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Abstract 11 

Volatile organic compounds (VOCs) were measured around the Arabian Peninsula using a research vessel during the AQABA 12 

campaign (Air Quality and Climate Change in the Arabian Basin) from June to August 2017. In this study we examine carbonyl 13 

compounds (CxHyO), measured by a proton transfer reaction mass spectrometer (PTR-ToF-MS), and present both a regional 14 

concentration distribution and a budget assessment for these key atmospheric species. Among the aliphatic carbonyls, acetone had 15 

the highest mixing ratios in most of the regions traversed, varying from 0.43 ppb over the Arabian Sea to 4.5 ppb over the Arabian 16 

Gulf, followed by formaldehyde (measured by Hantzsch monitor, 0.82 ppb over the Arabian Sea and 3,8 ppb over the Arabian 17 

Gulf) and acetaldehyde (0.16 ppb over the Arabian Sea and 1.7 ppb over the Arabian Gulf). Unsaturated carbonyls (C4-C9) varied 18 

from 10 to 700 ppt during the campaign, and followed similar regional mixing ratio dependence as aliphatic carbonyls, which were 19 

identified as oxidation products of cycloalkanes over polluted areas. An empirical method based on hydrocarbon ratios was applied 20 

to investigate the photochemical source strength of the aliphatic carbonyls. While the distribution and relative concentration 21 

enhancements of the C3-C8 aliphatic carbonyls could be explained by this method, that of acetaldehyde could not. A smaller but 22 

still significant discrepancy was found when comparing measurements to global chemistry-transport model (EMAC) results, with 23 

the model underestimating the measured acetaldehyde mixing ratio up to an order of magnitude. Implementing a photolytically 24 

driven marine source of acetaldehyde significantly improved the agreement between measurements and model, particularly over 25 

the remote regions (e.g. Arabian Sea). However, the newly introduced acetaldehyde source was still insufficient to describe the 26 

observations over the most polluted regions (Arabian Gulf and Suez), where model underestimation of primary emissions and 27 

biomass burning events are possible reasons.  28 
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1 Introduction 36 

Carbonyl compounds (aldehydes and ketones) can be released into the air directly from a variety of primary biogenic and 37 

anthropogenic sources. These include biomass burning (Holzinger et al., 1999;Holzinger et al., 2005;Koss et al., 2018), fossil fuel 38 

combustion (Reda et al., 2014;Huang et al., 2018) including vehicles (Erickson et al., 2014;Dong et al., 2014), industrial solvent 39 

use (Kim et al., 2008), and natural sources including plants and plankton (Zhou and Mopper, 1997;Warneke et al., 1999; Jacob et 40 

al., 2002;Fall, 2003;Williams et. al., 2004; Bourtsoukidis et al., 2014). However, secondary production via the atmospheric 41 

oxidation of hydrocarbons is considered to be more important for many carbonyl compounds including acetone and acetaldehyde 42 

(Jacob et al., 2002; Millet et al., 2010).  43 

Carbonyls have several important roles in the atmosphere. They form as stable intermediates directly after hydrocarbon oxidation 44 

by OH, O3 or NO3, when the peroxy radicals initially formed react with each other (permutation reactions) or with NO. Their 45 

production is linked to tropospheric ozone formation (Carlier et al., 1986) and their loss, through oxidation and photolysis, is an 46 

important source of free radicals (HOx) in the dry upper troposphere (Colomb et al., 2006). Carbonyls serve as precursors of 47 

peroxyacetyl nitrates (PANs) which are important atmospheric NOx reservoir species (Finlayson-Pitts and Pitts, 1997;Edwards et 48 

al., 2014;Williams et al., 2000). Carbonyl compounds are also important for the growth of atmospheric particles (Kroll et al. 2005) 49 

thereby indirectly impacting the Earth’s radiative balance. The atmospheric lifetimes of carbonyl compounds varies considerably, 50 

from less than one day for acetaldehyde (Millet et al., 2010) to more than 15 days for acetone (Jacob et al., 2002;Khan et al., 2015) 51 

in terms of tropospheric mean lifetime. A multiday lifetime means that carbonyl compounds can impact the air chemistry on local, 52 

regional and even hemispheric scales. The numerous primary and secondary sources of carbonyl compounds, as well as their 53 

multiple loss routes (photolysis, OH, NO3 and O3 oxidation) makes budget assessments difficult.  54 

The most predominant atmospheric carbonyl compounds besides formaldehyde are acetaldehyde and acetone. They have been 55 

reported to vary from a few hundred ppt in remote areas (Warneke and de Gouw, 2001;Lewis et al., 2005;White et al., 2008;Colomb 56 

et al., 2009;Read et al., 2012;Sjostedt et al., 2012;Tanimoto et al., 2014;Hornbrook et al., 2016) to several ppb in urban and polluted 57 

areas (Dolgorouky et al., 2012;Guo et al., 2013;Stoeckenius and McNally, 2014;Sahu et al., 2017;Sheng et al., 2018). Generally, 58 

secondary photochemical formation from various precursors is the main source in those regions. However, several recent studies 59 

have shown that acetaldehyde mixing ratios in both the remote marine boundary layer and the free troposphere could not be 60 

explained by known photochemistry as implemented in various atmospheric chemistry models, which consistently underestimated 61 

the measurements by an order of magnitude or more (Singh et al., 2003;Read et al., 2012;Wang et al., 2019). Several potential 62 

additional acetaldehyde sources have been proposed including new hydrocarbon oxidation mechanisms, aerosol related sources 63 

and oceanic sources. One possible source of acetaldehyde in the remote marine boundary layer is oceanic emission from the photo 64 

degradation of colored dissolved organic matter (CDOM) in sea-surface water, where acetaldehyde could be produced together 65 

with other low molecular weight carbonyl compounds (Kieber et al., 1990;Zhou and Mopper, 1997;Sinha et al., 2007;Dixon et al., 66 

2013). Nevertheless, due to both limited airborne and seawater measurements of acetaldehyde, the importance of oceanic emission 67 

is still under debate (Millet et al., 2010;Wang et al., 2019). In order to better understand the atmospheric budgets of acetaldehyde 68 

(and the other carbonyl compounds), it is informative to analyze a dataset of multiple carbonyl compounds in both polluted and 69 

clean environments, with influence from marine emissions, varying particulate loadings, and high rates of oxidation as shown in 70 

Figure 1, which demonstrates the main formation pathways of acetaldehyde during this campaign.  71 

During the shipborne research campaign AQABA, carbonyl compounds were continuously measured by PTR-ToF-MS onboard a 72 

research vessel that circumnavigated the Arabian Peninsula. During the campaign, chemically distinct air masses were sampled, 73 
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which had been influenced by primary emissions of hydrocarbons and inorganic pollutants (NOx, SO2 and CO) from petroleum 74 

industries and marine transport (Bourtsoukidis et al., 2019;Celik et al., 2019), by pollution from urban areas (Pfannerstill et al., 75 

2019), and clean marine influenced air. It is a unique dataset of carbonyl compounds encompassing starkly different environmental 76 

conditions from a region with few (or none) available in-situ measurements to date.  77 

In this study, we provide an overview of carbonyl compound mixing ratios (aliphatic, unsaturated and aromatic) over the 78 

Mediterranean Sea, Suez, Red Sea, Arabian Sea and Arabian Gulf. Using an empirical method based on measured hydrocarbon 79 

precursors, we have analyzed the relative importance of the photochemical sources for the carbonyl compounds observed. The 80 

analysis is then extended to include sources and transport by using a global model EMAC (5th generation European Centre – 81 

Hamburg general cir-culation model, ECHAM5 coupled to the modular earth submodel system, MESSy, applied to atmospheric 82 

chemistry). Model measurement differences are investigated in both clean and polluted regions, with particular emphasis on 83 

acetaldehyde.  84 

 85 

Figure 1.  Diagram of possible sources and formation pathways of acetaldehyde during the AQABA campaign. 86 

 87 

2 Methods  88 

2.2 AQABA campaign 89 

The AQABA campaign was conducted onboard the research vessel Kommandor Iona (KI) from the end of June to the end of 90 

August 2017. The ship started from Southern France, proceeded across the Mediterranean, through the Suez Canal, around the 91 

Arabian Peninsula into the Arabian Gulf and on to Kuwait, thereafter returning along the same route. Five laboratory containers 92 

were loaded onto the vessel, containing multiple gas and particle phase measurement instruments as well as a weather station.  93 

2.3 PTR-ToF-MS 94 

2.3.1 Sampling and instrument set-up 95 

A high-flow inlet (stainless steel tubing, 0.2 m diameter, 5.5 m tall and 3 m above the top of the containers and the front deck) was 96 

installed at the front of the ship where the laboratory containers were located. A high flow of air (approximately 10 m3min-1) was 97 

drawn through the inlet which provided a common attachment point for sub-sampling lines for all gas-phase measurement 98 

instruments.  An air flow of 5 standard L min-1 for the first leg and 3.5 standard L min-1 for the second leg was pumped into the 99 
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VOC container through an ½” (O.D. = 1.27cm) FEP (fluorinated ethylene propylene) tubing (about 10 m long) insulated and heated 100 

to 50-60 °C. A PTFE (polytetrafluoroethylene) filter was placed at the beginning of the inlet to prevent insects, dust and particles 101 

entering the instruments. Every 2-5 days, the filter was replaced depending on the degree of pollution encountered.  Inside the 102 

