

1

Response to Reviewers' comments

2

Reviewer 2

3

This manuscript presents an analysis of atmospheric VOCs in Guangzhou over roughly a two-month intensive sampling period, Sept-Nov 2016. The authors use the significant uncalibrated and/or unattributed ion response from a high-resolution PTR-MS instrument to estimate the total OH reactivity and compare this quantity to a direct measurement.

4

5

This type of analysis has been published previously, as the authors acknowledge and rely upon as a basis for their own work. The combination of the setting of their measurements in the Pearl River Delta and the use of a state-of-the-art instrument make this manuscript scientifically important. The writing is clear and presented in a logical format.

6

7

Generally, this manuscript is missing error analysis and an adequate description of the many ions that were observed. The authors often will make a simplifying assumption for their data to ease their analysis, but either do not provide enough information to allow the reader to evaluate this assumption (e.g. OH reactivities of detected ions) or perhaps over-simplify in spite of their own data indicating a more detailed analysis is warranted (e.g. assumed sensitivities). The authors provide only cursory description of measurement uncertainties, and instead rely upon the observed dynamic range of reported mixing ratios or signal in section 3.3 (Sources analysis of OVOCs). Even these ranges are dropped in 3.4 (OH Reactivity) and the results from this section, which hinge upon numerous assumptions presented earlier, are stated with far greater precision than is merited. This can be contrasted with other manuscripts that have previously presented this type of analysis (e.g. De Gouw et al., 2009) that the authors cite.

8

While I do have some criticisms of this manuscript, I believe that this work should be accepted for publication with revisions to address these issues.

9

Reply: We are very grateful for all the detailed comments and the valuable suggestions, which helped us greatly in improving our manuscript. Please find the response to individual comments below.

10

Regarding of error analysis suggested by the reviewer, we have provided more

34 related information in the revised manuscript. In this manuscript, our main conclusion
35 is the important roles of oxygenated species in VOCs in terms of both concentrations
36 and OH reactivity. This conclusion heavily rely on quantificaiton of the uncalibrated
37 species in the mass spectra of PTR-ToF-MS. As a result, the main uncertainty
38 throughout the analysis in section 3.3 and section 3.4 comes from the errors in both
39 concentration and OH rate constants of these uncalibrated species.

40 For the determination of sensitivity for uncalibrated species by PTR-ToF-MS, we
41 re-checked the relationship between sensitivity and rate constants for proton-transfer
42 reactions of H_3O^+ with VOCs. We obtained reasonable correlation, after considering
43 the effect of higher energetic collisions on rate constant for proton-transfer reactions in
44 the drift tube. This relationship is used to calculate sensitivities for uncalibrated species
45 by PTR-ToF-MS. The quantification for these uncalibrated species would be more
46 reasonable than using the average response from calibrated VOCs. Following the
47 discussions in previous studies, the uncertainties for concentrations of these
48 uncalibrated species are around 50%. We explicitly include this information in the
49 revised manuscript and discuss the effects in the analysis of section 3.3 and 3.4.

50 For the rate constants of VOCs in calculating OH reactivity, the values of various
51 VOCs are taken from previous literatures (Atkinson and Arey, 2003;Atkinson et al.,
52 2004;Atkinson et al., 2006;Koss et al., 2018). For ions detected by PTR-ToF-MS, the
53 rate constants of the determined or assumed dominant isomers are used, following
54 identification of these ions in previous studies (Koss et al., 2018;Gilman et al., 2015).
55 As the attribution of various ions to specific compounds are not explicitly available for
56 many ions detected by PTR-ToF-MS, the uncertainties of rate constants of many ions
57 can be large, especially for the uncalibrated species. Considering large differences
58 between OH rate constants for isomers (e.g. ketone vs aldehyde), we believe the
59 uncertainty in rate constants can be on the order of 100%. The effect of this uncertainty
60 in missing reactivity is included in the revised manuscript.

61 **As discussed in section 2.2, a total of 31 VOCs species were calibrated using
62 either gas cylinders or liquid standards. For other VOCs, we used the method
63 proposed in Sekimoto et al. (2017) to determine the relationship between VOCs
64 sensitivity and kinetic rate constants for proton-transfer reactions of H_3O^+ with
65 VOCs (detailed discussions in the SI). As shown in Figure 3, a clear linear
66 relationship was obtained. The fitted line in Figure 3 is used to determine
67 sensitivities of the uncalibrated species. Following the discussions in Sekimoto et**

68 al. (2017), uncertainties of the concentrations for uncalibrated species are around
69 50%.

70 Adding up these contributions, it significantly narrows the gap between the
71 measured and calculated OH reactivity, leaving only 11% of OH reactivity as
72 “missing” during the campaign. Considering the large uncertainties for both
73 concentrations (~50%) and rate constants of the uncalibrated species (on the order
74 of 100%), the missing reactivity can ranged in 0%-19%. Nevertheless, the
75 determined missing reactivity would be well below the estimated uncertainty (20%)
76 for the OH reactivity measurements by the CRM method, indicating that gap
77 between measured and calculated reactivity can be significantly narrowed after
78 taking into account all of the species by PTR-ToF-MS.

79

80 *Specific comments*

81 Line 39-44. The authors cite a number of percentage contributions of OVOCs, HCs, etc.
82 to the total VOC burden. These values are overly precise and lack a statement of
83 uncertainty. Uncertainties should be in the abstract, and significant digits should be
84 made appropriate based upon those uncertainties.

85 Reply: Thanks for the reminder.

86 These values have been modified to:

87 OVOC-related ions dominated PTR-ToF-MS mass spectra with an average
88 contribution of $73\% \pm 9\%$. Combining measurements from PTR-ToF-MS and GC-
89 MS/FID, OVOCs contribute $57\% \pm 10\%$ to the total concentration of VOCs. Using
90 concurrent measurement of OH reactivity, OVOCs measured by PTR-ToF-MS
91 contribute greatly to the OH reactivity ($19\% \pm 10\%$). In comparison, hydrocarbons
92 account for $21\% \pm 11\%$ of OH reactivity. Adding up the contributions from
93 inorganic gases ($48\% \pm 15\%$), ~11% of the OH reactivity remains as “missing”.

94

95 Line 108. “Field measurements were conducted . . .” Figure S1 shows a map of
96 the local region but is never cited in the text.

97 Reply: We have cited Figure S1 in the revised manuscript.

98 Field measurements were conducted at an observation site in Guangzhou
99 (113.2°E, 23°N) from September to November 2018. The sampling site (~25 m
100 above the ground level) is located on the 9th floor of a building on the campus of
101 Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, which is

102 regarded as a typical urban site in Guangzhou (Figure S1).

103
104 Line 114. “commercial PTR-QiTof-MS”. The authors should provide a brief
105 description of this instrument, specifically with regards to the meaning of “QiToF”.

106 Reply: This description has been added in the Section 2 of the revised manuscript.

107 During the campaign, a commercial PTR-QiTof-MS (Ionicon Analytic
108 GmbH, Innsbruck, Austria) with H_3O^+ chemistry and NO^+ chemistry was used to
109 measure VOCs in the atmosphere. PTR-QiTof-MS is equipped with a quadrupole
110 ion guide for effective transfer of ions from the drift tube to the time-of-flight mass
111 spectrometer, and “Qi” here stands for “quadrupole interface” (Sulzer et al.,
112 2014). It has been shown that the new quadrupole interface greatly improves
113 sensitivity of VOC detection (Sulzer et al., 2014).

114
115 Line 116. “Ambient air was continuously . . .” Figure S2 shows the plumbing
116 scheme for the instrument but is never cited in the text.

117 Reply: We have cited it in the revised manuscript.

118 Ambient air was continuously introduced through an 8 m long PFA Teflon
119 tubing (1/4”) into PTR-ToF-MS with an external pump (5.0 L/min) (Figure S2).

120
121 Line 117. “Teflon tubing” Which type of Teflon tubing is this (e.g. PFA, FEP,
122 PTFE)?

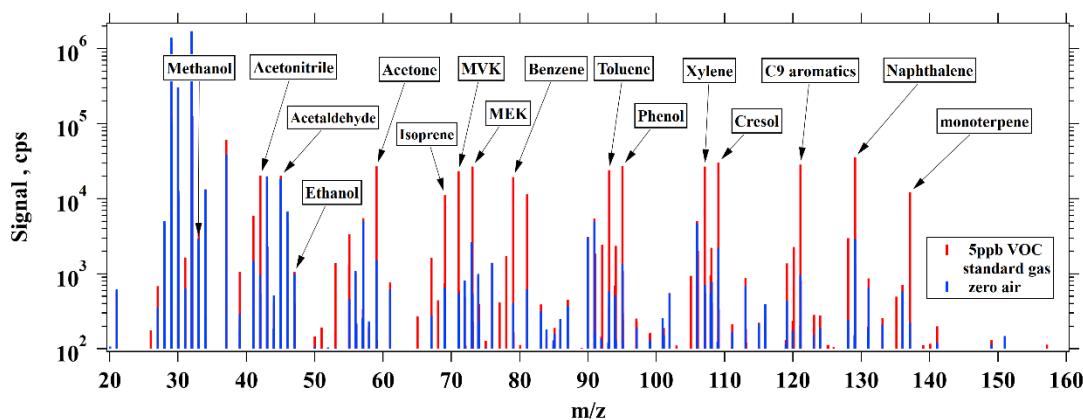
123 Reply: The type of Teflon tubing is PFA. We have indicated it in the revised
124 manuscript.

125 Ambient air was continuously introduced through an 8 m long PFA Teflon
126 tubing (1/4”) into PTR-ToF-MS with an external pump (5.0 L/min) (Figure S2).
127 The PFA Teflon tubing was wrapped with a self-controlled heater wire (40 °C) to
128 prevent air condensation inside the tubing.

129
130 Line 119-120. “the PTR-ToF-MS automatically switched between H_3O^+ and
131 NO^+ chemistry every 10-20 minutes” The authors should provide a description of how
132 this was accomplished, or a reference if this was previously published.

