison, 2015) scheme and the four-mode version of Modal Aerosol 116 

Module (MAM4, Liu et al., 2016). Dust is represented in the Aitken mode, accumulation mode, and coarse 117 

mode with emission diameter bounds at 0.01-0.1 μm, 0.1-1.0 μm, and 1.0-10.0 μm, respectively. Dust 118 

emission is parameterized following Zender et al. (2003a). A geomorphic source function is used to account 119 

for global variations in soil erodibility, which is proportional to the upstream runoff collection area (Zender 120 

et al., 2003b). The size distribution of emitted dust particles follows the brittle fragmentation theory (Kok, 121 

2011) with prescribed mass fractions of 0.00165%, 1.1%, and 98.9% for the three modes, respectively.  122 

For comparison, we also use CESM1.2 (Hurrell et al., 2013) with CAM5 (Neale et al., 2010) and CLM4 123 

(Oleson et al., 2010) as the atmosphere and land component, respectively. As shown in Table 1, the 124 

representation of dust in aerosol module, dust emission scheme, and size distribution in CESM2.1 is the same 125 

as in CESM1.2. The main difference of dust treatment is that CESM2.1 reduces the geometric standard 126 

deviations (sg) in the accumulation and coarse mode, from 1.8 to 1.6 and 1.2, respectively. The upper and 127 

lower bound of number median diameter (Dgn) in the coarse mode changes from 1-4 µm to 0.4-40 µm. These 128 

changes of mode size parameters greatly reduce the dry deposition velocities for dust particles in the 129 

accumulation and coarse mode, which further leads to the decrease of dust dry deposition fluxes. The 130 

geomorphic source function used in CESM2.1 is also different from the one used in CESM1.2 (see Fig. S1), 131 

which substantially changes the spatial distributions of dust emission.   132 

 133 

2.1.2 E3SM 134 

We use E3SMv1 (Golaz et al., 2019) with the atmosphere model (EAM, Rasch et al., 2019) and land 135 

model (ELM), which are based on CAM5 and CLM4.5, respectively, as the atmosphere and land component. 136 
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Compared with CAM6, EAMv1 includes new treatments of convective transport, wet removal, and 137 

resuspension of aerosols to the coarse mode (Wang et al., 2013, 2020), which can reduce the high model 138 

biases of dust extinction in the upper troposphere. Dust is carried in the accumulation and coarse mode with 139 

emission diameter bounds at 0.1-1.0 μm, and 1.0-10.0 μm, respectively. Unlike CESM1.2 and CESM2.1, the 140 

size distribution of emitted dust particles follows Zender et al. (2003a) with prescribed mass fractions of 3.2% 141 

and 96.8% for the accumulation and coarse mode, respectively (see Table 1). The higher mass fraction of 142 

emitted accumulation mode dust in E3SMv1, which is three times larger than that in CESM2.1, can increase 143 

the dust transport to remote regions (e.g., Arctic, Antarctic, and Southern Ocean). However, it overestimates 144 

the mass fraction of emitted fine dust compared with observations, as shown in Kok (2011). E3SMv1 uses 145 

the same source function as CESM1.2 for dust emission, indicating that E3SMv1 has similar spatial 146 

distributions of dust emission to CESM1.2. Compared with CESM1.2 and CESM2.1, E3SMv1 has 72 vertical 147 

layers and its bottom layer thinner than that in CESM1.2 and CESM2.1, which can affect the dry deposition 148 

of dust. 149 

 150 

2.1.3 MERRA-2 151 

MERRA-2 (Gelaro et al., 2017) is the latest atmospheric reanalysis of the modern satellite era produced 152 

by combining GEOS atmospheric model version 5 (GEOS-5) with a 3D variational data assimilation 153 

(3DVAR) algorithm to ingest a wide range of observational data. MERRA-2 assimilates AOD from the 154 

Advanced Very High Resolution Radiometer (AVHRR), MODIS, MISR, and AERONET. GEOS-5 is run 155 

with GOCART aerosol module (Chin et al., 2002). The dust emission flux is calculated based on Ginoux et 156 

al. (2001). A topographic source function (see Fig. S1) is used to shift dust emission toward the most erodible 157 

regions, which is characterized by the relative elevation of source regions in surrounding basins (Ginoux et 158 
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al., 2001). We should note that the assimilation of AOD results in the imbalance of global dust mass. Because 159 

the assimilation of AOD increases dust concentrations in remote regions, the total deposition (dry and wet) 160 

is considerably larger than the dust emission in MERRA-2. As shown in Table 1, dust is carried in 5 size bins 161 

with diameter bounds at 0.2-2.0 μm, 2.0-3.6 μm, 3.6-6.0 μm, 6.0-12.0 μm, and 12.0-20.0 μm, respectively. 162 

The size distribution of emitted dust particles follows Tegen and Lacis (1996) with mass fractions of 6.6%, 163 

20.6%, 22.8%, 24.5%, and 25.4%, respectively. MERRA-2 includes very coarse dust (10.0-20.0 μm), which 164 

is neglected by CESM and E3SM. MERRA-2 uses the emitted dust size distribution following Tegen and 165 

Lacis (1996) and has the highest mass fraction of emitted fine dust (0.1-1.0 μm) among the three models and 166 

one reanalysis (see Figure 3 in Kok 2011 for the comparison of emitted dust size distribution), which can 167 

increase the dust transport.  168 

 169 

2.2 Experiments Design 170 

We ran CESM1.2 and CESM2.1 with the finite-volume (FV) dynamical core for CAM5.3 and CAM6, 171 

respectively, at 0.9°×1.25° horizontal resolution with 56 vertical levels from 2006 to 2009, and the last 3-172 

year results were used for analysis. We ran E3SMv1 with the spectral-element (SE) dynamical core for 173 

EAMv1 at 100 km horizontal resolution on a cubed-sphere geometry with 72 vertical layers from 2006 to 174 

2009. The horizontal wind components u and v in the three models were all nudged toward the MERRA-2 175 

meteorology using a relaxation time scale of 6 hours. Monthly mean climatological SST and sea ice 176 

concentrations were used. The global annual mean dust emission in CESM1.2, CESM2.1, and E3SMv1 was 177 

tuned so that AOD in the dusty regions (DOD/AOD>0.5) matches the observations from MODIS onboard 178 

Terra and Aqua. Thus, the tuning factors are different among the three models. Generally, CESM1 and 179 

E3SMv1 produce quite similar dust emission. However, dust emission in CESM2 is much lower due to its 180 
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longer dust lifetime in the atmosphere to have a similar global mean DOD. 181 

 182 

2.3 Satellite Retrievals 183 

2.3.1 MODIS and MISR 184 

Pu and Ginoux (2016) derived DOD over land from MODIS Collection 6 (C6) DB aerosol products (Hsu 185 

et al., 2013) by using a continuous function relating the Ångström exponent (α) to fine mode AOD established 186 

by Anderson et al. (2005) which was derived based on ground measurements. The formula is given as: 187 

