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Abstract: Environmentally persistent free radicals (EPFRs) are a new type of
substance with potential health risks. EPFRs are widely present in atmospheric
particulates, but there is a limited understanding of the size-resolved health risks of
these radicals. This study reports the exposure risks and source of EPFRS in
atmospheric particulate matter (PM) of different particle sizes (<10 um) in Linfen, a
typical coal-burning city in China. The type of EPFRs in fine particles (< 2.1 um) is
different from that in coarse particles (2.1-10 um) in both winter and summer.
However, the EPFR concentration is higher in coarse particles than in fine particles in
summer, and the opposite trend is found in winter. In both seasons, combustion
sources are the main sources of EPFRs with coal combustion as the major contributor
in winter, while other fuel combustions are the major source in summer. Dust
contributes part of the EPFRs and it is mainly present in coarse particles in winter and
the opposite in summer. The upper respiratory tract was found to be the area with the
highest risk of exposure to EPFRs of the studied aerosols, with an exposure equivalent
to that of approximately 21 cigarettes per person per day. Alveolar exposure to EPFRS
is equivalent to 8 cigarettes per person per day, with combustion sources contributing
the most to EPFRs in the alveoli. This study helps us to better understand the potential

health risks of atmospheric PM with different particle sizes.

Key words: EPFRs; particle size distribution; source; generation process
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1. Introduction

Free radicals are atoms or groups containing unpaired electrons, such as hydroxyl
radicals and superoxide radicals, and they usually have strong chemical reactivity and
short lifetimes (Pryor et al.,, 1986; Finkelstein., 1982). Free radicals with long
lifetimes (months or even years) in the environment are currently called
environmentally persistent free radicals (EPFRs), which have received much attention
in recent years as new environmentally hazardous substances (Vejerano et al., 2018;
Gehling, 2013; Chen et al., 2019c). EPFRs can be used as an active intermediate to
catalyze the production of reactive oxygen species (ROS) by oxygen molecules, thus
endangering human health (D’Arienzo et al., 2017; Thevenot et al., 2013; Harmon et
al., 2018; Blakley et al., 2001; Khachatryan et al., 2011). Studies have found that
EPFRs are present in different environmental media, such as water and soil, and even
in the atmosphere (Dellinger et al., 2001; Truong et al., 2010; Vejerano et al., 2012).

A number of studies have investigated the occurrences, sources and formation
process of EPFRs in atmospheric particulates in different regions. For example, in the
studies of Rostock in Germany, Taif in Saudi Arabia and Xuanwei in China, the
average concentration of EPFRs in atmospheric particulate matter (PM) was reported
to be in the range of ~ 10® - 10 spins/g (Wang et al., 2018; Arangio et al., 2016;
Shaltout et al., 2015). Atmospheric EPFRs are mainly carbon-centered radicals with
adjacent oxygen atoms (Gehling et al., 2013). EPFRs of different lifetimes are present
in atmospheric PM, with only a few hours for short-lifetime EPFRs and several years
for long-lifetime EPFRs that show no signs of decay (Gehling et al., 2013; Chen et al.,
2019c). Most studies indicate that sources of transportation and combustion may be
the primary EPFR sources in atmospheric PM (Wang et al., 2018; Yang et al., 2017;
Chen et al., 2019b). Chen et al. (2018b and 2019b) found that strong atmospheric
photochemical effects in summer and dust particles may also be important sources of
EPFRs. The process of electron transfer and stabilization between the surface of metal

oxides (such as iron, copper, zinc and nickel) and substituted aromatic molecules
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under high temperatures is considered to be the main process for the formation of
EPFRs in atmospheric particles (Truong., 2010; Vejerano et al., 2012a; Patterson et al.,
2013; Vejerano., 2010; Vejerano et al., 2012b). However, the study by Chen et al.
(2018a) suggests that EPFRs in atmospheric particulates are mainly derived from
graphite oxide-like substances produced during combustion. In addition to primary
sources such as combustion, secondary chemical processes in the atmosphere may
also be an important source of EPFRs in atmospheric PM (Chen et al. 2019b and
2019d; Tong et al., 2018).