VOC instrument container, the PTR-ToF-MS (8000, Ionicon Analytik GmbH Innsbruck, Austria) sampled a sub-flow at 80-100 103 

sccm through 1/8” (0.3175 cm) FEP tubing (~ 10 m in length, insulated and heated to 60 °C) from the main fast air flow and then 104 

to the instrument’s PEEK (polyether ether ketone) inlet which was likewise heated to 60 °C. The inlet system was shared with total 105 

OH reactivity measurement (Pfannerstill et al., 2019). 106 

The working principle of PTR-MS has been described in detail in previous studies (Lindinger et al., 1998;Ellis and Mayhew, 107 

2013;Yuan et al., 2017). In brief, H3O+ primary ions are generated in the ion source, and then drawn into the drift tube where they 108 

interact with sampled ambient air. Inside the drift tube, VOCs with a proton affinity greater than that of H2O (691 kJ mol-1) are 109 

protonated by proton transfer from H3O+. The resulting secondary ions are transferred to the detector, in this case a time-of-flight 110 

mass spectrometer with mass resolution around 3500 for the first leg and 4500 for the second leg at mass 96amu. An internal 111 

standard of trichlorobenzene (C6H3Cl3) was continuously introduced into the instrument to ensure accurate mass calibration. Every 112 

minute a spectrum with mass range (m/z) 0-450 was generated. The data reported in this study are all at 1 minute resolution unless 113 

otherwise specified. 114 

2.3.2 Instrument characterization 115 

The instrument background was determined every three hours for 10 minutes with synthetic air. 4-point calibrations were 116 

performed five times during the whole campaign using a standard gas mixture (Apel-Riemer Environmental inc., Broomfield, USA) 117 

containing 14 compounds (methanol, acetonitrile, acetaldehyde, acetone, dimethyl sulfide, isoprene, methyl vinyl ketone, 118 

methacrolein, methyl ethyl ketone, benzene, toluene, xylene, 1,3,5-trimethylbenzene and α-pinene). It has been previously reported 119 

that the sensitivity of some compounds measured by PTR-MS are humidity dependent (de Gouw and Warneke, 2007). As the 120 

relative humidity (RH) was expected to be high and varying (marine boundary layer with occasional desert air influence), humidity 121 

calibration was combined with 4-point calibration by humidifying the gas mixture at different levels from 0% - 100% RH.  122 

2.3.3 Data analysis 123 

The data were initially processed by the PTR Analyzer software (Müller et al., 2013) to identify and integrate the peaks. After 124 

obtaining the raw data (counts per second for each mass identified), a custom-developed python-based program was used to further 125 

process the data to final mixing ratios. For compounds present in the standard gas cylinder, interpolated sensitivities based on the 126 

five in-campaign calibrations were applied to derive the mixing ratios; while mixing ratios of the other masses were calculated by 127 

using a proton transfer reaction rate constant (𝑘𝑃𝑇𝑅) of 2.0  10-9 cm3 s-1. The uncertainty associated with the mixing ratios of the 128 

calibrated compounds was around 6-17% (see Table S1). For the mixing ratios derived by assuming 𝑘𝑃𝑇𝑅, the accuracy was around 129 

±50% (Zhao and Zhang, 2004). The detection limit (LOD) was calculated from the background measurement with 3 times the 130 

standard deviation (3σ), 52 ± 26 ppt for acetaldehyde, 22 ± 9 ppt for acetone and 9 ± 6 ppt for methyl ethyl ketone (MEK) (Table 131 

S1).  132 

In this study, we have interpreted ion masses with the exact masses corresponding to CnH2nO, CnH2n-2O and CnH2n-8O as aliphatic, 133 

unsaturated and aromatic carbonyls, respectively (see exact protonated m/z in Table S2). Carbonyl compounds with a carbon 134 

number three and above can be either aldehydes or ketones, which are not distinguishable with PTR-ToF-MS using H3O+ as the 135 

primary ion. However, laboratory experiments have shown that protonated aldehydic ions with carbon atoms more than three tend 136 
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to lose a H2O molecule and fragment to other masses (Buhr et al., 2002;Spanel et al., 2002). Moreover, although both ketones and 137 

aldehydes can be produced via atmospheric oxidation processes, ketones tend to have longer atmospheric lifetimes than aldehydes 138 

as mentioned in the introduction. Therefore, signals on the exact mass of carbonyl compounds from the PTR-ToF-MS are expected 139 

to be dominated by ketones, particularly in regions remote from the sources. 140 

2.4 Meteorological data and other trace gases  141 

The meteorological data were obtained by using a commercial weather-station (Sterela) which monitored wind speed, wind 142 

direction, relative humidity (RH), temperature, speed of the vessel, and GPS etc. The actinic flux was measured by a spectral 143 

radiometer. Non methane hydrocarbons (NMHC) mixing ratios were measured by a gas chromatograph with flame ionization 144 

detector (GC−FID), for a detailed instrumental description see Bourtsoukidis et al. (2019). Formaldehyde mixing ratios were 145 

determined by a modified and optimized version of the commercially available AL4021 (Aero-Laser, Germany), which utilizes 146 

the Hantzsch technique (Stickler et al., 2006). Methane and carbon monoxide (CO) levels were monitored by a cavity ring-down 147 

spectroscopy analyzer (Picarro G2401). Ozone was measured with an absorption photometer (Model 202 Ozone Monitor, 2B 148 

Technologies, Boulder, Colorado). Due to the potential interference from sampling our own ship exhaust in which carbonyl 149 

compounds may be present (Reda et al., 2014), a filter was applied to the data set based on the wind direction and NOx, SO2 and 150 

ethene levels.  151 

2.5 Model simulations 152 

The EMAC (ECHAM5/MESSy Atmospheric Chemistry) model was used to simulate atmospheric mixing ratios of several 153 

carbonyl compounds along the cruise track covered during the AQABA campaign. The EMAC model is an atmospheric chemistry-154 

general circulation model simulating the process of tropospheric air by considering processes which could influence trace gases 155 

mixing ratios, such as transport, chemistry, interaction with ocean/land, dry deposition and so on (Pozzer et al., 2007;Pozzer et al., 156 

2012;Lelieveld et al., 2016). The model applied in this study is a combination of the 5th generation of European Centre Hamburg 157 

general circulation model (ECHAM5) (Roeckner et al., 2006) and the 2nd version of Modular Earth Submodel System (MESSy2) 158 

(Jöckel et al., 2010), where a comprehensive chemistry mechanism MOM (Mainz Organic Mechanism) was deployed (Sander et 159 

al., 2019). The model configuration in the study is the same as the model applied in Bourtsoukidis et al. (2020) in the resolution of 160 

T106L31 (i.e. ~ 1.1o × 1.1o horizontal resolution and , 31 vertical hybrid pressure levels up to 10 hPa) and the time resolution of 161 

10 minutes. The measurement data of PTR-ToF-MS were averaged to 10-minute resolution to match the model data resolution for 162 

further comparison. 163 

3 Results and discussion 164 

3.1 Overview of carbonyl compounds 165 

Around the Arabian Peninsula, the mixing ratios of individual carbonyl compounds varied over a wide range, from tens of ppt to 166 

ppb levels. In this study, we divided the dataset geographically into eight regions (Figure 2, middle graph) to classify and 167 

characterize the primary and secondary origins of carbonyl compounds. The regional delineations were: the Mediterranean Sea 168 

(MS), Suez, Red Sea North (RSN), Red Sea South (RSS), Gulf of Aden (GA), Arabian Sea (AS), Gulf of Oman (GO) and Arabian 169 

Gulf (AG), the same as those described by Bourtsoukidis et al. (2019). Figure 2 shows the abundance of aliphatic, aromatic and 170 

unsaturated carbonyl compounds (carbonyls) for each region. Generally, aliphatic carbonyls were present at much higher mixing 171 

ratios than aromatic and unsaturated carbonyls, with smaller carbonyl compounds (formaldehyde, acetaldehyde, C3 and C4 172 

carbonyls) dominating the distribution. The mixing ratios of aliphatic carbonyls decreased dramatically from C5 carbonyls with 173 
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increasing carbon number. The box plots (Figure 2) also show that carbonyl compounds were measured at higher mixing ratios 174 

and were more variable over Suez region and the Arabian Gulf. The abundance of carbonyl compounds varied markedly from 175 

region to region with highest and lowest values found in the Arabian Gulf and the Arabian Sea, respectively. Table 1 shows the 176 

mean, standard deviation and the median values for carbonyls in each region. In the following sections, each class of carbonyl 177 

compounds are investigated in greater detail.     178 

 179 

Figure 2. Overview of mixing ratios for aliphatic, aromatic and unsaturated carbonyl compounds (CxHyO). The boxes represent 180 
25% to 75% of the data with the central line and square indicating the median and the mean values, respectively. The whiskers 181 
show data from 5% to 95% and stars were drawn for the minimum and maximum data points within 1% to 99% of the dataset. 182 
Within brackets under the region acronyms the main characteristics of the air masses are indicated, based on variability-lifetime 183 
results (b factor) from Bourtsoukidis et al. (2019) and acetone mixing ratios in this study. The data used for map plotting was from 184 
public domain GIS data found on the Natural Earth web site (http://www.naturalearthdata.com) and was read into Igor using the 185 
IgorGIS XOP beta. 186 

 187 

 188 

 189 

 190 

 191 

 192 
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Table 1. Mean, standard deviation (SD) and median mixing ratios of aliphatic, unsaturated and aromatic carbonyls in different 193 
regions. 194 