133 Reply: We included more details about the automatic switches between H_3O^+
134 chemistry and NO^+ chemistry in the revised manuscript:

135 During the campaign, the PTR-ToF-MS automatically switched between


136 H_3O^+ and NO^+ chemistry every 10-20 minutes. The built-in PTR-manager
137 software (Ionicon Analytic GmbH, Innsbruck, Austria) offers the possibility to set
138 programmed sequences for switching between the two reagent ions. It takes ~10 s
139 for H_3O^+ and ~20 s for NO^+ to re-equilibrate, when the measurement automatically
140 switches between these two modes. The ambient measurement data during the
141 transition period (~1 min) is not considered.

142

143 *Line 127-129. “At this condition, the fractions of water-cluster ions are small, and
144 the fragmentation of most VOCs product ions is not significant” This assumption is
145 fundamental to the analysis presented in the remainder of the text, and the authors
146 provide no evidence that this is true for their work. I would strongly suggest that they
147 show some metric of the fragmentation and clustering that their instrument produced.
148 A simple means would be to show the mass spectrum during a zero and calibration with
149 known mixture (e.g. Apel Riemer standard) and quantify the ion(s) from each calibrant
150 species.*

151 Reply: We have added evidence of this assumption in the revised manuscript. The
152 figure below shows the PTR-ToF-MS mass spectra from measurements of zero air and
153 diluted gas standard with 5 ppb of various VOCs from a 16-component VOC gas
154 standard (Apel Riemer Environmental Inc.). It can be seen that the fragmentation of
155 most VOCs product ions is not significant, except monoterpene and ethanol, which are
156 known to fragment significantly in PTR-MS. We included this graph in the SI of the
157 revised manuscript.

158 **At this condition, the fractions of water-cluster ions are small, and the
159 fragmentation of most VOCs product ions is not significant (Figure S3) (de Gouw
160 and Warneke, 2007; Yuan et al., 2017).**

161

162 **Figure S3. The mass spectra from measurements of zero air and diluted gas**

163 **standard with 5 ppb of various VOCs from a 16-component VOC gas standard.**

165 *Line 130-131 “The additional species measured by NO⁺ chemistry are discussed*
166 *in a companion paper (Wang et al., 2020).” I did not find this listed in the reference*
167 *section.*

168 **Reply:** We have re-updated the cited reference:

169 **The additional species measured by NO⁺ chemistry are discussed in a**
170 **companion paper (Wang et al., 2020a).**

172 *Line 153-154. “A total of 56 non-methane hydrocarbons (NMHCs) were measured*
173 *us- ing a gas chromatography-mass spectrometer/flame ionization detector (GC-*
174 *MS/FID) system.” This description could use a few more details: at least sample*
175 *frequency, sample collection time and volume.*

176 **Reply:** We have added the description of GC-MS/FID in Section 2.

177 **A total of 56 non-methane hydrocarbons (NMHCs) were measured using a**
178 **gas chromatography-mass spectrometer/flame ionization detector (GC-MS/FID)**
179 **system, coupled with a cryogen-free pre-concentration device (Wang et al., 2014).**
180 **The system contains a two-channel sampling and GC column separation, able to**
181 **measure C2-C5 hydrocarbons with the FID detection in one channel and measure**
182 **C5-C12 hydrocarbons using MS detection in the other channel. The time**
183 **resolution was 1 h, and ambient air was sampled during the first 5 minutes of each**
184 **hour for both two channels with a flow of 300 ml/min. The uncertainties for VOC**
185 **measurements by GC-MS/FID are estimated to be 15%-20% (Wang et al.,**
186 **2014;Yuan et al., 2012a).**

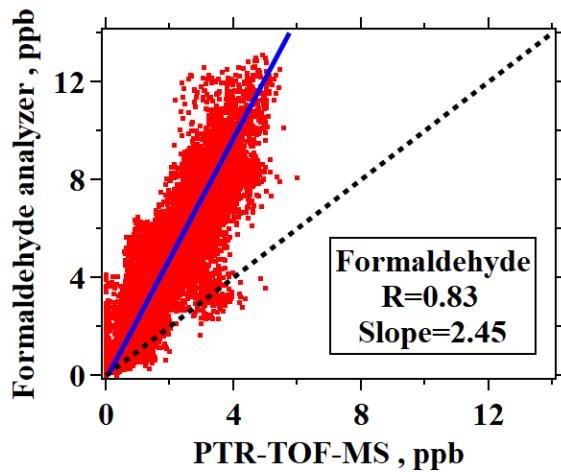
187
188 *Line 158-160. “formaldehyde was also measured by a custom-built online*
189 *instrument based on the Hantzsch reaction and absorption photometry from October*
190 *16 to Novem- ber 20, 2018.” Is there any reference for this instrument? Can the authors*
191 *provide LOD, sensitivity and/or accuracy for this measurement if not?*

192 **Reply:** This instrument has been reported in the reference by Zhu et al. (2020). We
193 have added this reference to provide the detailed information of custom-built online
194 instrument based on the Hantzsch reaction and absorption photometry. The limit of
195 detection of formaldehyde is 25 pptv for Hantzsch analyzer.

196 The sentences are changed to:

197 **In addition to PTR-ToF-MS, formaldehyde was also measured by a custom-**
198 **built online instrument based on the Hantzsch reaction and absorption**
199 **photometry from October 16 to November 20, 2018. The detailed description of**
200 **this instrument can be found in Zhu et al. (2020).**

201

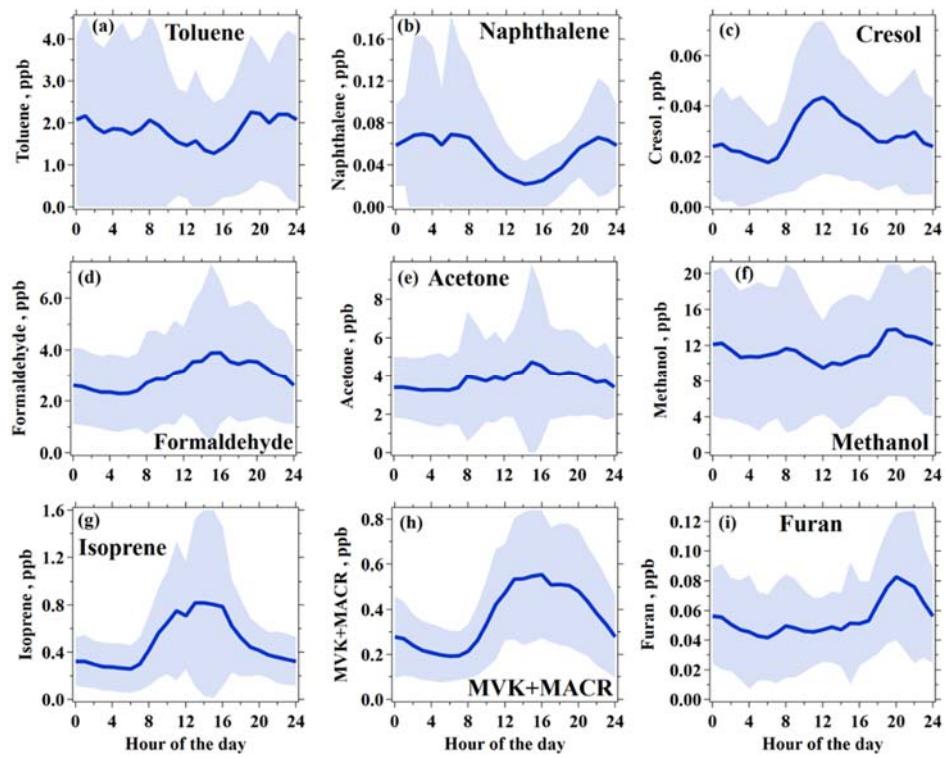

202 *Line 164-165. “Formaldehyde measured by PTR-ToF-MS shows reasonable*
203 *agreement with the Hantzsch formaldehyde instrument.” The authors do not provide*
204 *slopes for any of the plots in Figure S5 to allow the reader to evaluate. In particular,*
205 *the slope of the formaldehyde inter-comparison looks to be approximately 2.5, which*
206 *would not be a “reasonable agreement”. The authors should discuss this discrepancy*
207 *between the techniques, as the absolute mixing ratio of formaldehyde is important to*
208 *understanding overall OH reactivity.*

209 Reply: The fitted slope of formaldehyde measured by Hantzsch formaldehyde
210 instrument versus PTR-ToF-MS is 2.45. Both Hantzsch formaldehyde instrument and
211 PTR-ToF-MS were calibrated toward formaldehyde during the campaign.
212 Measurements of formaldehyde by PTR-ToF-MS is challenging, due to the strong
213 dependence of sensitivity as a function of humidity. In this study, we calibrated
214 formaldehyde at different humidity to derive the humidity dependence curve for
215 formaldehyde sensitivity (Figure S5 in the revised manuscript and Figure S4 in the
216 original manuscript). Previous studies showed that formaldehyde measurements by
217 PTR-MS by taking into account humidity dependence agree with other techniques
218 within a factor of 2 (Warneke et al., 2011;Inomata et al., 2008;Vlasenko et al., 2010).
219 The reason for the larger difference observed in this study is unknown, which might be
220 related to calibration issues for either of the two instruments.

221 We agree with the reviewer that HCHO is important in OH reactivity. We used
222 formaldehyde measured by PTR-ToF-MS to calculate OH reactivity in the manuscript,
223 which contribute 2.9% of the measured OH reactivity. If using formaldehyde measured
224 by Hantzsch formaldehyde instrument, formaldehyde contribution would be 7.1%,
225 which is 4.2% higher. This would influence the values determined for OH reactivity
226 from OVOCs and also missing reactivity in section 3.4. This result emphasizes the
227 importance to accurately measure formaldehyde in analysis of OH reactivity. However,
228 the discrepancy for formaldehyde measurements would not change the conclusions in
229 this study.