Different particle sizes of atmospheric PM pose different health risks to humans,
depending on the deposition efficiency of the particles and the chemical composition
and concentrations of hazardous substances they contain (Strak et al., 2012;
Valavanidis et al., 2008). Among various hazardous substances, EPFRs may also be
involved in the toxicity of atmospheric particulates. Yang et al. (2017) studied the the
EPFRs that are extractable by dichloromethane in different particle sizes in Beijing in
winter and found that the concentration of EPFRs was the highest in particles with
sizes < 1 um. Arangio et al. (2016) found that the concentration of EPFRs in 180 nm
particles was the highest in the 56 nm - 1.8 um particle size range. Although several
studies have examined the particle size distribution of EPFRS, systematic studies have
not been conducted on the formation process, source and exposure assessment of
EPFRs in atmospheric particles with different particle sizes.

This study takes Linfen as an example. Linfen is one of the cities in China with
the most serious air pollution and is a typical coal-burning city. The particle size
distribution of EPFRs in atmospheric PM in this region was studied by EPR
spectrometry. The effects of particle size and season on the source, formation process,
and health risk of EPFRs were revealed. In particular, the comprehensive health risks
of EPFRs were evaluated, and it was found that the upper respiratory tract is the area
with the highest risk of EPFRs exposure, which is equivalent to twenty-one cigarettes
per person per day. This study is of great significance for understanding the source

and formation process of EPFRs in atmospheric particulates as well as for health risk
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assessments.

2. Experimental section

2.1 Sample collection

The sampling site for this study is located in Hongdong (3623, 111<40'E) in
Shanxi, China. To collect atmospheric particles of different sizes (0-10 um), this study
used a Thermo-Anderson Mark Il sampler to collect aerosol samples of 9 sizes. The
samples were collected on a prebaked quartz filter (450 <C, 4.5 hours), and the
sampling dates were as follows: in winter, January 26 to February 4, 2017, n = 10; and
in summer, July 31 to August 24, 2017, n = 12. The samples were placed in a -20 C

refrigerator prior to analysis.
2.2 EPFR analysis

The EPR spectrometer (MS5000, Freiberg, Germany) is used to detect EPFRs in
atmospheric samples. Cut the sample filter into thin strips (5 mm <28 mm), and put it
into the sample tank of the quartz tissue cell (the size of the sample tank is 10 mm x
30 mm)., Then the quartz tissue cell with attached filter sample was placed in a
resonant cavity and analyzed by an EPR spectrometer. The detection parameters were
magnetic field strength, 335 - 342 mT, detection time, 60 s; modulation amplitude,
0.20 mT; number of detections, 1; and microwave intensity, 8.0 mW. Specific testing

protocols have been described previously (Chen et al., 2018c).
2.3 Carbon composition analysis

The contents of organic carbon (OC) and elemental carbon (EC) in the filter
samples were analyzed using a semicontinuous OC/EC analyzer (Model 4, Sunset Lab.
Inc., Oregon, USA) with a NIOSH 5040 detection protocol (Lin et al., 2009).

The water-soluble organic carbon (WSOC) concentration was analyzed using an
automatic TOC-LCPH analyzer (Shimadzu, Japan). The WSOC extraction was

performed with ultrapure water under ultrasonication for 15 minutes, and all WSOC
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concentrations were blank corrected. The concentration of OC in the MSM
(Methanol-soluble materials) was calculated as the difference between the OC and
WSOC (Water-soluble organic carbon) concentrations. This calculation assumes that
all water-insoluble organic carbon (WISOC) in the aerosol can be extracted with
MeOH, and the rationality of this assumption has been verified elsewhere (Mihara et

al., 2011; Liu et al., 2013; Cheng et al., 2016; Chen et al., 2019a).
2.4 PAH analysis