    Aliphatic CCs 

    HCHO CH3CHO C3H6O C4H8O C5H10O C6H12O C7H14O C8H16O C9H18O 

MS 

mean 0.86 0.30 2.37 0.14 0.04 0.02 0.01 0.01 0.01 

SD 0.41 0.25 0.37 0.05 0.02 0.01 0.00 0.00 0.00 

median 0.80 0.25 2.32 0.12 0.03 0.02 0.01 0.01 0.01 

S 

mean 1.23 0.62 2.64 0.19 0.08 0.04 0.03 0.03 0.02 

SD 0.76 0.58 0.77 0.15 0.08 0.02 0.02 0.02 0.01 

median 1.11 0.42 2.52 0.13 0.04 0.04 0.02 0.03 0.02 

RSN 

mean 0.99 0.51 2.17 0.27 0.12 0.04 0.01 0.02 0.02 

SD 0.78 0.26 0.45 0.11 0.07 0.02 0.00 0.01 0.01 

median 0.73 0.46 2.17 0.25 0.10 0.04 0.01 0.02 0.02 

RSS 

mean 0.66 0.31 1.56 0.11 0.05 0.05 0.01 0.04 0.07 

SD 0.62 0.17 0.38 0.06 0.03 0.03 0.00 0.03 0.07 

median 0.40 0.26 1.60 0.09 0.04 0.05 0.01 0.03 0.04 

GA 

mean 0.69 0.19 0.81 0.04 0.03 0.04 0.02 0.02 0.02 

SD 0.33 0.08 0.27 0.02 0.01 0.02 0.01 0.01 0.01 

median 0.68 0.17 0.72 0.03 0.02 0.04 0.01 0.01 0.01 

AS 

mean 0.82 0.16 0.43 0.02 0.02 0.03 0.01 0.01 0.01 

SD 0.35 0.12 0.18 0.01 0.01 0.01 0.00 0.00 0.00 

median 0.86 0.13 0.34 0.02 0.02 0.04 0.01 0.01 0.01 

GO 

mean 1.27 0.26 1.33 0.10 0.08 0.04 0.01 0.02 0.02 

SD 0.59 0.12 0.40 0.06 0.04 0.03 0.00 0.01 0.01 

median 1.13 0.22 1.12 0.08 0.08 0.04 0.01 0.01 0.02 

AG 

mean 3.83 1.73 4.50 0.87 0.52 0.19 0.05 0.04 0.04 

SD 2.55 1.61 2.40 0.71 0.48 0.25 0.04 0.03 0.03 

median 3.02 1.02 3.77 0.56 0.31 0.10 0.04 0.03 0.03 

 195 

 196 

 197 

 198 

 199 

 200 

 201 

 202 

 203 

 204 

 205 
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Table 1. Continued 207 

    Aromatic CCs Unsaturated CCs 

    C7H6O C8H8O C9H10O C4H6O C5H8O C6H10O C7H12O C8H14O C9H16O 

MS 

mean 0.04 0.02 0.01 0.02 0.02 0.02 0.01 0.02 - 

SD 0.03 0.01 0.00 0.03 0.02 0.01 0.00 0.00 - 

median 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.02 - 

S 

mean 0.13 0.04 0.03 0.07 0.05 0.05 0.03 0.02 0.01 

SD 0.23 0.05 0.01 0.08 0.05 0.04 0.02 0.01 0.00 

median 0.03 0.02 0.03 0.04 0.03 0.03 0.02 0.02 0.01 

RSN 

mean 0.10 0.07 0.03 0.03 0.04 0.05 0.03 0.02 0.02 

SD 0.10 0.06 0.03 0.02 0.03 0.03 0.02 0.01 0.01 

median 0.07 0.05 0.02 0.02 0.04 0.05 0.02 0.02 0.02 

RSS 

mean 0.08 0.09 0.04 0.02 0.03 0.04 0.02 0.06 0.03 

SD 0.07 0.07 0.03 0.01 0.02 0.03 0.01 0.11 0.02 

median 0.05 0.07 0.04 0.01 0.02 0.03 0.02 0.03 0.02 

GA 

mean 0.04 0.03 0.02 0.01 0.02 0.02 0.02 0.01 0.01 

SD 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.00 0.00 

median 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.01 0.01 

AS 

mean 0.03 0.02 0.01 0.01 0.02 0.02 0.01 0.01 0.01 

SD 0.04 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.00 

median 0.02 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 

GO 

mean 0.05 0.05 0.03 0.02 0.03 0.02 0.02 0.02 0.01 

SD 0.07 0.05 0.03 0.01 0.01 0.01 0.01 0.01 0.00 

median 0.03 0.03 0.02 0.02 0.03 0.02 0.02 0.01 0.01 

AG 

mean 0.15 0.13 0.05 0.07 0.11 0.12 0.06 0.04 0.03 

SD 0.15 0.10 0.04 0.07 0.11 0.10 0.05 0.03 0.02 

median 0.11 0.10 0.04 0.04 0.08 0.09 0.04 0.03 0.02 

 208 

3.1.1 Aliphatic Carbonyls (CnH2nO) 209 

Relatively high mean mixing ratios of aliphatic carbonyls were observed over the Arabian Gulf; the highest being acetone (C3 210 

carbonyl compound) at 4.50 ± 2.40 ppb (median: 3.77 ppb), followed by formaldehyde at 3.83 ± 2.55 ppb (median: 3.02 ppb), 211 

acetaldehyde at 1.73 ± 1.61 ppb (median: 1.02 ppb) and MEK (C4 carbonyl compound) at 0.87 ± 0.71 ppb (median: 0.56 ppb). 212 

The level of each aliphatic carbonyls over the Arabian Gulf was comparable to those previously reported for urban areas (Table 213 

2), despite these measurements being taken at sea. As the Arabian Gulf is highly impacted by the oil and gas industry, we also 214 

compared the measurements of the four aforementioned carbonyl compounds with those measured in the oil and gas region of the 215 

Uinta Basin on land (Stoeckenius and McNally, 2014). Although the levels of three aliphatic carbonyls are higher in the Uinta 216 

Basin (mean levels of 8 ppb, 4ppb and 2.8 ppb for acetone, acetaldehyde and MEK, respectively), formaldehyde was much lower 217 

(1.9 ppb). The general distribution of the aliphatic carbonyls in the Uinta Basin is similar to the Arabian Gulf, with acetone levels 218 

being twice as those of acetaldehyde. Koss et al. (2017) reported the max boundary layer enhancement of carbonyl compounds 219 

(C2-C7) measured during an aircraft measurement above the most productive oil field in the United States (Permian Basin). Within 220 

the boundary layer of the Permian Basin, C5-C7 aliphatic carbonyls had mixing ratios of 0.34 ppb, 0.08 ppb and 0.03 ppb; which 221 
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are of the same magnitude but lower than the levels measured over the Arabian Gulf for C5 (0.52 ± 0.48 ppb), C6 (0.19 ± 0.25ppb) 222 

and C7 (0.05 ± 0.04 ppb) carbonyl compounds. 223 

In contrast, aliphatic carbonyls had much lower average mixing ratios over the Arabian Sea and the Gulf of Aden especially for 224 

C7-C9 carbonyls with mean mixing ratios below the detection limit for most of the time. During the summertime AQABA 225 

campaign, the prevailing wind direction over the Arabian Sea was southwest (Figure S1). Four-day back trajectories indicate the 226 

air was transported from the Arabian Sea (Northwestern Indian Ocean), passing East Africa coast, which brought relatively clean, 227 

photochemically aged airmasses (Bourtsoukidis et al., 2019). The mean level of acetone over the Arabian Sea (0.43 ± 0.18 ppb, 228 

median: 0.34 ppb) is close to the level measured in the marine boundary layer of Western Indian Ocean (0.49 ppb) (Warneke and 229 

de Gouw, 2001) and comparable to other reported values from remote marine air measurement (see Table 2).  Acetaldehyde was 230 

measured at relatively low mixing ratios over the Arabian Sea (median: 0.12 ppb), which is lower than the levels reported in most 231 

ground-level marine influenced sites (Lewis et al., 2005;Read et al., 2012) but comparable to the value in Barrow Alaska (0.10 ± 232 

0.20 ppb) (Hornbrook et al., 2016) and the values reported for Southern Indian Ocean (0.12 ± 0.04 ppb) (Colomb et al., 2009). 233 

Over the Gulf of Aden, acetone and MEK had slightly higher mixing ratios than those over the Arabian Sea.  234 

The Mediterranean Sea had somewhat higher levels of aliphatic carbonyls than the clean regions (the Arabian Sea and the Gulf of 235 

Aden) but with acetone (above 2ppb) still dominating the distribution. The mean values of acetaldehyde, acetone and MEK are 236 

comparable with the results from a rural site on the west coast of Cyprus (Derstroff et al., 2017). Larger aliphatic carbonyls (C6-237 

C9) were below the detection limit most of the time. The aliphatic carbonyls levels over the Gulf of Oman were higher than the 238 

clean regions, while C1-C5 carbonyls were more variable over the Gulf of Oman compared to those over the Mediterranean Sea. 239 

This is probably because the Gulf of Oman connects to the Arabian Gulf where intense oil and gas industrial activities are located. 240 

Over the Gulf of Oman, polluted air from the nearby sources of the Arabian Gulf is occasionally mixed with the clean air from the 241 

open sea (the Arabian Sea) under southeast wind conditions (Figure S1). 242 

Another region where abundant aliphatic carbonyls were observed was Suez region. The air in this region was mainly influenced 243 

by nearby cities and marine transportation (ship emissions within the Suez Chanel) (Bourtsoukidis et al., 2019;Pfannerstill et al., 244 

2019). However, the levels of acetaldehyde and MEK were much less compared to the levels reported from urban sites (see Table 245 