𝐷𝑂𝐷 = 𝐴𝑂𝐷 × (0.98 − 0.5089𝛼 + 0.0512𝛼!)			(𝛼 < 0.3, 𝜔 < 1)                              (1) 188 

where ω is the single scattering albedo at 470 nm. DOD is derived only when α is less than 0.3 and ω is less 189 

than 1. As discussed in Baddock et al. (2016), we use the lowest quality (QA=1) AOD over dust source 190 

regions and AOD flagged as very good quality (QA=3) for other land areas. Although the derived MODIS 191 

DOD over land is in good agreement with coarse mode AOD from AERONET (Pu and Ginoux, 2016), it 192 

may overestimate DOD in reality. We calculate coarse mode AOD, which is used as a proxy of DOD, only 193 

when AOD is mainly contributed by dust (α<0.3, ω<1). 194 

Yu et al. (2019) derived DOD over ocean from MODIS C6 DT aerosol products as follows: 195 

𝐷𝑂𝐷 = "#$(&!'&)'"#$"(&!'&")
(&!'&#)

                                                            (2) 196 

where f is the fine mode fraction retrieved directly from MODIS; AODm is the marine AOD; fc, fd, and fm are 197 

fine mode fractions of combustion, dust, and marine aerosol, respectively. Fc, fd, and fm are set to be 0.92 198 

(0.89), 0.26 (0.31), and 0.55 (0.48) for MODIS onboard Terra (Aqua), respectively. These differences in the 199 

fractions may be caused by the difference in instrument calibrations (Levy et al., 2018). We also use the 200 

nonspherical fraction of AOD from MISR level 3 version 23 (V23) products (Witek et al., 2018) as a proxy 201 

of DOD over ocean (e.g., Kim et al., 2014, 2019; Yu et al., 2019). We do not use MODIS and MISR DOD 202 



 10 

over high-latitude regions (> 60°) because of large uncertainties in retrievals.  203 

 204 

2.3.2 CALIOP 205 

Luo et al. (2015a) developed a new dust separation method which derives the dust backscatter coefficient 206 

(βd, m−1 sr−1) in the lidar equation inversion stage using the CAL-L1B data. The original single-scattering 207 

lidar equation is: 208 

𝛽)(𝑧) = 9𝛽*(𝑧) + 𝛽+(𝑧):𝑒
'!∫ -.$/$01%23."/"01%2451%

&
'                                          (3) 209 

where β’ (CAL-L1B product) is the total attenuated backscatter coefficient; βa (CAL-L2 product) and βm are 210 

backscatter coefficients for aerosol and molecules, respectively; Sa and Sm are lidar ratios for aerosol and 211 

molecules, respectively. Assuming that dust is externally mixed with non-dust aerosols, Eq. (3) can be 212 

rewritten as: 213 

𝛽)(𝑧) = 9𝛽5(𝑧) + 𝛽65(𝑧) + 𝛽+(𝑧):𝑒
'!∫ -.#/#01%23.(#/(#01%23."/"01%2451%

&
'                         (4) 214 

where βd and βnd are backscatter coefficients for dust and non-dust aerosols, respectively; Sd is the lidar ratio 215 

for dust and set to be 40 sr; Snd is the lidar ratio for non-dust aerosols and set to be 25 sr. The new separation 216 

method also requires a priori knowledge of depolarization ratios of dust (δd) and non-dust (δnd), which are 217 

given values of 0.25 and 0.05, respectively. The dust extinction can then be easily converted from βd by 218 

multiplying Sd of 55 sr, which accounts for the multiple scattering effects as suggested in Wandinger et al. 219 

(2010). The new separation method can resolve dust extinction from polluted dust (i.e. dust mixing with other 220 

types of aerosols), whereas CAL-L2 products fail to do so. It also tends to have less uncertainties than doing 221 

the partition based on lidar inversion products (i.e., CAL-L2) in previous studies (e.g., Amiridis et al., 2013; 222 

Yu et al., 2015; Proestakis et al., 2018). Additionally, Luo et al. (2015b) developed a new dust identification 223 

method by using combined lidar-radar cloud masks from CloudSat and CALIPSO, which significantly 224 
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improves the detection of optically thin dust layer, especially in the upper troposphere. In this study, we use 225 

both the new separation method (Luo et al., 2015a) and the new identification method (Luo et al., 2015b) to 226 

produce the nighttime dust extinction dataset (L15) for the period of 2007 to 2009.  227 

Yu et al. (2015) derived βd from CAL-L2 βa with a priori knowledge of δd and δnd as follows: 228 

𝛽5 =
(7'7(#)(837#)
(837)(7#'7(#)

𝛽*                                                                    (5) 229 

where δ is the CALIOP observed particulate depolarization ratio. To minimize the uncertainties, we calculate 230 

βd in two scenarios: the “lower-bound dust fraction” scenario (δd=0.30, δnd=0.07) and the “upper-bound dust 231 

fraction” scenario (δd=0.20, δnd=0.02). We then converted dust extinction from βd by multiplying Sd of 45 sr. 232 

In this study, we use the dust separation method to retrieve nighttime dust extinction under the cloud free 233 

condition based on CAL-L2 version 4.10 lidar products. To ensure the retrieval quality, we only select high-234 

confidence data based on the cloud-aerosol discrimination (CAD) scores (-100 to -70) and extinction quality 235 

control flag values (0, 1, 16, and 18) (Yu et al., 2010; Yu et al., 2015). The aerosol free condition (dust 236 

extinction is zero) is also included in the retrieval. 237 

To make an apple-to-apple comparison of modeled dust extinction with satellite observations, two 238 

treatments were applied to collocate model results and CALIOP data. First, dust extinction retrievals from 239 

L15 and Y15 were averaged into 0.9º×1.25º grid boxes (same as CAM5.3 and CAM6) and interpolated to 240 

pressure levels at 25 hPa intervals. Modeled dust extinction profiles from CESM1.2, CESM2.1, and E3SMv1 241 

were sampled every 10 s along the CALIPSO satellite tracks. Dust extinction profiles from MERRA-2 were 242 

calculated offline based on 3-hourly output of 3-D dust mixing ratio and then sampled along the CALIPSO 243 

satellite tracks. Second, the dust extinction in and below the vertical layer where cloud fraction is 100% was 244 

set to missing values to account for the fact that dust inside clouds, adjacent to the cloud bottom, and bellow 245 

optically thick clouds cannot be retrieved from CALIOP. Collocated dust extinction from model experiments 246 
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is then integrated vertically to get the DOD value. 247 

 248 

3 Results 249 

Figure 1a shows 12 selected regions including both dust source regions and transport pathway regions, 250 

in which we evaluate the seasonal variations of modeled dust extinction and DOD with satellite retrievals. 251 

Figure 1b shows the network of stations, at which we evaluate dust surface concentrations (Huneeus et al., 252 