PAHs were detected using gas chromatography/mass spectrometry (GC/MS) on a
GC7890B/MS5977A (Agilent Technologies, Clara, CA). Quartz-fiber filter samples
(8 mm in diameter) were cut from each 25-mm quartz-fiber filter substrates used on
the ELPI impactor stages using a stainless-steel round punch over a clean glass dish
and loaded into the TD glass tube. Next, the TD glass tube was heated to 310 <C at a
rate of 12 <T/min and thermally desorbed at 310 <C for 3 min. The desorbed organic
compounds were trapped on the head of a GC-column (DB-5MS: 5% diphenyl-95%
dimethyl siloxane copolymer stationary phase, 0.25-mm i.d., 30-m length, and
0.25-mm thickness). Sixteen target PAHs were identified based on retention time and
qualified ions of the standards, including 16 EPA parent PAHs (p-PAHSs). The method
detection limits (MDLs) ranged from 0.2 pg/mm2 (Ace) to 0.6 pg/mm2 (Incdp).
Naphthalene-D8, acenaphthene-D10, phenanthrene-D10, chrysene-D12, and perylene
D12 were used for the analytical recovery check. All compounds were recovered with
a desorption recovery percentage of > 90%. Specific testing protocols have been

described previously (Han et al., 2018).
2.5 Metal element analysis

The concentration of metal elements in the samples was determined by a Thermo
X2 series inductively coupled plasma mass spectrometer (ICP-MS, Thermo, USA).
The metal elements analyzed in summer were Na, Mg, K, Ca, Ti, V, Cr, Mn, Fe, Co,
Ni, Cu, Zn, As, Cd, Pb, and Al, and those in winter were Al, Zn, V, Cr, Mn, Co, Ni, Cu,

As, Se, Sr, Cd, Ba, and Pb. The specific measurement method is based on the study of
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Qi et al (2016).
2.6. Data statistics method

The source and formation process of EPFRs in PM with different particle sizes
were analyzed by nonnegative matrix factorization (NMF). The method is based on
the study of Chen et al (2016 and 2019e¢). Briefly, NMF analysis of EPFR data, metal
element contents, OC/EC contents and PAH contents was performed in MATLAB.
The version of the NMF toolbox is 1.4 (https://sites.google.com/site/nmftool/). Use
the gradient-based multiplication algorithm to find a solution from multiple random
starting values, and then use the first algorithm to find the final solution based on the
least squares effective set algorithm. To find a global solution, the model was run 100
times, each time with a different initial value. By comparing the 1-12 factor model
(Figure S4) with the residual of the spectral load, the 6 factor (summer) and 10 factor

(winter) NMF models were finally selected.
2.7. EPFR exposure evaluation

To assess the health risks of EPFRs, this study divided the respiratory system into
three parts based on the human breathing model: extrathoracic (ET) areas, including
the anterior nasal cavity, posterior nasal cavity, oral cavity, and throat;
tracheobronchial (TB) areas, including the trachea, bronchi, bronchioles, and terminal
bronchi; and pulmonary (P) areas, including the alveolar ducts and alveoli. Then, the
sedimentation rates of different particle sizes in different areas of the respiratory
system were determined to calculate the exposure risk of EPFRs. Here, the human
respiratory system particulate deposition model of Salma et al. (2002) was used, and
the specific data can be found in Table S3 and S4.

In addition, the daily inhaled concentration of EPFRs into the concentration of free

radicals in cigarettes were converted. The specific conversion method is as follows:
Ncig = (CEPFRS V)/(Rccig ‘Ctar) (1)

where Ngig represents the number of cigarettes (/person/day), Ceprrs (Spins/mq)
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represents the atmospheric concentration of EPFRs in PM, and V represents the
amount of air inhaled by an adult per day (20 m®day) (Environmental Protection
Agency, 1988). RC.ig (4.75 x 10 spins/g) (Baum et al., 2003; Blakley et al., 2001;
Pryor et al., 1983; Valavanidis and Haralambous, 2001) indicates the concentration of
free radicals in cigarette tar, and Cir (0.013 g/cig) indicates the amount of tar per