2). Interestingly, the mean acetaldehyde mixing ratio (0.62 ± 0.59 ppb) over Suez was twice the level found over the Mediterranean 246 

Sea, whilst the acetone level was only slightly higher. Besides the local-scale emission and photochemical production contribution 247 

to the acetone over Suez, the longer lived acetone could be also transported from the Mediterranean Sea (where acetone was high). 248 

Although the mean mixing ratios of aliphatic carbonyls over Suez were lower than those over the Arabian Gulf, larger variations 249 

were observed.  250 

Over the Red Sea, acetone was the most abundant aliphatic carbonyls followed by formaldehyde and acetaldehyde. The mixing 251 

ratios of aliphatic C2-C4 carbonyls over the northern part of the Red Sea were similar to those levels measured in Thompson Farm 252 

(a rural site in the US, Table 2). It is worth noticing that the levels of aliphatic carbonyls in the northern part of the Red Sea were 253 

almost two times higher than the southern part of the Red Sea. According to the four-day back trajectories reported by 254 

Bourtsoukidis et al. (2019), the measured air masses travelled to the northern part was from southern Europe and northeast Africa 255 

while the sourthern part was more influenced by the air from the northen part Red Sea mixed with the air masses from desertic 256 

areas of central Africa. Therefore, the higher carbonyl mixing ratios over the northern part Red Sea could be due to sources of 257 

carbonyl precursors nearby and also the influence of aged air from over the Mediterranean Sea and polluted air from Suez region.  258 

 259 
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Table 2. Reported mixing ratios (ppb) of OVOCs  260 

 261 

 262 

 263 

 264 

 265 

 266 

Location Time Technique Acetaldehyde Acetone MEK HCHO Literature 

Marine (Sea)        

Mace Head, 

Ireland 
Jul.-Sep. GC-FID 

0.44 

(0.12-2.12) 

0.50 

(0.16-1.67) 
n.r. n.r. 

(Lewis et al., 

2005) 

Appledore Island, 

USA 
Jul.-Aug. PTR-MS 0.40 1.5 0.20 n.r. 

(White et al., 

2008) 

Western North 

Pacific Ocean 
May PTR-MS n.r. 0.20-0.70 n.r. n.r. 

(Tanimoto et 

al., 2014) 

Canadian 

Archipelago 
Aug.-Sep. PTR-MS n.r. 0.34a n.r. n.r. 

(Sjostedt et al., 

2012) 

Western Indian 

Ocean 
Feb.-Mar. PTR-MS n.r. 0.49 n.r. n.r. 

(Warneke and 

de Gouw, 

2001) 

Cape Verde 

Atmospheric 

Observatory 

2006-2011 GC-FID 
0.43 

(0.19-0.67) 

0.55 

(0.23-0.91) 
n.r. n.r. 

(Read et al., 

2012) 

Barrow Arctic, 

Alaska 

Springtime 

2009 
 TOGA 0.10 ± 0.20 0.90 ± 0.30 0.19 ± 0.05 n.r. 

(Hornbrook et 

al., 2016) 

Southern Indian 

Ocean 
Dec. 2004 PTR-MS 0.12 - 0.52 0.42 – 1.08 n.r. n.r. 

(Colomb et al., 

2009) 

Urban        

Paris Jan.- Feb. 
PTR-MS/ 

GC-MS 

1.87 

(0.92-4.49) 

1.05 

(0.58-2.97) 
n.r. n.r. 

(Dolgorouky 

et al., 2012) 

Hong Kong Sep.-Nov. HPLC 2.17b n.r. n.r. 2.93b 
(Guo et al., 

2013) 

Ahmedabad Mar. 
PTR-Tof-

MS 

4.84 

(2.74-9.86) 

5.63 

(3.12-12.9) 
n.r. n.r. 

(Sahu et al., 

2017) 

Beijing 
Winter 

(clear day) 

PTR-ToF-

MS 
4.37 2.22 2.53 18.32 

(Sheng et al., 

2018) 

Oil & Gas region        

Uintah Basin, USA 2013 PTR-MS 4.0 8.0 2.8 1.9 

(Stoeckenius 

and McNally, 

2014) 

Rural        

Thompson Farm, 

USA  

Long-term  

(Summer) 
PTR-MS 

0.54 

(0.21-1.27) 

2.11 

(0.98-4.08) 

0.22 

(0.08-0.60) 
n.r. 

(Jordan et al., 

2009) 

Cyprian rural site Jul.-Aug. 
PTR-Tof-

MS 
0.29a 2.4a 0.10a  

(Derstroff et 

al., 2017) 

Forest        

Brazilian mixed 

tropical 

rainforest site 

Feb.- Oct. PTR-MS n.r. n.r. 0.13c n.r. 

(Yáñez-

Serrano et al., 

2016) 
n.r.: not reported in the literature. 
a Averaged value of reported values in the literature. 
b converted from values in unit of ugm-3 in the literature 
c daytime average 
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3.1.2 Unsaturated and aromatic carbonyls (CnH2n-2O), (CnH2n-8O) 267 

The mixing ratios of unsaturated carbonyls were generally low with values below 30 ppt over the Mediterranean Sea and the clean 268 

regions (the Arabian Sea and the Gulf of Aden, 12 - 21 ppt). The Red Sea region and the Gulf of Oman had slightly higher levels 269 

(13 – 60 ppt). The highest values were again observed in the Arabian Gulf (25 – 115 ppt) followed by Suez (11 – 68 ppt). In terms 270 

of the mixing ratio distribution (Figure 2), the peak value was usually observed at C5 or C6 unsaturated carbonyls over most 271 

regions except for Suez where C4 carbonyl had the highest mixing ratio. Based on chemical formulas, unsaturated carbonyls can 272 

be either cyclic carbonyl compounds or carbonyls containing a carbon-carbon double bond. Therefore, the air chemistry could 273 

differ considerably depending on the compound assignment. A detailed analysis of the chemistry of the unsaturated carbonyls 274 

measured will be given in the following section 3.2.2. 275 

Regional variability was also observed for aromatic carbonyls with highest levels observed over the Arabian Gulf and Suez, and 276 

much lower mixing ratios over the Arabian Sea, Mediterranean Sea and Gulf of Aden (Table 1). Several studies using PTR-MS 277 

have reported values for m/z 107.049 (C7 aromatic carbonyls) attributed to benzaldehyde (Brilli et al., 2014; Koss et al., 2017;Koss 278 

et al., 2018), m/z 121.065 (C8 aromatic carbonyls) attributed to tolualdehyde (Koss et al., 2018) or acetophenone (Brilli et al., 279 

2014) and m/z 135.080 (C9 aromatic carbonyls) attributed to methyl acetophenone (Koss et al., 2018) or benzyl methyl ketone 280 

(Brilli et al., 2014) or 3,5-dimethylbenzaldehyde (Müller et al., 2012). Atmospheric aromatic carbonyls are produced via 281 

photochemical oxidation of aromatic hydrocarbons (Finlayson-Pitts and Pitts Jr, 1999;Wyche et al., 2009;Müller et al., 2012) and 282 

benzaldehyde was reported as having primary sources from biomass burning and anthropogenic emissions (Cabrera-Perez et al., 283 

2016). Around the Arabian Peninsula, the level of aromatic carbonyls declined with increasing carbon number over most of the 284 

regions except in the Red Sea South where C8 carbonyls were slightly higher than C7 (Figure 2). Interestingly, only in the Suez 285 

region, were the C7 aromatic carbonyls more abundant than other aromatic carbonyls, whereby the mean value (128 ± 229 ppt) 286 

was much higher than the median value (30 ppt), indicating strong primary sources of benzaldehyde in Suez. Otherwise, toluene 287 

was found to be more abundant over Suez with mean mixing ratios of 271 ± 459 ppt than over other regions (the mean over the 288 

Arabian Gulf: 130 ± 160 ppt) which would also lead to higher benzaldehyde as it is one of the OH-induced oxidation products of 289 

toluene via H-abstraction (Ji et al., 2017). 290 

3.2 Chemistry of aliphatic carbonyls 291 

3.2.1 Importance of OH photochemistry 292 

Aliphatic Carbonyls are a major fraction of all oxygenated volatile organic compounds (OVOCs) in the atmosphere. They can be 293 

directly emitted into the atmosphere; however, secondary production via photo oxidation of hydrocarbons is considered as the 294 

dominant atmospheric source. In order to better understand the contribution of hydrocarbon oxidation to aliphatic carbonyls in the 295 

AQABA region, we performed empirical calculations based on the measured precursor hydrocarbon levels to estimate secondary 296 

produced aliphatic carbonyls. Subsequently, we compared the calculated values with the measured levels of the aliphatic carbonyls. 297 

The calculations are based on the following assumptions: (1) the production and the sinks of aliphatic carbonyls are governed by 298 

OH radicals; (2) primary sources of aliphatic carbonyls are insignificant; (3) only methane and 11 other measured hydrocarbon 299 

species (Table S4) reported by (Bourtsoukidis et al., 2019) were considered in the calculation. The concentration of each aliphatic 300 

carbonyl can be calculated as follows: 301 

[𝐻𝐶]𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = [𝐻𝐶]/exp⁡(−𝑘𝑂𝐻+𝐻𝐶[𝑂𝐻]∆𝑡)                                                                                                                              Eq. (1) 302 