2011; Prospero et al., 2012; Fan, 2013).  253 

 254 

3.1 Dust Mass Budgets 255 

Table 2 gives the global annual mean dust mass budgets, DOD, and mass extinction efficiency (MEE) 256 

from model experiments. We can see that dust emissions in CESM1 and E3SMv1 are much larger than those 257 

in CESM2 and MERRA-2, which can be attributed to the model tuning and uses of different dust emission 258 

schemes and source functions. Dust emission schemes in CESM1, CESM2, and E3SMv1 are the same and 259 

based on Zender et al. (2003a), while dust emission scheme in MERRA-2 is based on Ginoux et al. (2001). 260 

CESM1 and E3SMv1 use the same dust source function which is different from those in CESM2 and 261 

MERRA-2. Dry deposition is the dominant removal process of dust compared with wet deposition in CESM1, 262 

E3SMv1, and MERRA-2, whereas CESM2 has less dry deposition (675 Tg yr−1) than wet deposition (1151 263 

Tg yr−1). Due to the changes of size parameters (sg, low and high bound of Dgn) in the accumulation and 264 

coarse mode of CESM2 MAM4 (see Table 1), aerosol dry deposition velocities for the accumulation and 265 

coarse mode greatly reduce, leading to the decrease of dry deposition. Note that MERRA-2 has less dry 266 

deposition (750 Tg yr-1) than wet deposition (865 Tg yr-1) for dust aerosols with diameter between 0.2 and 267 

12.0 μm. We also find that E3SMv1 produces notably higher dry deposition than CESM1, although both 268 
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models have similar amount of dust emission. In CESM and E3SM, dust emission fluxes (kg m−2 s−1) are 269 

divided by the model bottom layer thickness and converted to dust mixing ratio tendencies (kg kg−1 s−1). 270 

Because the bottom layer in E3SMv1 is thinner with higher vertical resolution than the one in CESM1, more 271 

dust in the bottom layer is removed through dry deposition process.  272 

As CESM2 has much less dust dry deposition than wet deposition, larger fraction of dust is transported 273 

away from the major source regions in CESM2 than CESM1. Dust lifetime in CESM2 (3.90 days) is longer 274 

than that in CESM1 (2.33 days). E3SMv1 has a smaller dust burden and a shorter lifetime but larger DOD 275 

than CESM1 due to the larger dry deposition and higher mass fraction of dust in the accumulation mode, 276 

respectively. Since MERRA-2 has the largest mass fraction of fine dust and assimilates AOD, dust in 277 

MERRA-2 has the longest lifetime (4.19 days) and largest global mean DOD (0.0312), despite its lowest dust 278 

emission. Note that MERRA-2 has considerably larger dust deposition (dry and wet, 2048 Tg yr−1) than dust 279 

emission (1636 Tg yr−1), which is significantly imbalanced, due to the assimilation of AOD. In remote regions 280 

where AOD is underestimated, the assimilation of AOD increases dust concentrations resulting in the increase 281 

of dust deposition. MEE (DOD/dust burden) is often used for converting dust mass to DOD. As shown in 282 

Table 2, it varies from 0.452 (CESM1) to 0.677 m2 g−1 (MERRA-2). In Huneeus et al. (2011), MEE from 283 

AeroCom Phase I models varies from 0.25 to 1.28 m2 g−1. Haywood et al. (2003) measured MEE of 0.37 m2 284 

g−1 (0.32-0.43 m2 g−1) based on aircraft campaigns, which is used in many studies (e.g., Kaufman et al., 2005; 285 

Yu et al., 2015). Pu and Ginoux (2018) used a MEE of 0.6 m2 g−1 to convert dust burden simulated by CMIP5 286 

models to DOD. 287 

Figure 2 shows the spatial distributions of global annual mean dust emissions from the model experiments. 288 

We can see that CESM1 (Fig. 2a) has similar spatial distributions of dust emission as E3SMv1 (Fig. 2c) due 289 

to the use of the same source function and dust emission scheme. Dust emission in MERRA-2 (Fig. 2d) 290 
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spreads more uniformly than that in CESM1 and E3SMv1, while CESM2 (Fig. 2b) has smaller areas emitting 291 

mineral dust than CESM1 and E3SMv1. CESM2 has lower dust emission in main source regions, such as 292 

North Africa, Middle East, and East Asia, but has much higher dust emission in South America, South Africa, 293 

and Australia than CESM1, E3SMv1, and E3SMv1. E3SMv1 produces small amount of dust emission in the 294 

Antarctic (Fig. 2c) due to its low soil moisture along the coast of the Antarctic. 295 

Figure 3 shows the seasonal variations of dust emissions from model experiments in six source regions 296 

(Fig. 1a). In North Africa (Fig. 3a), CESM1 has the largest dust emission (5000-10000 kt d-1) with the 297 

strongest seasonality, while CESM2 has the lowest dust emission (~2000 kt d-1). Dust emissions in CESM1, 298 

CESM2, E3SMv1, and MERRA-2 peak in April, February, February, and July, respectively. Although 299 

CESM1 and E3SMv1 use the same source function and dust emission scheme, E3SMv1 produces 300 

considerably lower dust emission than CESM1. Large differences of dust emission can also be found in 301 

Northwest China (Fig. 3b). However, dust emissions in the three models and one reanalysis have similar 302 

seasonality and all peak in May. E3SMv1 produces slightly higher dust emission than CESM1, especially 303 

from September to January. CESM1, CESM2, and MERRA-2 produces similar low dust emissions in 304 

December and January. In North America (Fig. 3d), CESM2 produces the lowest dust emission with the 305 

weakest seasonality among the three models and one reanalysis. In the Southern Hemisphere (SH) source 306 

regions (Fig. 3c, e and f), CESM2 produces much larger dust emission than CESM1, E3SMv1, and MERRA-307 

2. In South America, the seasonality of dust emission in CESM2 is significantly different from those in other 308 

models, which results from the different location of dust emission (see Fig. 2). 309 

Figure 4 shows the seasonal variations of dust burdens from model experiments in the twelve selected 310 

regions marked in Fig. 1a. In North Africa (Fig. 4a), CESM1 has the highest dust burden while CESM2 has 311 

the lowest dust burden. Although MERRA-2 produces much lower dust emission than E3SMv1, dust burden 312 
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in MERRA-2 is larger than that in E3SMv1 due to a higher mass fraction of fine dust. Because the 313 

assimilation of AOD increases the dust concentrations on the trans-Atlantic pathway, MERRA-2 has the 314 

highest dust burden among the three models and one reanalysis across the Atlantic (Fig. 4e). In North America 315 

(Fig. 4i), dust burden in MERRA-2 is much larger than those in other models, whereas dust emission in 316 

MERRA-2 is similar to those in CESM1 and E3SMv1. This is due to the enhanced dust transport over the 317 

Pacific, which is further caused by the assimilation of AOD over the Pacific (see Fig. 4f and j). We can see 318 

that CESM2 produces the highest dust burden with the strongest seasonality in SH source regions (Fig. 4c, 319 

g, and k) due to its large dust emission. MERRA-2 has similar dust burden in the Arctic (Fig. 4d) as in 320 

Northwest China, indicating that MERRA-2 may overestimate dust burden in the Arctic.  321 

