- **Supplemental Material for "Biomass-burning-derived**
- 2 particles from a wide variety of fuels: Part 2: Effects of
- 3 photochemical aging on particle optical and chemical

4 properties"

- 5 Christopher D. Cappa^{1,2,*}, Christopher Y. Lim³, David H. Hagan³, Matthew Coggon^{4,5,7}, Abigail
- 6 Koss^{4,5}[^], Kanako Sekimoto^{4,5,6}, Joost de Gouw^{5,7}, Timothy B. Onasch⁸, Carsten Warneke,^{4,5} Jesse
- 7 H. Kroll³
- ¹ Department of Civil and Environmental Engineering, University of California, Davis, CA, USA
 95616
- ² Atmospheric Sciences Graduate Group, University of California, Davis, CA, USA 95616
- ³ Department of Civil and Environmental Engineering, Massachusetts Institute of Technology,
- 12 Cambridge, MA, USA
- ⁴ NOAA Earth System Research Laboratory (ESRL), Chemical Sciences Division, Boulder, CO
 80305, USA
- ⁵ Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder,
 Boulder, CO 80309, USA
- ⁶ Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa 236 0027, Japan
- ⁷ Department of Chemistry, University of Colorado Boulder, Boulder, CO 80302, USA
- 20 ⁸ Aerodyne Research, Billerica, MA 01821, USA
- 21 [^] Now at Department of Civil and Environmental Engineering, Massachusetts Institute of
- 22 Technology, Cambridge, MA, USA
- 23
- ^{*} To whom correspondence should be addressed: cdcappa@ucdavis.edu
- 25 26

27 **1** Supplementary Material

28 1.1 Model parameter cross-sensitivities and uncertainties

The SOA yields are most sensitive to the initial [NMOG]/[OA] ratio. When the [NMOG]/[OA] ratio is assumed larger, the necessary SOA yields are smaller. There is an approximately inverse relationship between the assumed initial [NMOG] and the SOA yield for each NMOG type (fast, slow, very slow). However, the influence of multi-generational impacts the relationship to some extent.

34 The O:C ratios for the different SOA types are weakly dependent on the relative abundances 35 specified for the different types. There is also a weak cross-sensitivity between the O:C values 36 specified for the different SOA types, especially between the fast and slow-forming SOA. In 37 general, if the O:C_{fast} is increased, the O:C_{slow} must be decreased. However, only relatively minor 38 variations in the O:C of each type is allowable to obtain reasonable model-measurement 39 agreement, especially at short photochemical ages. The f_{60} values for the different SOA types 40 exhibit similar cross-sensitivities as the O:C values. However, they are generally less sensitive, in 41 comparison, because the f_{60} values are so similar for all SOA types.

The model k_{OH} values also exhibit some dependence on the assumed initial [NMOG]/[OA] and yields. In general, if $k_{OH,fast}$ is decreased the $k_{OH,slow}$ must be increased. However, the $k_{OH,fast}$ is reasonably well-constrained by the rapid rise in the [OA]/[rBC] and O:C for all particle classes, and by the increase in the $MAC_{BrC,405nm}$ that is observed at very short photochemical ages for some of the particle classes. The assumed k_{OH} for multi-generational aging is most sensitive to the choice of the $k_{OH,slow}$, with the two generally exhibiting an inverse relationship.

48 It is difficult to estimate a comprehensive uncertainty on these values; we qualitatively estimate 49 uncertainties based on the model sensitivity to changing these parameter values. If the MAC_{fast} 50 were as small as the values for the other SOA types the modeled MAC_{BrC} would decline much too 51 rapidly compared to the observations. Also, it is necessary that the MAC_{fast} be greater than the 52 MAC_{BrC} of the primary OA for SSA class 5 and class 6 to reproduce the initial increase at short 53 aging times. However, if the MAC_{fast} were much larger than our estimate the model predicts an 54 initial increase in the MAC_{BrC} for the intermediate SSA classes 3 and 4, in contrast to the observations. We therefore estimate a uncertainty of $\pm 0.2 \text{ m}^2 \text{ g}^{-1}$ based on the model sensitivity to 55

variations in this parameter. The MAC_{slow} values are largely determined by the behavior at 56 57 intermediate equivalent ages, as this is where they have the largest fractional contributions; we estimate the uncertainty as $\pm 0.05 \text{ m}^2 \text{ g}^{-1}$. The *MAC*_{VS} is not especially well-constrained as it only 58 makes up a very small fraction of the OA mass. A value of $MACvs = 0.05 \text{ m}^2 \text{ s}^{-1}$ is used for 59 consistency with the MAC_{slow} , but a value of $MAC_{VS} = 0 \text{ m}^2 \text{ g}^{-1}$, i.e. non-absorbing, is not entirely 60 unreasonable. The MAC_{2G} and MAC_{het} values are primarily determined by the behavior at long 61 equivalent ages. The estimated uncertainty in MAC_{2G} is ± 0.05 m² g⁻¹ while the estimated 62 uncertainty in MAC_{het} is ± 0.025 m² g⁻¹. That the MAC_{het} is smaller than the MAC_{BrC} values for the 63 64 various SOA types indicates that over longer time the overall MACBrC will continue to decline until it reaches $0.05 \text{ m}^2 \text{ g}^{-1}$. 65