[𝐴𝑙𝑖𝑝ℎ𝑎𝑡𝑖𝑐⁡𝑐𝑎𝑟𝑏𝑜𝑛𝑦𝑙𝑠]𝑖 = ∑(([𝐻𝐶]𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∙ (1 − exp(−𝑘𝑂𝐻+𝐻𝐶[𝑂𝐻]∆𝑡) ∙ Y) ∙ exp(−𝑘𝑂𝐻+𝐴𝑙𝑖𝑝ℎ𝑎𝑡𝑖𝑐⁡𝑐𝑎𝑟𝑏𝑜𝑛𝑦𝑙𝑠[𝑂𝐻]∆𝑡))       Eq. (2) 303 
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[𝐻𝐶]𝑖𝑛𝑖𝑡𝑖𝑎𝑙  represents the initial mixing ratios of hydrocarbons from the source, which could be calculated using equation (1), 304 

where [𝐻𝐶] stands for the mean mixing ratios of measured hydrocarbons. The parameters 𝑘𝑂𝐻+𝑁𝑀𝐻𝐶  (equation 1 and 2) and 305 

𝑘𝑂𝐻+𝐴𝑙𝑖𝑝ℎ𝑎𝑡𝑖𝑐⁡𝑐𝑎𝑟𝑏𝑜𝑛𝑦𝑙𝑠  (equation 2) are the rate constants for the reaction between the OH radical and the corresponding 306 

hydrocarbon and aliphatic carbonyl (see Table S3). For carbonyls with a carbon number larger than four, an average reaction rate 307 

constant for the possible isomeric ketones was used since the exact structure is not known. Y is the yield of aliphatic carbonyls 308 

produced in hydrocarbon oxidation, derived from the Master Chemical Mechanism, MCM v3.2 via website: 309 

http://mcm.leeds.ac.uk/MCM (last accessed on Jan-15, 2020) (Jenkin et al., 1997;Saunders et al., 2003). The yields (Table S4) 310 

were determined assuming that the oxidation is dominated by OH chemistry and that alkylperoxy radicals (RO2) mainly react with 311 

NO. The OH exposure term [𝑂𝐻]∆𝑡 in both equations was derived from a method based on hydrocarbon ratios (Roberts et al., 312 

1984;de Gouw et al., 2005;Yuan et al., 2012), and was calculated using the following equation: 313 

[𝑂𝐻]∆𝑡 =
1

𝑘𝑋−𝑘𝑌
⁡ ∙ (𝐼𝑛

[𝑋]

[𝑌]
|
𝑡=0

− 𝐼𝑛
[𝑋]

[𝑌]
) ,                                                                                                                                    Eq. (3) 314 

where X and Y refer to two hydrocarbon compounds with different rates of reaction with the OH radical (k). For this study, we 315 

chose toluene (kOH+toluene: 5.63E-12 cm3 molecule-1s-1 ) and benzene (kOH+benzene: 1.22E-12 cm3 molecule-1s-1) (Atkinson and Arey, 316 

2003), because both compounds were measured by PTR-ToF-MS at high frequency and these values showed a good agreement 317 

with values measured by GC-FID (Figure S2). The approach detailed by Yuan et al. (2012) was applied to determine the initial 318 

emission ratio 
[𝑋]

[𝑌]
|
𝑡=0

in each area: MS (1.46), S (2.50), RSN (1.25), RSS (2.50), GA (1.96), AS (1.25), GO (2.50) and AG (1.75). 319 

The corresponding correlation plots of toluene and benzene for each region can be found in Figure S3. An average value of OH 320 

exposure in each area was applied in equation (2) to derive the predicted mixing ratio of each aliphatic carbonyl. There are 321 

limitations and uncertainties in using the hydrocarbon ratios to obtain the photochemical age Δt (OH exposure in this study), 322 

especially in remote area lacking hydrocarbon (benzene and toluene in this case) sources, which would introduce uncertainty to 323 

the initial emission ratio determination (Yuan et al., 2012;Lewis et al., 2005). Nevertheless, it can still provide insights on 324 

photochemical processing (Parrish et al., 2007;McKeen et al., 1996), which will be discussed afterwards.  325 

Figure 3 shows the calculated mixing ratios of the aliphatic carbonyls and the unattributed fraction compared with the mean values 326 

of measurements in each area. The calculated carbonyl mixing ratios are sub-divided in the plot to show the fraction stemming 327 

from a parent hydrocarbon with the same carbon number, and the fraction resulting from fragmentation of a hydrocarbon with a 328 

higher carbon number. In general, the direct oxidation fraction varied from area to area for C1 to C3 carbonyls (formaldehyde, 329 

acetaldehyde and acetone). For C4 and C5 carbonyls, the mixing ratios could be fully attributed to the direct oxidation fraction 330 

over the Arabian Gulf and Suez (polluted region with high loadings), while in other regions, direct oxidation fraction could only 331 

partially explain the measured mixing ratios. For C7 and C8 carbonyls, the oxidation fraction generally explained < 20% of 332 

measured mixing ratios. Notably, for acetone, the oxidation (mainly from propane oxidation) contributed much more of the direct 333 

oxidation fraction over the Arabian Gulf (53%) and Suez (35%) than those in other regions (~10%), indicating OH radical initiated 334 

hydrocarbon oxidation (and subsequent secondary photochemical processes) play a more important role in polluted regions than 335 

in other less polluted regions. This is also consistent with the results that showed C4 and C5 carbonyls mixing ratios could be fully 336 

attributed by the direct oxidation fractions. The high-unattributed levels of acetone especially over the remote areas are possibly 337 

due to transportation as its long lifetime from 15 days up to more than two months in the boundary layer (Singh et al., 1994) 338 

compared to the other carbonyl compounds.  339 
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The distribution for acetaldehyde was markedly different to that of acetone. The measured mixing ratios were mainly determined 340 

by the unattributed fraction, even over the Arabian Gulf and Suez, where the oxidation fraction only accounts for < 5%. Because 341 

the OH rate coefficient for acetaldehyde (at 298 K) is two orders of magnitude larger than that for acetone, long-distance transport 342 

of short-lived acetaldehyde was limited. Although oxidation from unconsidered hydrocarbons could be a reason, the much larger 343 

unattributed fraction compared with that of acetone indicates that OH radical driven oxidation of the main hydrocarbons present 344 

cannot explain the measured acetaldehyde level in this region. This points to the existence of other production pathways (primary 345 

and/or secondary) of acetaldehyde. Therefore, we compared the measured acetaldehyde with the results from a complex 346 

atmospheric chemistry model (EMAC) which includes transport and known sources to further investigate the discrepancy. This 347 

discussion is given in section 3.4 and 3.5.  348 

Formaldehyde had a more than 50% contribution from hydrocarbon oxidation over the Red Sea and Gulf of Oman but less than 349 

40% over the Arabian Gulf. Over the Suez region, calculated formaldehyde level was even 24% higher than the measured mean 350 

mixing ratio. The contribution from other hydrocarbons is more significant than from methane oxidation over the Arabian Gulf, 351 

Suez and Gulf of Oman. Atmospheric formaldehyde has been reported as having various primary and secondary sources and, 352 

unlike the other carbonyls, photolysis is an important sink (Carlier et al., 1986). Neither the primary sources nor the photolysis 353 

were considered in the calculation. Therefore, different unattributed fractions in the Arabian Gulf and Suez suggest the existence 354 

of different formaldehyde formation pathways. Similar to acetaldehyde, due to the short lifetime, the unattributed fraction indicates 355 

unconsidered sources and formation pathways.  356 

 357 

Figure 3. Measured and calculated aliphatic carbonyls as mentioned in the text for different regions during the AQABA campaign: 358 
Oxidation (in blue) represents aliphatic carbonyls produced from alkane oxidation with the same carbon number; Oxidation_F 359 
represents aliphatic carbonyls produced from other hydrocarbon oxidation; Missing (in yellow) is the unattributed fraction 360 
compared with the mean values of measurements. 361 

https://doi.org/10.5194/acp-2020-135
Preprint. Discussion started: 2 March 2020
c© Author(s) 2020. CC BY 4.0 License.



14 
 

3.2.2 Case studies: the Arabian Gulf and Suez region 362 

The primary emission sources in the Arabian Gulf and Suez regions are quite different. While the Arabian Gulf is dominated by 363 

oil and gas operations, Suez is more influenced by ship emissions and urban areas (Bourtsoukidis et al., 2019). Carbonyl 364 

compounds were most abundant in these two areas. As mentioned before, photochemical oxidation contributed a large fraction to 365 

acetone and the larger aliphatic carbonyls over the Arabian Gulf and Suez areas, but could not explain the high level of acetaldehyde 366 

measured in both regions. For further insight, we focused on a time series of selected trace-gases along with the correlations among 367 

them to better identify the sources of the major aliphatic carbonyls.  368 

 369 

Figure 4. Case study of the Arabian Gulf. (a) Time series of selected species measured over the Arabian Gulf; (b) daytime 370 
correlation heat map of selected species; (c) nighttime correlation heat map of selected species. 371 

Figure 4(a) shows the time series of acetaldehyde and acetone over the Arabian Gulf along with OH exposure ([𝑂𝐻]𝑡) and ozone. 372 

We further separated the data into daytime and nighttime and calculated correlations among the carbonyls and other selected 373 

species (see Fig. 4b and c). Aliphatic carbonyls were well correlated with each other during the daytime and ozone had a generally 374 

good correlation with C2-C7 carbonyls (r > 0.7) during the daytime but a much lower correlation during the night, indicating ozone 375 

and carbonyls were co-produced via photochemical oxidation. This further emphasizes the importance of local photochemical 376 

production of aliphatic carbonyls over the Arabian Gulf, as suggested in previous section 3.2.1. Meanwhile, as shown in Figure 4 377 

