

1 Size-resolved exposure risk of persistent free radicals (PFRs)

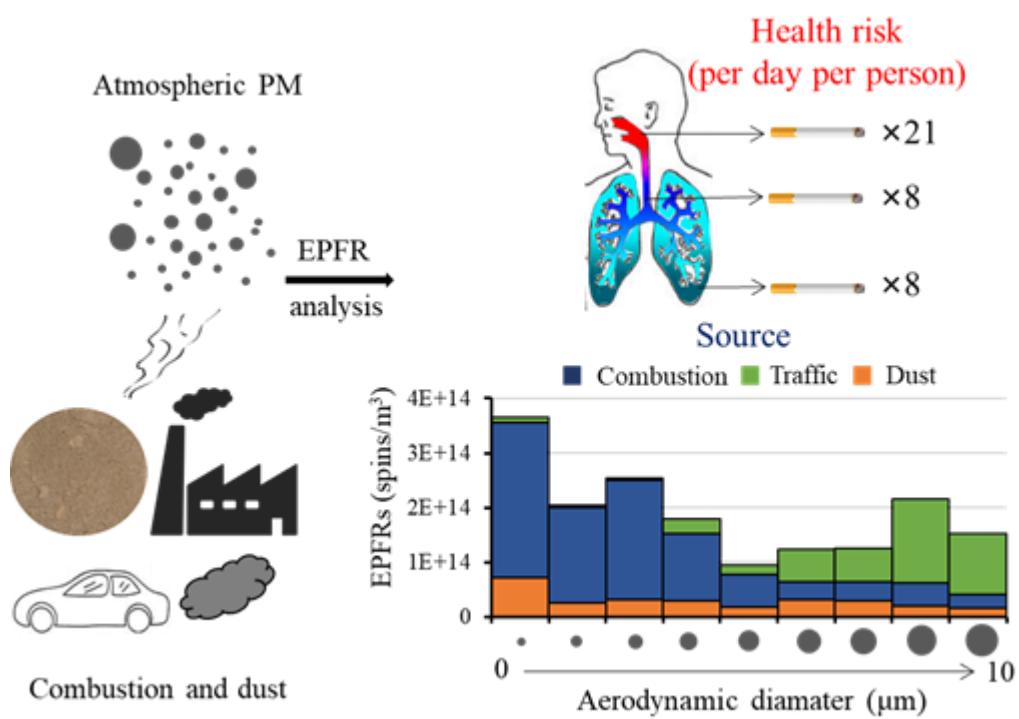
2 in atmospheric aerosols and their potential sources

3 Qingcai Chen,^a Haoyao Sun,^a Wenhui Song,^b Fang Cao,^b Chongguo Tian,^c Yan-Lin
4 Zhang^{b*}

⁵ *^a School of Environmental Science and Engineering, Shaanxi University of Science and
6 Technology, Xi'an 710021, China*

⁷ ^b *Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate
8 and Environment Change (ILCEC), Nanjing University of Information Science and Technology,
9 Nanjing 210044, China*

10 ^c Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai
11 Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China


12 *Corresponding Author at: Ningliu Road 219, Nanjing 210044, China.

13 *E-mail address:* dryanlinzhang@outlook.com or zhangyanlin@nuist.edu.cn (Yan-Lin Zhang).

14 **Abstract:** Environmentally persistent free radicals (EPFRs) are a new type of
15 substance with potential health risks. EPFRs are widely present in atmospheric
16 particulates, but there is a limited understanding of the size-resolved health risks of
17 these radicals. This study reports the exposure risks and source of EPFRs in
18 atmospheric particulate matter (PM) of different particle sizes ($<10 \mu\text{m}$) in Linfen, a
19 typical coal-burning city in China. The type of EPFRs in fine particles ($< 2.1 \mu\text{m}$) is
20 different from that in coarse particles ($2.1\text{-}10 \mu\text{m}$) in both winter and summer.
21 However, the EPFR concentration is higher in coarse particles than in fine particles in
22 summer, and the opposite trend is found in winter. In both seasons, combustion
23 sources are the main sources of EPFRs with coal combustion as the major contributor
24 in winter, while other fuel combustions are the major source in summer. Dust
25 contributes part of the EPFRs and it is mainly present in coarse particles in winter and
26 the opposite in summer. The upper respiratory tract was found to be the area with the
27 highest risk of exposure to EPFRs of the studied aerosols, with an exposure equivalent
28 to that of approximately 21 cigarettes per person per day. Alveolar exposure to EPFRs
29 is equivalent to 8 cigarettes per person per day, with combustion sources contributing
30 the most to EPFRs in the alveoli. This study helps us to better understand the potential
31 health risks of atmospheric PM with different particle sizes.

32 **Key words:** EPFRs; particle size distribution; source; generation process

33

36 **1. Introduction**

37 Free radicals are atoms or groups containing unpaired electrons, such as hydroxyl
38 radicals and superoxide radicals, and they usually have strong chemical reactivity and
39 short lifetimes (Pryor et al., 1986; Finkelstein., 1982). Free radicals with long
40 lifetimes (months or even years) in the environment are currently called
41 environmentally persistent free radicals (EPFRs), which have received much attention
42 in recent years as new environmentally hazardous substances (Vejerano et al., 2018;
43 Gehling, 2013; Chen et al., 2019c). EPFRs can be used as an active intermediate to
44 catalyze the production of reactive oxygen species (ROS) by oxygen molecules, thus
45 endangering human health (D'Arienzo et al., 2017; Thevenot et al., 2013; Harmon et
46 al., 2018; Blakley et al., 2001; Khachatryan et al., 2011). Studies have found that
47 EPFRs are present in different environmental media, such as water and soil, and even
48 in the atmosphere (Dellinger et al., 2001; Truong et al., 2010; Vejerano et al., 2012).

49 A number of studies have investigated the occurrences, sources and formation
50 process of EPFRs in atmospheric particulates in different regions. For example, in the
51 studies of Rostock in Germany, Taif in Saudi Arabia and Xuanwei in China, the
52 average concentration of EPFRs in atmospheric particulate matter (PM) was reported
53 to be in the range of $\sim 10^{16} - 10^{18}$ spins/g (Wang et al., 2018; Arangio et al., 2016;
54 Shaltout et al., 2015). Atmospheric EPFRs are mainly carbon-centered radicals with
55 adjacent oxygen atoms (Gehling et al., 2013). EPFRs of different lifetimes are present
56 in atmospheric PM, with only a few hours for short-lifetime EPFRs and several years
57 for long-lifetime EPFRs that show no signs of decay (Gehling et al., 2013; Chen et al.,
58 2019c). Most studies indicate that sources of transportation and combustion may be
59 the primary EPFR sources in atmospheric PM (Wang et al., 2018; Yang et al., 2017;
60 Chen et al., 2019b). Chen et al. (2018b and 2019b) found that strong atmospheric
61 photochemical effects in summer and dust particles may also be important sources of
62 EPFRs. The process of electron transfer and stabilization between the surface of metal
63 oxides (such as iron, copper, zinc and nickel) and substituted aromatic molecules

64 under high temperatures is considered to be the main process for the formation of
65 EPFRs in atmospheric particles (Truong., 2010; Vejerano et al., 2012a; Patterson et al.,
66 2013; Vejerano., 2010; Vejerano et al., 2012b). However, the study by Chen et al.
67 (2018a) suggests that EPFRs in atmospheric particulates are mainly derived from
68 graphite oxide-like substances produced during combustion. In addition to primary
69 sources such as combustion, secondary chemical processes in the atmosphere may
70 also be an important source of EPFRs in atmospheric PM (Chen et al. 2019b and
71 2019d; Tong et al., 2018).

