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Abstract. This paper presents a novel methodology to use the Direct Numerical Simulation (DNS) to study the impact of

isotropic homogeneous turbulence on the condensational growth of cloud droplets. As shown by previous DNS studies, the

impact of turbulence increases with the computational domain size, that is, with the Reynolds number, because larger eddies

generate higher and longer-lasting supersaturation fluctuations that affect growth of individual cloud droplets. The traditional

DNS can only simulate a limited range of scales because of the excessive computational cost that comes from resolving all5

scales involved, that is, from large scales at which the turbulent kinetic energy (TKE) is introduced down to the Kolmogorov

microscale, and from following every single droplet. The novel approach is referred to as the ‘scaled-up DNS’. The scaling-up

is done in two parts, first by increasing both the computational domain and the Kolmogorov microscale, and second by using

super-droplets instead of real droplets. To ensure proper dissipation of TKE and scalar variance at small scales, molecular

transport coefficients are appropriately scaled-up with the grid length. For the scaled-up domains, say, meters and tens of10

meters, one needs to follow billions of real droplets. This is not computationally feasible, and so-called super-droplets are

applied in scaled-up DNS simulations. Each super-droplet represents an ensemble of identical real droplets, and the number of

real droplets represented by a super-droplet is referred to as the multiplicity attribute. After simple tests showing validity of the

methodology, scaled-up DNS simulations are conducted for five domains, the largest of 643 m3 volume using a DNS of 2563

grid points and various multiplicities. All simulations are carried out with vanishing mean vertical velocity and with no mean15

supersaturation, similarly to past DNS studies. As expected, the supersaturation fluctuations as well as the spread in droplet size

distribution increase with the domain size, with the droplet radius variance increasing in time t as t1/2 as identified in previous

DNS studies. Scaled-up simulations with different multiplicities document numerical convergence of the scaled-up solutions.

Finally, we compare the scaled-up DNS results with a simple stochastic model that calculates supersaturation fluctuations

based on the vertical velocity fluctuations updated using the Langevin equation. Overall, the results document similar scaling20

as in previous small-domain DNS simulations and support the notion that the stochastic subgrid-scale model is a valuable tool

for the multi-scale simulation of droplet spectral evolution applying large-eddy simulation model.
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1 Introduction

The impact of turbulence on the growth of cloud droplets is an important and still poorly understood aspect of cloud physics.

This is because of the wide range of spatial scales that affect droplet growth, from the Kolmogorov microscale (about a25

millimeter for typical atmospheric turbulence levels) to the scale of the entire cloud or cloud system. Cloud droplets grow by

the diffusion of water vapor and by gravitational collision/coalescence, with the former dominating growth until droplets are

large enough so the collisional growth can be initiated and eventually led to drizzle and rain formation. For the gravitational

collision/coalescence, the frequency of droplet collisions depends on the droplet spectrum width. It follows that understanding

processes leading to the observed droplet spectra is important for the understanding of the rain onset. Observations of natural30

droplet spectra go back to the early days of aircraft cloud studies (e.g., Warner, 1969) and continue in numerous subsequent

investigations (e.g., Jensen et al., 1985; Brenguier and Chaumat, 2001; Pawlowska et al., 2006; Prabha et al., 2012, among

many others; see also references in Grabowski and Wang, 2013). Those observations typically show that observed droplet

spectra are wider than predicted by simple models of cloud dynamics and microphysics. In many instances, such a discrepancy

can be explained by cloud entrainment (e.g., Warner, 1973; Paluch and Knight, 1984; Su et al., 1998; Lasher-Trapp et al., 2005,35

among many others). However, presence of a significant spectral broadening in undiluted and weakly diluted cloudy volumes

is more difficult to explain. One can wonder if the presence of small-scale turbulence can lead to appreciable widening of the

droplet spectra during diffusional growth within otherwise uniform cloudy volumes.

Vaillancourt et al. (2001, 2002) were first to apply direct numerical simulation (DNS) approach to study diffusional growth

of cloud droplets in homogeneous isotropic turbulence applying a rising adiabatic parcel setup. DNS has been initially ap-40

plied to turbulent particle-laden flows to study the so-called preferential concentration (or clustering) of inertial particles in

turbulence (e.g., Eaton and Fessler, 1994, see also references in Shaw, 2003). For the DNS of cloud droplets growing by the

diffusion of water vapor, droplets respond to the supersaturation fluctuations in their immediate environment as suggested by

Srivastava (1989). Limited by the computational resources, Vaillancourt et al. (2002) were only able to consider small volumes

of a turbulent cloud, around 1 liter. Three sets of simulations were performed with turbulent kinetic energy dissipation rates45

relevant to cloud conditions and including droplet sedimentation. Earlier studies of particle-laden turbulent flows typically ex-

clude sedimentation (see Eaton and Fessler, 1994) but this is inappropriate for weak to moderate turbulence intensities typical

for natural clouds (Grabowski and Vaillancourt, 1999). Vaillancourt et al. (2002) simulations show a small impact of local

supersaturation fluctuations on the droplet spectra: the standard deviation of the initially monodisperse droplet distribution

increases very slowly with time, of the order of 0.01 µm per minute. Similar simulations reported in Lanotte et al. (2009)50

applying larger domains and no mean ascent clearly show that the impact, although still relatively small (a few tenths of 1 µm),

does increase with the domain size (see Fig. 3 therein). In similar DNS simulations, Li et al. (2019) demonstrate the increase

of spectral broadening with the increase of the domain size (i.e., the Reynolds number) and the increase of the length of the

simulations, see Figs. 3 and 4 therein. For the largest domain of 5123 and about a minute of the simulation time, the initially

monodisperse 10 µm droplets evolve into a spectrum with about 1 µm width.55
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Homogeneous isotropic turbulence simulations of Vaillancourt et al. (2002), Lanotte et al. (2009) and Li et al. (2019) are

limited by the computational domain size. As a result, simulations featuring domains larger than a fraction of a cubic meter are

simply not yet possible. At the same time, as argued in Grabowski and Wang (2013) and documented in Grabowski and Abade