(a), the calculated OH exposure was high during the first night in leg 1, where an elevation of acetone mixing ratio was observed 378 

while the mixing ratio of acetaldehyde remained relatively constant. With limited OH radical abundance during the nighttime, the 379 

increased OH exposure indicates that the air reaching the ship was photochemically processed (aged). Therefore, the increase of 380 

acetone was mainly from long-distance transport as acetone has a much longer atmospheric lifetime than acetaldehyde. As the ship 381 

approached Kuwait, the calculated OH exposure was low (starting from 7/30/2017, 12:00 am UTC), which is an indicator of nearby 382 

emission sources. The lifetime of the OH radical derived from the measured OH reactivity also decreased from ~ 0.1 s to ~ 0.04 s 383 

during the same period (Pfannerstill et al., 2019). Oil fields and associated refineries are densely distributed in the northwest of the 384 

Arabian Gulf region (United States Central Intelligence Agency). The air reaching the ship when mixing ratios of acetone and 385 

(a) (b)

(c)

Leg 1

R

Daytime

R

Nighttime

Kuwait
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Leg 2
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acetaldehyde were highest was mainly from the Northwest (Iraq oil field region) according to the back trajectories (Bourtsoukidis 386 

et al., 2019). This suggests that the air masses encountered in Northwest Arabian Gulf were a combination of fresh emissions from 387 

nearby sources and photochemically processed air transported from elsewhere. During the second leg, relatively low mixing ratios 388 

were identified in the same region (Northwest Arabian Gulf), which was mainly due to a greater influence of air masses originating 389 

from less populated desert regions of Northeast Iran (Bourtsoukidis et al., 2019) with much less influence from the oil field 390 

emissions, meaning less precursors were available for carbonyl production. Several plumes (extending over 2-3 hours) of elevated 391 

carbonyls with increased ozone were observed during the nighttime for both legs (Fig. 4a), indicating transport of highly polluted 392 

air. 393 

  394 

Figure 5. Case study of Suez. (a) Time series of selected species measured over Suez; (b) correlation heat map of selected species 395 
during biomass burning plume (UTC 01:00 -06:00 August 24th 2017); (c) correlation heat map of selected species without the 396 
period of biomass burning plume. 397 

For the Suez region (Gulf of Suez and Suez Canal), data were only available for the second leg. A significant increase of acetonitrile 398 

(over 400 ppt) was observed just before entering the Great Bitter Lake (see Figure 5a), indicating an increasing influence of biomass 399 

burning on the air composition (Lobert et al., 1990). Carbonyl compounds are important primary emissions in fresh biomass 400 

burning plumes (Holzinger et al., 1999;Schauer et al., 2001;Holzinger et al., 2001;Koss et al., 2018) as well as being formed as 401 

secondary products in more aged plumes (Holzinger et al., 2005). We further investigated the correlation coefficient among 402 

carbonyls during the biomass burning plume (Figure 5b) in Suez. Carbonyls had a high correlation with acetonitrile, benzene and 403 

among themselves, particularly for smaller carbonyls (acetaldehyde, C3-C5 carbonyls). The biomass burning emissions were 404 

probably transported by on the prevailing northerly wind above Northeast Egypt (southern side of Suez Canal) where crop residues 405 

especially rice straw is often directly burned in the open fields (Abdelhady et al., 2014;Said et al., 2013;Youssef et al., 2009). 406 

Besides the direct biomass burning emission, the high mixing ratios and the good correlations of carbonyls could also have resulted 407 

from other sources as hydrocarbons (alkanes, alkenes and aromatics) which were elevated at the same time. Similar to conditions 408 

identified over the Arabian Gulf, elevated OH exposure accompanied with increasing acetone mixing ratio was observed during 409 

the first night over the Gulf of Suez, indicating aged air mass transportation. The OH exposure was then significantly lower during 410 

the daytime, when mixing ratios of carbonyls and alkanes increased as well. This indicates the presence of emission sources nearby. 411 

(a) (b)

(c)

R

R
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Oil refineries located in the costal side of Suez and oil tank terminals located in the northern part of the Gulf of Suez are likely 412 

sources.  413 

3.3 Air chemistry of unsaturated carbonyls 414 

Unsaturated carbonyls measured by PTR-MS have been only rarely reported in the atmosphere with the exception of methyl vinyl 415 

ketone and methacrolein (C4 carbonyls) which are frequently reported as the oxidation products of isoprene (Williams et al., 2001; 416 

Fan and Zhang, 2004;Wennberg et al., 2018). According to the GC-FID measurement, isoprene was below the detection limit for 417 

most of the time during the AQABA cruise with the highest values observed in Suez (10 - 350 ppt). This shows that the AQABA 418 

campaign was little influenced by either terrestrial or marine isoprene emissions. However, we observed unexpected high levels 419 

on mass 69.070, which is usually interpreted as isoprene for PTR-MS measurements. Significant enhancements were even 420 

identified while sampling our own ship exhaust (in PTR-MS but not GC-FID), suggesting the presence of an anthropogenic 421 

interference at that mass under these extremely polluted conditions. Several studies have reported possible fragmentations of cyclic 422 

alkanes giving mass (m/z) 69.070. These include: a laboratory study on gasoline hydrocarbon measurements by PTR-MS 423 

(Gueneron et al., 2015), a GC-PTR-MS study of an oil spill site combined with analysis of crude oil samples (Yuan et al., 2014) 424 

and an inter-comparison of PTR-MS and GC in an O&G industrial site (Warneke et al., 2014). From those studies, other 425 

fragmentations from C5-C9 cycloalkanes including m/z 43, m/z 57, m/z 83, m/z 111 and m/z 125 were identified together with 426 

m/z 69. Cyclic alkanes were directly measured in oil and gas fields (Simpson et al., 2010;Gilman et al., 2013; Li et al., 2017;Aklilu 427 

et al., 2018), vehicle exhaust (Gentner et al., 2012;Erickson et al., 2014), vessel exhaust (Xiao et al., 2018), accounting for a non-428 

negligible amount of the total VOCs mass depending on the fuel type. Koss et al. (2017) reported enhancement of cyclic alkane 429 

fragment signals and increased levels of unsaturated carbonyls measured by PTR-ToF-MS over O&G region in the US. The 430 

unsaturated carbonyls (C5-C9) were assigned as oxidation products of cycloalkanes. Therefore, we examined the correlations 431 

between m/z 69.070 and other cycloalkane fragments over the Arabian Gulf and Suez, where anthropogenic primary emissions 432 

were significant. As shown in Figure 6, m/z 83 was the most abundant fragment and it correlated better with m/z 69 than the other 433 

two masses, strongly supporting the presence of C6 cycloalkanes (methylcyclopentane and cyclohexane). The other two masses 434 

are distributed in two or three clusters, suggesting compositions of different cycloalkanes. M/z 43 and m/z 57 (fragments of C5 435 

cycloalkanes) had lower correlations with other fragments (not shown in the graph) as they are also fragments of other higher 436 

hydrocarbons. Thereby we could assign those unsaturated carbonyls as photochemical oxidation products (i.e. cyclic ketones or 437 

aldehydes) from their precursor cycloalkanes.  438 

 439 

Figure 6. Scatter plots of m/z 69.070 and other cycloalkane fragment masses over the (a) Arabian Gulf and (b) Suez region. 440 
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As shown in Figure 2 and Table 1, C6 unsaturated carbonyls displayed higher mixing ratios than any other unsaturated carbonyls 441 

over the Arabian Gulf while C5 unsaturated carbonyl was slightly higher than C6 in Suez. Bourtsoukidis et al. (2019) derived 442 

enhancement ratio slopes from pentane isomers and established that the Arabian Gulf is dominated by oil and gas operations and 443 

that Suez is more influenced by ship emissions. Therefore, as the Arabian Gulf had much more active O&G activities than Suez, 444 

our findings agree with Koss et al. (2017) who showed that C6 unsaturated carbonyls should be more abundant than C5 carbonyls 445 

since more precursors for C6 unsaturated carbonyls are emitted from active oil fields. It is worth mentioning that in Figure 6 (b) 446 

one cluster at the bottom showed m/z 69.070 had no correlation with other three masses. Those points correspond to the time when 447 

the GC measured significant elevated isoprene while passing through the narrow Suez Canal where some vegetation (e.g. palms 448 

and some agriculture) was present close to shore, meaning m/z 69.070 during this period was isoprene. At the same time, m/z 449 

71.049 (C4 unsaturated carbonyl) increased from 20 ppt to 220 ppt. Isoprene oxidation products (MVK and methacrolein) were 450 

probably the major contribution to the C4 unsaturated carbonyls in this period. This also explains why C4 carbonyl dominated the 451 

distribution of unsaturated carbonyls over Suez.  452 

In the other regions (especially more remote areas), the cyclic alkane fragmentation masses had much lower abundance, leading 453 

to much less unsaturated carbonyls due to lack of precursors. Meanwhile, m/z 69.070 (C5H8H+), m/z 83.086 (C6H10H+) and m/z 454 

97.101 (C7H12H+) could also be fragmentations from corresponding aldehydes losing one water molecule as mentioned in section 455 

2.3.3.   Missing information of the chemical structure of unsaturated carbonyls and knowledge of their precursors, preclude detailed 456 

investigation of the sources of large unsaturated carbonyls in these areas.  457 

3.4 Model comparison of acetaldehyde, acetone and MEK 458 

We compared our measurement results of acetaldehyde, acetone and MEK to those predicted by the global model “EMAC” 459 