72 Different particle sizes of atmospheric PM pose different health risks to humans,
73 depending on the deposition efficiency of the particles and the chemical composition
74 and concentrations of hazardous substances they contain (Strak et al., 2012;
75 Valavanidis et al., 2008). Among various hazardous substances, EPFRs may also be
76 involved in the toxicity of atmospheric particulates. Yang et al. (2017) studied the the
77 EPFRs that are extractable by dichloromethane in different particle sizes in Beijing in
78 winter and found that the concentration of EPFRs was the highest in particles with
79 sizes $< 1 \mu\text{m}$. Arangio et al. (2016) found that the concentration of EPFRs in 180 nm
80 particles was the highest in the 56 nm - 1.8 μm particle size range. Although several
81 studies have examined the particle size distribution of EPFRs, systematic studies have
82 not been conducted on the formation process, source and exposure assessment of
83 EPFRs in atmospheric particles with different particle sizes.

84 This study takes Linfen as an example. Linfen is one of the cities in China with
85 the most serious air pollution and is a typical coal-burning city. The particle size
86 distribution of EPFRs in atmospheric PM in this region was studied by EPR
87 spectrometry. The effects of particle size and season on the source, formation process,
88 and health risk of EPFRs were revealed. In particular, the comprehensive health risks
89 of EPFRs were evaluated, and it was found that the upper respiratory tract is the area
90 with the highest risk of EPFRs exposure, which is equivalent to twenty-one cigarettes
91 per person per day. This study is of great significance for understanding the source
92 and formation process of EPFRs in atmospheric particulates as well as for health risk

93 assessments.

94 **2. Experimental section**

95 *2.1 Sample collection*

96 The sampling site for this study is located in Hongdong (36°23', 111°40'E) in
97 Shanxi, China. To collect atmospheric particles of different sizes (0-10 μm), this study
98 used a Thermo-Anderson Mark II sampler to collect aerosol samples of 9 sizes. The
99 samples were collected on a prebaked quartz filter (450 °C, 4.5 hours), and the
100 sampling dates were as follows: in winter, January 26 to February 4, 2017, $n = 10$; and
101 in summer, July 31 to August 24, 2017, $n = 12$. The samples were placed in a -20 °C
102 refrigerator prior to analysis.

103 *2.2 EPFR analysis*

104 The EPR spectrometer (MS5000, Freiberg, Germany) is used to detect EPFRs in
105 atmospheric samples. Cut the sample filter into thin strips (5 mm \times 28 mm), and put it
106 into the sample tank of the quartz tissue cell (the size of the sample tank is 10 mm \times
107 30 mm)., Then the quartz tissue cell with attached filter sample was placed in a
108 resonant cavity and analyzed by an EPR spectrometer. The detection parameters were
109 magnetic field strength, 335 - 342 mT; detection time, 60 s; modulation amplitude,
110 0.20 mT; number of detections, 1; and microwave intensity, 8.0 mW. Specific testing
111 protocols have been described previously (Chen et al., 2018c).

112 *2.3 Carbon composition analysis*

113 The contents of organic carbon (OC) and elemental carbon (EC) in the filter
114 samples were analyzed using a semicontinuous OC/EC analyzer (Model 4, Sunset Lab.
115 Inc., Oregon, USA) with a NIOSH 5040 detection protocol (Lin et al., 2009).

116 The water-soluble organic carbon (WSOC) concentration was analyzed using an
117 automatic TOC-LCPH analyzer (Shimadzu, Japan). The WSOC extraction was
118 performed with ultrapure water under ultrasonication for 15 minutes, and all WSOC

119 concentrations were blank corrected. The concentration of OC in the MSM
120 (Methanol-soluble materials) was calculated as the difference between the OC and
121 WSOC (Water-soluble organic carbon) concentrations. This calculation assumes that
122 all water-insoluble organic carbon (WISOC) in the aerosol can be extracted with
123 MeOH, and the rationality of this assumption has been verified elsewhere (Mihara et
124 al., 2011; Liu et al., 2013; Cheng et al., 2016; Chen et al., 2019a).

125 *2.4 PAH analysis*

126 PAHs were detected using gas chromatography/mass spectrometry (GC/MS) on a
127 GC7890B/MS5977A (Agilent Technologies, Clara, CA). Quartz-fiber filter samples
128 (8 mm in diameter) were cut from each 25-mm quartz-fiber filter substrates used on
129 the ELPI impactor stages using a stainless-steel round punch over a clean glass dish
130 and loaded into the TD glass tube. Next, the TD glass tube was heated to 310 °C at a
131 rate of 12 °C/min and thermally desorbed at 310 °C for 3 min. The desorbed organic
132 compounds were trapped on the head of a GC-column (DB-5MS: 5% diphenyl-95%
133 dimethyl siloxane copolymer stationary phase, 0.25-mm i.d., 30-m length, and
134 0.25-mm thickness). Sixteen target PAHs were identified based on retention time and
135 qualified ions of the standards, including 16 EPA parent PAHs (p-PAHs). The method
136 detection limits (MDLs) ranged from 0.2 pg/mm² (Ace) to 0.6 pg/mm² (Incip).
137 Naphthalene-D8, acenaphthene-D10, phenanthrene-D10, chrysene-D12, and perylene
138 D12 were used for the analytical recovery check. All compounds were recovered with
139 a desorption recovery percentage of > 90%. Specific testing protocols have been
140 described previously (Han et al., 2018).

141 *2.5 Metal element analysis*

142 The concentration of metal elements in the samples was determined by a Thermo
143 X2 series inductively coupled plasma mass spectrometer (ICP-MS, Thermo, USA).
144 The metal elements analyzed in summer were Na, Mg, K, Ca, Ti, V, Cr, Mn, Fe, Co,
145 Ni, Cu, Zn, As, Cd, Pb, and Al, and those in winter were Al, Zn, V, Cr, Mn, Co, Ni, Cu,
146 As, Se, Sr, Cd, Ba, and Pb. The specific measurement method is based on the study of

147 Qi et al (2016).

148 *2.6. Data statistics method*

149 The source and formation process of EPFRs in PM with different particle sizes
150 were analyzed by nonnegative matrix factorization (NMF). The method is based on
151 the study of Chen et al (2016 and 2019e). Briefly, NMF analysis of EPFR data, metal
152 element contents, OC/EC contents and PAH contents was performed in MATLAB.
153 The version of the NMF toolbox is 1.4 (<https://sites.google.com/site/nmftool/>). Use
154 the gradient-based multiplication algorithm to find a solution from multiple random
155 starting values, and then use the first algorithm to find the final solution based on the
156 least squares effective set algorithm. To find a global solution, the model was run 100
157 times, each time with a different initial value. By comparing the 1-12 factor model
158 (Figure S4) with the residual of the spectral load, the 6 factor (summer) and 10 factor
159 (winter) NMF models were finally selected.

160 *2.7. EPFR exposure evaluation*

161 To assess the health risks of EPFRs, this study divided the respiratory system into
162 three parts based on the human breathing model: extrathoracic (ET) areas, including
163 the anterior nasal cavity, posterior nasal cavity, oral cavity, and throat;
164 tracheobronchial (TB) areas, including the trachea, bronchi, bronchioles, and terminal
165 bronchi; and pulmonary (P) areas, including the alveolar ducts and alveoli. Then, the
166 sedimentation rates of different particle sizes in different areas of the respiratory
167 system were determined to calculate the exposure risk of EPFRs. Here, the human
168 respiratory system particulate deposition model of Salma et al. (2002) was used, and
169 the specific data can be found in Table S3 and S4.

170 In addition, the daily inhaled concentration of EPFRs into the concentration of free
171 radicals in cigarettes were converted. The specific conversion method is as follows:

172
$$N_{cig} = (C_{EPFRs} \cdot V) / (RC_{cig} \cdot C_{tar}) \quad (1)$$

173 where N_{cig} represents the number of cigarettes (/person/day), C_{EPFRs} (spins/m³)

174 represents the atmospheric concentration of EPFRs in PM, and V represents the
175 amount of air inhaled by an adult per day (20 m³/day) (Environmental Protection
176 Agency, 1988). RC_{cig} (4.75×10^{16} spins/g) (Baum et al., 2003; Blakley et al., 2001;
177 Pryor et al., 1983; Valavanidis and Haralambous, 2001) indicates the concentration of
178 free radicals in cigarette tar, and C_{tar} (0.013 g/cig) indicates the amount of tar per
179 cigarette (Gehling et al., 2013).