(2017; see Fig. 4 therein) and Li et al. (2019; see Fig. 4 therein), the impact of supersaturation fluctuations in homogeneous

isotropic turbulence on the spectral width increases with the domain size. A simple argument is that this is because the largest60

turbulent eddies feature the largest vertical velocity perturbations that result in the largest and longest-lasting supersaturation

fluctuations and thus have the largest impact on the spread of droplet growth histories. From the point of view of realistic cloud

modelling, developing and validating robust subgrid-scale schemes for contemporary large eddy simulation (LES) models (i.e.,

featuring grid lengths of a few tens of meters) requires performing DNS-like simulations in computational domains comparable

to the size of the LES grid box.65

To this end, we propose to use what we refer to as the “scaled-up DNS” approach. Since the largest eddies are the key

for the condensational growth, one would like to apply the DNS technique in simulations with domains much larger than

currently possible. For instance, taking a 1283 DNS simulation with 10 cm grid length gives computational domain of 12.83

cubic meters, that is, comparable to the grid volume of an LES cloud simulation. To ensure a proper dissipation of the turbulent

kinetic energy (TKE) at the smallest scales, one needs to scale up the molecular viscosity with the increase of the model70

grid length. The increase of the small-scale dissipation is critical for traditional DNS models applying spectral techniques

to simulate homogeneous isotropic turbulence as applied in this study. This is different from past turbulence-related studies

applying finite-difference models with large domains and spatially-uniform diffusion coefficients (e.g., Grabowski and Clark,

1993; Mellado et al., 2018; Rotunno and Bryan, 2018) or no explicit diffusion at all as in the so-called implicit large eddy

simulation (ILES; e.g., Margolin et al., 2006; Grinstein et al., 2007). The increased number of droplets in the large domain can75

be accounted for by the so-called super-droplet technique in which each super-droplet represents an appropriately scaled-up

number of natural droplets (referred to as the multiplicity factor, Shima et al., 2009) as already applied in the appendix of

Lanotte et al. (2009) and in Li et al. (2019).

The paper is organized as follows. The next section presents the model and modelling setup. Section 3 presents a general

methodology of the scaled-up DNS and discusses numerical tests of this approach. Cloud droplets are added to scaled-up80

DNS simulations in section 4 applying the super-droplet method. Section 5 compares DNS and scaled-up DNS supersaturation

fluctuations with those obtained from a simple stochastic model. Concluding discussion is the focus of section 6.

2 The model and modelling set up

The numerical code used here is that of Kumar et al. (2012, 2014). It solves evolution equations for the three velocity com-

ponents (u, v, w), the temperature T and the water vapor mixing ratio qv . Cloud droplets are represented as point particles85

followed in space and they grow or evaporate as dictated by their local environment. Droplet collisions are not considered. The

Navier-Stokes equations are solved by a pseudo-spectral method over a cubic volume with periodic lateral boundary condi-

tions in three directions using the fast Fourier transforms. Time stepping is performed using a second order predictor-corrector
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method. The code is parallelized in two dimensions and the cubic domain is decomposed into so-called pencils. The same

procedures as in Kumar et al. (2012) are followed for the initial turbulent state preparation and the turbulence maintenance.90

See Kumar et al. (2012, 2014) for more details.

Two modifications have been made to the code to carry out the present study. First, we included an additional source/sink

term in the temperature equation that was missing in the original code. The term describes evolution of temperature fluctuations

affected by the vertical velocity. This effect is incorporated in the DNS through the source/sink term −gw/Cp, where g is the

gravitational acceleration, w is the local vertical velocity, and Cp is the specific heat capacity of air at constant pressure. The95

complete equation for the evolution of temperature fluctuations is:

∂T ′

∂t
+u.∇T ′ =K∇2T ′+

Lv
Cp
Cd−

g

Cp
w′ , (1)

where K is the thermal diffusion coefficient, Lv is the latent heat of vaporization, and Cd is the condensation rate. Without

the last term, the vertical velocity simulated by the DNS has no impact on the supersaturation fluctuations. Since the emphasis

in Kumar et al. (2014, 2018) was on the mixing between cloudy and clear air, this omission has a negligible impact on results100

presented there. However, this term is critical for the current study.

Second, we modified the way condensation rate is calculated for a single droplet. The analytic formulation applied originally

has the form:

Cd =
4πKrρw
ρ0 ∆V

SR , (2)

where S is the supersaturation, R is the droplet radius, ρ0 is the air density, ρw = 103 kgm−3 is the liquid water density,105

Kr = 5.00×10−11 m2s−1 is the condensational growth constant (i.e., dR/dt=KrS/R), ∆V = dx×dy×dz is the grid box

volume. To ensure mass conservation, (2) is modified to:

Cd∆t=
4πρw

3ρ0 ∆V
[R3(t)−R3(t−∆t)] , (3)

where ∆t is the time step, R(t) and R(t−∆t) are droplet radii at time t and t−∆t, respectively. This means that droplet

growth is calculated first, and then (3) is used to derive the condensation rate.110