cigarette (Gehling et al., 2013).
3. Results and discussion

3.1 Concentrations and types of EPFRs

Figure la shows the concentration distribution of EPFRs with different particle
sizes in different seasons. EPFRs were detected in the particles of each tested size (the
EPR spectrum is shown in Figure S1), but their EPFR concentration levels were
different. In summer, the concentration of EPFRs in fine particles (particle size < 2.1
pum) is (3.2 - 8.1) x 108 spins/m®, while the concentration of EPFRs in coarse
particles (particle size > 2.1 um) is 1-2 orders of magnitude higher than that of fine
particles, reaching values of (2.2 - 3.5) x 10 spins/m®. Winter samples show
completely different characteristics from summer samples. The concentration of
EPFRs in fine particles (particle size < 2.1 um) is (1.8 - 3.6) x 10 spins/m?, while the
concentration of EPFRs in coarse particles (particle size > 2.1 um) is smaller than that
of fine particles, with values of (1.0 - 2.1) x 10 spins/m®. In addition, the
concentration of EPFRs in particulates <0.43 um in winter is very high, but it is very
low in summer. According to the results of factor analysis in part 3.2 of this study, this
particulate matter is related to combustion, which indicates that coal combustion in
winter may provide an important contribution to EPFRs. The EPFR concentration in
the fine PM of Linfen reported above is equivalent to that in the fine PM of Xi'an, but
it is ten times smaller than that in the fine PM of Beijing (Yang et al., 2017; Chen et
al., 2019b). Although the particle size distribution characteristics of EPFRs in winter
and summer are different, their concentration levels are similar, which indicates that

the EPFR concentration is not related to the PM concentration, but is determined by
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the source characteristics. The source characteristics will be discussed in detail in the
factor analysis section.

Figure 1b shows the size-segregated contribution of EPFR concentration to the
overall. The contribution of fine PM in summer is only 14.9%, while in winter is
58.5%. The differences in EPFR concentrations with particle size may be related to
the source of EPFRs. For example, coarse particles are often associated with dust
sources and biogenic aerosols. In another study, the results have shown that dust
particles contain large amounts of metallic EPFRs and that they can be transported
over long distances (Chen et al., 2018b). EPFRs in fine particles may be mainly
derived from the combustion process, such as traffic sources, which are considered to
be an important source of EPFRs in atmospheric PM (Secrest et al., 2016; Chen et al.,
2019Db). Due to winter heating in the Linfen area, the amount of coal burning increases
sharply in this season. In 2017, the nonclean heating (Coal-fired heating) rate of urban

heating energy structures in Linfen was 40% (data source: http://www.linfen.gov.cn/).

With the burning of coal, large amounts of EPFRs are produced, and in the summer,
EPFRs emitted by burning coal should be much less than those emitted in winter. This
can explain to a certain extent that the contribution of fine particles to summer EPFRs
is small, and the contribution of winter EPFRs is very large.

The g-factor obtained by using EPR to detect the sample is an important parameter
to distinguish the type of EPFR. It is the ratio of the electronic magnetic moment to its
angular momentum (Shaltout et al., 2015; Arangio et al., 2016). The g-factor of
carbon-centered persistent free radicals is generally less than 2.003, the g-factor of
oxygen-centered persistent radicals is generally greater than 2.004, and the g factor of
carbon-centered radicals with adjacent oxygen atoms is between 2.003 and 2.004
(Cruz et al., 2012). Figure 2a shows the g-factor distribution characteristics of EPFRs
in different particle sizes in summer and winter. The g-factor of fine particles and
coarse particles shows different characteristics. The g-factor of EPFRs in fine
particles (particle size < 2.1 um) ranges from 2.0034 to 2.0037, which may be from

carbon-centered radicals with adjacent oxygen atoms. However, the g-factor of
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EPFRs in coarse particles (particle size > 2.1 um) is significantly less than that of fine
particles. The g-factor ranges from 2.0031 to 2.0033, indicating that EPFRs in coarse
particles are more carbon-centered than those in fine particles and are free of
heteroatoms. As shown in Figure 2b, the variation in the g-factor with concentration
in different season is different. The g-factor of summer PM showed a significant
decreasing trend with increasing concentration, while the g-factor of winter PM
showed a significant increasing trend with increasing EPFR concentration. Oyana et
al. (2017) studied EPFRs in the surface dust of leaves in the Memphis region of the
United States and found that the concentration of EPFRs was positively correlated
with the g-factor, and they believed that this was related to the source of EPFRs. This
phenomenon indicates that the sources and toxicity of EPFRs in winter and summer