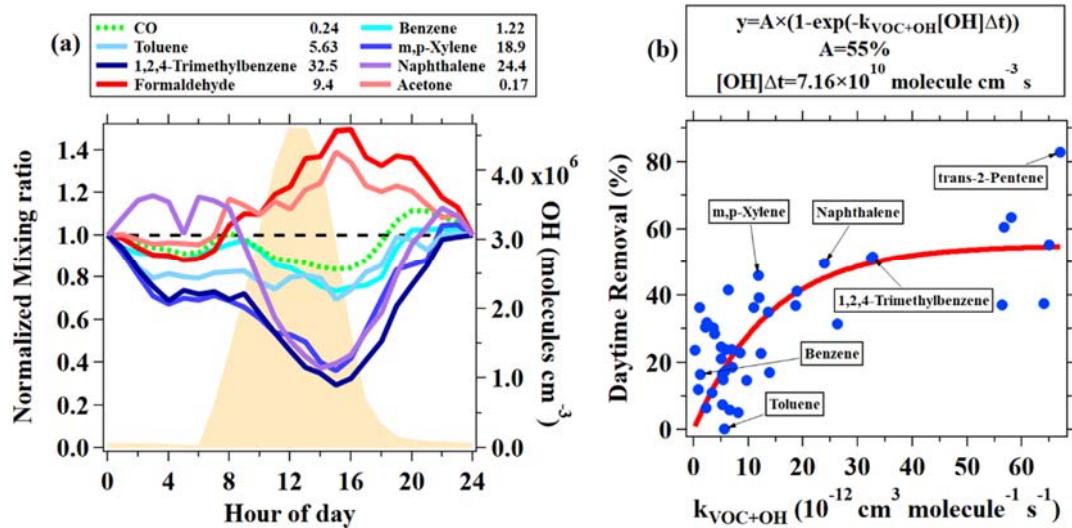
230 We include this related information in the revised manuscript:

231 **Formaldehyde measured by PTR-ToF-MS shows good correlation with the**
232 **Hantzsch formaldehyde instrument ($R=0.83$), but concentrations measured by**
233 **Hantzsch formaldehyde instrument are significantly higher than PTR-ToF-MS**
234 **(slope=2.45). The reason for the large discrepancy is unknown. In the following**
235 **discussions, formaldehyde measured by PTR-ToF-MS will be used.**



236

237


238 *Line 191. “3.1 Characteristics of selected VOCs” Throughout this section, I found*
239 *it difficult to understand which instrument was used to produce the data discussed. For*
240 *example, line 194 (“Diurnal variations of hydrocarbons”) is this NO+ PTR data or*
241 *GC; line 203 (“The diurnal variation of aromatics”) is this PTR or GC data?*

242 *Reply: We have stated in the caption of figure which instrument was used to*
243 *produce the data discussed. The captions of Figure 1 and Figure 2 have been changed*
244 *to:*

245

246 **Figure 1. Diurnal variations of selected VOCs measured by PTR-ToF-MS during**
 247 **the campaign. Blue lines and shaded areas represent averages and standard**
 248 **deviations, respectively.**

249

250 **Figure 2. (a) Normalized diurnal variations of CO, five aromatic hydrocarbons**
 251 **(benzene, toluene, m,p-xylene, 1,2,4-trimethylbenzene measured by GC-MS/FID**
 252 **and naphthalene measured by PTR-ToF-MS) and two OVOCS (formaldehyde and**
 253 **acetone measured by PTR-ToF-MS). The data are normalized to midnight values.**
 254 **The rate coefficients for the reactions with OH radicals are shown in the legend**
 255 **(in units of $10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$). The orange shaded area indicates the average**
 256 **diurnal variation of simulated OH by an observation-constrained box model. (b)**

257 **Daytime removal fractions of all hydrocarbons measured by GC-MS/FID and also**
258 **naphthalene by PTR-ToF-MS as a function of their rate constants with OH. The**
259 **daytime removal fractions for VOCs species were calculated from the**
260 **concentration ratio between measurement at 14:00 and at 6:00-8:00.**

261

262 *Line 215-217. “The estimated OH concentration is in good agreement with*
263 *simulated average OH concentration during the same period using an observation-*
264 *constrained box model” The authors should provide further description and/or*
265 *reference to this model.*

266 *Reply:* We thanks the reviewer for the comment. We added the description to the
267 box model in Section 3.1 of the revised manuscript:

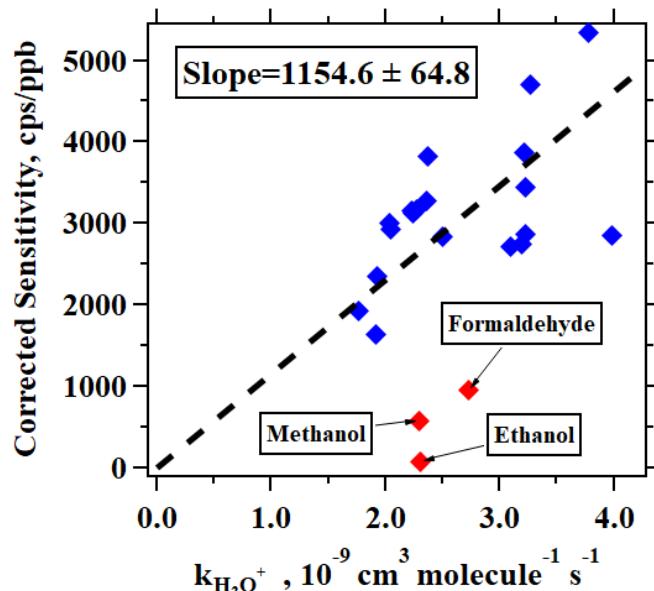
268 **The estimated OH concentration is in good agreement with simulated average**
269 **OH concentration during the same period using an observation-constrained box**
270 **model (3.4×10^6 molecule cm^{-3}) (Figure 2a), which is constrained using**
271 **measurements of trace gases, VOCs, photolysis frequencies and meteorological**
272 **parameters with Master Chemical Mechanism (MCM) v3.3.1 as the chemical**
273 **mechanism (Wang et al., 2020b). The box model is run using the Framework for**
274 **0-D Atmospheric Modeling (F0AM) v3.1 (Wolfe et al., 2016).**

275

276 *Line 260. “A peak list with more than 1700 ions was used to perform high-*
277 *resolution peak fittings” Please cite the software used for peak fitting.*

278 *Reply:* We have added the software used for peak fitting and the sentence is
279 changed to:

280 **A peak list with more than 1700 ions was used to perform high-resolution**
281 **peak fittings by Tofware (version 3.0.3; Tofwerk AG, Switzerland). More detailed**
282 **description of Tofware can be found in elsewhere (Stark et al., 2015).**


283

284 *Line 268-269. “We also tried the method proposed in Sekimoto et al. (2017), but*
285 *no clear relationship between calibration factors and their capture kinetic rate*
286 *constants was derived.” This is a surprising result. Do the authors understand why no*
287 *relationship was found?*

288 *Reply:* We re-checked the relationship between the sensitivity and rate constants
289 for proton-transfer reactions of H_3O^+ with VOCs. We found that the reason for the lack
290 of linearity in the original manuscript: we used the thermal rate constant in the original

291 manuscript, while the kinetic rate constants should be used. The kinetic rate constants
292 consider the much higher energetic collisions that is controlled by both temperature in
293 the drift tube and also the E/N ratio (120 Td) (Cappellin et al., 2012; Sekimoto et al.,
294 2017). After using the kinetic rate constant of each VOC, we obtained the linear
295 relationship between the sensitivity and kinetic rate constant for proton-transfer
296 reactions of H_3O^+ , and used this linearity to re-calculate the concentration of
297 uncalibrated species.

298 **As discussed in section 2.2, a total of 31 VOCs species were calibrated using**
299 **either gas cylinders or liquid standards. For other VOCs, we used the method**
300 **proposed in Sekimoto et al. (2017) to determine the relationship between VOCs**
301 **sensitivity and kinetic rate constants for proton-transfer reactions of H_3O^+ with**
302 **VOCs (detailed discussions in the SI). As shown in Figure 3, a clear linear**
303 **relationship was obtained. The fitted line in Figure 3 is used to determine**
304 **sensitivities of the uncalibrated species. Following the discussions in Sekimoto et**
305 **al. (2017), uncertainties of the concentrations for uncalibrated species are around**
306 **50%.**

307 **Figure 3. Corrected sensitivities as a function of kinetic rate constants for proton-**
308 **transfer reactions of H_3O^+ with VOCs. The dashed line indicates the fitted line for**
309 **blue points. The red points are not used, as these compounds (formaldehyde,**
310 **methanol, ethanol) are known to have lower sensitivities.**

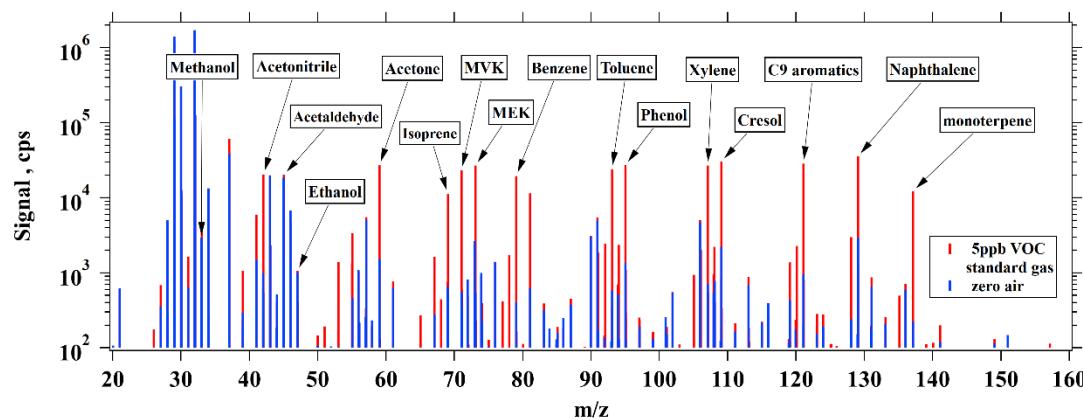
312

313 *Line 270-271. "Therefore, we used the average calibration factor of 4170 cps/ppb*

314 *to quantify those species without external calibration measured by PTR-ToF-MS.” The*
315 *authors should estimate the uncertainty of the cal factor and propagate that uncer-*
316 *tainty throughout the ensuing discussion. Also, Table S1 shows that organic acids and*
317 *N-containing species typically had sensitivities significantly lower than 4000 cps/ppb.*
318 *Does this imply that a single calibration factor is appropriate across all of the binned*
319 *formulas discussed later?*

320 Reply: As shown in the response of the above comment, we re-checked the
321 relationship between the sensitivity and kinetic rate constant for proton-transfer
322 reactions of H_3O^+ . In the revised manuscript, we obtained the linear relationship
323 between the sensitivity and kinetic rate constant for proton-transfer reactions of H_3O^+
324 as shown in Sekimoto et al. (2017), and used this linearity to recalculate the
325 concentration of uncalibrated species. Following the discussions in Sekimoto et al.
326 (2017), the uncertainties of determined concentrations of uncalibrated species are
327 around 50%. The effects of the uncertainties in concentrations of uncalibrated species
328 are also discussed in section 3.2 and 3.4.