The coupling of the Eulerian fields and the droplets is done using trilinear interpolation. The condensation rate is calculated

for each droplet by interpolating the values of T and qv from the grid points enclosing the droplet. The condensation rate

is calculated at the droplet position and then redistributed to the nearest eight grid points through a reverse procedure. The

condensation rate provides a feedback on the temperature and water vapor evolutions. Inertial effects and gravitational settling

are included in the droplet motion. More details can be found in Kumar et al. (2012).115

The modeling setup follows one of the simulations discussed in Lanotte et al. (2009). We consider an initial mono-disperse

droplet distribution of 13 µm radius and the concentration of 130 cm−3. The liquid water content (LWC) is 1.19 gm−3. The

initial conditions include uniform temperature of 283 K and zero supersaturation. The later gives the water vapor mixing ratio

of 7.65 gkg−1. Since the mean velocity inside the DNS domain is zero, the total cloud water does not change with time, but

the initial monodisperse droplet size distribution broadens because the supersaturation fluctuates in time and space affecting120
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the distribution (cf. Li et al., 2019; Saito et al., 2019). The two specific aspects are discussed in the next two section that allow

extending the DNS methodology to apply large spatial domains.

3 Scaling-up DNS simulation

The intensity of turbulence is typically expressed by the turbulent kinetic energy (TKE) dissipation rate ε. Increasing the domain

size L for the same ε increases kinetic energy of turbulent motions. The TKE determines velocity fluctuations and controls the125

supersaturation variations that play the key role in the condensational growth of cloud droplets. The TKE dependence on ε and

L is typically expressed as (e.g., Pope, 2000):

E ∼ (Lε)2/3 . (4)

In the classical DNS, the grid length has to be close to the Kolmogorov microscale η to allow proper TKE dissipation at the

smallest scales. Increasing the domain size L without changing the number of grid points implies that the grid length increases130

as well. We will refer such simulations as “scaled-up DNS”. With the increased grid length, one needs to increase molecular

transport coefficients to maintain proper TKE dissipation as well as the removal of scalar fluctuations. Note that this is different

from LES and ILES methodologies mentioned in the introduction and provides the key novelty for the spectral homogeneous

isotropic turbulence simulation. Assuming that the domain size L represents appropriate scale of energy-containing eddies, the

L/η ratio represents the flow Reynolds number Re:135

η

L
∼Re−3/4 (5)

(e.g., Pope, 2000; Grabowski and Clark, 1993). Keeping the Reynolds number the same for the actual and scaled-up DNS

implies that

L1

η1
=
L2

η2
, (6)

where subscripts 1 and 2 refer to different domain sizes and corresponding Kolmogorov microscales. The Kolmogorov mi-140

croscale is given by η = (ν
3

ε )1/4 where ν is the viscosity. Applying η with the same TKE dissipation rate ε for both ν1 and ν2

leads to

L1

ν
3/4
1

=
L2

ν
3/4
2

. (7)

Eq. (7) implies that when the TKE dissipation rate is supposed to be the same in DNS and scaled-up DNS, the molecular

viscosity needs to be scaled up as:145

ν2 = ν1

(
L2

L1

)4/3

, (8)

where ν1 is the viscosity in the real DNS, ν2 is the scaled-up viscosity, L1 is the real-DNS domain size, and L2 is the scaled-up

domain size. Thermal and water vapor diffusivities are also changed in the same way as the viscosity.
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Figure 1. Comparison of energy spectra for real and scaled-up DNS

We used a DNS with 2563 grid points to study scaling-up simulations without droplets. Real DNS was run for L= 0.256 m

and scaled-up DNS was run with domains of sizes L= 2.56 m, L= 25.6 m and L= 256 m. According to (8), the viscosity150

(taken as ν = 0.15 cm2s−1 for the real DNS) has to be scaled-up by 21.54, 464.16 and 10,000 times for L= 2.56 m, L=

25.6 m and L= 256 m, respectively. All simulations are forced as described in Kumar et al. (2012) applying TKE dissipation

rate ε of 10 cm2s−3 as in Lanotte et al. (2009).

Fig. 1 shows energy spectra for the real 25.6 cm DNS and the three scaled-up DNS. The black dashed lines represents the

-5/3 slope expected in the inertial range. The spectral peak shifts to the left and its value increases as the domain size increases155

(i.e., the wavenumber k decreases). The slope remains approximately similar for the four simulations.

TKE in the scaled-up simulations for the same TKE dissipation rate ε should increase following the scaling originating from

(4), that is,

E1 = E2 (L1/L2)
2/3

, (9)

where E1 and L1 are for the scaled-up DNS and E2 and L2 are for real DNS (e.g., L2 = 0.256 m and E2 = 20 cm2s−2). Fig.160

2 shows the evolution of TKE and TKE dissipation rate for the four simulations in Fig. 1. For the TKE evolution, dashed lines

show the expected scaling based on (9). TKEs from the scaled-up DNS simulations agree with the theoretical scaled-up TKE

values. To show that the DNS and scaled-up DNS feature the same TKE dissipation rate, we also show the dissipation rate

calculated using the simulated enstrophy as typically done in DNS studies. The plots show that the forcing is approximately

correct in the scaled-up simulations. The scaled-up simulations need to be run for longer times, with the time scale following165

the L/E1/2 scaling of the large-eddy turnover time. The simulations show that the scaled-up DNS with viscosity modified

according to (8) produces expected TKE.