 322 

3.2 Dust Optical Depth 323 

Figure 5 compares the spatial distributions of modeled DOD with satellite retrievals from CALIOP (82°S-324 

82°N), MODIS (60°S-60°N) and MISR (ocean, 60°S-60°N). The annual mean values are averaged between 325 

60°S and 60°N for a better comparison. In general, CESM1, CESM2, and E3SMv1 underestimate global 326 

mean DOD compared with CALIOP (L15 and Y15) and MODIS; DOD in MERRA-2 is higher than CALIOP 327 

but is still much lower than MODIS DOD. CESM1 overestimate the land DOD (0.0678) compared with 328 

observations from L15 (0.0614) and Y15(0.0625); DOD over land in E3SMv1 (0.0615) is between L15 and 329 

Y15. However, modeled DOD over ocean in CESM1 (0.0074), CESM2 (0.0087), and E3SMv1 (0.0094) is 330 

much lower than retrievals from L15 (0.0137) and Y15 (0.0181), which mainly contributes to the low model 331 

biases of global mean DOD. This indicates that CESM1, CESM2, and E3SMv1 underestimate dust transport 332 

to remote regions (e.g., Arctic and Southern Ocean). In the Northern Hemisphere (NH), CESM2 produces 333 

the lowest DOD over major source regions such as North Africa, Middle East, and East Asia among the three 334 
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models and one reanalysis due to its low dust emission. Since E3SMv1 has higher mass fraction (3.2%) of 335 

accumulation mode dust than CESM1 and CESM2 (1.1%), it performs better than CESM1 and CESM2 and 336 

simulates more dust transport to the Arctic. In SH, CESM2 produces much larger DOD in South America, 337 

South Africa, and Australia than CALIOP due to high dust emission in these three source regions (see Fig. 338 

3), which also leads to a higher DOD over the Southern Ocean than other models and improves the agreement 339 

with observations. MEERA-2 tends to have the best agreement with CALIOP in DOD, especially in remote 340 

regions, which can be attributed to the assimilation of AOD from satellites and ground-based measurements 341 

and high mass fraction of emitted fine dust. 342 

Comparing to the DOD estimates from AeroCom models (0.028 ± 0.011, Huneeus et al., 2011) and Ridley 343 

et al. (2016) (0.030 ± 0.005), global mean DOD in MERRA-2 and Y15 is close to the global mean value from 344 

Ridley et al. (2016); DOD from model experiments is within the uncertainty range of AeroCom models. 345 

MODIS DOD (> 0.06) is substantially larger than CALIOP DOD (< 0.03). MISR DOD over ocean is between 346 

CALIOP and MODIS DOD. Large uncertainties also exist in DOD retrievals from different sensors, which 347 

can affect the model evaluation. The DOD differences between MODIS and CALIOP can come from two 348 

main aspects: (1) the differences between AOD retrieved from MODIS and CALIOP and (2) the differences 349 

of retrieval algorithms in separating DOD from AOD.  350 

Previous studies found that MODIS and MISR AOD agrees reasonably well with AERONET (e.g., Sayer 351 

et al., 2014; Garay et al., 2020), while CALIOP AOD has a notable low bias (e.g., Schuster et al., 2012; Omar 352 

et al., 2013; Kim et al., 2018). Sayer et al. (2014) evaluated C6 DB, DT, and merged AOD from MODIS 353 

Aqua against AERONET observations at 111 sites during 2006-2008. A small median bias of -0.0047 for 354 

merged AOD was found if the three products are validated independently. Garay et al. (2020) showed that 355 

MISR level 2 V23 AOD has a low bias of -0.002 compared with AERONET observations. Schuster et al. 356 
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(2012) compared CAL-L2 version 3 AOD with measurements at 147 AERONET sites from June 2006 to 357 

May 2009. They found that CALIOP AOD has relative and absolute biases of -13% and -0.029, which is 358 

mainly caused by low biases for columns that contain dust subtype. This indicates that a higher lidar ratio 359 

(>40 sr) may be needed to improve CALIPSO dust retrievals. Ma et al. (2013) compared CAL-L3 version 360 

1.00 AOD with MODIS C5 AOD from 2006 to 2011 and found a low bias. Global annual mean AOD from 361 

nighttime CAL-L3 over ocean is 0.089, while MODIS AOD over ocean is 0.148 and 0.140 for Terra and 362 

Aqua, respectively. Ma et al. (2013) also showed that CAL-L3 has lower AOD than MODIS over major dust 363 

source regions. More recently, Kim et al. (2018) evaluated CAL-L2 version 3 and 4.10 AOD against 364 

measurements from 176 AERONET sites and MODIS level 2 C6 products from 2007 to 2009. They found 365 

that global annual mean CAL-L2 AOD has increased from 0.084 in version 3 to 0.128 in version 4.10 for 366 

nighttime, which is mostly due to lidar ratio revisions for different aerosol subtypes. The low AOD bias 367 

relative to AEROENT is improved from -0.064 in version 3 to -0.051 in version 4.10. 368 

MODIS DOD is subject to cloud contamination that can cause a high bias in DOD (e.g., Zhang et al., 369 

2005). In Fig. 5g and h, we can see the apparent discontinuity along the tropical African coast, because 370 

MODIS DOD is derived from DB and DT products over land and ocean, respectively. In addition, MODIS 371 

DOD derived from Dark Target products over the turbid-water coastal region is subject to high bias due to 372 

the underestimation of surface reflectance. Since Eq. (1) is used to calculate the coarse mode AOD in 373 

Anderson et al. (2005) and we derived DOD only when AOD is mainly contributed by dust (α<0.3, ω<1), 374 

MODIS DOD over land may be subject to high bias. Unlike passive sensors, CALIOP may do a better job in 375 

discriminating dust from clouds and other types of aerosols and providing the vertical distributions of dust. 376 

However, CALIOP cannot penetrate optically thick cloud layers due to strong attenuation of the signals, 377 

missing the lowest part of aerosol plumes. CALIOP also fails to detect tenuous dust layers due to weak signals. 378 
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Notable differences are found between MODIS DOD from Terra (0.0686) and Aqua (0.0615) as well, which 379 

can be attributed to the calibration issues of MODIS Terra (e.g., Levy et al., 2018). Ma and Yu (2015) showed 380 

that MISR AOD over ocean (0.157) is higher than MODIS Aqua AOD over ocean (0.139). MISR DOD over 381 

ocean, especially over the Southern Ocean, may be biased high due to artifacts (e.g., Witek et al., 2013). In 382 

this study, we use the latest version (V23) of MISR aerosol products, which significantly reduces AOD over 383 

ocean compared to the previous V22 products (Garay et al., 2020).  384 

Table 3 gives the global seasonal mean DOD (averaged over 60°S-60°N) from model experiments and 385 

satellite observations. CESM1, CESM2, and E3SMv1 underestimate global mean DOD in all seasons 386 

compared with MODIS and CALIOP, which is mainly attributed to the low model biases of DOD over ocean. 387 

DOD from model experiments, Y15, and Terra MODIS all peaks in MAM (March-April-May) and reaches 388 

its minimum in DJF (December-January-February) due to the seasonal variations of global dust emission. 389 