329 **As discussed in section 2.2, a total of 31 VOCs species were calibrated using**
330 **either gas cylinders or liquid standards. For other VOCs, we used the method**
331 **proposed in Sekimoto et al. (2017) to determine the relationship between VOCs**
332 **sensitivity and kinetic rate constants for proton-transfer reactions of H_3O^+ with**
333 **VOCs (detailed discussions in the SI). As shown in Figure 3, a clear linear**
334 **relationship was obtained. The fitted line in Figure 3 is used to determine**
335 **sensitivities of the uncalibrated species. Following the discussions in Sekimoto et**
336 **al. (2017), uncertainties of the concentrations for uncalibrated species are around**
337 **50%.**


338 **Adding up these contributions, it significantly narrows the gap between the**
339 **measured and calculated OH reactivity, leaving only 11% of OH reactivity as**
340 **“missing” during the campaign. Considering the large uncertainties for both**
341 **concentrations (~50%) and rate constants of the uncalibrated species (on the order**
342 **of 100%), the missing reactivity can ranged in 0%-19%. Nevertheless, the**
343 **determined missing reactivity would be well below the estimated uncertainty (20%)**
344 **for the OH reactivity measurements by the CRM method, indicating that gap**
345 **between measured and calculated reactivity can be significantly narrowed after**
346 **taking into account all of the species by PTR-ToF-MS.**

347

348 Line 273-274 “We divided the VOCs measured by PTR-ToF-MS into groups
349 according to the oxygen atoms in the formula” This analysis assumes that
350 fragmentation and clustering are insignificant contributors to the mass spectra of
351 ambient air. As noted above, the authors should defend this assumption and/or provide
352 some measure of the uncertainty of their assumption.

353 Reply: We have added evidence of this assumption in the revised manuscript. The
354 figure below shows the PTR-ToF-MS mass spectra from measurements of zero air and
355 diluted gas standard with 5 ppb of various VOCs from a 16-component VOC gas
356 standard (Apel Riemer Environmental Inc.). It can be seen that the fragmentation of
357 most VOCs product ions is not significant, except monoterpene and ethanol, which are
358 known to fragment significantly in PTR-MS. We included this graph in the SI of the
359 revised manuscript.

360 **At this condition, the fractions of water-cluster ions are small, and the**
361 **fragmentation of most VOCs product ions is not significant (Figure S3) (de Gouw**
362 **and Warneke, 2007; Yuan et al., 2017).**

363
364 **Figure S3. The mass spectra from measurements of zero air and diluted gas**
365 **standard with 5 ppb of various VOCs from a 16-component VOC gas standard.**

367 Line 284 “The low contributions from OVOCs with three or more oxygen atoms
368 are different from the concurrent observations of iodide ToF-CIMS during the
369 campaign” This is the only mention of the $I\ddot{A}T^{\ddot{C}}$ CIMS instrument that I can find in
370 the manuscript. The authors should provide some description of this instrument in
371 Section 2, especially the inlet used by the I-CIMS as that would be relevant to the
372 discussion here. The language in this comparison of relative abundance of more-highly
373 oxidized OVOCs implies that the PTR method is less sensitive to these species due to
374 losses. The authors should also consider that the I-CIMS technique is relatively

375 *insensitive to less oxidized OVOCs.*

376 Reply: This description are added in the Section 2 of the revised manuscript.

377 **An iodide-adduct time-of-flight chemical ionization mass spectrometer (ToF-**
378 **CIMS) (Aerodyne Research, Inc.) coupled with a Filter Inlet for Gases and**
379 **Aerosols (FIGAERO) inlet was used for measuring oxygenated VOCs in ambient**
380 **air (Wang et al., 2020b). The Filter Inlet for Gases and Aerosols (FIGAERO)**
381 **sampling assembly switches the air flow between two inlets, one designed for gases**
382 **and the other for chemicals thermally desorbed from aerosols, which provides the**
383 **online measurements of species from both gas-phase and particle-phase (Thornton**
384 **et al., 2020;Lopez-Hilfiker et al., 2014).**

385

386 *Line 308-309. “If only considering the six common OVOCs measured by PTR-MS,*
387 *i.e. formaldehyde, acetaldehyde, methanol, acetone, MEK and MVK+MACR”. Where*
388 *do the authors get this list of OVOCs? They should cite the reference, or the survey of*
389 *references used for this.*

390 Reply: Thanks for the valuable suggestion. We have added the corresponding
391 references in the revised manuscript:

392 **If only considering the six common OVOCs measured by PTR-MS, i.e.**
393 **formaldehyde, acetaldehyde, methanol, acetone, MEK and MVK+MACR (de**
394 **Gouw et al., 2003;de Gouw and Warneke, 2007), the OVOCs fraction in total**
395 **VOCs would be only 39%.**

396

397 *Line 313. Source analysis of OVOCs. This section describes an analysis method*
398 *that attributes OVOC sources to primary anthropogenic, secondary formation,*
399 *biogenic and background. An implicit assumption here is that a single anthropogenic*
400 *tracer (acetylene or CO) can characterize all primary anthropogenic emissions. That*
401 *is, primary anthro emissions are homogeneous for the sampling site. The authors*
402 *should state this in the text.*

403 Reply: Thank you for pointing this out. CO and acetylene has proven to be a good
404 tracer for urban emissions, and many literature studies have reported the use of CO and
405 acetylene as anthropogenic tracers in urban (de Gouw et al., 2008;Yuan et al., 2012b),
406 so we use acetylene or CO as a anthropogenic tracer, and we have already stated this in
407 Section 3.3: The photochemical age-based parameterization method for source analysis
408 of OVOCs is based on the following assumptions: (1) the amount of each OVOCs

409 emitted is proportional to an inert tracer (e.g. CO and acetylene C₂H₂) (Yuan et al.,
410 2012b;de Gouw et al., 2005);

411
412 *Line 377-378. “An effective OH rate constant of 2×10^{-11} cm³ molecule⁻¹ s⁻¹ was*
413 *applied for different ion groups.” It is not clear how this value was determined to be*
414 *appropriate. Please provide some rationale for using this value.*

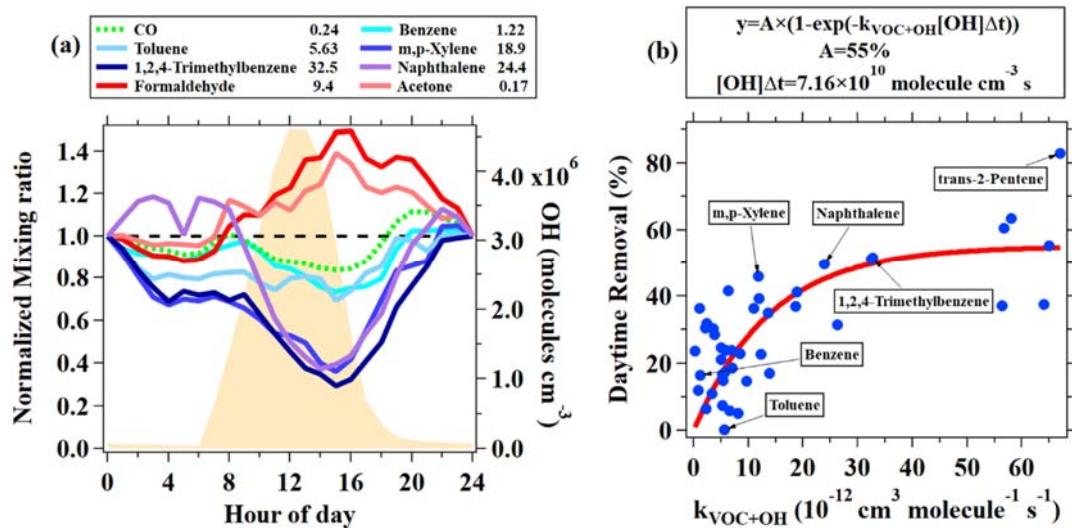
415 **Reply:** The OH rate constants are needed for the source analysis of different
416 OVOCs ion groups. However, this parameter is not possible to obtain, unless the OH
417 rate constants for each ion is known. To approximate the effective OH rate constant,
418 we calculate the median (2.0×10^{-11} cm³ molecule⁻¹ s⁻¹) for the OH rate constants for all
419 OVOCs ions that are listed in Table S4 in the revised manuscript. As the result, we use
420 2.0×10^{-11} cm³ molecule⁻¹ s⁻¹ as the best estimate for the effective OH rate constant for
421 OVOCs ion groups.