The simulations shown in Fig. 1 and Fig. 2 feature the same dynamic range, that is, the same Reynolds number and the

L/η ratio. However, one may also consider scaled-up DNS simulations where the dynamic range is changed. For instance, one

may compare simulations with the same ε and L, and different numbers of grid points N covering L. For such simulations,170
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Figure 2. Evolution of TKE (upper panels) and TKE dissipation rate (lower panels) for four simulations mentioned in text. The dashed lines

are theoritical values. Bottom panels show nondimensional time using eddy turnover time, see (13) in section 5.

the change of the Kolmogorov microscale η = L/N suggests the required rescaling of the dissipation coefficients. Since η =(
ν3

ε

)1/4
, assuming ε = const gives the scaling similar to (8):

ν2 = ν1

(
N1

N2

)4/3

, (10)

that is, with the number of grid points rather than the domain size providing the scaling.

The scaling (10) is illustrated in Fig. 3 that shows the spectra in simulations with the domain size of either 0.512 m or175

1.024 m and applying either DNS or scaled-up DNS. The spectra are obtained at final simulation times. The red lines represent

spectra for the real DNS, and green and blue lines show spectra for scaled-up DNS. Scaling-up accurately predicts the energy

at the largest scales, but some energy at smaller scales, still far from the dissipation, is lost. This means that the total TKE for a

scaled-up DNS is slightly lower than the real DNS within the same volume. For the simulations shown in Fig. 3, TKE for L of

0.512 m is 34.2, 32.0, and 26.0 cm2s−2 for real DNS (N=512), and scaled-up DNS with N=256 and 128, respectively. For L of180

1.024 m, TKE is 55.0, 50.0, and 41.0 cm2s−2 for real DNS (N=1024), and scaled-up DNS with N=256 and 128, respectively.

Because for the condensational growth the interest is on the largest scales as discussed in the introduction, the energy loss at

smaller scales can be considered less important. However, this aspect is relevant for the comparison between scaled-up DNS

and the stochastic model as discussed in section 5.
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Figure 3. Energy spectrum comparison of real DNS and scaled-up DNS. Left/right panels correspond to 5123/10243 real DNS.

Table 1. Number of super-droplets and their multiplicity for real DNS domains of volume 6.43 cm3 and 12.83 cm3.

L = 6.4 cm L = 12.8 cm

Ns = 34078;µ= 1 Ns= 272630;µ= 1

Ns = 17039;µ= 2 Ns= 54526;µ= 5

Ns = 6815;µ= 5 Ns= 27263;µ= 10

4 Applying superdroplets for the scaled-up DNS185

For a scaled-up DNS, one needs to follow significantly larger number of droplets when compared to DNS. For instance,

for the droplet concentration of 130 cm−3 one needs to follow 1.3× 1011 droplets for a domain of L= 10 m. This is not

computationally feasible. To overcome this problem, one can use the so-called super-droplets (Shima et al., 2009) instead of

real droplets, where each super-droplet represents an ensemble of real droplets with the same radius. Position and velocity of

each super-droplet is predicted in the same way as for the real droplet. The number of real droplets represented by a single190

super-droplet is referred to as the multiplicity attribute µ (Shima et al., 2009).

At the onset of simulations, super-droplets are inserted into the computational domain in the same way as regular droplets,

that is, they are randomly positioned inside the domain and subsequently followed in space and time as regular droplets. The

condensation rate for a super-droplet is calculated as in (3) except for an additional multiplicity factor µ. The evolution of the

temperature and water vapor mixing ratio fluctuations is affected by the condensation rate of super-droplets within a grid box195

in the same way as regular droplets.
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Figure 4. Standard deviation of supersaturation fluctuations for 6.43 cm3 real DNS (left panel) and 12.83 cm3 real DNS (right panel). Colors

represent different multiplicity as marked inside each panel.

The super-droplet approach is first tested in the real DNS. Fig. 4 shows evolutions of the standard deviation of the supersat-

uration spatial fluctuations1 for real DNS of L= 0.064 m (643 grid points) and L= 0.128 m (1283 grid points) with different

multiplicity parameter. Number of superdroplets used and their multiplicity are listed in Table 1. For randomly distributed real

droplets, the two simulations have droplets in one out of about eight grid boxes. For super-droplets in 643 simulations, this200

number changes to one out of about 15 grid boxes for µ = 2 and about 38 grid boxes for µ = 5. For the 1283 simulations, super-

droplets are on average in one out of about 43 and 87 grid boxes for µ = 5 and 10, respectively. The mean supersaturation is

close to zero as expected (not shown). Supersaturation standard deviations fluctuate similarly in all simulations with the mean

values close among all multiplicities. The mean value of the standard deviation is larger for the larger domain in agreement

with simulations discussed in Lanotte et al. (2009).205

In general, the multiplicity value should be decided carefully because too large multiplicity results in too many grid boxes

without droplets when compared to real droplets and this may cause undesirable effects in the mean supersaturation and its

spatial variability. In the two DNS cases, slight deviations in the mean supersaturation are present, although the simulations

are not long enough to document the impact with confidence. For the scaled-up DNS, the number of droplets is in billions and

we have to select higher multiplicity values to make computations feasible. The evolution of the radius squared (R2) standard210

deviation (σR2 ) from the above simulations with droplets and super-droplets is shown in Fig. 5. Initially (i.e., at t = 0), the

distributions are monodisperse (i.e., σR2 = 0). Supersaturation fluctuations in response to local vertical velocity fluctuations

lead to the increase of σR2 in time. After some initial adjustment, the increase approximately follows the t1/2 scaling with t

being the time from the start of the simulation. This agrees with the study by Sardina et al. (2015) who applied a stochastic

model and DNS. Similar result is also shown in Li et al. (2019) and Saito et al. (2019). As expected, the σR2 values are larger215

for the larger domain, in agreement with Fig. 3 in Lanotte et al. (2009) and Li et al. (2019).