180 **3. Results and discussion**

181 *3.1 Concentrations and types of EPFRs*

182 Figure 1a shows the concentration distribution of EPFRs with different particle
183 sizes in different seasons. EPFRs were detected in the particles of each tested size (the
184 EPR spectrum is shown in Figure S1), but their EPFR concentration levels were
185 different. In summer, the concentration of EPFRs in fine particles (particle size < 2.1
186 μm) is $(3.2 - 8.1) \times 10^{13}$ spins/m³, while the concentration of EPFRs in coarse
187 particles (particle size > 2.1 μm) is 1-2 orders of magnitude higher than that of fine
188 particles, reaching values of $(2.2 - 3.5) \times 10^{14}$ spins/m³. Winter samples show
189 completely different characteristics from summer samples. The concentration of
190 EPFRs in fine particles (particle size < 2.1 μm) is $(1.8 - 3.6) \times 10^{14}$ spins/m³, while the
191 concentration of EPFRs in coarse particles (particle size > 2.1 μm) is smaller than that
192 of fine particles, with values of $(1.0 - 2.1) \times 10^{14}$ spins/m³. In addition, the
193 concentration of EPFRs in particulates <0.43 μm in winter is very high, but it is very
194 low in summer. According to the results of factor analysis in part 3.2 of this study, this
195 particulate matter is related to combustion, which indicates that coal combustion in
196 winter may provide an important contribution to EPFRs. The EPFR concentration in
197 the fine PM of Linfen reported above is equivalent to that in the fine PM of Xi'an, but
198 it is ten times smaller than that in the fine PM of Beijing (Yang et al., 2017; Chen et
199 al., 2019b). Although the particle size distribution characteristics of EPFRs in winter
200 and summer are different, their concentration levels are similar, which indicates that
201 the EPFR concentration is not related to the PM concentration, but is determined by

202 the source characteristics. The source characteristics will be discussed in detail in the
203 factor analysis section.

204 Figure 1b shows the size-segregated contribution of EPFR concentration to the
205 overall. The contribution of fine PM in summer is only 14.9%, while in winter is
206 58.5%. The differences in EPFR concentrations with particle size may be related to
207 the source of EPFRs. For example, coarse particles are often associated with dust
208 sources and biogenic aerosols. In another study, the results have shown that dust
209 particles contain large amounts of metallic EPFRs and that they can be transported
210 over long distances (Chen et al., 2018b). EPFRs in fine particles may be mainly
211 derived from the combustion process, such as traffic sources, which are considered to
212 be an important source of EPFRs in atmospheric PM (Secrest et al., 2016; Chen et al.,
213 2019b). Due to winter heating in the Linfen area, the amount of coal burning increases
214 sharply in this season. In 2017, the nonclean heating (Coal-fired heating) rate of urban
215 heating energy structures in Linfen was 40% (data source: <http://www.linfen.gov.cn/>).
216 With the burning of coal, large amounts of EPFRs are produced, and in the summer,
217 EPFRs emitted by burning coal should be much less than those emitted in winter. This
218 can explain to a certain extent that the contribution of fine particles to summer EPFRs
219 is small, and the contribution of winter EPFRs is very large.

220 The *g*-factor obtained by using EPR to detect the sample is an important parameter
221 to distinguish the type of EPFR. It is the ratio of the electronic magnetic moment to its
222 angular momentum (Shaltout et al., 2015; Arangio et al., 2016). The *g*-factor of
223 carbon-centered persistent free radicals is generally less than 2.003, the *g*-factor of
224 oxygen-centered persistent radicals is generally greater than 2.004, and the *g* factor of
225 carbon-centered radicals with adjacent oxygen atoms is between 2.003 and 2.004
226 (Cruz et al., 2012). Figure 2a shows the *g*-factor distribution characteristics of EPFRs
227 in different particle sizes in summer and winter. The *g*-factor of fine particles and
228 coarse particles shows different characteristics. The *g*-factor of EPFRs in fine
229 particles (particle size < 2.1 μm) ranges from 2.0034 to 2.0037, which may be from
230 carbon-centered radicals with adjacent oxygen atoms. However, the *g*-factor of

231 EPFRs in coarse particles (particle size $> 2.1 \mu\text{m}$) is significantly less than that of fine
232 particles. The g -factor ranges from 2.0031 to 2.0033, indicating that EPFRs in coarse
233 particles are more carbon-centered than those in fine particles and are free of
234 heteroatoms. As shown in Figure 2b, the variation in the g -factor with concentration
235 in different season is different. The g -factor of summer PM showed a significant
236 decreasing trend with increasing concentration, while the g -factor of winter PM
237 showed a significant increasing trend with increasing EPFR concentration. Oyana et
238 al. (2017) studied EPFRs in the surface dust of leaves in the Memphis region of the
239 United States and found that the concentration of EPFRs was positively correlated
240 with the g -factor, and they believed that this was related to the source of EPFRs. This
241 phenomenon indicates that the sources and toxicity of EPFRs in winter and summer
242 are different.

243 *3.2 Factor Analysis of EPFRs*

244 To explore the possible sources and formation process of EPFRs in atmospheric
245 particles with different particle sizes, the NMF model was used to statistically analyze
246 EPFRs, carbon components, PAHs and metal elements in samples. The factors
247 obtained by the NMF model should reflect the different sources and generation
248 process of EPFRs. As shown in Figure 3a1 and b1, the three main contributing factors
249 to EPFRs in summer and winter are shown (see Figure S5, S6 for spectra of other
250 factors), which explain 94.5% and 83.8% of the EPFR concentrations in summer and
251 winter, respectively.

252 As shown in Figure 3a1, the typical spectral characteristic of summer factor 1 is
253 that it contains a small fraction of EC components and a large amount of OC
254 components, which indicates that combustion may be the source associated with this
255 factor. This factor has the highest loading of OC, especially WISOC; this fraction
256 mainly contains macromolecular organic substances, which are considered to
257 contribute to the main atmospheric particulate EPFRs and to be graphite oxide-like
258 substances (Chen et al., 2017; Chen et al., 2018a). Factor 2 is different from factor 1;
259 factor 2 is more likely the combustion of fossil fuels, while factor 1 should be other

260 combustion sources instead of burning coal, such as biomass combustion. The
261 generation process is similar to a hybrid process, which includes the graphite
262 oxide-like substances produced by incomplete combustion and the EPFRs formed by
263 some metal oxides. The typical characteristic of factor 3 is that the contribution of
264 metal elements is relatively high, while the contributions of EC and OC are very low.
265 Metal elements such as Al, Ti, Mn, and Co are typical crust elements, so this factor
266 may represent dust sources (Pan et al., 2013; Srivastava et al., 2007; Trapp et al.,
267 2010). The generation process of EPFRs. The others are likely derived from the
268 electroplating metallurgy industry (detailed in S1). As shown in Figure 3a2, the
269 contribution ratios of different factors show that the contribution ratios of factor 1 and
270 factor 2 are the highest, and factor 3 has only a small contribution, which indicates
271 that combustion sources, especially incomplete combustion, are the main sources of
272 EPFRs. The particle size distribution characteristics show that factor 1 is mainly
273 distributed in particles larger than 2.1 μm , while factor 2 is mainly distributed in
274 particles smaller than 0.43 μm .