422 We included this information in the revised manuscript:

423 **An effective OH rate constant of 2.0×10^{-11} cm³ molecule⁻¹ s⁻¹ (the median for**
424 **all OVOCs ions in Table S4) was applied for different ion groups.**

425
426 *Line 394. “VOCs reactivity can visually and effectively characterize” It’s not*
427 *clear what the authors mean by “visually” here.*

428 **Reply:** This sentence is changed in the revised manuscript:


429 **VOCs reactivity can effectively characterize the contributions of various**
430 **VOCs to atmospheric chemical reactions that are related to the formation of**
431 **secondary pollutants.**

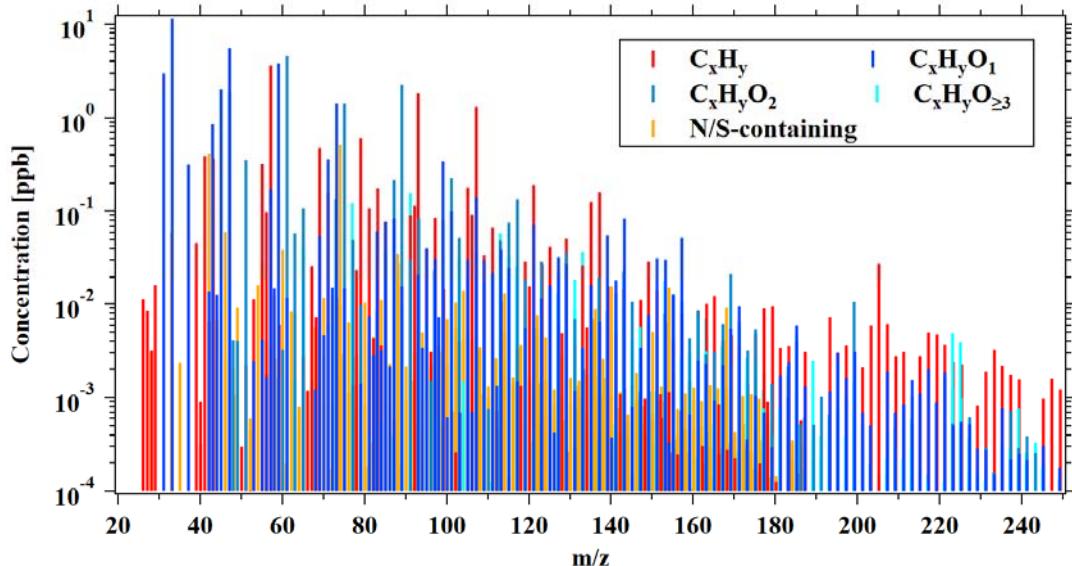
432
433 *Line 809. Figure 2. This appears to be GC data, based upon the species shown*
434 *(e.g. isomers). The authors should state explicitly if this is the case. Also, In Figure 2b,*
435 *the labeling of some dots in the figure seems arbitrary. Consider limiting labels to those*
436 *species discussed in the main text or significant outliers, e.g. the point in the top right*
437 *corner, which seems a significant, and perhaps interesting, outlier to the overall good*
438 *fit of the data.*

439 **Reply:** Thanks for the suggestion. In Figure 2 a, benzene, toluene, m,p-xylene and
440 1,2,4-trimethylbenzene are measured by GC-MS/FID, and naphthalene, formaldehyde
441 and acetone are measured by PTR-ToF-MS, which has been illustrated in the caption
442 of Figure 2a. Following the suggestion from the reviewer, the species shown in Figure

443 2a and significant outliers are marked as labels in Figure 2b.

444 The caption of Figure 2 has been changed to:

445


446 **Figure 2. (a) Normalized diurnal variations of CO, five aromatic hydrocarbons**
447 (benzene, toluene, m,p-xylene, 1,2,4-trimethylbenzene measured by GC-MS/FID
448 and naphthalene measured by PTR-ToF-MS) and two OVOCs (formaldehyde and
449 acetone measured by PTR-ToF-MS). The data are normalized to midnight values.
450 The rate coefficients for the reactions with OH radicals are shown in the legend
451 (in units of $10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$). The orange shaded area indicates the average
452 diurnal variation of simulated OH by an observation-constrained box model. (b)
453 **Daytime removal fractions of all hydrocarbons measured by GC-MS/FID and also**
454 **naphthalene by PTR-ToF-MS as a function of their rate constants with OH.** The
455 daytime removal fractions for VOCs species were calculated from the
456 concentration ratio between measurement at 14:00 and at 6:00-8:00.

457

458 *Line 820. Figure 3. I found this figure difficult to interpret as the colors are similar*
459 *and the figure is highly detailed. My suggestion: could the authors reformat as a*
460 *stacked- axis plot, with the five categories of ions on their own y-axis?*

461 **Reply:** We thank the reviewer for the comment. Figure 3 shows the average mass
462 spectra measured by PTR-ToF-MS during the campaign. Here, we divide the ions in
463 the mass spectra into five different ion categories, following the procedures in many
464 previous online mass spectrometry studies (Koss et al., 2017; Stockwell et al.,
465 2015; Zhang et al., 2018). We tried to modify the graph according to the suggestion
466 from the reviewer by placing five categories of ions on their own y-axis and reformatted
467 as a stacked axis plot. However, we found the concentration from different categories

468 cannot be compared easily. As the result, we decide to keep plotting the graph this way.
469 Nevertheless, we made the graph taller, which should be easier to read sticks in the
470 graph.

471
472 **Figure 3. Average mass spectra obtained by PTR-ToF-MS from ambient**
473 **measurement during the campaign. The different ion categories are detailedly**
474 **discussed in the text.**

475
476 *Line 823. Figure 4. The pie charts in (a) and (c) don't seem to match the diurnal*
477 *trends in (b) and (d), respectively. The mixing ratios shown in (b) and (d) would imply*
478 *different sizes of the wedges that make up each pie chart than are shown. Perhaps I am*
479 *mis-interpreting what is presented? Supplement, Table S4. I found this table to be*
480 *especially problematic, as the authors provide an enormous list of ions with associated*
481 *OH reactivities. Since the authors never attribute a parent molecule to these ions, this*
482 *makes these attributions impossible to evaluate. For comparison, Koss et al. (2018)*
483 *provides a similar table in their supplemental materials, but also provides a master*
484 *table that links each ion with a suspected or confirmed parent. The authors should*
485 *revise this table to give a suspected / confirmed parent in each case.*

486 **Reply:** We thank the reviewer for the comment. In order to demonstrate the diurnal
487 variations of different categories of VOCs clearly on the same y-axis in Figure 4b and
488 4d, concentrations of some categories are plotted by multiplying scale factors, which
489 are explicitly indicated in the figure legend. For example, OVOC concentrations shown
490 in Figure 4d are the results of multiplying a factor of 0.1 of the measured concentrations.

491 In terms of Table S4, we added our attributions of the most possible compounds

492 to the ions, based on previous review and studies (Yuan et al., 2017;Koss et al., 2018).

493 Table S4 in SI has been changed to:

494

Table S4. The average concentrations of VOCs measured by PTR-ToF-MS and their OH rate constants, which were used for calculating OH reactivity.

Ion exact mass (Th)	Ion formula	Compound	Average concentration (ppb)	OH rate constant ($10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$)	Source of OH rate constants
Common OVOCs					
30.0178	CH_2O	Formaldehyde	2.991 ± 2.059	9.4	Atkinson 2003 ²¹
32.0335	CH_4O	Methanol	11.43 ± 7.612	0.8	Atkinson 2003
44.0335	$\text{C}_2\text{H}_4\text{O}$	Acetaldehyde	2.027 ± 1.292	15.0	Atkinson 2003
56.0335	$\text{C}_3\text{H}_4\text{O}$	Acrolein	0.173 ± 0.102	20.0	Gilman 2015
58.0491	$\text{C}_3\text{H}_6\text{O}$	Acetone	3.798 ± 2.508	0.2	Atkinson 2003
70.0491	$\text{C}_4\text{H}_6\text{O}$	MVK+MACR	0.362 ± 0.249	24.8	Koss 2018 ³²
72.0648	$\text{C}_4\text{H}_8\text{O}$	MEK	1.420 ± 1.309	5.5	Koss 2018
86.0804	$\text{C}_5\text{H}_{10}\text{O}$	Pentanones	0.085 ± 0.049	7.9	Atkinson 2003
100.096	$\text{C}_6\text{H}_{12}\text{O}$	Hexanones	0.101 ± 0.091	18.6	Koss 2018
NMHCs					
184.36	$\text{C}_{13}\text{H}_{28}$	Tridecane [#]	0.066 ± 0.060	15.3	Atkinson 2003
198.39	$\text{C}_{14}\text{H}_{30}$	Tetradecane [#]	0.050 ± 0.047	16.7	Atkinson 2003
212.41	$\text{C}_{15}\text{H}_{32}$	Pentadecane [#]	0.045 ± 0.042	18.1	Atkinson 2003
226.44	$\text{C}_{16}\text{H}_{34}$	Hexadecane [#]	0.036 ± 0.033	19.4	Atkinson 2003
240.46	$\text{C}_{17}\text{H}_{36}$	Heptadecane [#]	0.021 ± 0.020	20.7	Atkinson 2003
254.49	$\text{C}_{18}\text{H}_{38}$	Octadecane [#]	0.013 ± 0.014	21.9	Atkinson 2003

268.52	C ₁₉ H ₄₀	Nonadecane [#]	0.005±0.009	23	Atkinson 2003
282.54	C ₂₀ H ₄₂	Eicosane [#]	0.0007±0.004	24	Atkinson 2003
40.038	C ₃ H ₄	1,2-Propadiene	0.758±0.971	0.695	Pfannerstill 2019
66.054	C ₅ H ₆	Cyclopentadiene	0.038±0.029	92.0	Gilman 2015
82.085	C ₆ H ₁₀	Methylcyclopentane	0.225±0.158	6.97	Atkinson 2003
84.101	C ₆ H ₁₂	Hexene isomers	0.098±0.078	37	Atkinson 2003
94.085	C ₇ H ₁₀	Terpene fragment	0.047±0.041	46.8	Pfannerstill 2019
96.101	C ₇ H ₁₂	C7 cycloalkanes	0.103±0.073	9.64	Atkinson 2003
102.054	C ₈ H ₆	Phenylacetylene	0.005±0.004	1.0	Gilman 2015
108.101	C ₈ H ₁₂	Terpene fragment	0.036±0.041	107	Pfannerstill 2019
110.116	C ₈ H ₁₄	C8 cycloalkanes	0.075±0.055	9.64	Atkinson 2003
116.07	C ₉ H ₈	Indene	0.004±0.009	78.0	Atkinson 2003
118.086	C ₉ H ₁₀	Indane	0.032±0.031	50.4	Atkinson 2003
128.07	C ₁₀ H ₈	Naphthalene	0.052±0.061	23.0	Atkinson 2003
130.086	C ₁₀ H ₁₀	Methyl indene	0.004±0.005	28.5	Koss 2018
132.101	C ₁₀ H ₁₂	Tetrahydronaphthalene	0.028±0.026	33.0	Koss 2018
134.117	C ₁₀ H ₁₄	C10 aromatics	0.133±0.141	9.5	Koss 2018
136.132	C ₁₀ H ₁₆	Monoterpenes	0.161±0.245	162.8	Koss 2018
142.086	C ₁₁ H ₁₀	Methyl naphthalene	0.015±0.017	50.0	Koss 2018
144.101	C ₁₁ H ₁₂	C11 6-DBE	0.001±0.003	78.0	Koss 2018
146.116	C ₁₁ H ₁₄	aromatic fragment	0.011±0.015	58	Pfannerstill 2019
148.132	C ₁₁ H ₁₆	C11 aromatics	0.030±0.031	50.0	Koss 2018