1Supersaturation statistics in DNS and scaled-up DNS are calculated using fluid flow grid data and not the supersaturation interpolated to droplet positions.

Limited tests suggests that the differences between the two methods are small (not shown). Supersaturation statistics for the stochastic model in Section 5 are

for the vicinity of a droplet. Discussion in the Appendix A of Vaillancourt et al. (2001) is pertinent to this issue.
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Figure 5. Evolutions of the radius squared standard deviation (σR2 ) for real DNS with different multiplicity parameters. Left/right panels

corresponds to 643/1283 real DNS (L= 6.4/12.8 cm). Colors represent different multiplicity as marked inside each panel.

After the super-droplet technique is tested in DNS, the same method is used in scaled-up DNS. In general, one may expect

that if the multiplicity is increased beyond a certain value, the results will start deviate from those with a low multiplicity

featuring a larger number of super-droplets. However, high multiplicity is desirable to reduce the number of super-droplets that

need to be followed. For the DNS, the number of super-droplets was shown to be relatively low to maintain similarity between220

real droplet and super-droplet solutions (see Fig. 4 and Fig. 5; as low as one super-droplet in a few dozen of grid volumes).

With scaled-up DNS, one might expect a different requirement because of a stronger local forcing of the supersaturation due

to higher TKE and thus larger vertical velocities.

For the scaled-up DNS study, we apply a 2563 domain to represent volumes with characteristic lengths of several meters.

The TKE is scaled as explained in section 3 with relevant parameters listed in table 2. As the table shows, scaled-up DNS225

simulations typically have a relatively small number of super-droplets per grid box, similarly to DNS. This is because of

computational efficiency considerations. However, one may question such an approach because scaled-up DNS include a large

number of real droplet (e.g.,∼ 109 for scaled-up DNS with 1 cm grid length and much larger numbers for scaled-up DNS with

larger grid lengths). To show that the standard deviation of the supersaturation spatial distribution is not affected by the small

number of super-droplets considered in the scaled-up DNS simulations, we included additional simulations (shown in bold in230

the Table 2) that include about 10 super-droplets per grid volume and follow about 160 millions of super-droplets. Although

arguably still a small number, 10 super-droplets per grid box is the number considered in one of the sensitivity simulations in

Grabowski (2020). By comparing results of simulations with various numbers of super-droplet per grid volume, Grabowski

(2020) shows that the number as small as 10 is sufficient to reasonably represent condensational growth of natural droplets

in idealized simulations of laboratory chamber experiments. Fig. 6 and Fig. 7 present evolutions of the mean supersaturation235

and standard deviation of its spatial distribution for the scaled-up simulations from Table 2. The five scaled-up domains shown

in the table and figures correspond to the domain size L of 2.56, 6.4, 12.8, 25.6 and 64 m. Note that the simulations extend
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Figure 6. Evolution of the mean supersaturation for various scaled-up domains. Colors represent different domain size; different line styles

correspond to different multiplicities. The additional simulation of 10 super-droplets per grid volume is only shown for 12.83 m3 and

64.03 m3 volumes.

Figure 7. Evolution of standard deviation of supersaturation fluctuations for different domain sizes. Colors represent different domain size;

different line styles correspond to different multiplicities. The additional simulation of 10 super-droplets per grid volume is only shown for

12.83 m3 and 64.03 m3 volumes.
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Table 2. Details of DNS and scaled-up DNS. From left to right: domain length L, grid length l, viscosity ν, Turbulent kinetic energy E,

number of superdroplets in the domain Ns, multiplicity µ, number of superdroplets per grid volume Ns/N
3

L(cm) l(cm) ν(cm2s−1) E(cm2s−2) Ns µ Ns/N
3

Real DNS 25.6 0.1 0.15 20.0 ∼ 2.2× 106 1.0 0.13

Scaled-up DNS 256.0 1.0 3.231 94.0 ∼ 1.7×108 13.0 10.0

∼ 4.0× 106 5.45× 102 0.24

∼ 2.2× 106 1.0× 103 0.13

640.0 2.5 10.965 171.0 ∼ 1.7×108 203.125 10.0

∼ 1.7× 107 2.0× 103 1.01

∼ 8.5× 106 4.0× 103 0.51

1280.0 5.0 27.630 270.0 ∼ 1.7×108 1.63×103 10.0

∼ 3.9× 107 7.0× 103 2.32

∼ 2.7× 107 1.0× 104 1.61

2560.0 10.0 69.624 420.0 ∼ 1.7×108 1.3×104 10.0

∼ 4.4× 107 5.0× 104 2.62

∼ 2.7× 107 8.0× 104 1.61

6400.0 25.0 236.235 750.0 ∼ 1.7×108 2.03×105 10.0

∼ 3.4× 107 1.0× 106 2.03

∼ 1.7× 107 2.0× 106 1.01

to times of several minutes, that is, a significant fraction of a small convective cloud life cycle. All scaled-up simulations are

run with three different multiplicities for super-droplets as listed in Table 2. As Fig. 6 shows, the mean supersaturation for all

five scaled-up cases is close to zero after the initial spike. The spike magnitude, about hundred times smaller than the standard240

deviations shown in Fig. 7, increases as the domain size increases, and it is slightly larger for the higher multiplicity. Higher

multiplicity also causes larger fluctuations after the initial spike, but the mean does not seem to be significantly affected. The

standard deviation shown in Fig. 7 increases with the domain size as expected. For all domains, standard deviations are similar

for various multiplicities. In particular, based on 12.8 m and 64 m simulations, the low number of super-droplets per grid

volume (desirable for computational efficiency) seem to insignificantly impact the supersaturation statistics.245

To further study the impact of the multiplicity, additional scaled-up DNS simulations are run with 2563 grid points for

a domain of size 12.83 m3. All simulations are listed in Table 3, with some already considered in Table 2 and Fig. 6 and
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Figure 8. Standard deviation of supersaturation fluctuations for 12.83 m3 scaled up domain. Colors indicate different multiplicities.