66

1.2 Supplemental Figures

- 72 Figure S1. Cartoon schematic of sampling into and from the mini chamber during FIREX.
- 73 Instrument names are given in

Figure S2. (a) Dependence of the observed E_{abs} 781 nm on the coating-to-rBC core mass ratio, *R*_{coat-rBC}. (b) Dependence of the E_{abs} at 781 nm on the [NR-PM]/[rBC] ratio. The observations

- have been binned according to either the *R*_{coat-rBC} or [NR-PM]/[rBC] ratio, shown as box-and-
- 79 whisker plots.
- 80

Equivalent Aging Time (days)
Equivalent Aging Time (days)
Equivalent Aging Time (days)
Figure S3. Relationship between [OA]/[BC] and the equivalent atmospheric aging time for each
SSA classification. Individual burns are shown as gray lines, and the average for each SSA class
as the colored line.

90 Figure S4. Relationship between $R_{\text{coat-rBC}}$ and the equivalent atmospheric aging time for each

SSA classification. Individual burns are shown as gray lines, and the average for each SSA class 93 as the colored line.

95 Equivalent Aging Time (days) Equivalent Aging Time (days) Equivalent Aging Time (days)
 96 Figure S5. Relationship between SSA at 405 nm and the equivalent atmospheric aging time for
 97 each SSA classification. Individual burns are shown as gray lines, and the average for each SSA
 98 class as the colored line.

100Equivalent Aging Time (days)Equivalent Aging Time (days)Equivalent Aging Time (days)101Figure S6. Relationship between the AAE405-532 and the equivalent atmospheric aging time for102each SSA classification. Individual burns are shown as gray lines, and the average for each SSA102elags of the colored line

- 103 class as the colored line.
- 104
- 105

107Equivalent Aging Time (days)Equivalent Aging Time (days)Equivalent Aging Time (days)108Figure S7. Relationship between the O:C atomic ratio at 405 nm and the equivalent atmospheric109aging time for each SSA classification. Individual burns are shown as gray lines, and the average110for each SSA class as the colored line.

114Equivalent Aging Time (days)Equivalent Aging Time (days)Equivalent Aging Time (days)115Figure S8. Relationship between the AMS f60 and the equivalent atmospheric aging time for

116 each SSA classification. Individual burns are shown as gray lines, and the average for each SSA 117 class as the colored line.

Equivalent Aging Time (days) Equivalent Aging Time (days) Equivalent Aging Time (days) Figure S9. Relationship between the MAC_{BrC} at 405 nm and the equivalent atmospheric aging

122 time for each SSA classification. Individual burns are shown as gray lines, and the average for 123 each SSA class as the colored line.

126Equivalent Aging Time (days)Equivalent Aging Time (days)Equivalent Aging Time (days)127Figure S10. Relationship between the AAE_{BrC} for the 405-532 nm pair and the equivalent128atmospheric aging time for each SSA classification. Individual burns are shown as gray lines,129and the average for each SSA class as the colored line. Top row, left-to-right: class 1-3. Bottom130row, left-to-right: class 4-6.

- the NMOG are shown ordered according to the overall average emission factors, and are colored by their MW. Data are from Koss et 141
- al. (2018). 142

Figure S13. Histogram of rate coefficients for the NMOG having MW > 50 amu, as measured by

147 Koss et al. (2018).

151 Time Since Lights On (mins)
 152 Figure S14. Normalized rBC concentration as a function of experiment time, averaged for each

153 SSA classification. Results for each experiment are shown in **Figure S15**.

155Time since lights on (mins)Time since lights on (mins)Time since lights on (mins)156Figure S15. Normalized rBC concentration as a function of experiment time, with individual157experiments shown as gray lines and the averages for each SSA classification as colored lines.158

Figure S16. Observed loss rate of refractory BC as a function of the coating-to-core mass ratio.