275 The results of the factor analysis in winter are different from those in summer. As
276 shown in Figure 3b1, the typical spectral characteristic of factor 1 is that it contains a
277 large amount of OC components and As and Se. As and Se are trace elements of coal
278 combustion, as shown in many studies (Pan et al., 2013; Tian et al., 2010), so coal
279 combustion may be the source represented by this factor. From the generation process
280 viewpoint, the factor does not contain EC, but the content of OC is very high. In the
281 particles with a particle size of less than 3.3, which is mainly present in factor 1, the
282 concentration of OC is 16 times that of EC. So it may be mainly a graphite oxide-like
283 substance formed by the agglomeration of gaseous volatile organic compounds
284 (VOCs) generated during combustion. The typical spectral characteristics of factor 2
285 are due to a large amount of V and some Al, EC and OC. OC and EC are also typical
286 combustion products. V is rich in fossil fuels, especially fuel oil (Karna et al., 2011).
287 Therefore, traffic is the source represented by this factor. The factor contains crust
288 elements such as Al and Mn, so it is speculated that this factor may also include

289 traffic-related dust. The typical spectral characteristics of factor 3 are similar to those
290 of factor 1, and both contain relatively large amounts of As and Se, with the exception
291 that factor 3 contains a large amount of EC, indicating that it is also mainly derived
292 from incomplete combustion sources. The generation process of factor 3 should be
293 different from factor 1, which may include both the graphite oxide-like material
294 generated by fuel coking and the EPFRs generated by the metal oxide. The other
295 factors are mainly atmospheric dust and electroplating or metallurgy (see text S1). As
296 shown in Figure 3b2, factor 1 and factor 2 have the highest proportions, and factor 3
297 also has a small contribution, which indicates that winter is the same as summer, and
298 combustion sources are the main source of EPFRs. The particle size distribution
299 characteristics show that factor 1 is mainly distributed in particles with a size of 0.43 -
300 3.3 μm , while factor 2 is mainly distributed in particles larger than 3.3 μm .

301 Based on the above analysis, it can be found that combustion sources are the main
302 sources of EPFRs, and EPFRs from these sources are mainly graphite oxide-like
303 substances generated by the polymerization of organic matter or fuel coking. Studies
304 have shown that graphene oxide can cause cell damage by generating ROS (Seabra et
305 al., 2014). The surface of these compounds contains not only carbon atoms but also
306 some heteroatoms, which leads to disorder and the presence of defects in the
307 carbon-based structure (Lyu et al., 2018; Chen et al., 2017a; Mukome et al., 2013;
308 Keiluweit et al., 2010). The dust source is also a source of important EPFRs identified
309 in this study (with a contribution of approximately 10%). It was shown in the above
310 analysis that the concentration of EPFRs in coarse particles has a significant
311 correlation with the concentration of metallic elements, particularly crustal elements.
312 Some crustal elements, such as Al, and Fe, not only have their own paramagnetism
313 (Li et al., 2017; Yu et al., 2013; Nikitenko et al., 1992), but also interact with aromatic
314 compounds attached to the surface of the particles to produce a stable single-electron
315 structure.

316 3.3 *Health risk of EPFRs*

317 To evaluate the health risks of EPFRs in PM with different particle sizes, this study

evaluated the comprehensive exposure of EPFRs based on the deposition efficiency of PM with different particle sizes in different parts of the human body. The results are shown in Figure 4a. The ET region is the region with the highest EPFR exposure, while the TB and P regions have relatively close EPFRs. This result shows that atmospheric EPFRs are the most harmful to the health of the human upper respiratory tract. Comparing the EPFR exposure in different seasons indicates that the exposure risk in the ET area in summer is significantly higher than that in winter. This difference occurs because the concentration of EPFRs in coarse particles is much higher than that of fine particles in summer and the deposition efficiency of large particles in the ET area is generally higher. Fine particles are more efficiently deposited in the P region, leading to a higher risk of EPFR exposure in the P region in winter.

EPFRs were found early in cigarette tar and are considered one of the health risk factors in cigarette smoke (Lyons et al., 1960); thus, in this study, the exposure risks of EPFRs in particles deposited in the human body were converted to the equivalent number of cigarettes inhaled per adult per day. As shown in Figure 4b, the ET area is the most contaminated area, with an average equivalence of twenty-one cigarettes (twenty-five in summer and sixteen in winter). The average values for the TB area (nine in summer and seven in winter) and P area (seven in summer and ten in winter) are eight. The results indicate that EPFRs pose significant health risks to human lungs in both winter and summer. Other similar studies, such as a study of the average amount of EPFRs in $PM_{2.5}$ inhaled per person per day in Xi'an in 2017, found values equivalent to approximately 5 cigarettes (Chen et al., 2018a). Gehring and Dellinger (2013) found that EPFR exposure in $PM_{2.5}$ is equivalent to approximately 0.3 cigarettes per person per day in St. Joaquin County, the location with the worst air pollution in the United States. The average exposure risk of EPFRs in fine particles in the Linfen area (approximately 13 cigarettes) was higher than those in these two studies. However, these previous studies only studied the exposure risk of EPFRs in fine particles. The results of this study indicate that the health risks of EPFRs are

347 significantly increased when the particle size distribution of EPFRs is taken into
348 account. Therefore, it is important to study the source characteristics and generation
349 process of EPFRs with different particle sizes, which will be discussed in detail in the
350 following sections.

351 This study calculated the proportion of EPFRs with different particle sizes in
352 different parts of the respiratory system based on the deposition efficiency of particles
353 with different particle sizes. As shown in Figure 4c, in the ET region and the TB
354 region, coarse particles are the dominant component in summer and winter. In
355 particular, in summer, the proportion of EPFRs in coarse particles in these two regions
356 exceeds 95%. In the P region, there are significant differences between summer and
357 winter. The P region in summer is still dominated by coarse particles, but its
358 proportion is significantly lower than those in the ET and TB regions. In the P region
359 in winter, fine particles are the dominant component (approximately 70%). These
360 distribution characteristics indicate different sources of EPFRs in different regions. As
361 shown in Figure 4d, in summer, combustion sources are the main source of EPFRs in
362 the respiratory system. In winter, combustion and transportation sources contribute
363 equally in the EP and ET regions, while in the alveoli, combustion sources are the
364 main contributor. The ET region is the area with the highest risk of exposure to
365 EPFRs (21 cigarettes). The generation process of these EPFRs is mainly attributable
366 to graphene oxide-like substances. Studies have shown that graphene oxide is
367 cytotoxic (Harmon et al., 2018). In the alveoli, the contribution of combustion sources
368 is significantly increased (especially in winter). These EPFRs are mainly generated by
369 the action of metal oxides and organic substances. Studies have shown that such
370 EPFRs can generate ROS in the lung fluid environment (Khachatryan et al., 2011).

371 **4. Conclusions and environmental implications**

372 This study systematically reported the particle size distribution of EPFRs in
373 atmospheric PM in Linfen, which is one of the most polluted cities in China and is
374 located in a typical coal-burning area. In addition, this study evaluated the

375 comprehensive health risks of EPFRs, and reported possible sources and formation
376 process of atmospheric EPFRs with respect to different particle sizes. The following
377 main conclusions were obtained.

378 (1) This study found that EPFRs are widely present in atmospheric particles of
379 different particle sizes and exhibit significant particle size distribution characteristics.
380 The results of this study demonstrate that the concentrations and types of EPFRs are
381 dependent on particle size and season. This seasonal characteristic of EPFRs is mainly
382 affected by the PM sources, this result also indicates that the potential toxicity caused
383 by EPFRs may also vary with particle size and season.

384 (2) This study reported the possible source and formation process of atmospheric
385 EPFRs in different particle sizes. The results show that combustion is the most
386 important source of EPFRs (>70%) in both winter and summer PM samples in Linfen.
387 The graphite oxide-like process has the highest contribution (~70%) and is mainly
388 distributed in particles with a size of $> 0.43 \mu\text{m}$. These findings deepen our
389 understanding of the pollution characteristics of atmospheric EPFRs and are useful for
390 controlling EPFR generation in heavily polluted areas.

391 (3) This study assessed the exposure risk of EPFRs in different areas of the
392 respiratory system. The results show that the upper respiratory tract is the area with
393 the highest EPFR exposure. The trachea and alveoli are also exposed to EPFRs, and
394 the risk of exposure is equivalent to that of 8 cigarettes per person per day. Coarse
395 particles are the main source of EPFRs in the upper respiratory tract, while fine
396 particles are mainly involved in the alveoli.

397 Through this study, the results have shown that there are significant differences in
398 the concentrations and types of EPFRs in particles of different sizes and these
399 differences are due to the influence of the source and generation process. In the future,
400 assessments of the particle size distribution and the seasonality of EPFRs in
401 atmospheric PM should be considered. Health risks are another focus of this study. It
402 is found that the upper respiratory tract is the key exposure area of EPFRs, and the
403 traffic source is the main source of EPFRs in this area. This finding is significant for a

404 systematic assessment of the health risks of EPFRs. In view of the complexity and
405 diversity of the formation process of EPFRs in actual atmospheric particulates, the
406 relative contributions of EPFRs generated by different process and their associated
407 health risks should be more comprehensively studied in the future.