Fig. 7. Total number of real droplets for the 12.83 m3 domain with droplet concentration of 130 cm−3 is about 2.7× 1011.

The grid volume of the 2563 grid points and 12.83 m3 simulation is 125 cm3. When the multiplicity is 1625, the number of

super-droplets is close to 170 millions and there are on average 10 super-droplets per grid volume. When µ is 7× 103, the250

number of super-droplets is close to 40 millions and there are on average about 2.3 super-droplets per grid volume. When µ is

further increased to 1×104, the number of super-droplets per grid volume decreases to about 1.6. For µ = 5×104, the number

further decreases to about 0.32 (i.e., a super-droplet in about 3 grid volumes). Finally, for µ = 8.192× 105, a super-droplet is

approximately in one out of 50 grid volumes.

Results obtained from these simulations are shown in Fig. 8 with some results already shown in Fig. 7. As the figure shows,255

only the largest multiplicity, with a super-droplet in one out of 50 grid volumes differs significantly from other simulations. The

highest multiplicity simulation also results in the non-zero mean supersaturation (not shown). Note that for real DNS (Table 2

and Fig. 4), having a droplet in one of several dozens of grid volumes still results in supersaturation fluctuations in agreement

with real droplets. This suggests that the maximum multiplicity that can be used in scaled-up DNS depends on the domain size.

This perhaps should not be surprising because the magnitude of the vertical velocity perturbation and thus the supersaturation260

forcing increases with the domain size. Results for the largest domain considered in the current study (643 m3) suggest that the

multiplicities selected for the scaled-up DNS provide robust (i.e., independent of the multiplicity) outcomes.

As shown in Fig. 9, evolutions of the radius squared standard deviation σR2 for scaled-up DNS domains follows the same

trend as in the real DNS, that is, the standard deviations increase in time t as t1/2. The results are shown for the five scaled-up

cases mentioned above. Scaled-up DNS for each domain was run for three different multiplicity values, one of them being265

10 super-droplets per grid volume. The error bars correspond to the standard deviation among realizations with different

multiplicities. Overall, the scatter resulting from different multiplicities is relatively small. The key result in Fig. 9 is that the
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Table 3. Number of super-droplets and multiplicity for different 12.83 m3 scaled-up domain simulations.

Number of superdroplets(Ns) Multiplicity (µ)

∼ 1.6× 107 1625

∼ 3.9× 107 ∼ 7× 103

∼ 2.7× 107 ∼ 1× 104

∼ 5.4× 106 ∼ 5× 104

∼ 3.3× 105 ∼ 8× 105

Figure 9. Evolutions of the radius squared standard deviation σR2 for different domain sizes in the scaled-up DNS simulations. Horizontal

bars along each line show variability resulting from different multiplicity used for each domain size.

spectral width increases with the domain size. For domain sizes of a few tens of meters, the spectral width after a few minutes

reaches values of 1-2 µm that is comparable to those observed in near-adiabatic cores of small cumuli (e.g., Jensen et al., 1985)

or subtropical stratocumulus (e.g., Pawlowska et al., 2006).270

5 Stochastic model

We apply the stochastic model similar to that in Grabowski and Abade (2017) to simulate fluctuating supersaturation and com-

pare results to the real and scaled-up DNS. The fluctuating in space supersaturation in the dynamic simulations (i.e., real DNS

or scaled-up DNS) is modelled in the stochastic model as independent realizations of the fluctuating in time supersaturation as
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described below. For each realization, the supersaturation fluctuations are driven by the vertical velocity fluctuations as given275

by the Ornstein-Uhlenbeck process (e.g., Pope, 1994). In its finite difference implementation, the velocity perturbations are

updated as in Grabowski and Abade (2017):

w′(t+ δt) = w′(t)e−δt/τ +

√
1− e− 2δt

τ σw′ψ , (11)

where δt is the model timestep, σ2
w′ is the vertical velocity variance obtained from TKE as

σ2
w′ =

2

3
E , (12)280

ψ is a Gaussian random number with zero mean and unit variance generated at every time step, τ is the eddy turnover time

calculated as

τ =
L

(2π)1/3

(
Cτ
E

)1/2

, (13)

where Cτ is a constant equal to 1.5 as in Lasher-Trapp et al. (2005). Supersaturation fluctuations evolve according to the

equation285

dS′

dt
= a1w

′− S′

τrelax
, (14)

where w′ is the vertical velocity perturbation evolving as in (11), a1 is a temperature-dependent numerical coefficient and

τrelax is the phase relaxation time that depends on the temperature and pressure as well as on the droplet concentration and

mean radius. For the conditions considered in this study, a1 = 4.753× 10−4 m−1 and τrelax = 3.513 s.