are different.
3.2 Factor Analysis of EPFRs

To explore the possible sources and formation process of EPFRs in atmospheric
particles with different particle sizes, the NMF model was used to statistically analyze
EPFRs, carbon components, PAHs and metal elements in samples. The factors
obtained by the NMF model should reflect the different sources and generation
process of EPFRs. As shown in Figure 3al and b1, the three main contributing factors
to EPFRs in summer and winter are shown (see Figure S5, S6 for spectra of other
factors), which explain 94.5% and 83.8% of the EPFR concentrations in summer and
winter, respectively.

As shown in Figure 3al, the typical spectral characteristic of summer factor 1 is
that it contains a small fraction of EC components and a large amount of OC
components, which indicates that combustion may be the source associated with this
factor. This factor has the highest loading of OC, especially WISOC,; this fraction
mainly contains macromolecular organic substances, which are considered to
contribute to the main atmospheric particulate EPFRs and to be graphite oxide-like
substances (Chen et al., 2017; Chen et al., 2018a). Factor 2 is different from factor 1;

factor 2 is more likely the combustion of fossil fuels, while factor 1 should be other
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combustion sources instead of burning coal, such as biomass combustion. The
generation process is similar to a hybrid process, which includes the graphite
oxide-like substances produced by incomplete combustion and the EPFRs formed by
some metal oxides. The typical characteristic of factor 3 is that the contribution of
metal elements is relatively high, while the contributions of EC and OC are very low.
Metal elements such as Al, Ti, Mn, and Co are typical crust elements, so this factor
may represent dust sources (Pan et al., 2013; Srivastava et al., 2007; Trapp et al.,
2010). The generation process of EPFRs. The others are likely derived from the
electroplating metallurgy industry (detailed in S1). As shown in Figure 3a2, the
contribution ratios of different factors show that the contribution ratios of factor 1 and
factor 2 are the highest, and factor 3 has only a small contribution, which indicates
that combustion sources, especially incomplete combustion, are the main sources of
EPFRs. The particle size distribution characteristics show that factor 1 is mainly
distributed in particles larger than 2.1 um, while factor 2 is mainly distributed in
particles smaller than 0.43 pm.

The results of the factor analysis in winter are different from those in summer. As
shown in Figure 3bl, the typical spectral characteristic of factor 1 is that it contains a
large amount of OC components and As and Se. As and Se are trace elements of coal
combustion, as shown in many studies (Pan et al., 2013; Tian et al., 2010), so coal
combustion may be the source represented by this factor. From the generation process
viewpoint, the factor does not contain EC, but the content of OC is very high. In the
particles with a particle size of less than 3.3, which is mainly present in factor 1, the
concentration of OC is 16 times that of EC. So it may be mainly a graphite oxide-like
substance formed by the agglomeration of gaseous volatile organic compounds
(VOCs) generated during combustion. The typical spectral characteristics of factor 2
are due to a large amount of V and some Al, EC and OC. OC and EC are also typical
combustion products. V is rich in fossil fuels, especially fuel oil (Karnae et al., 2011).
Therefore, traffic is the source represented by this factor. The factor contains crust

elements such as Al and Mn, so it is speculated that this factor may also include

12 / 26



289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

traffic-related dust. The typical spectral characteristics of factor 3 are similar to those
of factor 1, and both contain relatively large amounts of As and Se, with the exception
that factor 3 contains a large amount of EC, indicating that it is also mainly derived
from incomplete combustion sources. The generation process of factor 3 should be
different from factor 1, which may include both the graphite oxide-like material
generated by fuel coking and the EPFRs generated by the metal oxide. The other
factors are mainly atmospheric dust and electroplating or metallurgy (see text S1). As
shown in Figure 3b2, factor 1 and factor 2 have the highest proportions, and factor 3
also has a small contribution, which indicates that winter is the same as summer, and
combustion sources are the main source of EPFRs. The particle size distribution
characteristics show that factor 1 is mainly distributed in particles with a size of 0.43 -
3.3 um, while factor 2 is mainly distributed in particles lager than 3.3 um.