152.07	C ₁₂ H ₈	Acenaphthylene	0.001±0.003	15.1	Koss 2018
156.101	C ₁₂ H ₁₂	C2 naphthalene	0.008±0.009	60.0	Koss 2018
160.132	C ₁₂ H ₁₆	aromatic fragment	0.009±0.012	58	Pfannerstill 2019
162.148	C ₁₂ H ₁₈	C12 aromatics	0.010±0.010	113.0	Koss 2018
174.148	C ₁₃ H ₁₈	C13 5-DBE	0.005±0.008	38.5	Pfannerstill 2019
176.164	C ₁₃ H ₂₀	C13 aromatics	0.009±0.010	113.0	Koss 2018
Novel OVOCs					
46.0128	CH ₂ O ₂	Formic acid	1.880±3.155	0.4	Koss 2018
46.0491	C ₂ H ₆ O	Ethanol	5.634±5.192	3.2	Atkinson 2003
48.0284	CH ₄ O ₂	Methane diol	0.005±0.003	7.0	Koss 2018
54.0178	C ₃ H ₂ O	Propynal	0.005±0.057	20.0	Koss 2018
58.0128	C ₂ H ₂ O ₂	Glyoxal	0.001±0.002	11.0	Atkinson 2003
60.0284	C ₂ H ₄ O ₂	Acetic acid	4.618±4.681	3.7	Koss 2018
62.044	C ₂ H ₆ O ₂	Ethane diol	0.070±0.068	14.5	Pfannerstill 2019
64.023	CH ₄ O ₃	formic acid water cluster	0.039±0.048	7.1	Pfannerstill 2019
68.0335	C ₄ H ₄ O	Furan	0.055±0.036	40.0	Gilman 2015
70.0128	C ₃ H ₂ O ₂	Propiolic acid	0.008±0.010	26.0	Koss 2018
72.0284	C ₃ H ₄ O ₂	Methyl glyoxal	0.143±0.093	21.1	Koss 2018
74.0441	C ₃ H ₆ O ₂	Propanoic acid	1.438±2.188	2.2	Koss 2018
76.059	C ₃ H ₈ O ₂	Propane diols	0.053±0.046	16.2	Pfannerstill 2019
80.0335	C ₅ H ₄ O	Cyclopentadiene ketone	0.006±0.005	20.0	Gilman 2015 2-methylfuran

82.0491	C ₅ H ₆ O	Methyl furan	0.081±0.063	37.1	Gilman 2015 cyclopentenone
84.0284	C ₄ H ₄ O ₂	Furanone	0.036±0.025	44.5	Gilman 2015
84.0648	C ₅ H ₈ O	C ₅ ketones	0.060±0.043	11.5	Atkinson 2003, NIST Database
86.0441	C ₄ H ₆ O ₂	2,3-Butanedione	±	0.8	Gilman 2015, NIST Database
88.0233	C ₃ H ₄ O ₃	Pyruvic acid	0.009±0.026	0.1	Gilman 2015
88.0597	C ₄ H ₈ O ₂	Methyl propanoate	2.273±2.367	0.9	Koss 2018
94.0491	C ₆ H ₆ O	Phenol	0.039±0.030	28.0	Gilman 2015
96.0284	C ₅ H ₄ O ₂	Furfural	0.023±0.020	35.6	Gilman 2015
96.0648	C ₆ H ₈ O	Dimethyl or ethyl furan	0.039±0.025	132.0	Gilman 2015 25dimethylfuran
98.0441	C ₅ H ₆ O ₂	Methyl furanone	0.050±0.033	13.6	Koss 2018
98.0804	C ₆ H ₁₀ O	Hexenones	0.262±0.278	6.4	Atkinson 2003 cyclohexanone
100.023	C ₄ H ₄ O ₃	Dihydro furandione	0.040±0.062	20.0	Koss 2018
100.06	C ₅ H ₈ O ₂	Methyl methacrylate	0.248±0.163	30.3	Gilman 2015
102.039	C ₄ H ₆ O ₃	Acetic anhydride	0.026±0.020	43.0	Koss 2018
102.0753	C ₅ H ₁₀ O ₂	Pentanoic acids	0.058±0.055	8.71	Pfannerstill 2019
106.049	C ₇ H ₆ O	Benzaldehyde	0.104±0.099	12.0	Atkinson 2003
108.028	C ₆ H ₄ O ₂	Benzoquinone	0.016±0.015	4.6	NIST Database
108.065	C ₇ H ₈ O	Cresols	0.028±0.023	26.2	NIST Database
110.044	C ₆ H ₆ O ₂	Methyl furfural	0.022±0.017	80.1	Koss 2018
110.08	C ₇ H ₁₀ O	C ₃ furan	0.026±0.017	23.3	Koss 2018
112.023	C ₅ H ₄ O ₃	Methylfurandione	0.052±0.049	49.0	Koss 2018
112.06	C ₆ H ₈ O ₂	Dimethylfuranone	0.043±0.031	57.0	Koss 2018

112.096	C ₇ H ₁₂ O	Ethyl cyclopentanone	0.029±0.028	10.0	NIST Database cycloheptanone
114.039	C ₅ H ₆ O ₃	C5 3-oxy 3DBE	0.029±0.024	100.0	Koss 2018
114.075	C ₆ H ₁₀ O ₂	C6 diketone isomers	0.075±0.057	20.0	Koss 2018
114.112	C ₇ H ₁₄ O	heptanal	0.019±0.013	21.4	Atkinson 2003
116.055	C ₅ H ₈ O ₃	C5 3-oxy 2-DBE isomers	0.022±0.017	5.0	Koss 2018
116.091	C ₆ H ₁₂ O ₂	Butyl ester acetic acid	0.135±0.136	6.0	NIST Database
118.049	C ₈ H ₆ O	Benzofuran	0.006±0.007	37.0	NIST Database
120.065	C ₈ H ₈ O	Tolualdehyde	0.056±0.044	16.0	Atkinson 2003 average tolualdehydes
122.044	C ₇ H ₆ O ₂	Salicyladehyde	0.022±0.023	38.0	Koss 2018
122.08	C ₈ H ₁₀ O	Ethylphenol	0.012±0.012	46.6	Koss 2018
124.023	C ₆ H ₄ O ₃	Hydroxy benzoquinone	0.002±0.002	4.6	Koss 2018
124.06	C ₇ H ₈ O ₂	guaiacol	0.014±0.011	75.0	NIST Database
124.096	C ₈ H ₁₂ O	C4 furan	0.018±0.010	40.4	Pfannerstill 2019
126.039	C ₆ H ₆ O ₃	Hydroxymethyl furfural	0.012±0.009	100.0	Koss 2018
126.111	C ₈ H ₁₄ O	Cyclooctanone	0.024±0.027	98.8	Pfannerstill 2019
128.055	C ₆ H ₈ O ₃	Methyl hydroxy dihydrofurfural	0.023±0.019	132.0	Koss 2018
128.127	C ₈ H ₁₆ O	Octanal	0.021±0.015	11	Pfannerstill 2019
132.065	C ₉ H ₈ O	Methyl benzofurans	0.004±0.005	37.0	Gilman 2015
134.08	C ₉ H ₁₀ O	3-methylacetophenone	0.012±0.010	4.5	NIST Database
136.06	C ₈ H ₈ O ₂	Methyl benzoic acid	0.019±0.018	12.0	Koss 2018

138.075	C ₈ H ₁₀ O ₂	Creosol	0.008±0.007	100.0	NIST Database
140.127	C ₉ H ₁₆ O	C ₉ carbonyl +1DBE	0.014±0.010	43.5	Pfannerstill 2019
144.05	C ₆ H ₈ O ₄	C ₆ diacid +1DBE	0.004±0.003	4.6	Koss 2018
144.065	C ₁₀ H ₈ O	Ethenyl benzofuran	0.001±0.002	37.0	Koss 2018
146.08	C ₁₀ H ₁₀ O	Dimethylbenzofuran	0.004±0.004	37.0	Koss 2018
148.096	C ₁₀ H ₁₂ O	Methyl chavicol (estragole)	0.008±0.007	50.0	NIST Database: 1-methoxy-4-(2-propenyl) benzene
150.075	C ₉ H ₁₀ O ₂	Vinyl guaiacol	0.004±0.004	100.0	Koss 2018
152.055	C ₈ H ₈ O ₃	Vanillin	0.016±0.010	85.0	Koss 2018
152.127	C ₁₀ H ₁₆ O	Camphor	0.028±0.018	4.3	Atkinson 2003
154.07	C ₈ H ₁₀ O ₃	Syringol	0.004±0.004	100.0	Koss 2018
154.143	C ₁₀ H ₁₈ O	Linalool	0.012±0.009	25.0	NIST Database Fenchol, Borneol
156.159	C ₁₀ H ₂₀ O	Decanal	0.051±0.066	13.0	Atkinson 2003 2-decanone
164.091	C ₁₀ H ₁₂ O ₂	Eugenol	0.003±0.003	100.0	Koss 2018
N/S-containing species					
27.0182	HCN	HCN	0.003±0.002	0.0	Cicerone 1983
33.995	H ₂ S	Hydrogen sulfide	0.005±0.004	4.6	NIST database
41.0338	C ₂ H ₃ N	Acetonitrile	0.412±2.258	0.02	Gilman 2015
43.0495	C ₂ H ₅ N	Etheneamine	0.010±0.011	0.2	Koss 2018
45.0287	CH ₃ NO	Formamide	0.046±0.092	1.5	NIST database: CH ₂ =NOH
45.0651	C ₂ H ₇ N	Ethylamine	0.004±0.007	45.5	Koss 2018
48.0106	CH ₄ S	Methane thiol	0.012±0.014	33.0	NIST database
53.0338	C ₃ H ₃ N	Acrylonitrile	0.011±0.007	4.0	Gilman 2015