However, DOD from L15 and Aqua MODIS slightly increases from MAM to JJA (June-July-August) and 390 

peaks in JJA. Notable decreases of DOD from MAM to JJA are found in model experiments. The decrease 391 

ranges from 0.0012 (E3SMv1) to 0.0096 (MERRA-2), while DOD from Terra MODIS and Y15 slightly 392 

decreases by 0.0008 and 00019, respectively. Unlike observations and other models, DOD from CESM2 393 

increases from JJA to SON (September-October-November) which can be attributed to the overestimation of 394 

dust emission in SH. CESM2 also has the weakest seasonal contrast, and the DOD difference between MAM 395 

and DJF is only 0.0067. MERRA-2 has the strongest seasonal contrast, and the DOD difference between 396 

MAM and DJF is 0.0244. 397 

We further examine the dust transport across the Atlantic (0°-35°N) and Pacific (30°N-60°N) by 398 

comparing the meridional means of modeled DOD with satellite retrievals from CALIOP, MODIS (combined 399 

Terra and Aqua), and MISR, as shown in Fig. 6. In Fig. 6a, satellite retrievals of DOD show high values in 400 
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North Africa (15°W-30°E). As dust is transported from North Africa to the Atlantic, DOD gradually decreases. 401 

In the source regions, MODIS and CALIOP DOD all peaks between 5°W and 5°E, whereas DOD from 402 

CESM1, CESM2, and E3SMv1 peaks in Northeast Africa (30°E) determined by the geomorphic source 403 

function used in the models. Although MERRA-2 well captures the meridional variations of DOD due to the 404 

use of a topographic source function, it overestimates the DOD compared with CALIOP. This may be caused 405 

by the contribution of very coarse dust (10-20 μm) and high mass fraction of fine dust (0.1-1μm). DOD in 406 

E3SMv1 agrees the best with CALIOP DOD among the three models. CESM1 produces substantially larger 407 

DOD (0.25-0.38) in Northeast Africa (15°E -30°E) than CALIOP but agrees well with CALIOP in Northwest 408 

Africa (15°W-5°E). CESM2 significantly underestimates DOD (~0.1) in Northwest Africa (15°W-5°E) 409 

compared with CALIOP due to its underestimation of dust emission (see Fig. 3a).  410 

Over the entire Atlantic, modeled DOD in CESM1, CESM2, and E3SMv1 is lower than observations, 411 

which may result from the fast deposition and short lifetime (see Table 2). E3SMv1 performs better than 412 

CESM1 and CESM2 because of its higher mass fraction of fine dust. Although DOD in MERRA-2 agrees 413 

well with CALIOP DOD over the Atlantic, it tends to have much faster drop than CALIOP along the transport 414 

pathway, especially between 20°W and 0°. This suggests that dust in MERRA-2 may also deposit too fast. 415 

The decline rate of DOD in E3SMv1 agrees well with that in CALIOP. Because of the reduced sg and wider 416 

Dgn range in the coarse mode in CESM2 (Table 1), dust dry deposition decreases, and dust lifetime increases 417 

significantly, which explains the weak longitudinal gradient of DOD in CESM2. Similar conclusions can be 418 

drawn from Fig. 6b for dust transport across the Pacific. CESM1, CESM2, and E3SMv1 underestimate DOD 419 

over the Pacific but overestimate DOD in source regions (i.e., Taklamakan and Gobi Desert) of East Asia 420 

compared with CALIOP. DOD from MERRA-2 is higher than CALIOP over both East Asia and the Pacific. 421 

Large disparities of DOD from CALIOP, MODIS, and MISR are found over both land and ocean. CALIOP 422 
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DOD is lower than MODIS DOD, and the differences are larger over land (~0.1). MISR DOD over ocean is 423 

close to CALIOP DOD over the Atlantic and MODIS DOD over the Pacific.  424 

Figure 7 shows the seasonal variations of modeled DOD in comparison with satellite retrievals from 425 

CALIOP, MODIS, and MISR at 12 selected regions. In North Africa (Fig. 7a), CESM2 significantly 426 

underestimates DOD in MAM, JJA, and SON due to its low dust emission (see Figs. 3a and 4a). DOD in 427 

E3SMv1 agrees well with CALIOP DOD, while CESM1 and MERRA-2 overestimates DOD in all seasons 428 

compared with CALIOP. Over the Atlantic (Fig. 7e), DOD in MERRA-2 agrees well with CALIOP DOD in 429 

all seasons, while E3SMv1 underestimates DOD in MAM and JJA. This suggests that wet removal of dust 430 

in E3SMv1 over the Atlantic in MAM and JJA may be too strong. In North America (Fig. 7i), CESM1, 431 

CESM2, and E3SMv1 produces much lower DOD due to the underestimation of dust transport across the 432 

Pacific. MODIS DOD peaks in July similar to the seasonality of trans-Atlantic dust transport, while CALIOP 433 

DOD peaks in May similar to the seasonality of trans-Pacific dust transport. Unlike North Africa, all models 434 

overestimate DOD in MAM, JJA, and SON compared with CALIOP in Northwest China (Fig. 7b) due to 435 

overestimation of dust emission. Because E3SMv1 has larger dust emission than CESM1 and CESM2 in DJF 436 

(Fig. 3b), the low bias of DOD is improved. This suggests that CESM1 and CESM2 may underestimate dust 437 

emission in DJF over Northwest China. Over the Pacific (Fig 7f and j), DOD in E3SMv1 agrees well with 438 

CALIOP DOD from May to October, while CESM1 and CESM2 underestimate DOD in all seasons, 439 

especially in DJF by over one order of magnitude. DOD in all models and MODIS reaches its minimum in 440 

December or January, whereas CALIOP DOD has its minimum in August.  441 

Figure 7c, g, and k focus on the source regions in SH. The seasonal variations of DOD in SH are opposite 442 

to NH due to opposite seasons in SH. CESM2 significantly overestimates DOD in all seasons compared with 443 

CALIOP, by one order of magnitude due to the overestimation of dust emission, while CESM1, E3SMv1, 444 
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and MERRA-2 perform reasonably well. Figure 7d, h, and l focus on the three remote regions where the 445 

largest disagreements between model simulations and observations are found. In the Arctic (Fig. 7d), CESM1, 446 

CESM2, and E3SMv1 all have low biases of DOD, but E3SMv1 performs better than CESM1 and CESM2, 447 

especially in DJF. CESM2 performs slightly better than CESM1 due to the reduced sg and wider Dgn range 448 

in the accumulation and coarse mode. MERRA-2 overestimates DOD compared with CALIOP due to 449 

excessive dust transport from NH source regions. Over the tropical Pacific (Fig. 7h), CALIOP, MODIS, and 450 

MISR DOD all shows small seasonal contrast, while MERRA-2 shows considerable seasonal contrast of 451 