162 The data are fit using an exponential function, with $-d\log[rBC]/dt = -0.0424 - 0.172 \exp(-0.419 R_{coat,rBC})$.

168

Figure S17. Comparison between observations (solid lines) and model results when only

heterogeneous oxidation is included, i.e. no SOA (dashed lines). Results shown for values of the (a) MAC_{BrC}, (b) the [OA]/[rBC] ratio, (c) the O:C atomic ratio, and (d) the AMS f_{60} versus equivalent photochemical aging time (assuming [OH] = 1.5 x 10⁶ molecules cm⁻³), with results shown for each SSA class. The increase in the modeled [OA]/[rBC], despite there being no SOA

formation in this model formulation, results from faster loss of OA that is internally mixed with

- rBC compared with the OA that is externally mixed.
- 176
- 177
- 178

181Equivalent Aging Time (days)Equivalent Aging Time (days)Equivalent Aging Time (days)182Figure S18. Dependence of the organic nitrate-to-total OA ratio on equivalent aging time for the
different SSA classes. Individual burns are shown as gray lines, and the average for each SSA

184 class as the colored line. Top row, left-to-right: class 1-3. Bottom row, left-to-right: class 4-6.

187
 188
 189
 189
 189
 180
 180
 180
 180
 181
 181
 182
 183
 184
 185
 185
 186
 187
 187
 188
 189
 189
 180
 180
 180
 180
 190
 180
 180
 190
 180
 181
 190
 181
 182
 183
 184
 185
 185
 186
 187
 190
 187
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190
 190

1.3 Supplemental Tables

- **Table S1.** Fuel types used.

Fuel Types [*]	
bear grass	lodgepole pine, mixed lodgepole pine,
ceanothus	canopy
chaparral (chamise), canopy	lodgepole pine, litter
chaparral (manzanita), canopy	Peat, Kalimantan
	ponderosa pine,
Douglas fir, mixed	mixed
	ponderosa pine,
Douglas fir, canopy	canopy
Douglas fir, litter	ponderosa pine, litter
Douglas fir, rotten log	ponderosa pine, rotten
	log
Engelmann spruce, mixed	rice straw
Engelmann spruce, canopy	sagebrush
Engelmann spruce, duff	subalpine fir, mixed
Engelmann spuce, Fish Lake, canopy	subalpine fir, canopy
Excelsior	subalpine fir, duff
Excelsior (poplar)	subalpine fir, litter
jeffrey pine, duff	subalpine fir
juniper, canopy	untreated lumber
loblolly pine, litter	yak dung

*Further details on each fuel type, including the particular mix for mixedtype burns, elemental composition, and moisture content are available on the NOAA FIREX project website at

198 **Table S2.** Instruments sampling from the mini chamber.

Instrument	Property Measured
	Particles
UCD CRD-PAS	Light absorption and dry/humidified light extinction at 405 nm and 532 nm
PASS-3	Light absorption and scattering at 781 nm
CAPS-SSA	Light extinction and scattering at 630 nm
HR-ToF-AMS	Bulk particle non-refractory composition and concentration for PM ₁
SP-AMS	rBC-containing particle composition and concentration for PM ₁
SP2	rBC concentrations and size distributions
SEMS	Mobility size distributions (10-1200 nm)
	Gases
Ozone monitor	O ₃ concentrations
PTR-ToF-MS	Select non-methane organic gases
I ⁻ -CIMS	Select non-methane organic gases (not used here)
CO_2	CO ₂ concentrations
RH probe	Relative humidity

201 202

Table S3. Fuels by particle Class.

Class	Fuel	SSA range	Log([OA]/[BC])
			range
Class 1	Chaparral, canopy, litter (pine), building materials, excelsior	0.23-0.43	-0.52 - 0.38
Class 2	Manzanita, Sage, litter (fir)	0.43-0.60	0.18 - 0.61
Class 3	Pine, fir, litter, canopy, juniper	0.60-0.74	0.82 - 1.3
Class 4	Pine, fir, canopy, rotten log, ceonothos	0.74-0.87	0.92 - 1.74
Class 5	Canopy (pine), rice, bear grass, duff	0.87-0.93	1.49 - 2.16
Class 6	Rotten log, duff, peat, dung	0.93-1.00	2.63 - 2.02