55.0495	C ₃ H ₅ N	Propane nitrile	0.003±0.004	0.3	Gilman 2015
57.0287	C ₂ H ₃ NO	Methyl isocyanate	0.011±0.007	0.1	Koss 2018
57.0651	C ₃ H ₇ N	Propene amine	0.004±0.005	15.0	Koss 2018
59.0444	C ₂ H ₅ NO	Acetamide	0.029±0.055	8.6	NIST database
61.0237	CH ₃ NO ₂	Nitromethane	0.006±0.006	0.3	Gilman 2015
62.0263	C ₂ H ₆ S	Dimethyl sulfide	0.010±0.012	6.0	NIST database
65.0338	C ₄ H ₃ N	Cyanoallene isomers	0.001±0.007	4.0	Koss 2018
67.0495	C ₄ H ₅ N	Pyrrole	0.006±0.007	111.4	Gilman 2015
69.0651	C ₄ H ₇ N	Dihydropyrrole	0.008±0.004	7.7	Koss 2018
71.0808	C ₄ H ₉ N	Butene amines	0.001±0.001	25.0	Koss 2018
73.0237	C ₂ H ₃ NO ₂	Nitroethene	0.001±0.007	1.2	NIST Database
73.06	C ₃ H ₇ NO	C ₃ amides	0.350±0.616	12.5	Pfannerstill 2019
75.0393	C ₂ H ₅ NO ₂	Nitroethane	0.005±0.004	0.1	NIST Database
77.0008	CH ₃ NOS	Sulfinyl methanamine	0.001±0.001	0.2	Koss 2018
79.0495	C ₅ H ₅ N	Pyridine	0.010±0.006	5.6	Koss 2018
81.0651	C ₅ H ₇ N	Methyl pyrrole	0.004±0.006	62.7	Gilman 2015
83.0808	C ₅ H ₉ N	C ₅ nitrile	0.007±0.003	0.5	Koss 2018
89.055	C ₃ H ₇ NO ₂	Nitropropanes	0.001±0.002	1.2	NIST Database
93.0287	C ₅ H ₃ NO	2-furancarbonitrile	0.000±0.001	40.0	Koss 2018
93.0651	C ₆ H ₇ N	2-methyl pyridine	0.006±0.005	2.6	NIST Database methylpyridines average
93.9984	C ₂ H ₆ S ₂	Dimethyl disulfide	0.004±0.005	230.0	NIST Database

95.0444	C ₅ H ₅ NO	4-Pyridinol	0.001±0.001	0.5	Koss 2018
95.0808	C ₆ H ₉ N	1-ethyl pyrrole	0.001±0.001	145.0	Koss 2018
97.0964	C ₆ H ₁₁ N	4-methylpentanenitrile	0.002±0.001	5.0	Koss 2018
103.049	C ₇ H ₅ N	Benzonitrile	0.008±0.006	1.0	Gilman 2015
105.065	C ₇ H ₇ N	Vinylpyridine	0.001±0.003	57.0	NIST Database
107.044	C ₆ H ₅ NO	nitrosobenzene or pyridine aldehyde	0.002±0.002	12.0	Koss 2018
107.081	C ₇ H ₉ N	Toluidine	0.004±0.005	3.2	NIST Database
109.096	C ₇ H ₁₁ N	C7 acrylonitrile	0.001±0.001	89.4	Koss 2018
111.039	C ₅ H ₅ NO ₂	Dihydroxy pyridine	0.002±0.001	10.3	Koss 2018
113.019	C ₄ H ₃ NO ₃	Nitrofuran	0.005±0.005	40.0	Koss 2018
117.05	C ₄ H ₇ NO ₃	Butene nitrates	0.004±0.005	50.8	Koss 2018
117.065	C ₈ H ₇ N	Indole	0.003±0.003	1.2	Koss 2018
119.081	C ₈ H ₉ N	Dihydro pyridine	0.000±0.001	0.5	Koss 2018
123.039	C ₆ H ₅ NO ₂	Nitrobenzene	0.003±0.005	0.1	NIST Database
125.128	C ₈ H ₁₅ N	C8 nitriles	0.000±0.001	8.0	Koss 2018
131.081	C ₉ H ₉ N	Methyl indole	0.001±0.001	5.6	Koss 2018
137.055	C ₇ H ₇ NO ₂	Nitrotoluene	0.002±0.002	0.1	Koss 2018
149.127	C ₁₀ H ₁₅ N	C10 aromatic amines	0.000±0.001	148	Pfannerstill 2019

497 **Reference :**

498 Atkinson, R., and Arey, J.: Atmospheric Degradation of Volatile Organic Compounds,
499 Chemical Reviews, 103, 4605-4638, 10.1021/cr0206420, 2003.

500 Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G.,
501 Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for
502 atmospheric chemistry: Volume I - gas phase reactions of Ox, HOx, NOx and SOx
503 species, Atmospheric Chemistry and Physics, 4, 1461-1738, 10.5194/acp-4-1461-2004,
504 2004.

505 Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G.,
506 Jenkin, M. E., Rossi, M. J., Troe, J., and Subcommittee, I.: Evaluated kinetic and
507 photochemical data for atmospheric chemistry: Volume II – gas phase reactions
508 of organic species, Atmospheric Chemistry and Physics, 6, 3625-4055, 10.5194/acp-6-
509 3625-2006, 2006.

510 Cappellin, L., Karl, T., Probst, M., Ismailova, O., Winkler, P., Soukoulis, C., Aprea, E.,
511 Märk, T., Gasperi, F., and Biasioli, F.: On Quantitative Determination of Volatile
512 Organic Compound Concentrations Using Proton Transfer Reaction Time-of-Flight
513 Mass Spectrometry, Environmental science & technology, 46, 2283-2290,
514 10.1021/es203985t, 2012.

515 de Gouw, J., Middlebrook, A., Warneke, C., Goldan, P., Kuster, W., Roberts, J.,
516 Fehsenfeld, F., Worsnop, D., Pszenny, A., Keene, W., Marchewka, M., Bertman, S., and
517 Bates, T.: Budget of organic carbon in a polluted atmosphere: Results from the New
518 England Air Quality Study in 2002, Journal of Geophysical Research-Atmospheres, 110,
519 D16305, 10.1029/2004JD005623, 2005.

520 de Gouw, J., and Warneke, C.: Measurements of volatile organic compounds in the
521 earth's atmosphere using proton-transfer-reaction mass spectrometry, Mass
522 Spectrometry Reviews, 26, 223-257, 10.1002/mas.20119, 2007.

523 de Gouw, J. A., Goldan, P. D., Warneke, C., Kuster, W. C., Roberts, J. M., Marchewka,
524 M., Bertman, S. B., Pszenny, A. A. P., and Keene, W. C.: Validation of proton transfer
525 reaction-mass spectrometry (PTR-MS) measurements of gas-phase organic compounds
526 in the atmosphere during the New England Air Quality Study (NEAQS) in 2002,
527 Journal of Geophysical Research: Atmospheres, 108, 10.1029/2003JD003863, 2003.

528 de Gouw, J. A., Brock, C. A., Atlas, E. L., Bates, T. S., Fehsenfeld, F. C., Goldan, P. D.,
529 Holloway, J. S., Kuster, W. C., Lerner, B. M., Matthew, B. M., Middlebrook, A. M.,

530 Onasch, T. B., Peltier, R. E., Quinn, P. K., Senff, C. J., Stohl, A., Sullivan, A. P., Trainer,
531 M., Warneke, C., Weber, R. J., and Williams, E. J.: Sources of particulate matter in the
532 northeastern United States in summer: 1. Direct emissions and secondary formation of
533 organic matter in urban plumes, *Journal of Geophysical Research: Atmospheres*, 113,
534 10.1029/2007jd009243, 2008.

535 Gilman, J. B., Lerner, B. M., Kuster, W. C., Goldan, P. D., Warneke, C., Veres, P. R.,
536 Roberts, J. M., de Gouw, J. A., Burling, I. R., and Yokelson, R. J.: Biomass burning
537 emissions and potential air quality impacts of volatile organic compounds and other
538 trace gases from fuels common in the US, *Atmospheric Chemistry and Physics*, 15,
539 13915-13938, 10.5194/acp-15-13915-2015, 2015.

540 Guenther, A., Jiang, J., Heald, C., Sakulyanontvittaya, Duhl, T., Emmons, L., and Wang,
541 J.: The Model of Emissions of Gases and Aerosols from Nature version 2.1
542 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions,
543 *Geoscientific Model Development Discussions*, 5, 1-58, 10.5194/gmdd-5-1-2012, 2012.

544 Inomata, S., Tanimoto, H., Kameyama, S., Tsunogai, U., H, I., Kanaya, Y., and Wang,
545 Z.: Technical Note: Determination of formaldehyde mixing ratios in air with PTR-MS:
546 Laboratory experiments and field measurements, *Atmospheric Chemistry and Physics*
547 *Discussions*, 8, 10.5194/acpd-7-12845-2007, 2008.

548 Karl, T., Striednig, M., Graus, M., Hammerle, A., and Wohlfahrt, G.: Urban flux
549 measurements reveal a large pool of oxygenated volatile organic compound emissions,
550 *Proceedings of the National Academy of Sciences*, 115, 1186-1191,
551 10.1073/pnas.1714715115, 2018.

552 Koss, A., Yuan, B., Warneke, C., Gilman, J. B., Lerner, B. M., Veres, P. R., Peischl, J.,
553 Eilerman, S., Wild, R., Brown, S. S., Thompson, C. R., Ryerson, T., Hanisco, T., Wolfe,
554 G. M., Clair, J. M. S., Thayer, M., Keutsch, F. N., Murphy, S., and de Gouw, J.:
555 Observations of VOC emissions and photochemical products over US oil- and gas-
556 producing regions using high-resolution H₃O⁺ CIMS (PTR-ToF-MS), *Atmospheric*
557 *Measurement Techniques*, 10, 2941-2968, 10.5194/amt-10-2941-2017, 2017.