The stochastic model used here applies 1000 realizations, each starting from a random velocity perturbation [i.e., σw′ψ as290

in (11)] and zero supersaturation, and run for 6 eddy turnover times. The time step in (11) and (14) is taken as one thousandth

of the eddy turnover time. The number of realizations is sufficient to give results that change insignificantly when the number

is further increased. Subsequently, the standard deviation of the supersaturation temporal evolution for each realization is

derived. Its mean value averaged over all realizations together with the standard deviation among realizations is used in the

comparison with the DNS and scaled-up DNS simulations. Fig. 10 shows the standard deviation of supersaturation fluctuations295

(σS) derived from the stochastic model as explained above for different domain sizes together with similar results from the

DNS and scaled-up DNS dynamic simulations. The first five points (L = 0.064, 0.128, 0.256, 0.512, 1.024 m) correspond to

the real DNS, whereas the last five points (L = 2.56, 6.4, 12.8, 25.6, 64.0 m) correspond to scaled-up DNS. The stochastic

model uses TKE simulated by either DNS or scaled-up DNS, and for L = 0.512 and 1.024 m by both. The vertical lines for

the stochastic model show twice the standard deviation among the realizations. The red circles in the left part of the figure are300

from DNS simulations. Standard deviations from different multiplicities as shown in Fig. 4 are smaller than the circle radius

and thus they are not shown. The blue symbols are for scaled-up 2563 DNS simulations; standard deviations from different

multiplicities are again smaller than the radius. The red circles for L = 64 m show σS in scaled-up DNS simulations with grids

of 1283 and 5123. The red line shows results from the stochastic model without droplets, that is, with no last term on the rhs of
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Figure 10. Standard deviation of supersaturation fluctuations in DNS and scaled-up DNS (colour circles) and the stochastic model (black

stars). Vertical lines for the stochastic model represent variability among individual realizations. For DNS and scaled-up DNS, the variability

comes from different multiplicity for super-droplets; it is not shown as it is smaller than the symbol size. Red circles in the left half are for

DNS with three different multiplicities as in Fig. 4. Blue circles are for 2563 scaled-up DNS simulations. Red circles for L= 64 m are for

1283 (lower symbol) and 5123 (upper symbol) scaled-up DNS simulations. The two data points for the stochastic model with L= 0.512 m

and L= 1.024 m come from applying TKE from either DNS or scaled-up DNS. The red and blue lines show results from the stochastic

model without droplets and with the quasi-equilibrium supersaturation, respectively. See text for details.

(14). Finally, the blue line is for the stochastic model assuming quasi-equilibrium supersaturation S′eq , that is, with the lhs of305

(14) equal to zero and thus S′ = S′eq = a1w
′τrelax.

Overall, the stochastic model seems to reasonably represent the scale dependence of the supersaturation fluctuations. At

small scales (i.e., L = 0.064 and 0.128 m), presence of droplets has a small impact on supersaturation fluctuations and the

scale dependence is approximately as for the case without droplets as shown by the red line. At those scales, DNS seems to

underestimate supersaturation fluctuations. Arguably, this is because of the small Reynolds number and thus a poor separation310

between forcing and dissipation scales. For scaled-up DNS, the stochastic model underestimates supersaturation fluctuations

and the spread between the scaled-up DNS and stochastic model increases with the increase of the spatial scale. At the largest

scales considered (i.e., L = 12.8, 25.6 and 64 m), the quasi-equilibrium supersaturation provides a good estimate of the super-

saturation fluctuations as shown by the blue line. This agrees with the argument put forward in Grabowski and Wang (2013,

see discussion in the last paragraph of section 3.4).315

There are a few reasons for the discrepancy between the stochastic model and scaled-up DNS. First, stochastic model uses

TKE obtained from the scaled-up DNS. However, scaled-up DNS features reduced TKE when compared to the real DNS

as documented in section 3. Allowing more TKE on input for the stochastic model would shift the stochastic model results
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upwards, that is, closer to the scaled-up DNS. But increasing the Reynolds number in the scaled-up DNS increases σS as

well. This is illustrated by three data points for L = 64m scaled-up DNS with 1283, 2563, and 5123 simulations. Second,320

scaled-up DNS excludes scales of motion that are smaller than the scaled-up Kolmogorov microscale. For instance, for L =

25.6m and 2563 simulation, the scaled-up Kolmogorov microscale is 0.1 m. Hence, scales of motion between 10 cm and 1

mm are excluded when compared to the real DNS. Arguably, these small-scale motions in real DNS can affect supersaturation

fluctuations and reduce σS . Such an argument seems to be contradicted by the results with L = 64m because σS increases, not

decreases, between 1283, 2563, and 5123 scaled-up DNS. However, it is unclear if the increase of σS with the further increase325

of the Reynolds number (i.e., the number of grid points) continues once real DNS is approached with further increase of the

simulation towards the 640003 real DNS limit. Finally, one might argue that assuming a Gaussian vertical velocity distribution

in (11) is an increasingly poor assumption with the increase of the domain size. Higher frequency of large vertical velocity

perturbations (i.e., above the Gaussian distribution) should result in larger supersaturation fluctuations.

6 Discussion and Conclusions330

This study presents a novel modelling methodology that extends the traditional technique to simulate homogeneous isotropic

turbulence, the direct numerical simulation (DNS). DNS is typically used for small-scale simulations applying grid lengths of

the order of the Kolmogorov microscale, that is, about a millimeter for typical levels of atmospheric turbulence. Such a choice

allows proper dissipation of the turbulent kinetic energy (TKE) that cascades through the inertial range from large scales where

TKE is introduced. To reach domain sizes of about 1 cubic meter and beyond with a grid length of about 1 mm requires335

tremendous computation resources, with simulations featuring spatial scales of tens of meters and beyond (i.e., volumes of

1,000s of cubic meters and larger) impossible for a foreseeable future. At the same time, one should expect that the largest

turbulent eddies affect the diffusional growth of cloud droplets most significantly because such eddies feature the largest and

the longest-lasting vertical velocity and supersaturation perturbations. It is thus desirable to have a modelling approach similar

to the traditional DNS, but capable of reaching significantly larger spatial scales, say, tens and hundreds of meters.340