408 **Acknowledgments**

409 This work was supported by the National Natural Science Foundation of China
410 (grant numbers: 41877354, 41761144056 and 41703102), the Provincial Natural
411 Science Foundation of Jiangsu grant no. BK20180040), the Natural Science
412 Foundation of Shaanxi Province, China (2018JM4011) and the fund of Jiangsu
413 Innovation & Entrepreneurship Team.

414 **Appendix A. Supplementary data**

415 Appendix A contains additional details, including the EPR spectra of samples of
416 different particle sizes, correlations between EPFRs and carbon in particles of
417 different particle sizes, the results and errors of factor analysis, correlation analysis of
418 EPFRs with metallic elements, and EPFR exposure in different areas of the human
419 respiratory tract.

420 **Code/Data availability:** All data that support the findings of this study are
421 available in this article and its Supplement or from the corresponding author on
422 request.

423 **Author contribution:** Qingcai Chen: Research design, Methodology, Writing -
424 Original Draft, Writing - Review & Editing, Project administration, Funding
425 acquisition; Haoyao Sun: Investigation, Sample analysis, Writing - Original Draft,
426 Writing - Review & Editing, Methodology, Formal analysis; Wenhui Song:
427 Investigation, Sample collection, Chemical analysis; Fang Cao: Investigation, Sample
428 collection; Chongguo Tian: Investigation, Chemical analysis; Yan-Lin Zhang:
429 Conceptualization, Writing - Review & Editing, Formal analysis, Validation, Funding
430 acquisition.

431 **Competing interests:** The authors declare that they have no conflict of interest.

432 **References**

433 Arangio, A. M., Tong, H., Socorro, J., Pöschl, U., Shiraiwa, M., 2016. Quantification of
434 environmentally persistent free radicals and reactive oxygen species in atmospheric aerosol
435 particles. *Atmos. Chem. Phys.* 16 (20), 13105–13119.

436 Blakley, R. L., Henry, D. D., Smith, C. J., 2001. Lack of correlation between cigarette mainstream
437 smoke particulate phase radicals and hydroquinone yield. *Food. Chem. Toxicol.* 39 (4),
438 401–406.

439 Baum, S.L., Anderson, I.G.M., Baker, R.R., Murphy, D.M., Rowlands, C.C., 2003. Electron spin
440 resonance and spin trap investigation of free radicals in cigarette smoke: development of a
441 quantification procedure. *Anal. Chim. Acta* 481, 1–13.

442 Cruz, A.L.N.D., Cook, R.L., Lomnicki, S.M., Dellinger, B., 2012. Effect of low temperature
443 thermal treatment on soils contaminated with pentachlorophenol and environmentally
444 persistent free radicals. *Environ. Sci. Technol.* 46, 5971–5978.

445 Chen, N., Huang, Y., Hou, X., Ai, Z., Zhang, L., 2017. Photochemistry of hydrochar: Reactive
446 oxygen species generation and sulfadimidine degradation. *Environ. Sci. Technol.* 51 (19),
447 11278–11287.

448 Chen, Q., Mu, Z., Song, W., Wang, Y., Yang, Z., Zhang, L., Zhang, Y., 2019a. Size-resolved
449 characterization of the chromophores in atmospheric particulate matter in Linfen, China. *J.*
450 *Geophys. Res-Atmos.* 124, DIO: 10.1029/2019JD031149.

451 Chen, Q., Ikemori, F., Nakamura Y., Vodicka, P., Kawamura, K., Mochida, M., 2017. Structural
452 and light-absorption characteristics of complex water-insoluble organic mixtures in urban
453 submicron aerosols. *Environ. Sci. Technol.* 51(15), 8293–8303.

454 Chen, Q., Miyazaki, Y., Kawamura, K., Matsumoto, K., Coburn, S., Volkamer, R., Iwamoto, Y.,
455 Kagami, S., Deng, Y., Ogawa, S., 2016. Characterization of chromophoric water-soluble
456 organic matter in urban, forest, and marine aerosols by HR-ToF-AMS analysis and
457 excitation–emission matrix spectroscopy. *Environ. Sci. Technol.* 50 (19), 10351–10360.

458 Chen, Q., Sun, H., Mu, Z., Wang, Y., Li, Y., Zhang, L., Wang, M., Zhang, Z., 2019b.
459 Characteristics of environmentally persistent free radicals in PM2.5: Concentrations, species
460 and sources in Xi'an, Northwestern China. *Environ. Pollut.* 247, 18–26.

461 Chen, Q., Sun, H., Wang, J., Shan, M., Xue, J., Yang, X., Deng, M., Wang, Y., Zhang, L., 2019c.
462 Long-life type — The dominant fraction of EPFRs in combustion sources and ambient fine
463 particles in Xi'an. *Atmos. Environ.* 219, 117059.

464 Chen, Q., Sun, H., Wang, M., Mu, Z., Wang, Y., Li, Y., Wang, Y., Zhang, L., Zhang, Z., 2018a.
465 Dominant fraction of EPFRs from Nonsolvent-Extractable organic matter in fine particulates
466 over Xi'an, China. *Environ. Sci. Technol.* 52 (17), 9646–9655.

467 Chen, Q., Sun, H., Wang, M., Wang, Y., Zhang, L., Han, Y., 2019d. Environmentally persistent
468 free radical (EPFR) formation by visible-light illumination of the organic matter in
469 atmospheric particles. *Environ. Sci. Technol.* 53 (17), 10053–10061.

470 Chen, Q., Wang, M., Sun, H., Wang, X., Wang, Y., Li, Y., Zhang, L., Mu, Z., 2018b. Enhanced
471 health risks from exposure to environmentally persistent free radicals and the oxidative stress
472 of PM2.5 from asian dust storms in erenhot, Zhangbei and Jinan, China. *Environ. Int.* 123,
473 260–268.

474 Chen, Q., Wang, M., Wang, Y., Zhang, L., Li, Y., Han, Y., 2019e. Oxidative potential of
475 water-soluble matter associated with chromophoric substances in PM2.5 over Xi'an, China.
476 *Environ. Sci. Technol.* 53 (17), 10053–10061.

477 Chen, Q., Wang, M., Wang, Y., Zhang, L., Xue, J., Sun, H., Mu, Z., 2018c. Rapid determination of
478 environmentally persistent free radicals (EPFRs) in atmospheric particles with a quartz
479 sheet-based approach using electron paramagnetic resonance (EPR) spectroscopy. *Atmos.*
480 *Environ.* 184, 140–145.

481 Cheng, Y., He, K. B., Du, Z. Y., Engling, G., Liu, J. M., Ma, Y. L., Zheng, M., Weber, R. J., 2016.
482 The characteristics of brown carbon aerosol during winter in Beijing. *Atmos. Environ.* 127,
483 355–364.

484 Cormier, S. A., Lomnicki, S., Backes, W., Dellinger, B., 2006. Origin and health impacts of
485 emissions of toxic by-products and fine particles from combustion and thermal treatment of
486 hazardous wastes and materials. *Environ. Health. Perspect.* 114 (6), 810–817.

487 D'Arienzo, M., Gamba, L., Morazzoni, F., Cosentino, U., Creco, C., Lasagni, M., Pitea, D., Moro,
488 G., Cepek, C., Butera, V., Sicilia, E., Russo, N., Muñoz-García, A., Pavone, M., 2017.
489 Experimental and theoretical investigation on the catalytic generation of environmentally
490 persistent free radicals from benzene. *J. Phys. Chem. A.* 121 (17), 9381–9393.

491 Dellinger, B., Lomnicki, S., Khachatryan, L., Maskos, Z., Hall, R. W., Adounkpe, J., McFerrin, C.,
492 Truong, H., 2007. Formation and stabilization of persistent free radicals. *Proc. Combust. Inst.*
493 31 (1), 521–528.