Based on the above analysis, it can be found that combustion sources are the main
sources of EPFRs, and EPFRs from these sources are mainly graphite oxide-like
substances generated by the polymerization of organic matter or fuel coking. Studies
have shown that graphene oxide can cause cell damage by generating ROS (Seabra et
al., 2014). The surface of these compounds contains not only carbon atoms but also
some heteroatoms, which leads to disorder and the presence of defects in the
carbon-based structure (Lyu et al., 2018; Chen et al., 2017a; Mukome et al., 2013;
Keiluweit et al., 2010). The dust source is also a source of important EPFRs identified
in this study (with a contribution of approximately 10%). It was shown in the above
analysis that the concentration of EPFRs in coarse particles has a significant
correlation with the concentration of metallic elements, particularly crustal elements.
Some crustal elements, such as Al, and Fe, not only have their own paramagnetism
(Lietal., 2017; Yu et al., 2013; Nikitenko et al., 1992), but also interact with aromatic
compounds attached to the surface of the particles to produce a stable single-electron

structure.
3.3 Health risk of EPFRs

To evaluate the health risks of EPFRs in PM with different particle sizes, this study
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evaluated the comprehensive exposure of EPFRs based on the deposition efficiency of
PM with different particle sizes in different parts of the human body. The results are
shown in Figure 4a. The ET region is the region with the highest EPFR exposure,
while the TB and P regions have relatively close EPFRs. This result shows that
atmospheric EPFRs are the most harmful to the health of the human upper respiratory
tract. Comparing the EPFR exposure in different seasons indicates that the exposure
risk in the ET area in summer is significantly higher than that in winter. This
difference occurs because the concentration of EPFRs in coarse particles is much
higher than that of fine particles in summer and the deposition efficiency of large
particles in the ET area is generally higher. Fine particles are more efficiently
deposited in the P region, leading to a higher risk of EPFR exposure in the P region in
winter.

EPFRs were found early in cigarette tar and are considered one of the health risk
factors in cigarette smoke (Lyons et al., 1960); thus, in this study, the exposure risks
of EPFRs in particles deposited in the human body were converted to the equivalent
number of cigarettes inhaled per adult per day. As shown in Figure 4b, the ET area is
the most contaminated area, with an average equivalence of twenty-one cigarettes
(twenty-five in summer and sixteen in winter). The average values for the TB area
(nine in summer and seven in winter) and P area (seven in summer and ten in winter)
are eight. The results indicate that EPFRs pose significant health risks to human lungs
in both winter and summer. Other similar studies, such as a study of the average
amount of EPFRs in PM25s inhaled per person per day in Xi‘an in 2017, found values
equivalent to approximately 5 cigarettes (Chen et al., 2018a). Gehring and Dellinger
(2013) found that EPFR exposure in PM2s is equivalent to approximately 0.3
cigarettes per person per day in St. Joaquin County, the location with the worst air
pollution in the United States. The average exposure risk of EPFRs in fine particles in
the Linfen area (approximately 13 cigarettes) was higher than those in these two
studies. However, these previous studies only studied the exposure risk of EPFRS in

fine particles. The results of this study indicate that the health risks of EPFRs are
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significantly increased when the particle size distribution of EPFRs is taken into
account. Therefore, it is important to study the source characteristics and generation
process of EPFRs with different particle sizes, which will be discussed in detail in the
following sections.

This study calculated the proportion of EPFRs with different particle sizes in
different parts of the respiratory system based on the deposition efficiency of particles
with different particle sizes. As shown in Figure 4c, in the ET region and the TB
region, coarse particles are the dominant component in summer and winter. In
particular, in summer, the proportion of EPFRs in coarse particles in these two regions
exceeds 95%. In the P region, there are significant differences between summer and
winter. The P region in summer is still dominated by coarse particles, but its
proportion is significantly lower than those in the ET and TB regions. In the P region
in winter, fine particles are the dominant component (approximately 70%). These
distribution characteristics indicate different sources of EPFRs in different regions. As
shown in Figure 4d, in summer, combustion sources are the main source of EPFRs in
the respiratory system. In winter, combustion and transportation sources contribute
equally in the EP and ET regions, while in the alveoli, combustion sources are the
main contributor. The ET region is the area with the highest risk of exposure to
EPFRs (21 cigarettes). The generation process of these EPFRs is mainly attributable
to graphene oxide-like substances. Studies have shown that graphene oxide is
cytotoxic (Harmon et al., 2018). In the alveoli, the contribution of combustion sources
is significantly increased (especially in winter). These EPFRs are mainly generated by
the action of metal oxides and organic substances. Studies have shown that such

EPFRs can generate ROS in the lung fluid environment (Khachatryan et al., 2011).