(ECHAM5/MESSy2 for Atmospheric Chemistry). The model considers direct emissions (such as anthropogenic, biogenic, 460 

biomass burning etc.), atmospheric transport and mixing, photochemical production of carbonyls (by OH, O3 and NO3), and 461 

physical and chemical removal processes. From the results shown in Figure 7, the model predicted acetone much better than 462 

acetaldehyde and MEK. In general, the model broadly captured the major features identified during the campaign such as much 463 

higher levels of carbonyls mixing ratios over the Arabian Gulf and Suez and relatively low levels over the Arabian Sea. The mean 464 

measurements-to-model ratios indicated that acetone was overestimated by a factor within 1.5 over the Arabian Sea, Gulf of Aden 465 

and Gulf of Oman, and underestimated by a factor within 2.5 over the other regions. In contrast, the model underestimated MEK 466 

within a factor of 4 over most of the regions except for the Gulf of Oman where MEK was overestimated (median values were 467 

taken here as the mean values substantially deviated from the medians over Suez, Gulf of Oman and Arabian Gulf). The model 468 

underestimation was most significant for acetaldehyde, which is underpredicted by a factor (median values) of more than 6 over 469 

the Red Sea North, ~ 4 over the Arabian Sea and Arabian Gulf  and between 1 and 4 over other regions. A strong natural non-470 

methane hydrocarbon source from deep water in the Northern Red Sea was implemented in the model (Bourtsoukidis et al., 2020). 471 

Although the model representation of acetaldehyde and other carbonyls was clearly improved after including the deep water source 472 

of ethane and propane (Figure S4), the underestimation of acetaldehyde was still significant over the Red Sea North as shown in 473 

Figure 7(a), indicating further missing sources. For acetaldehyde and MEK, the discrepancy was also significant over the Arabian 474 

Sea where acetone was in contrast, overestimated. Since acetaldehyde had the biggest bias from the model prediction both with 475 

our simple empirical calculation (section 3.2.1) and the global model, we further investigate the possible missing sources of 476 

acetaldehyde. 477 
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 478 

Figure 7. Measurement to model ratios (left) and time series (right) of measurements (in black) and model simulation (in red) of 479 
(a) acetaldehyde; (b) acetone; (c) MEK in each area. In each box plot, the box represents 25% to 75% of the data set with central 480 
line and square indicating the median value and the mean value respectively. The whiskers show data from 10% to 90%. The red 481 
dashed lines represent the 1:1 ratio.  482 

3.5 Missing sources of acetaldehyde 483 

In this section we investigate the following processes as potential sources of acetaldehyde: (1) production as an inlet artifact, (2) 484 

oceanic emission of acetaldehyde, (3) anthropogenic primary sources, (4) biomass burning sources, and (5) other possible 485 

secondary formation pathways.   486 

3.5.1 Inlet artifact 487 

Northway et al. (2004) and Apel et al. (2008) reported that heterogeneous reactions of unsaturated organic species with ozone on 488 

the wall of the Teflon inlet can cause artifacts signal of acetaldehyde but not to acetone. During AQABA, the highest and the most 489 
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variable ozone mixing ratios were observed during the campaign over the Arabian Gulf (mean: 80 ± 34 ppb) and the Red Sea North 490 

(66 ± 12 ppb), where a modest correlation was found between acetaldehyde and ozone over the Arabian Gulf (r2=0.54) and no 491 

significant correlation over the Red Sea North (r2=0.40). However larger correlation coefficients were identified between ozone 492 

and other carbonyls over the Arabian Gulf (see Figure S5), which suggests that the correlation was due to atmospheric 493 

photochemical production rather than artifacts. Moreover, acetaldehyde was found to have a much worse correlation with ozone 494 

during the nighttime compared to the correlation during the daytime over the Arabian Gulf (Figure 4b and c), which also indicates 495 

that inlet generation of acetaldehyde was insignificant. Over other regions, especially the remote area (the Arabian Sea and Gulf 496 

of Aden), ozone was relatively constant and low, with poor correlation with acetaldehyde mixing ratios. Although we cannot 497 

completely exclude the possible existence of artifacts, the interference is likely to be insignificant in this dataset.  498 

3.5.2 Oceanic emission  499 

A bias between measured acetaldehyde and global model simulations has been observed in previous studies conducted in the 500 

remote troposphere (Singh et al., 2003; Singh, 2004;Wang et al., 2019) and in the marine boundary layer (Read et al., 2012). The 501 

aforementioned studies emphasized the potential importance of the sea water acting as a source of acetaldehyde emission via air-502 

sea exchange. No significant correlation was found between acetaldehyde and DMS, a marker of marine biogenic emission which 503 

is produced by phytoplankton in seawater (Bates et al., 1992) (see Figure S6). This indicates that the source of acetaldehyde was 504 

probably not from direct biogenic production, which has been reported by Mungall et al. (2017). More likely, acetaldehyde and 505 

other small carbonyl compounds can be formed in the sea especially in the surface microlayer (SML) via photodegradation of 506 

colored dissolved organic matter (CDOM) (Kieber et al., 1990;Zhou and Mopper, 1997;Ciuraru et al., 2015). Zhou and Mopper 507 

(1997) calculated the exchange direction of small carbonyls based on measurement results and identified that the net flux of 508 

acetaldehyde was from sea to the air whereas formaldehyde was taken up by the sea. Sinha et al. (2007) characterized air-sea flux 509 

of several VOCs in a mesocosm experiment and found that acetaldehyde emissions were in close correlation with light intensity 510 

(r=0.7). By using a 3-D model, Millet et al. (2010) estimated the net oceanic emission of acetaldehyde to be as high as 57 Tg a-1 511 

(in a global total budget: 213 Tg a-1), being the second largest global source. A similar approach was applied in a recent study done 512 

by Wang et al. (2019), reporting the upper limit of the net ocean emission of acetaldehyde to be 34 Tg a-1. To our knowledge, there 513 

is no clear experimental evidence showing the ocean to be a sink for acetaldehyde.  514 

In order to test the importance of the oceanic emission of acetaldehyde, we implemented this source in EMAC model. The measured 515 

sea water concentration of acetaldehyde was not available for the water area around the Arabian Peninsula. Wang et al. (2019) 516 

estimated the global average acetaldehyde surface seawater concentrations of the ocean mixed layer using a satellite-based 517 

approach similar to Millet et al. (2010), where the model estimation agreed well with limited reported measurements. From the 518 

Wang et al. (2019) results, the averaged seawater concentration of acetaldehyde around Arabian Peninsula was generally much 519 

higher from June to August. As the photodegradation of CDOM is highly dependent on sunlight, the air-sea submodel (Pozzer et 520 

al., 2006) was augmented to include throughout the campaign a scaled acetaldehyde seawater concentration in the range of 0 ~ 50 521 

nM according to the solar radiation (Figure S7). With this approach, the average of acetaldehyde seawater concentration estimated 522 

by the model is 13.4 nM, a reasonable level compared to predicted level by Wang et al. (2019).  523 

After adding the oceanic source of acetaldehyde, the model estimation was significantly improved (Figure 8). As the oceanic source 524 

in the model is scaled according to the solar radiation, the measurement-to-model ratios were more strongly reduced during the 525 

day compared to the night. With oceanic emission included, the model underestimation was less significant, within a factor of 3 526 

during the day and 4 during the night over the Mediterranean Sea, Red Sea and Gulf of Aden. The most significant improvement 527 

was identified over the Red Sea North. As shown in Figure 9, the model had much better agreement with the measurement after 528 
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adding the oceanic source. The scatter plots for other regions can be found in Figure S8. Over the Arabian Sea, the model 529 

significantly overestimated acetaldehyde mixing ratios, indicating the input sea water concentration of acetaldehyde might be too 530 

high. The SML layer starts to be effectively destroyed by the wave breaking when the wind speed exceeds than 8 m s-1 (Gantt et 531 

al., 2011). As the average wind speed over the Arabian Sea was the highest among the cruised areas (8.1 ± 2.4 m s-1, Figure S1), 532 

less contribution from the CDOM photo degradation to acetaldehyde in the surface sea water would be expected. For the Suez 533 

region, due to the limited model resolution (1.1o × 1.1o), little sea water was identified in the model, leading to negligible influence 534 

from the oceanic source.  535 

Model underestimation of acetaldehyde especially over the Suez, Red Sea and Arabian Gulf is also likely to be related to the coarse 536 

model resolution (~ 1.1o × 1.1o) (Fischer et al., 2015). Where model grid points contain areas of land the higher and more variable 537 

terrestrial boundary layer height impacts the model prediction whereas the measurements may only by influenced by a shallower 538 

and more stable marine boundary layer.  539 

 540 

Figure 8. Acetaldehyde measurement to model ratios without the oceanic source (white boxes) and with the oceanic source (blue 541 
boxes) in the model during (a) daytime and (b) nighttime in different regions. The boxes represent 25% to 75% of the data set 542 
with the central line and square indicating the median and mean values, respectively. The whiskers show data from 10% to 90%. 543 
The red dashed lines represent the 1:1 ratio. 544 

 545 

Figure 9. Observed and simulated mixing ratios of acetaldehyde over the Red Sea North without oceanic emission (left) and with 546 
oceanic emission (right). The data points are separated into day- and nighttime according to solar radiation. 547 

 548 
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3.5.3 Anthropogenic primary sources 549 