494 Dellinger, B., Pryor, W. A., Cueto, R., Squadrito, G. L., Hegde, V., Deutsch, W. A., 2001. Role of
495 free radicals in the toxicity of airborne fine particulate matter. *Chem. Res. Toxicol.* 14 (10),
496 1371–1377.

497 Environmental Protection Agency, 1988. Recommendations for and Documentation of Biological
498 Values for Use in Risk Assessment. PB-179874. EPA 600/6-87/008. US Environmental
499 Protection Agency, Cincinnati, OH.

500 Finkelstein, E., Rosen, G. M., Rauckman, E. J., 1982. Production of hydroxyl radical by
501 decomposition of superoxide spin-trapped adducts. *Mol. Pharmacol.* 21 (2), 262–265.

502 Gehling, W., Dellinger, B., 2013. Environmentally persistent free radicals and their lifetimes in
503 PM2.5. *Environ. Sci. Technol.* 47 (15), 8172–8178.

504 Han, Y., Chen, Y. J., Saud, A., Feng, Y. L., Zhang, F., Song, W. H., Cao, F., Zhang, Y., Yang, X., Li,
505 J., Zhang, G., 2018. High time- and size-resolved measurements of PM and chemical
506 composition from coal combustion: Implications for the EC formation process. *Environ. Sci.*
507 *Technol.* 52 (11), 6676–6685.

508 Harmon, A. C., Hebert, V. Y., Cormier, S. A., Subramanian, B., Reed, J. R., Backes, W. L., Dugas,
509 T. R., 2018. Particulate matter containing environmentally persistent free radicals induces
510 AhR-dependent cytokine and reactive oxygen species production in human bronchial
511 epithelial cells. *Plos. One.* 13 (10), e0205412.

512 Karnaee, S., John, K., 2011. Source apportionment of fine particulate matter measured in an
513 industrialized coastal urban area of South Texas. *Atmos. Environ.* 45 (23), 3769–3776.

514 Keiluweit, M., Nico, P. S., Johnson, M. G., Kleber, M., 2010. Dynamic molecular structure of
515 plant biomass-derived black carbon (biochar). *Environ. Sci. Technol.* 44 (4), 1247–1253.

516 Khachatryan, L., Dellinger, B., 2011. Environmentally persistent free radicals (EPFRs)-2. Are free
517 hydroxyl radicals generated in aqueous solutions?. *Environ. Sci. Technol.* 45 (21),
518 9232–9239.

519 Li, G. L., Wu, S. Y., Kuang, M. Q., Hu, X. F., Xu, Y. Q., 2017. Studies on the g-factors of the
520 copper(II)-oxygen compounds. *J. Struct. Chem.* 58 (4), 700–705.

521 Lin, P., Hu, M., Deng, Z., Slanina, J., Han, S., Kondo, Y., Takegawa, N., Miyazaki, Y., Zhao, Y.,
522 Sugimoto, N., 2009. Seasonal and diurnal variations of organic carbon in PM2.5 in Beijing
523 and the estimation of secondary organic carbon. *J. Geophys. Res-Atmos.* 114, 1–41.

524 Liu, J., Bergin, M., Guo, H., King, L., Kotra, N., Edgerton, E., Weber, R. J., 2013. Size-resolved
525 measurements of brown carbon in water and methanol extracts and estimates of their
526 contribution to ambient fine-particle light absorption. *Atmos. Chem. Phys.* 13, 12389–12404.

527 Lomnicki, S., Truong, H., Vejerano, E., Delligner, B., 2008. Copper oxide-based model of
528 persistent free radical formation on combustion-derived particulate matter. *Environ. Sci.
529 Technol.* 42 (13), 4982–4988.

530 Lyu, L., Yu, G., Zhang, L., Hu, C., Sun, Y., 2018. 4-Phenoxyphenolfunctionalized reduced
531 graphene oxide nanosheets: A metal-free fenton-like catalyst for pollutant destruction.
532 *Environ. Sci. Technol.* 52 (2), 747–756.

533 Lyons, M.J., Spence, J.B., 1960. Environmental free radicals. *Br. J. Canc.* 14, 703–708

534 Mihara, T., Michihiro, M., 2011. Characterization of solvent-extractable organics in urban aerosols
535 based on mass spectrum analysis and hygroscopic growth measurement. *Environ. Sci.
536 Technol.* 45 (21), 9168–9174.

537 Mukome, F. N. D., Zhang, X., Silva, L. C. R., Six, J., Parikh, S. J., 2013. Use of Chemical and
538 physical characteristics to investigate trends in biochar feedstocks. *J. Agric. Food Chem.* 61
539 (9), 2196–2204.

540 Nikitenko, V. A., 1992. Luminescence and EPR of zinc oxide (review). *J. Appl. Spectrosc.* 57
541 (5–6), 783–798.

542 Oyana, T. J., Lomnicki, S. M., Guo, C., Cormier, S. A., 2017. A scalable field study protocol and
543 rationale for passive ambient air sampling: a spatial phytosampling for leaf data collection.
544 *Environ. Sci. Technol.* 51 (18), 10663–10673.

545 Pan, Y., Wang, Y., Sun, Y., Tian, S., Cheng, M., 2013. Size-resolved aerosol trace elements at a
546 rural mountainous site in Northern China: importance of regional transport. *Sci. total Environ.*
547 461–462, 761–771.

548 Patterson, M. C., Keilbart, N. D., Kiruri, L. W., Thibodeaux, C. A., Lomnicki, S., Kurtz, R. L.,
549 Poliakoff, E. D., Dellinger, B., Sprunger, P. T., 2013. EPFR formation from phenol adsorption
550 on Al2O3 and TiO2: EPR and EELS studies. *Chem. Phys.* 422, 277–282.

551 Pryor, W.A., Prier, D.G., Church, D.F., 1983. Electron-spin resonance study of mainstream and
552 sidestream cigarette smoke: nature of the free radicals in gas-phase smoke and in cigarette tar.
553 *Environ. Health Perspect.* 47, 345–355.

554 Pryor, W. A., 1986. Oxy-Radicals and Related Species: Their Formation, Lifetimes, and Reactions.
555 *Annu. Rev. Physiol.* 48, 657–667.

556 Qi, L., Zhang, Y., Ma, Y., Chen, M., Ge, X., Ma, Y., Zheng, J., Wang, Z., Li, S., 2016. Source
557 identification of trace elements in the atmosphere during the second Asian Youth Games in
558 Nanjing, China: Influence of control measures on air quality. *Atmos. Pollut. Res.* 7, 547–556.

559 Shaltout, A. A., Boman, J., Shehadeh, Z. F., Al-Malawi, D. A. R., Hemeda, O. M., Morsy, M. M.,
560 2015. Spectroscopic investigation of PM2.5, collected at industrial, residential and traffic
561 sites in taif. Saudi Arabia. *J. Aerosol. Sci.* 79, 97–108.

562 Srivastava, A., Jain, V. K., 2007. Size distribution and source identification of total suspended
563 particulate matter and associated heavy metals in the urban atmosphere of Delhi.
564 *Chemosphere.* 68(3), 579–589.

565 Strak, M., Janssen, N. A. H., Godri, K. J., Gosens, I., Mudway, I. S., Cassee, F. R., Lebret, E.,
566 Kelly F. J., Harrison, R. M., Brunekreef, B., Steenhof, M., Hoek, G., 2012. Respiratory health
567 effects of airborne particulate matter: The role of particle size, composition, and oxidative
568 potential—the RAPTES project. *Eviron. Health. Persp.* 120 (8), 1183–1189.

569 Salma, I., Balásházy, I., Winkler-Heil, R., Hofmann, W., Záray, G. 2002. Effect of particle mass
570 size distribution on the deposition of aerosols in the human respiratory tract. *J. Aerosol. Sci.*
571 33(1), 119-132.

572 Seabra A.B., Paula A.J., Lima R. D., Alves. O.L., Durán. N. 2014. Nanotoxicity of graphene and
573 graphene oxide. *Chem. Res. Toxicol.* 27 (2), 159–168.