558 Koss, A. R., Sekimoto, K., Gilman, J. B., Selimovic, V., Coggon, M. M., Zarzana, K.
559 J., Yuan, B., Lerner, B. M., Brown, S. S., Jimenez, J. L., Krechmer, J., Roberts, J. M.,
560 Warneke, C., Yokelson, R. J., and de Gouw, J.: Non-methane organic gas emissions
561 from biomass burning: identification, quantification, and emission factors from PTR-
562 ToF during the FIREX 2016 laboratory experiment, *Atmospheric Chemistry and*
563 *Physics*, 18, 3299-3319, 10.5194/acp-18-3299-2018, 2018.

564 Lopez-Hilfiker, F. D., Mohr, C., Ehn, M., Rubach, F., Kleist, E., Wildt, J., Mentel, T. F.,
565 Lutz, A., Hallquist, M., Worsnop, D., and Thornton, J. A.: A novel method for online
566 analysis of gas and particle composition: description and evaluation of a Filter Inlet for
567 Gases and AEROSols (FIGAERO), *Atmos. Meas. Tech.*, 7, 983-1001, 10.5194/amt-7-
568 983-2014, 2014.

569 Pfannerstill, E. Y., Wang, N., Edtbauer, A., Bourtsoukidis, E., Crowley, J. N., Dienhart,
570 D., Eger, P. G., Ernle, L., Fischer, H., Hottmann, B., Paris, J. D., Stönnér, C., Tadic, I.,
571 Walter, D., Lelieveld, J., and Williams, J.: Shipborne measurements of total OH
572 reactivity around the Arabian Peninsula and its role in ozone chemistry, *Atmos. Chem.*
573 *Phys.*, 19, 11501-11523, 10.5194/acp-19-11501-2019, 2019.

574 Sanchez, D., Seco, R., Gu, D., Guenther, A., Mak, J., Lee, Y., Kim, D., Ahn, J., Blake,
575 D., Herndon, S., Jeong, D., Sullivan, J. T., McGee, T., and Kim, S.: Contributions to
576 OH reactivity from unexplored volatile organic compounds measured by PTR-ToF-MS
577 – A case study in a suburban forest of the Seoul Metropolitan Area during KORUS-AQ
578 2016, *Atmos. Chem. Phys. Discuss.*, 2020, 1-35, 10.5194/acp-2020-174, 2020.

579 Sekimoto, K., Li, S.-M., Yuan, B., Koss, A., Coggon, M., Warneke, C., and de Gouw,
580 J.: Calculation of the sensitivity of proton-transfer-reaction mass spectrometry (PTR-
581 MS) for organic trace gases using molecular properties, *International Journal of Mass*
582 *Spectrometry*, 421, 71-94, <https://doi.org/10.1016/j.ijms.2017.04.006>, 2017.

583 Stark, H., Yatavelli, R. L. N., Thompson, S. L., Kimmel, J. R., Cubison, M. J., Chhabra,
584 P. S., Canagaratna, M. R., Jayne, J. T., Worsnop, D. R., and Jimenez, J. L.: Methods to
585 extract molecular and bulk chemical information from series of complex mass spectra
586 with limited mass resolution, *International Journal of Mass Spectrometry*, 389, 26-38,
587 <https://doi.org/10.1016/j.ijms.2015.08.011>, 2015.

588 Stockwell, C., Veres, P., Williams, J., and Yokelson, R.: Characterization of biomass
589 burning emissions from cooking fires, peat, crop residue, and other fuels with high-
590 resolution proton-transfer-reaction time-of-flight mass spectrometry, *Atmospheric*
591 *Chemistry and Physics*, 15, 10.5194/acp-15-845-2015, 2015.

592 Sulzer, P., Hartungen, E., Hanel, G., Feil, S., Winkler, K., Mutschlechner, P., Haidacher,
593 S., Schottkowsky, R., Gunsch, D., Seehauser, H., Striednig, M., Jürschik, S., Breiev, K.,
594 Lanza, M., Herbig, J., Märk, L., Märk, T., and Jordan, A.: A Proton Transfer Reaction-
595 Quadrupole interface Time-Of-Flight Mass Spectrometer (PTR-QiTof): High speed
596 due to extreme sensitivity, *International Journal of Mass Spectrometry*, 368,
597 10.1016/j.ijms.2014.05.004, 2014.

598 Thornton, J., Mohr, C., Schobesberger, S., D'Ambro, E., Lee, B., and Lopez-Hilfiker,
599 F.: Evaluating Organic Aerosol Sources and Evolution with a Combined Molecular
600 Composition and Volatility Framework Using the Filter Inlet for Gases and Aerosols
601 (FIGAERO), *Accounts of Chemical Research*, 53, 10.1021/acs.accounts.0c00259, 2020.

602 Vlasenko, A., Macdonald, A. M., Sjostedt, S. J., and Abbatt, J. P. D.: Formaldehyde
603 measurements by Proton transfer reaction – Mass Spectrometry (PTR-MS): correction
604 for humidity effects, *Atmospheric Measurement Techniques*, 3, 1055-1062,
605 10.5194/amt-3-1055-2010, 2010.

606 Wang, C., Wu, C., Wang, S., Qi, J., Wang, B., Wang, Z., Hu, W., Chen, W., Ye, C., Wang,
607 W., Sun, Y., Wang, C., Huang, S., Song, W., Wang, X., Yang, S., Zhang, S., Xu, W., Ma,
608 N., Zhang, Z., Jiang, B., Su, H., Cheng, Y., Wang, X., Shao, M., and Yuan, B.:
609 Measurements of higher alkanes using NO+PTR-ToF-MS: significant contributions of
610 higher alkanes to secondary organic aerosols in China, *Atmos. Chem. Phys. Discuss.*,
611 2020, 1-32, 10.5194/acp-2020-145, 2020a.

612 Wang, M., Zeng, L., Lu, S., Shao, M., Liu, X., Yu, X., Chen, W., Yuan, B., Zhang, Q.,
613 Hu, M., and Zhang, Z.: Development and validation of a cryogen-free automatic gas
614 chromatograph system (GC-MS/FID) for online measurements of volatile organic
615 compounds, *Anal. Methods*, 6, 10.1039/C4AY01855A, 2014.

616 Wang, Z., Yuan, B., Ye, C., Roberts, J., Wisthaler, A., Lin, Y., Li, T., Wu, C., Peng, Y.,
617 Wang, C., Wang, S., Yang, S., Wang, B., Qi, J., Wang, C., Song, W., Hu, W., Wang, X.,
618 Xu, W., Ma, N., Kuang, Y., Tao, J., Zhang, Z., Su, H., Cheng, Y., Wang, X., and Shao,
619 M.: High Concentrations of Atmospheric Isocyanic Acid (HNCO) Produced from
620 Secondary Sources in China, *Environmental Science & Technology*,
621 10.1021/acs.est.0c02843, 2020b.

622 Warneke, C., Veres, P., Holloway, J. S., Stutz, J., Tsai, C., Alvarez, S., Rappenglueck,
623 B., Fehsenfeld, F. C., Graus, M., Gilman, J. B., and de Gouw, J. A.: Airborne
624 formaldehyde measurements using PTR-MS: calibration, humidity dependence, inter-
625 comparison and initial results, *Atmospheric Measurement Techniques*, 4, 2345-2358,
626 10.5194/amt-4-2345-2011, 2011.

627 Wolfe, G., Marvin, M., Roberts, S., Travis, K., and Liao, J.: The Framework for 0-D
628 Atmospheric Modeling (F0AM) v3.1, *Geoscientific Model Development Discussions*,
629 1-21, 10.5194/gmd-2016-175, 2016.

630 Yuan, B., Chen, W., Shao, M., Wang, M., Lu, S., Wang, B., Liu, Y., Chang, C. C., and
631 Wang, B.: Measurements of ambient hydrocarbons and carbonyls in the Pearl River

632 Delta (PRD), China, Atmospheric Research, 116, 93-104, 2012a.

633 Yuan, B., Shao, M., de Gouw, J., Parrish, D., Lu, S., Wang, M., Zeng, L., Zhang, Q.,
634 Song, Y., Zhang, J., and Hu, M.: Volatile organic compounds (VOCs) in urban air: How
635 chemistry affects the interpretation of positive matrix factorization (PMF) analysis,
636 Journal of Geophysical Research (Atmospheres), 117, 24302, 10.1029/2012JD018236,
637 2012b.

638 Yuan, B., Koss, A. R., Warneke, C., Coggon, M., Sekimoto, K., and de Gouw, J. A.:
639 Proton-Transfer-Reaction Mass Spectrometry: Applications in Atmospheric Sciences,
640 Chemical Reviews, 117, 13187-13229, 10.1021/acs.chemrev.7b00325, 2017.

641 Zhang, H., Yee, L. D., Lee, B. H., Curtis, M. P., Worton, D. R., Isaacman-VanWertz, G.,
642 Offenberg, J. H., Lewandowski, M., Kleindienst, T. E., Beaver, M. R., Holder, A. L.,
643 Lonneman, W. A., Docherty, K. S., Jaoui, M., Pye, H. O. T., Hu, W., Day, D. A.,
644 Campuzano-Jost, P., Jimenez, J. L., Guo, H., Weber, R. J., de Gouw, J., Koss, A. R.,
645 Edgerton, E. S., Brune, W., Mohr, C., Lopez-Hilfiker, F. D., Lutz, A., Kreisberg, N. M.,
646 Spielman, S. R., Hering, S. V., Wilson, K. R., Thornton, J. A., and Goldstein, A. H.:
647 Monoterpenes are the largest source of summertime organic aerosol in the southeastern
648 United States, Proceedings of the National Academy of Sciences, 115, 2038-2043,
649 10.1073/pnas.1717513115, 2018.

650 Zhu, M., Dong, H., Yu, F., Liao, S., Xie, Y., Liu, J., Sha, Q., Zhong, Z., Zeng, L., and
651 Zheng, J.: A New Portable Instrument for Online Measurements of Formaldehyde:
652 From Ambient to Mobile Emission Sources, Environmental Science & Technology
653 Letters, 7, 292-297, 10.1021/acs.estlett.0c00169, 2020.

654