Reference	Aging method/notes	Fuel type/burning notes
Martinsson et al.	Aging of smoke in oxidation flow reactor	Birch; Combustion in a natural-draft
(2015)	(potential aerosol mass reactor); $t_{OH} = 8.3$ days	conventional wood stove; likely class 1 to class 3 particles
Saleh et al. (2013)	Photochemical aging of smoke in 7 m ³	Pocosin pine and oak; combustion at
	chamber for $t_{OH} \sim a$ few hours; aging of nine likely $> aak$	Missoula fire lab; likely class 1
Zhong and Jang	Photochemical aging of smoke in a 104	Hickory hardwood; Smoldering
(2014)	m ³ outdoor chamber using natural	combustion; likely class 5
	sunlight; $t_{OH} = a$ few hours; continual	
Kumar at al	Characterization Photoshemical aging of smaller in an 8 m^3	Reachwood: combustion in a
(2018)	chamber; t_{OH} up to a day; Interpolate their	residential wood stove; likely class 1
	observations to 405 nm	
Sumlin et al.	Heterogeneous OH aging in an oxidation	Alaskan peak; smoldering; likely
(2017)	flow reactor (potential aerosol mass reactor); $t_{OH} = 1, 3.5, 4.5$ days	class 6
Wong et al. (2017)	Photolytic aging (300-400 nm) of water-	Cherry hardwood; Controlled
	soluble and water-insoluble (methanol)	pyrolysis; likely class 6, although
	extracts in a photoreactor; up to 130 h;	measurements of suspended particles
Lee et al. (2014)	Photolytic aging (275-390 nm) of	SOA produced from naphthalene +
()	aqueous extracts; photolysis of solutions	ОН
Fleming et al.	Photolytic aging (300-400 nm) of	Variety of fuels from FIREX,
(2020)	particles on filters; absorption by	comprising different species and
	individual chromophores or total particles	ecosystem components; range of
	measured	particle classes likely

206 **Table S4.** Summary of conditions for literature brown carbon aging experiments.

207

208

209

210 Fleming, L. T., Lin, P., Roberts, J. M., Selimovic, V., Yokelson, R., Laskin, J., Laskin, A., and

211 Nizkorodov, S. A.: Molecular composition and photochemical lifetimes of brown carbon

chromophores in biomass burning organic aerosol, Atmos. Chem. Phys., 20, 1105-1129,

213 <u>https://doi.org/10.5194/acp-20-1105-2020</u>, 2020.

214 Kumar, N. K., Corbin, J. C., Bruns, E. A., Massabó, D., Slowik, J. G., Drinovec, L., Močnik, G.,

215 Prati, P., Vlachou, A., Baltensperger, U., Gysel, M., El-Haddad, I., and Prévôt, A. S. H.:

216 Production of particulate brown carbon during atmospheric aging of wood-burning emissions,

217 Atmos. Chem. Phys., 2018, 17,843-817,861, <u>https://doi.org/10.5194/acp-18-17843-2018</u>, 2018.

218 Lee, H. J., Aiona, P. K., Laskin, A., Laskin, J., and Nizkorodov, S. A.: Effect of Solar Radiation

219 on the Optical Properties and Molecular Composition of Laboratory Proxies of Atmospheric

- 220 Brown Carbon, Environmental Science & Technology, 48, 10217-10226,
- 221 <u>https://doi.org/10.1021/es502515r</u>, 2014.
- 222 Martinsson, J., Eriksson, A. C., Nielsen, I. E., Malmborg, V. B., Ahlberg, E., Andersen, C.,
- Lindgren, R., Nyström, R., Nordin, E. Z., Brune, W. H., Svenningsson, B., Swietlicki, E.,
- 224 Boman, C., and Pagels, J. H.: Impacts of Combustion Conditions and Photochemical Processing
- 225 on the Light Absorption of Biomass Combustion Aerosol, Environmental Science &
- 226 Technology, 49, 14663-14671, <u>https://doi.org/10.1021/acs.est.5b03205</u>, 2015.
- 227 Saleh, R., Hennigan, C. J., McMeeking, G. R., Chuang, W. K., Robinson, E. S., Coe, H.,
- 228 Donahue, N. M., and Robinson, A. L.: Absorptivity of brown carbon in fresh and photo-
- chemically aged biomass-burning emissions, Atmospheric Chemistry and Physics, 13, 7683-
- 230 7693, <u>https://doi.org/10.5194/acp-13-7683-2013</u>, 2013.
- 231 Sumlin, B. J., Pandey, A., Walker, M. J., Pattison, R. S., Williams, B. J., and Chakrabarty, R. K.:
- 232 Atmospheric Photooxidation Diminishes Light Absorption by Primary Brown Carbon Aerosol
- from Biomass Burning, Environmental Science & Technology Letters, 4, 540-545,
- 234 <u>https://doi.org/10.1021/acs.estlett.7b00393</u>, 2017.
- 235 Wong, J. P. S., Nenes, A., and Weber, R. J.: Changes in Light Absorptivity of Molecular Weight
- 236 Separated Brown Carbon Due to Photolytic Aging, Environmental Science & Technology, 51,
- 237 8414-8421, <u>https://doi.org/10.1021/acs.est.7b01739</u>, 2017.
- 238 Zhong, M., and Jang, M.: Dynamic light absorption of biomass-burning organic carbon
- photochemically aged under natural sunlight, Atmospheric Chemistry and Physics, 14, 1517-
- 240 1525, <u>https://doi.org/10.5194/acp-14-1517-2014</u>, 2014.
- 241