574 Thevenot, P. T., Saravia, J., Jin, N., Giaimo, J. D., Chustz, R. E., Mahne, S., Kelley, M. A., Hebert,
575 V. Y., Dellinger, B., Dugas, T. R., Demayo, F. G., Cormier, S. A., 2013. Radical-containing
576 ultrafine particulate matter initiates epithelial-to-mesenchymal transitions in airway epithelial
577 cells. *Am. J. Respir. Cell. Mol. Biol.* 48 (2), 188–197.

578 Tian, H., Wang, Y., Xue, Z., Cheng, K., Qu, Y., Chai, F., Hao, J., 2010. Trend and characteristics of
579 atmospheric emissions of Hg, As, and Se from coal combustion in China, 1980–2007. *Atmos.*
580 *Chem. Phys.* 10 (23), 11905–11919.

581 Tong, H., Lakey, P. S. J., Arangio, A. M., Socorro, J., Shen, F., Lucas, K., Brune, W. H., Pöschl, U.,
582 Shiraiwa, M., 2018. Reactive oxygen species formed by secondary organic aerosols in water
583 and surrogate lung fluid. *Eviron. Sci. Technol.* 52 (20), 11642–11651.

584 Trapp, J. M., Millero, F. J., Prospero, J. M., 2010. Temporal variability of the elemental
585 composition of African dust measured in trade wind aerosols at Barbados and Miami. *Mar.*
586 *Chem.* 120 (1-4), 71–82.

587 Truong, H., Lomnicki, S., Dellinger, B., 2010. Potential for misidentification of environmentally
588 persistent free radicals as molecular pollutants in particulate matter. *Eviron. Sci. Technol.* 44
589 (6), 1933–1939.

590 Valavanidis, A., Fiotakis, K., Vlachogianni, T., 2008. Airborne particulate matter and human health:
591 toxicological assessment and importance of size and composition of particles for oxidative
592 damage and carcinogenic mechanisms. *J. Environ. Sci. Heal. C.* 26 (4), 339–362.

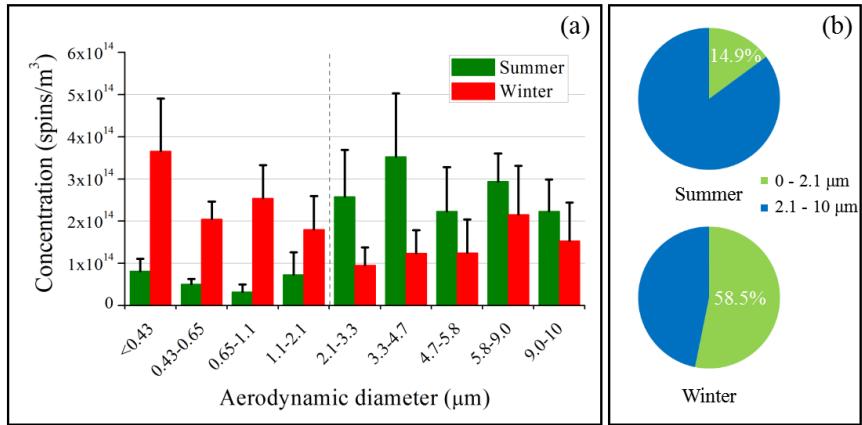
593 Vejerano, E. P., Rao, G., Khachatryan, L., Cormier, S. A., Lomnicki, S., 2018. Environmentally
594 persistent free radicals: Insights on a new class of pollutants. *Eviron. Sci. Technol.* 52 (5),
595 2468–2481.

596 Vejerano, E., Lomnicki, S. M., Dellinger, B., 2012a. Formation and stabilization of
597 combustion-generated, environmentally persistent radicals on Ni(II)O supported on a silica
598 surface. *Eviron. Sci. Technol.* 46 (17), 9406–9411.

599 Vejerano, E., Lomnicki, S., Dellinger, B., 2011. Formation and stabilization of
600 combustion-generated environmentally persistent free radicals on an Fe(III)2O3/silica surface.
601 *Eviron. Sci. Technol.* 45 (2), 589–594.

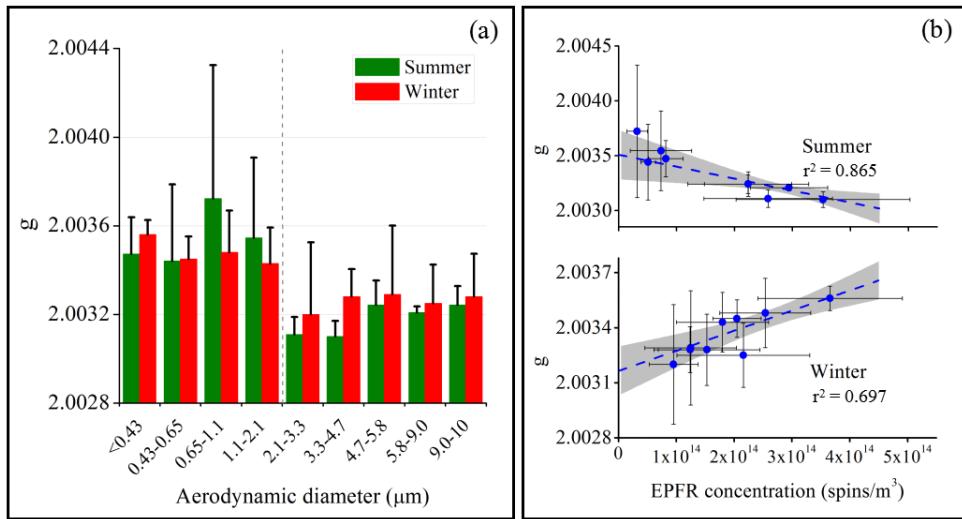
602 Valavanidis, A., Haralambous, E., 2001. A comparative study by electron paramagnetic resonance
603 of free radical species in the mainstream and sidestream smoke of cigarettes with
604 conventional acetate filters and 'bio-filters. *Redox. Rep.* 6, 161–171.

605 Vejerano, E., Lomnicki, S., Dellinger, B., 2010. Formation and stabilization of
606 combustion-generated environmentally persistent free radicals on an Fe(III) 2O3/silica
607 surface. *Environ. Sci. Technol.* 45 (2), 589–594.