DOD with its maximum in May and its minimum in November, which is influenced by dust transport over 452 

the North Pacific. In the Southern Ocean (Fig. 7l), MODIS and MISR DOD has much stronger seasonal 453 

variations than CALIOP DOD. Because of the assimilation of AOD, MERRA-2 also has opposite seasonal 454 

variations to CALIOP DOD as MODIS and MISR. The difference in the seasonality of retrieved DOD may 455 

come from cloud contamination over the Southern Ocean. In the selected regions, DOD from Y15 is generally 456 

larger than that from L15, because the differences in retrieval algorithms lead to higher dust extinction in the 457 

lower troposphere for Y15.  458 

 459 

3.3 Dust Extinction 460 

Figure 8 compares annual mean vertical profiles of modeled dust extinction with satellite retrievals from 461 

L15 and Y15 in 12 selected regions. In North Africa (Fig. 8a), modeled dust extinction agrees well with 462 

observations from L15 and Y15 in the lower and middle troposphere (> 500 hPa). In the upper troposphere 463 

(< 400 hPa), significant high model biases of dust extinction are found in all models and over one order of 464 

magnitude in CESM1 and MERRA-2, which comes from JJA and SON (see Figs. S2-S5). It is likely due to 465 

excessive convective transport (e.g., Allen & Landuyt, 2014) and lack of secondary activation of aerosols 466 



 22 

entrained into convective updrafts (e.g., Wang et al., 2013; Yu et al., 2019) in the models. As E3SMv1 uses a 467 

unified aerosol convective transport scheme with secondary activation (Wang et al., 2013, 2020), the high 468 

model biases of dust extinction are reduced. Due to its lower dust emission in North Africa (Fig. 3a), less 469 

dust is lifted up throughout the troposphere in CESM2 than in the other models. MERRA-2 has the largest 470 

high biases of dust extinction in the upper troposphere because of its highest fine mode mass fraction. As 471 

dust is transported to the Atlantic, the dust extinction decreases at all levels (Fig. 8e). Dust extinction in 472 

E3SMv1 agrees well with CALIOP. CESM1 underestimates dust extinction below 500 hPa but overestimates 473 

dust extinction above 500 hPa. MERRA-2 agrees well with the observations below 500 hPa but is much 474 

larger than observations in the upper troposphere. In North America (Fig. 8i), CESM1, CESM2, and E3SMv1 475 

greatly underestimate dust extinction in the lower troposphere by one order of magnitude. The low model 476 

biases reach the maximum in JJA (Fig. S3) and the minimum in DJF (Fig. S5). Since MERRA-2 has similar 477 

dust emission as CESM1 and E3SMv1 but only slightly underestimates dust extinction in the lower 478 

troposphere. The low biases of dust extinction in CESM1, CESM2, and E3SMv1 are mainly caused by the 479 

underestimation of dust transport across the Pacific. We can see that in the Northeast Pacific (Fig. 8j), 480 

MERRA-2 and L15 still has dust extinction of 0.001-0.002 km-1 in the bottom layer. The high biases of dust 481 

extinction in MERRA-2 above 600 hPa are consistent with the overly strong transport across the Atlantic and 482 

Pacific. 483 

As shown in Fig. 8b, f, and j, CESM1, CESM2, and E3SMv1 have high biases of dust extinction in 484 

Northwest China but low biases over the Pacific. The magnitude of the low biases of dust extinction peaks 485 

in DJF (Fig. S5), which corresponds to the low biases of DOD in Fig. 7. CALIOP dust extinction profiles 486 

vary little across the Pacific, while dust extinction at all levels in CESM1, CESM2, and E3SMv1 decreases 487 

notably, resulting in the increase of low biases of DOD with distance from the source. MERRA-2 488 
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overestimates dust extinction above 800 hPa over the Pacific and shows a slightly increase from 1000 hPa to 489 

600 hPa. This indicates that MERRA-2 significantly overestimates the dust transport across the Pacific. 490 

CESM2 significantly overestimates dust extinction at all levels in the three SH source regions (Fig. 8c, g, 491 

and k) due to the overestimation of dust emission. In South America, CESM1 and E3SMv1 underestimate 492 

dust extinction below 900 hPa. This suggests that the two models may underestimate the dust emission. In 493 

the Arctic (Fig. 8d), E3SMv1 improves dust extinction at all levels compared with CESM1, while CESM2 494 

only increases dust extinction below 800 hPa. Over the Southern Ocean, CESM1, CESM2, and E3SMv1 all 495 

underestimate dust extinction below 850 hPa and produce an increase compared to the bottom level. The 496 

overestimation of dust extinction above 800 hPa by MERRA-2 is also evident in Fig. 8d, h, and l. We note 497 

that there are considerable differences between satellite retrievals from L15 and Y15. Dust extinction from 498 

L15 is larger in the upper troposphere and lower in the lower troposphere than that from Y15, which is due 499 

to different dust identification and separation methods (Wu et al., 2019). 500 

 501 

3.4 Dust Surface Concentration 502 

Figure 9 compares simulated annual mean dust surface concentrations with observations at 24 sites, as 503 

shown in Fig. 1b. We use the dust surface concentrations for 0.2-12 μm (bins 1-4) in MERRA-2 for better 504 

comparison with CESM1, CESM2, and E3SMv1. Note that all measurements of dust surface concentrations 505 

except for observations at Barbados and Miami were conducted prior to 2007-2009. Some observations are 506 

derived from measurements of aluminum by assuming a certain fraction. CESM1, CESM2, and E3SMv1 507 

have low biases, while MERRA-2 has high biases at most sites. E3SMv1 performs better than CESM1 and 508 

CESM2 in terms of the overall correlation (R), mean bias (MB), and mean normalized bias (MNB). CESM2 509 

has the lowest correlation and the highest overall MB and MNB. The overall underestimation of dust surface 510 
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concentrations in CESM1, CESM2, and E3SMv1 mainly results from the low biases at sites in the Arctic, 511 

Antarctic, and Tropical Pacific. 512 

Figure 10 shows the seasonal variations of modeled dust surface concentrations in comparison with 513 

observations at 12 selected sites. We select the 12 sites based on their geographic locations, which cover the 514 

Arctic, Antarctic, trans-Pacific region, and trans-Atlantic region. At Izana (Fig. 10a) which is close to the 515 

west coast of North Africa, all models underestimate dust surface concentrations due to low dust emission in 516 

Northwest Africa (15°W-5°E) and fail to capture the seasonality. Although DOD in MERRA-2 agrees well 517 

with CALIOP observations over the Atlantic (see Fig. 6a), MERRA-2 still has considerable low biases in 518 

dust surface concentrations because of too much dust emitted in the fine mode. Dust surface concentrations 519 

in the three models and one reanalysis agree better with observations at Barbados (Fig. 10e) than at Miami 520 

(Fig. 10i). CESM1, CESM2, and E3SMv1 underestimate dust surface concentrations at Miami, especially in 521 

DJF by more than one order of magnitude. E3SMv1 tends to have the best agreement with observations at 522 

Cheju (Fig. 10b), while CESM1 and CESM2 have strong low biases in JJA and DJF. MERRA-2 523 

overestimates the concentrations at Midway Island and Oahu Hawaii in all months. 524 