This paper presents such an approach. The key idea is simple: rather than assuming that the dynamic model grid length is the

Kolmogorov microscale η, we start with the DNS domain sizeL and adjust the Kolmogorov microscale given the computational

resources. For instance, for L = 100 m and 5123 simulation, η ' 0.2 m. However, to use a traditional DNS code one needs

to allow proper TKE dissipation (as well as the scalar variance removal) at the smallest scales. It follows that the molecular

transport coefficients from the traditional DNS need to be properly increased. The Reynolds number similarity is applied to345

develop a proper scaling, see (8) and (10). The modified modelling approach is referred to as the scaled-up DNS. Section 2

presents numerical simulations applying the spectral DNS code that document robustness of the scaled-up DNS technique. We

show that DNS and scaled-up DNS simulations with the same Reynolds number (i.e., the same L/η ratio) forced to maintain

the same TKE dissipation rate feature the expected TKE scaling (4). However, when real DNSs are replaced by scaled-up

DNSs with a reduced Reynolds number (i.e., keeping L the same and increasing η), a small fraction of the TKE is lost. As one350
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might expect, the closer scaled-up DNS L/η ratio is to the real DNS ratio, the closer are TKEs between the two simulations

(cf. Fig. 3 and its discussion).

For simulations targeting growth of cloud droplets in homogeneous isotropic turbulence, the scaled-up DNS faces the prob-

lem of a large number of droplets that need to be followed inside the computational domain. For instance, a cube volume with

L= 100 m and droplet concentration of 100 cm−3 contains about 1014 droplets. Following all of them is computationally not355

possible. We apply a method already used in Lanotte et al. (2009) and in Li et al. (2019) and referred to as the super-droplet

method in Shima et al. (2009). A super-droplet represents an ensemble of real droplets with the same radius; position and

velocity of each super-droplet is predicted in the same way as for the real droplet. The number of real droplets represented by

a single super-droplet is referred to as the multiplicity attribute (Shima et al., 2009). The multiplicity attribute is included in

the condensation rate calculations. The super-droplet method is first tested in real DNS and then implemented in the scaled-up360

DNS. Real DNS with L= 0.064 m (643 grid points) and L= 0.128 m (1283 grid points) and with different multiplicity param-

eters give consistent results even if the multiplicity parameter results in a super-droplet present in one out of a few dozen grid

boxes. For scaled-up DNS (and likely for the real DNS as well), there is an upper limit for the multiplicity parameter before

supersaturation fluctuations start deviating from the value obtained with lower multiplicities. Scaled-up DNSs presented here

suggest that there should be at least a few super-droplets per grid box for approximately converged solutions. Such an estimate365

agrees with the result of idealized laboratory cloud chamber simulations reported in section 4 of Grabowski (2020).

The scaled-up DNSs starting from unimodal droplet distribution with no mean ascent (i.e., as in Lanotte et al., 2009; Li

et al., 2019) extend the validity of the scaling relationship obtained previously in either DNS simulations (e.g., Li et al., 2019;

Saito et al., 2019) or in stochastic model simulations (Sardina et al., 2015). The scaling implies that the standard deviation of

the droplet radius squared increases in time t as t1/2. DNS results of Li et al. (2019) show that the evolution of the droplet370

distribution spread depends on the Reynolds number (i.e., the DNS domain) and is insensitive to the TKE dissipation rate. The

Reynolds number dependence is consistent with the eddy hopping argument [see section 3.5 in Grabowski and Wang, 2013]

and the dominating impact of the largest eddies for the spread of the droplet size distribution. The standard deviation of the

droplet radius squared increases in our simulations as t1/2 as well, with systematically larger values for larger scaled-up DNS

domains as shown in Fig. 9.375

Finally, we also consider supersaturation fluctuations in a simple stochastic model of a droplet ensemble (Grabowski and

Abade, 2017) and compare the fluctuations to those simulated in DNS and scaled-up DNS. The key advantage of the stochastic

model is that its computational cost is just a tiny fraction of a DNS simulation. The simulation time of the stochastic model

is typically a mere few seconds on a laptop computer comparing to hours of wall clock time of high performance massively

parallel computer applied in DNS and scaled-up DNS simulations. As argued in Grabowski and Abade (2017), the stochastic380

model provides a simple and physically appealing approach to multiscale large-eddy simulation of a cloud applying Lagrangian

particle-based microphysics (see Grabowski et al., 2019, for a discussion of the Lagrangian microphysics).

The scaled-up DNS methodology presented here was developed with diffusional growth of cloud droplets in mind. The

next step can be to apply this approach in a rising parcel simulations as in Grabowski and Abade (2017) to understand the

impact of turbulence on the cloud condensation nuclei activation/de-activation near the cloud base (see discussion in Abade385
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et al., 2018). One can argue that scale-dependent supersaturation fluctuations can induce significant droplet concentration

heterogeneities at the cloud base that arguably affect droplet growth aloft. One may also consider applying the scaled-up DNS

to the problem of droplet collisions. However, since collisions between cloud droplets take place at sub-Kolmogorov scales,

applying scaled-up DNS for turbulent collisions is not straightforward. Finally, one can also consider applying scaled-up DNS

in simulations of the turbulent entrainment and mixing similar to those discussed in Kumar et al. (2018) and Paoli and Shariff390

(2009). Such simulations would extend the still relatively small-domain DNS simulations into domain sizes comparable to

the large entraining eddies in natural cumuli as discussed in Grabowski and Clark (1993). We hope to explore some of these

research directions in the future.
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