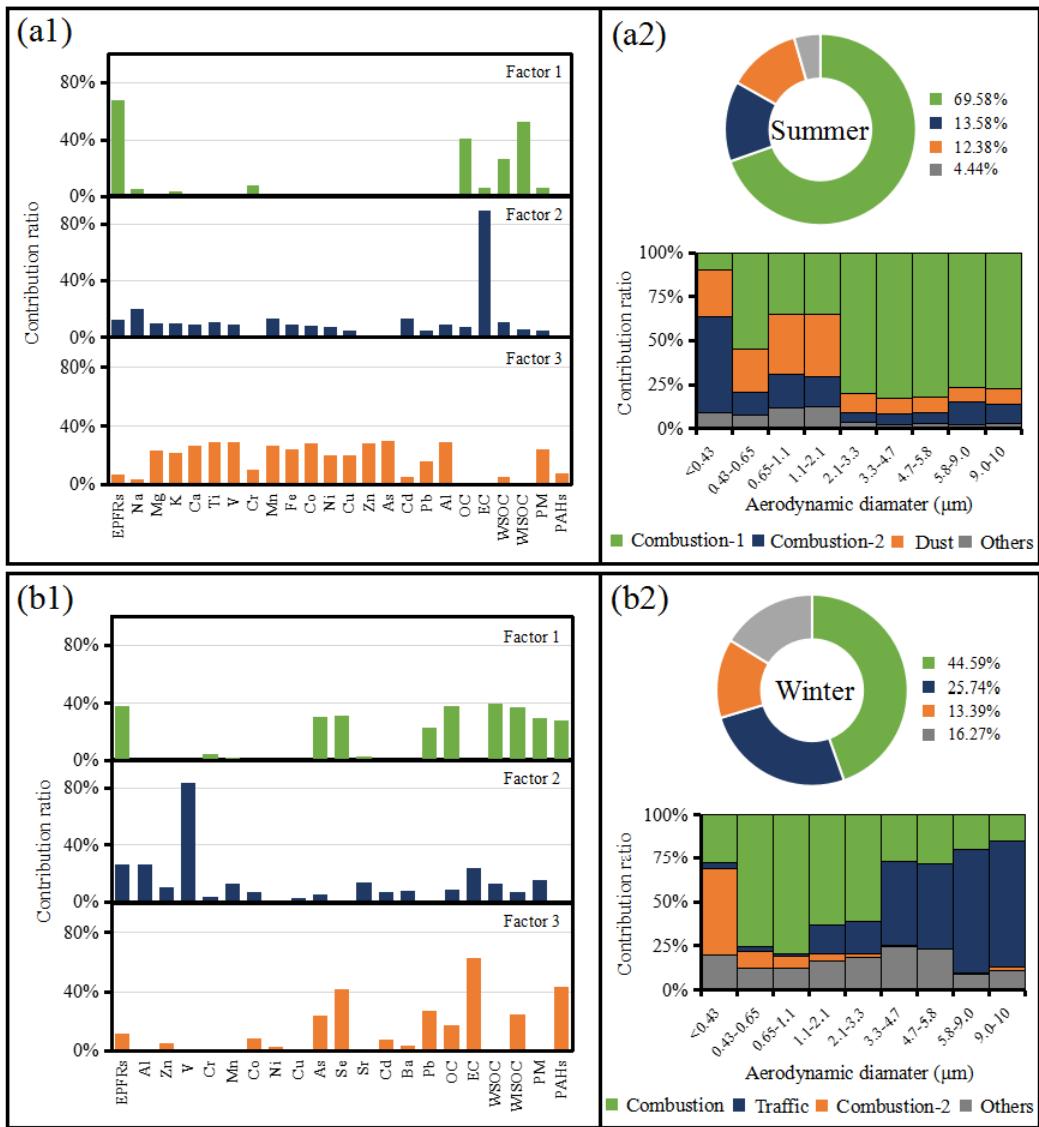

608 Vejerano, E., Lomnicki, S., Dellinger, B., 2012b. Lifetime of combustion-generated
609 environmentally persistent free radicals on Zn(II)O and other transition metal oxides. *J.*
610 *Environ. Monit.* 14 (10), 2803–2806.

611 Wang, P., Pan, B., Li, H., Huang, Y., Dong, X., Fang, A., Liu, L., Wu, Min., Xing, B., 2018. The
612 overlooked occurrence of environmentally persistent free radicals in an area with low-rank
613 coal burning, Xuanwei, China. *Environ. Sci. Technol.* 52 (3), 1054–1061.

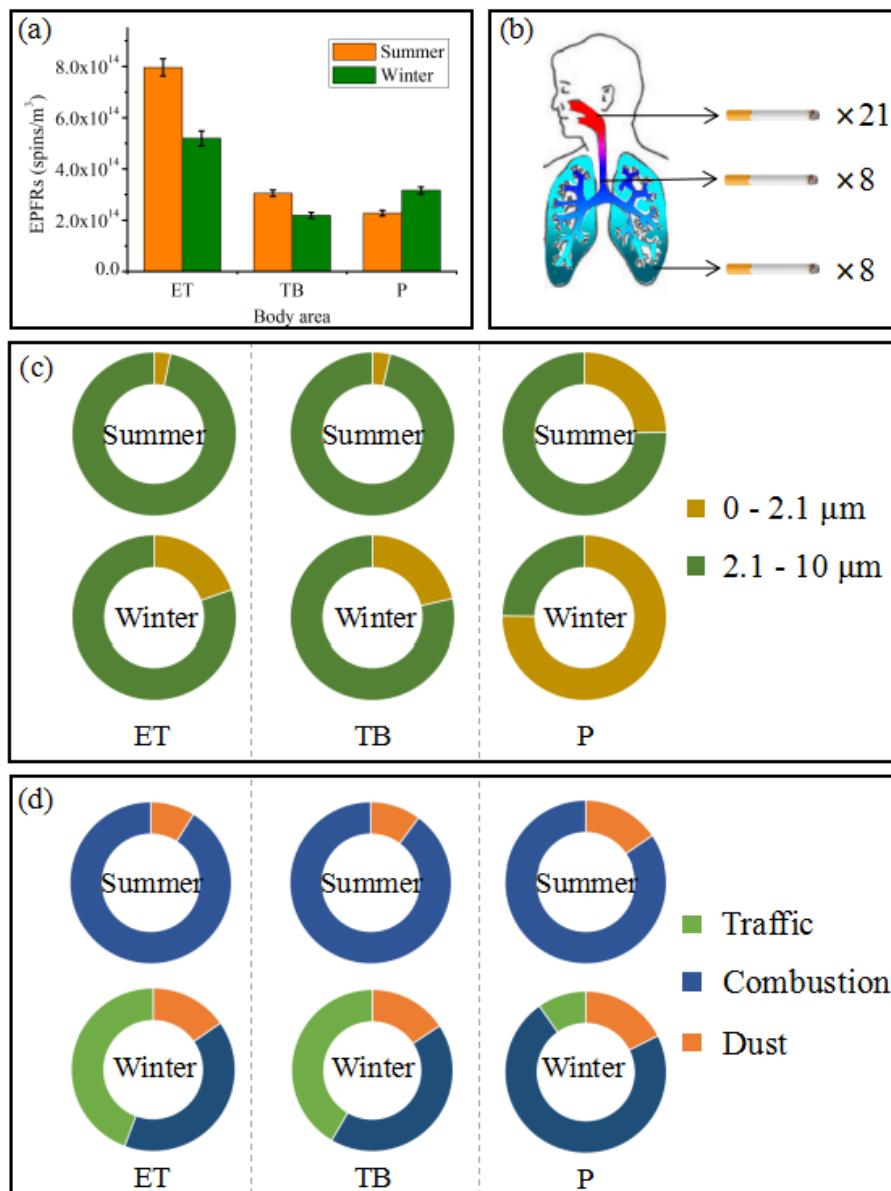
614 Wang, Y., Li, S., Wang, M., Sun, H., Mu, Z., Zhang, L., Li, Y., Chen, Q., 2019. Source
615 apportionment of environmentally persistent free radicals (EPFRs) in PM2.5 over Xi'an,
616 China. *Sci. Total. Environ.* 689, 193–202.


617 Yang, L., Liu, G., Zheng, M., Jin, R., Zhu, Q., Zhao, Y., Wu, X., Yang, X., 2017. Highly elevated
618 levels and particle-size distributions of environmentally persistent free radicals in
619 haze-associated atmosphere. *Environ. Sci. Technol.* 51 (14), 7936–7944.

620 Yu, T., Wang, J., Shen, M., Li, W., 2013. NH₃-SCR over Cu/SAPO-34 catalysts with various acid
621 contents and low Cu loading. *Catal. Sci. Technol.* 3 (12), 3234–3241.


622

623 Figure 1. The concentration of EPFRs in PM with different particle sizes. (a) Atmospheric
 624 concentrations of EPFRs in different particle sizes in summer and winter. (b) The relative
 625 contribution of fine particles and coarse particles to the total EPFR concentration.


626

627 Figure 2. A *g*-factor comparison. (a) Comparison of *g*-factors of EPFRs in different particle sizes
 628 in different seasons. (b) Correlation analysis of *g*-factors and concentrations of EPFRs in summer
 629 and winter PM. The gray areas in the figure represent 95% confidence intervals.

630

631 Figure 3. Factor analysis of EPFRs in different particle sizes in different seasons. (a1) and (b1)
 632 represent the results of factor analysis for summer and winter, respectively. (a2) and (b2) represent
 633 the contribution of various factors in summer and winter, respectively, to EPFRs and the relative
 634 contributions of each factor for different particle sizes.

635

636 Figure 4. Exposure risks to EPFRs. (a) EPFR exposure in the ET, TB, and P regions. (b) Cigarette
 637 exposure to EPFRs in the human respiratory system. (c) Exposure ratio of EPFRs with different
 638 particle sizes in different areas of the respiratory system. (d) Contribution of EPFRs from different
 639 sources to different areas of the respiratory system.