Over the Arabian Gulf and Suez, the intensive photochemical production of carbonyls is apparent. Therefore, an underestimation 550 

of the precursor hydrocarbons especially those large alkanes, alkenes and cyclic hydrocarbons which were not measured (> C12) 551 

or included in the model (> C5) could be a reason for the model underestimation of acetaldehyde and other carbonyls. Bourtsoukidis 552 

et al. (2020) compared measured hydrocarbons (ethane, propane, ethene etc.) with the results from model simulations (the same 553 

model used in this study) and periodically found significant model underestimations in both regions. This indicates that not all 554 

sources were present in the model’s emission inventory. As mentioned in the previous case studies, high ozone mixing ratios were 555 

observed over the Arabian Gulf and Suez. With large amounts of alkenes present in those regions, which the model occasionally 556 

underestimated, the nighttime ozonolysis of alkenes could be another important source for acetaldehyde, formaldehyde and other 557 

carbonyls (Atkinson et al., 1995;Altshuller, 1993). Acetaldehyde, an oxygenated VOC, is not generally considered as an important 558 

primary emission from oil and gas field but instead a photochemical product of hydrocarbon oxidation (Yuan et al., 2014;Koss et 559 

al., 2015;Koss et al., 2017). In contrast, primary sources of formaldehyde from oil and gas production processes including both 560 

combustion and non-combustion process have been ascertained (Vaught, 1991).  Le Baron and Stoeckenius (2015) concluded in 561 

their report of the Uinta Basin winter ozone study that besides formaldehyde, the other carbonyls were poorly understood in terms 562 

of their primary sources. Acetaldehyde and other carbonyls (aldehydes and ketones) have been reported as primary emissions from 563 

fossil fuel combustion including ship emissions (Reda et al., 2014;Xiao et al., 2018;Huang et al., 2018) and vehicle emissions 564 

(Nogueira et al., 2014;Erickson et al., 2014;Dong et al., 2014). Therefore, the active petroleum industry located in the Arabian 565 

Gulf and intensive marine transportation in Suez are likely primary sources of acetaldehyde and other carbonyls which were not 566 

well constrained in the model. The Suez region, where the largest acetaldehyde discrepancy was identified, had a significant 567 

influence from biomass burning (see section 3.2.2). Biomass burning emissions are notoriously difficult to model as they are highly 568 

variable both in time and space. In this study, the model failed to reproduce the acetonitrile level with a range of only 40-50 ppt 569 

rather than 100-550 ppt measured over Suez. Thus, besides the possibility of seawater emission from the Gulf of Suez and the Suez 570 

Canal, the underestimated biomass burning source in the model over Suez, will lead to an underestimation of acetaldehyde as well 571 

as other carbonyl compounds in this region. 572 

3.5.4 Other possible secondary formation pathways 573 

Although the model estimation was generally improved with the addition of an oceanic source, the model to measured ratios still 574 

varied over a wide range. As mentioned above, photodegradation of CDOM on the surface of seawater is a known source for 575 

acetaldehyde although some studies focusing on real sea water samples did not observe clear diel cycles of seawater acetaldehyde 576 

(Beale et al., 2013;Yang et al., 2014). Fast microbial oxidation could be a reason (Dixon et al., 2013) while other non-light driven 577 

sources of acetaldehyde could be an alternative explanation. In a recent study, Zhou et al. (2014) reported enhanced gas-phase 578 

carbonyl compounds including acetaldehyde during a laboratory experiment of ozone reacting with SML samples, indicating 579 

acetaldehyde could also be produced under non-light driven heterogeneous oxidation. Wang et al. (2019) ventured a hypothetical 580 

source that organic aerosol can be an extra source for unattributed acetaldehyde in the free troposphere through light-driven 581 

production and ozonolysis. However, since the yield of acetaldehyde from such reactions is unknown, large uncertainties remain. 582 

Previous studies have shown that the organic matter fraction was highest in smaller sea spray aerosols and that the aerosols contain 583 

both saturated and unsaturated fatty acids originating from the seawater surface (i.e. SML) (Mochida et al., 2002;Cochran et al., 584 

2016). Thus, for the AQABA campaign, both photodegradation and heterogeneous oxidation could occur on the surface of sea 585 

spray and pollution associated aerosols, even over remote open ocean therefore being an extra source of acetaldehyde and other 586 

carbonyl compounds. Another acetaldehyde formation pathway reported is gas-phase photolysis of pyruvic acid (Eger et al., 587 
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2019b;Reed Harris et al., 2016), a compound mainly of biogenic origin.  Pyruvic acid has been also observed in seawater (Kieber 588 

and Mopper, 1987;Zhou and Mopper, 1997;Tedetti et al., 2006), although acetaldehyde was not the major product of aqueous-589 

phase photolysis of pyruvic acid (Griffith et al., 2013). Zhou and Mopper (1997) pointed out that the net exchange direction for 590 

pyruvic acid is expected to be from the air to the sea due to its high partition coefficient (high solubility). Therefore, only low 591 

levels of pyruvic acid would be expected in the remote marine boundary layer. Pyruvic acid was measured by Jardine et al. (2010) 592 

using a PTR-MS at m/z 89 in a forested environment. For the AQABA PTR-ToF-MS data set, enhanced signals were observed at 593 

m/z 89.024 with the mean mixing ratio of 58 ± 34 ppt (the box plot can be found in Figure S9), which is much more abundant than 594 

reported pyruvic acid levels measured above Atlantic Ocean (1.1 ± 1.0 ppt) (Baboukas et al., 2000). This might be due to the 595 

uncertainty associated with the theoretical methods of quantification used here or the presence of isomeric compounds on that 596 

mass, since pyruvic acid was not calibrated with the standard. As the air-sea exchange of pyruvic acid is limited, low levels of 597 

pyruvic acid were expected. Even if we fully assign the m/z 89.024 to pyruvic acid, the contribution to acetaldehyde via photolysis 598 

of pyruvic acid is negligible compared other sources. Therefore, we conclude that the contribution from the photolysis of pyruvic 599 

acid is not an important source for the unattributed acetaldehyde during the AQABA campaign.  600 

4 Summary and Conclusion 601 

Observations of carbonyl compounds around the Arabian Peninsula were investigated in terms of mixing ratios abundance over 602 

different areas. Aliphatic carbonyl compounds were generally more abundant than the unsaturated and aromatic carbonyl 603 

compounds, and were dominated by low-molecular-weight compounds (carbon number less than five).  Aliphatic carbonyl 604 

compounds were found at the highest mixing ratios over the Arabian Gulf followed by the Suez region, while the lowest mixing 605 

ratios were observed over the Arabian Sea and the Gulf of Aden. Over the Mediterranean Sea, aliphatic carbonyls were low except 606 

for acetone that was much higher compared to the levels observed over clean remote areas (i.e. Arabian Sea). The atmospheric 607 

composition over the Red Sea showed obvious differences between the northern and the southern part, with higher mixing ratios 608 

in the north. Similar region-dependent distributions were observed for unsaturated and aromatic carbonyls. Generally, the mixing 609 

ratios of aromatic carbonyl compounds decreased as the carbon number increased. Particularly over the Suez region, benzaldehyde 610 

(C7 aromatic carbonyls) was much more abundant than other aromatic carbonyls, indicating direct sources as well as abundant 611 

oxidation precursors. For unsaturated carbonyl compounds, C5 and C6 carbonyl compounds dominated the mixing ratio 612 

distribution, while the air chemistry highly depends on the chemical structure assignment of those masses. 613 

To better understand the air chemistry of aliphatic carbonyl compounds over different regions, we used an empirical method to 614 

calculate the levels of carbonyl compounds resulting from OH oxidation of precursor hydrocarbon species. The results indicate 615 

that mixing ratios of formaldehyde and C3-C8 carbonyl compounds could, to a large part, be explained by OH initiated 616 

photooxidation in each region, especially over the Arabian Gulf and Suez region. This result indicates that photooxidation is a 617 

dominant production pathway for formaldehyde and C3-C8 aliphatic carbonyl compounds in these two regions. However, 618 

acetaldehyde from hydrocarbon precursors was not sufficient to explain the high mixing ratios observed, indicating the existence 619 

of other sources and/or formation pathways. Further case studies showed that the carbonyl compounds produced via photooxidation 620 

were highly correlated to the high ozone levels during daytime over the Arabian Gulf while the air chemistry in Suez region was 621 

strongly influenced by regional biomass burning. Due to the unexpectedly high loading of m/z 69 (usually assigned as isoprene) 622 

observed in highly polluted regions, we further identified the correlations between m/z 69 and other fragmentation masses of 623 

cycloalkanes according to previous studies conducted in oil and gas regions (Warneke et al., 2014;Yuan et al., 2014;Koss et al., 624 

2017). The high correlations among fragments implied the existence of cycloalkanes in the polluted regions, which could be further 625 

oxidized to unsaturated carbonyl compounds (cyclic ketones or aldehydes).  626 
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As acetaldehyde was identified as having important additional sources, we further compared the measurements of major carbonyl 627 

species (acetaldehyde, acetone and MEK) with a comprehensive global atmospheric chemistry model (EMAC). Acetaldehyde was 628 

found to have the highest discrepancy between the observations and model simulations, with the simulated values to be lower up 629 

to a factor of 10. By adding an oceanic source of acetaldehyde produced via light-driven photodegradation of CDOM in the 630 

seawater, the model estimation improved significantly, especially over the Red Sea North. With the oceanic source added, modelled 631 

acetaldehyde became slightly overestimated in clean regions, suggesting that the emission rate employed represents an upper limit. 632 

The results indicate that the ocean plays an important role in the atmospheric acetaldehyde budget, under both clean and polluted 633 

conditions. The underestimated acetaldehyde in the model is significant as it will influence the atmospheric budget of e.g. PAN. 634 

As shown in Figure 1, multiple sources and formation pathways need to be considered to better understand the atmospheric budget 635 

of acetaldehyde. Additional laboratory experiments and field measurements are necessary in order to verify all possible 636 

atmospheric formation mechanisms and to improve model simulations. 637 
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