Figure 10c, g, and k show three sites in NH high-latitude regions. E3SMv1 significantly improves the 525 

dust surface concentrations compared with CESM1 and CESM2 at Alert, but it still has low biases, especially 526 

in SON and DJF by one order of magnitude. Ground measurements show high dust surface concentrations 527 

in SON due to local dust emission in NH high-latitude regions (Fan et al., 2013; Groot Zwaaftink et al., 2016), 528 

but CESM1, CESM2, and E3SMv1 miss the local dust sources there. CESM1 and E3SMv1 tend to have 529 

stronger low model biases of dust surface concentrations at Heimaey than at Alert, while CESM2 tend to 530 

have weaker low model biases at Heimaey than at Alert, especially in DJF. Figure 10d, h, and l show three 531 

sites in the Tropical Pacific and Antarctic. At Palmer Station, CESM1 underestimates dust surface 532 
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concentrations by three orders of magnitude. Dust surface concentrations in CESM2 are higher than CESM1 533 

and E3SMv1 due to higher dust emission in SH and the changes of size parameters in the accumulation and 534 

coarse mode. Because E3SMv1 produces small amount of dust emission in the Antarctic (Fig. 2c), it also has 535 

higher concentrations.   536 

 537 

4 Discussion and Conclusions 538 

In this study, we evaluate the spatiotemporal variations of dust extinction profiles and DOD in CESM1, 539 

CESM2, E3SMv1, and MERRA-2 against satellite retrievals from CALIOP (L15 and Y15), MODIS, and 540 

MISR. We find that CESM1, CESM2, and E3SMv1 underestimate global annual mean DOD compared with 541 

CALIOP and MODIS, which can be mainly attributed to the low model biases of DOD over ocean. This 542 

indicates that CESM1, CESM2, and E3SMv1 underestimate dust transport to remote regions. E3SMv1 543 

performs better than CESM1 and CESM2 in NH due to its higher fine mode mass fraction of dust. CESM2 544 

performs the worst in NH due to its lower dust emission but improves DOD in SH due to its high dust 545 

emissions in SH source regions. DOD in MERRA-2 agrees well with CALIOP DOD in remote regions due 546 

to the assimilation of AOD and its higher mass fraction of fine mode dust. All models tend to overestimate 547 

dust extinction in the upper troposphere of source regions because of excessive convective transport and/or 548 

lack of secondary activation of aerosols entrained into convective updrafts. The latter is considered in 549 

E3SMv1 (Wang et al., 2020), which thus shows a reduced bias of dust extinction in the upper troposphere. 550 

The high model biases of dust extinction in MERRA-2 in the upper troposphere are persistent around the 551 

globe. 552 

CESM1, CESM2, and E3SMv1 produce substantial greater DOD than CALIOP in Northeast Africa and 553 

fail to capture the spatial distributions of DOD in North Africa, which can be significantly improved by using 554 
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the source function of Ginoux et al. (2001) or the dust emission scheme of Kok et al. (2014a, 2014b) (K14). 555 

The three models also overestimate DOD over Northwest China due to the overestimation of dust emission 556 

in MAM, JJA, and SON. Wu et al. (2019) showed that CESM1 with K14 dust emission scheme better agrees 557 

with CALIOP observations in Northwest China. Since the source functions used in the three models and one 558 

reanalysis are all zeros north to 60°N, they don’t produce any dust emissions in NH high-latitude regions, 559 

while ground observations indicate considerable local dust sources.  560 

The low model biases of DOD over the Atlantic in CESM1, CESM2, and E3SMv1 can be greatly 561 

improved if the high dust emission in Northeast Africa is captured by models. E3SMv1 has similar decline 562 

rate of DOD as CALIOP from Northeast Africa to the Atlantic. CESM1, CESM2, and E3SMv1 underestimate 563 

DOD in remote regions resulting from too fast dust deposition. Wu et al. (2018) showed that lower dry 564 

deposition velocities for fine particles results in higher dust concentrations in remote regions (see Figure S1). 565 

Current way of releasing dust emission to the atmosphere in the three models is to add it to the bottom layer, 566 

while dust storms with strong wind in reality can bring dust to high altitudes. Smoth et al. (2017) ran CAM4 567 

with constrained meteorology (i.e., horizontal wind components, temperature, surface pressure, sensible and 568 

latent heat fluxes, and wind stress) from three reanalysis (MERRA, ERA-interim, and NCEP) and found that 569 

the global annual mean AOD is 0.026 ± 30%, indicating an uncertainty due to meteorology of 30%. 570 

Precipitation is another important meteorological factor which not only affects the dust transport by wet 571 

deposition but also changes dust emission through soil moisture. A high bias of precipitation over and near 572 

the source regions may reduce dust transport to remote regions. Rasch et al. (2019) showed that E3SMv1 and 573 

CESM1 tend to rain too early compared with observations, especially over land (~ 6 hours). The bias in the 574 

diurnal cycle of precipitation may also influence the dust transport, considering the strong vertical mixing of 575 

dust during daytime. 576 
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Substantial differences are also found between MODIS and CALIOP DOD, which can greatly affect 577 

model evaluation. MODIS DOD (> 0.06) is significantly larger than CALIOP DOD (< 0.03). DOD over 578 

ocean from MISR is between MODIS and CALIOP. The differences between MODIS and CALIOP DOD 579 

may come from instrument differences, artifacts such as cloud contamination and calibration issues, and 580 

different retrieval algorithms. A low bias of the CALIOP aerosol extinction in the lower troposphere (< 2 km) 581 

relative to ground-based lidar measurements from the Micro-Pulse Lidar Network (MPLNET) and the 582 

European Aerosol Research Lidar Network (EARLINET) at several individual sites has been found in 583 

previous studies (e.g., Campbell et al., 2012; Misra et al., 2012; Papagiannopoulos et al., 2016). Further work 584 

can be done to evaluate CALIOP dust extinction against measurements from MPLNET and EARLINET.  585 

 586 

Code Availability 587 

The CESM1.2 source code is available at https://github.com/mingxuanwupnnl/CESM-code. The CESM2.1 588 

source code is available at https://github.com/ESCOMP/cesm. The E3SMv1 source code is available at 589 

https://github.com/E3SM-Project/E3SM.  590 
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Data Availability 592 

The model output of CESM1 and CESM2 is archived at NCAR Cheyenne supercomputer. The model output 593 

of E3SMv1 is archived at NERSC Cori supercomputer. MERRA-2 data is available at 594 

https://disc.gsfc.nasa.gov/. CALIOP, MODIS and MISR data can be obtained online at 595 

https://search.earthdata.nasa.gov. 596 
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Tables 929 

Table 1. Description of the models on their dust physical characteristics. 930 

 CESM1 CESM2 E3SMv1 MERRA-2 
Resolution 1°, 56L 1°, 56L 1°, 72L 0.5°, 72L 
Aerosol Module MAM4 (Liu et al., 2016) 