4. Conclusions and environmental implications

This study systematically reported the particle size distribution of EPFRs in
atmospheric PM in Linfen, which is one of the most polluted cities in China and is

located in a typical coal-burning area. In addition, this study evaluated the
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comprehensive health risks of EPFRs, and reported possible sources and formation
process of atmospheric EPFRs with respect to different particle sizes. The following
main conclusions were obtained.

(1) This study found that EPFRs are widely present in atmospheric particles of
different particle sizes and exhibit significant particle size distribution characteristics.
The results of this study demonstrate that the concentrations and types of EPFRs are
dependent on particle size and season. This seasonal characteristic of EPFRs is mainly
affected by the PM sources, this result also indicates that the potential toxicity caused
by EPFRs may also vary with particle size and season.

(2) This study reported the possible source and formation process of atmospheric
EPFRs in different particle sizes. The results show that combustion is the most
important source of EPFRs (>70%) in both winter and summer PM samples in Linfen.
The graphite oxide-like process has the highest contribution (~70%) and is mainly
distributed in particles with a size of > 0.43 pum. These findings deepen our
understanding of the pollution characteristics of atmospheric EPFRs and are useful for
controlling EPFR generation in heavily polluted areas.

(3) This study assessed the exposure risk of EPFRs in different areas of the
respiratory system. The results show that the upper respiratory tract is the area with
the highest EPFR exposure. The trachea and alveoli are also exposed to EPFRs, and
the risk of exposure is equivalent to that of 8 cigarettes per person per day. Coarse
particles are the main source of EPFRs in the upper respiratory tract, while fine
particles are mainly involved in the alveoli.

Through this study, the results have shown that there are significant differences in
the concentrations and types of EPFRs in particles of different sizes and these
differences are due to the influence of the source and generation process. In the future,
assessments of the particle size distribution and the seasonality of EPFRs in
atmospheric PM should be considered. Health risks are another focus of this study. It
is found that the upper respiratory tract is the key exposure area of EPFRs, and the

traffic source is the main source of EPFRs in this area. This finding is significant for a
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systematic assessment of the health risks of EPFRs. In view of the complexity and
diversity of the formation process of EPFRs in actual atmospheric particulates, the
relative contributions of EPFRs generated by different process and their associated

health risks should be more comprehensively studied in the future.
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623  Figure 1. The concentration of EPFRs in PM with different particle sizes. (a) Atmospheric
624  concentrations of EPFRs in different particle sizes in summer and winter. (b) The relative

625  contribution of fine particles and coarse particles to the total EPFR concentration.
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627  Figure 2. A g-factor comparison. (a) Comparison of g-factors of EPFRs in different particle sizes
628 in different seasons. (b) Correlation analysis of g-factors and concentrations of EPFRs in summer

629  and winter PM. The gray areas in the figure represent 95% confidence intervals.
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630

631  Figure 3. Factor analysis of EPFRs in different particle sizes in different seasons. (al) and (bl)
632  represent the results of factor analysis for summer and winter, respectively. (a2) and (b2) represent
633 the contribution of various factors in summer and winter, respectively, to EPFRs and the relative

634  contributions of each factor for different particle sizes.
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635
636  Figure 4. Exposure risks to EPFRs. (a) EPFR exposure in the ET, TB, and P regions. (b) Cigarette

637  exposure to EPFRs in the human respiratory system. (c) Exposure ratio of EPFRs with different
638  particle sizes in different areas of the respiratory system. (d) Contribution of EPFRs from different

639  sources to different areas of the respiratory system.
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