0.01-0.1-1.0-10.0 μm 
MAM4 (Liu et al., 2016) 
0.01-0.1-1.0-10.0 μm 

MAM4 (Liu et al., 2016) 
0.1-1.0-10.0 μm 

GOCART (Chin et al., 2016) 
0.2-2.0-3.6-6.0-12.0-20.0 μm 

sg 1.6, 1.8, 1.8 1.6, 1.6, 1.2 1.8, 1.8  
Low Bound Dgn (µm) 0.0087, 0.0535, 1 0.0087, 0.0535, 0.4 0.0535, 1  
High Bound Dgn (µm) 0.052, 0.44, 4 0.052, 0.48, 40 0.44, 4  
Mass Fraction of  
Dust Emission (%) 

0.00165, 1.1, 98.9 
(Kok, 2001) 

0.00165, 1.1, 98.9 
(Kok, 2011) 

3.2, 96.8 
(Zender et al., 2003) 

6.6, 20.6, 22.8, 24.5, 25.4 
(Ginoux et al., 2001) 

Dust Emission Scheme Zender et al. (2003a) Zender et al. (2003a) Zender et al. (2003a) Ginoux et al. (2001) 

Note: sg is the geometric standard deviation; Dgn is number median diameter.    931 
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Table 2. Global annual mean dust mass budgets, DOD, and MEE 946 

 CESM1 CESM2 E3SMv1 MERRA-2 
Emission (Tg yr−1) 3868 (43, 3826) 1820 (20, 1800) 3399 (109, 3291) 1636 (1220) 
Dry deposition (Tg yr−1) 2496 (7, 2489) 675 (5, 670) 2638 (29, 2609) 1168 (750) 
Wet deposition (Tg yr−1) 1379 (36, 1343) 1151 (15, 1136) 764 (80, 684) 880 (865) 
Burden (Tg) 24.7 (0.7, 24.0) 19.5 (0.3, 19.2) 17.9 (2.0, 15.9) 23.5 (22.8) 
Lifetime (day) 2.33 (5.92, 2.29) 3.90 (5.91, 3.88) 1.92 (6.84, 1.76) 4.19 (5.17)  
DOD 0.0219 0.0212 0.0238 0.0312 
MEE (m2 g−1) 0.452 0.553 0.677 0.677 

Note: the values in parentheses for CESM1, CESM2, and E3SMv1 correspond to the accumulation mode 947 

(0.1-1 μm) and coarse mode (1-10 μm), respectively; the values in parentheses for MERRA-2 correspond to 948 

bins 1-4 (0.2-12.0 μm)  949 
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Table 3. Global seasonal mean DOD (60°S-60°N) 964 

 MAM JJA SON DJF 
CESM1 0.0314 (0.0956, 0.0083) 0.0286 (0.0774, 0.0111) 0.0184 (0.0553, 0.0051) 0.0156 (0.0445, 0.0052) 
CESM2 0.0253 (0.0722, 0.0083) 0.0208 (0.0534, 0.0090) 0.0218 (0.0571, 0.0090) 0.0186 (0.0464, 0.0085) 
E3SMv1 0.0293 (0.0808, 0.0106) 0.0281 (0.0713, 0.0125) 0.0194 (0.0529, 0.0073) 0.0162 (0.0420, 0.0069) 
MERRA-2 0.0465 (0.1095, 0.0236) 0.0369 (0.0853, 0.0196) 0.0232 (0.0559, 0.0113) 0.0221 (0.0501, 0.0119) 
CALIOP L15 0.0332 (0.0799, 0.0170) 0.0339 (0.0765, 0.0192) 0.0183 (0.0460, 0.0087) 0.0173 (0.0407, 0.0092) 
CALIOP Y15 0.0385 (0.0864, 0.0217) 0.0366 (0.0769, 0.0222) 0.0248 (0.0523, 0.0150) 0.0231 (0.0437, 0.0160) 
MODIS Terra 0.0788 (0.1333, 0.0595) 0.0780 (0.1269, 0.0615) 0.0623 (0.0937, 0.0511) 0.0607 (0.0953, 0.0504) 
MODIS Aqua 0.0706 (0.1209, 0.0529) 0.0707 (0.1144, 0.0560) 0.0522 (0.0813, 0.0419) 0.0569 (0.0918, 0.0464) 
MISR (     , 0.0413)       (     , 0.0406) (     , 0.0351) (     ,  0.0328) 

Note: the values in parentheses are for land and ocean, respectively. 965 
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Figures 981 

 982 

Figure 1. Illustration of (a) 12 selected domains and (b) network of stations measuring dust surface 983 

concentrations. 984 

 985 



 47 

 986 

Figure 2. Spatial distributions of global annual mean dust emission (μg m−2 s−1) from model experiments. 987 

The values are global annual mean dust emission. 988 
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 999 

Figure 3. Seasonal variations of dust emission (kt d−1) in source regions: (a) North Africa, (b) Northwest 1000 

China, (c) South America, (d) North America, (e) South Africa, and (f) Australia. 1001 
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 1012 

Figure 4. Seasonal variations of dust burden (kt) from model experiments over 12 selected regions during 1013 

2007-2009. 1014 
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 1016 

 1017 

 1018 

 1019 
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 1022 
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 1024 

Figure 5. Spatial distributions of global annual mean DOD from model experiments, CALIOP, MODIS, and 1025 

MISR during 2007-2009. We integrate the collocated dust extinction profiles from the three models and one 1026 

analysis to get the nighttime DOD values. DOD from MODIS and MISR is for daytime. The values are 1027 

annual mean DOD between 60°S and 60°N. The values in the parentheses are annual mean DOD over land 1028 

and ocean, respectively. The stripe pattern of white space in (c) and (d) is due to the date collocation.  1029 
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 1037 

Figure 6. Meridional mean of DOD from model experiments, CALIOP, MODIS, and MISR across the (a) 1038 

Atlantic (0°-35°N) and (b) Pacific (30°N-60°N).  1039 
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 1052 

Figure 7. Seasonal variations of DOD from model experiments, CALIOP, MODIS, and MISR over 12 1053 

selected regions during 2007-2009. The gap in (d) is due to the missing of nighttime data during the polar 1054 

day. 1055 

 1056 

 1057 

 1058 

 1059 

 1060 

 1061 



 53 

 1062 

Figure 8. Vertical profiles of annual mean dust extinction (km−1) from model simulations and CALIOP over 1063 

12 selected regions during 2007-2009. 1064 
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 1073 

Figure 9. Observed and simulated annual mean dust surface concentrations (μg m−3) at 24 sites. The 1074 

measurements at Alert are from Fan (2013); the observations at Heimaey, Barbados, and Miami are from 1075 

Prospero et al. (2012); the dataset for the other 20 sites are from Huneeus et al. (2011). These sites were 1076 

operated by the University of Miami (Arimoto et al., 1996; Prospero et al., 1989, 1996). Different color 1077 

represents different regions. 1078 
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 1079 

Figure 10. Seasonal variations of dust surface concentrations (μg m−3) from model simulations and ground 1080 

measurements at 12 selected sites. Shaded areas are for plus/minus one standard deviation of observations. 1081 
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