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Abstract. An accurate emission inventory is a crucial part of air pollution management and is essential for air quality modelling. 

One source in an emission inventory, an industrial source, has been known with high uncertainty in both location and 10 
magnitude in China. In this study, a new reallocation method based on blue-roof industrial buildings was developed to replace 

the conventional method of using population density for the Chinese emission development. The new method utilized the 

zoom level 14 satellite imagery (i.e., Google®) and processed it with Hue, Saturation, Value (HSV)-based colour classification 

to derive new spatial surrogates for province-level reallocation, providing more realistic spatial patterns of industrial PM2.5 and 

NO2 emissions in China. The WRF-CMAQ based PATH-2016 model system was then applied with the new processed 15 
industrial emission input in the MIX inventory to simulate air quality in the Greater Bay Area (GBA) area (formerly called 

Pearl River Delta (PRD)). In the study, significant Root Mean Square Error (RMSE) improvement was observed in both 

summer and winter scenarios in 2015 when compared with the population-based approach. The average RMSE reductions (i.e., 

75 stations) of PM2.5 and NO2 were found to be 11 µg/m3 and 3 ppb, respectively. Although the new method for allocating 

industrial sources didn’t perform as good as the point and area based industrial emissions obtained from the local bottom-up 20 
dataset, it still showed a large improvement over the existing population-based method. In conclusion, this research 

demonstrates that the blue-roof industrial allocation method can effectively identify scattered industrial sources in China and 

is capable of downscaling the industrial emissions from regional to local levels (i.e., 27 km to 3 km resolution), overcoming 

the technical hurdle of ~10 km resolution from the top-down or bottom-up emission approach under the unified framework of 

emission calculation. 25 
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1 Introduction  

The emission inventory is essential for air quality management and climate studies. Various applications, including 30 
setting up regional emission reduction target and performing numerical air quality forecasts, rely upon an accurate inventory 

for sound assessment and judgment (Krzyzanowski, 2009; Zhao et al., 2015). As the purpose and type of emission inventories 

(e.g., point, mobile and area) vary largely, data requirement and collection method can be quite different (Kurokawa et al., 

2013). In point source inventory, collecting large point sources (i.e., power plant) is generally straightforward, while obtaining 

data from scattered industrial sources often poses challenges and requires tremendous effort to collect and process.  In 35 
developed countries like the USA, industrial sources are usually large, but yet it does not always contribute to a dominant 

portion in the emission inventory (e.g., 10-15% in PM10 and 25-60% in NMVOC), and its data collection process is commonly 

incorporated into routine permitting exercise, making it easy to be included in their national inventory (ECCC, 2017; Janssens-

Maenhout et al., 2015; Lam et al., 2004).  Unfortunately, this is not the case for developing countries like China where industrial 

sources are considered as a major emitter; Li et al. (2017) reported that industrial sources from non-power generation are the 40 
largest contributors of PM10 and NMVOC in the MIX inventory. With the infinite numbers of small factories scattered across 

the continent with frequent change of location caused by urban redevelopment, these industrial sources are often treated as 

area/nonpoint source regardless of whether it is a point source (e.g., stack) or not. Hence, it possesses large spatial uncertainties 

in the inventory. 

In recent years, various Asian emission inventories (e.g., REAS, MIX, and MICS-ASIA) have been developed for the 45 
purpose of air pollution modelling, and it has been widely used for studying transboundary air pollution among the Asian 

countries (Chen et al., 2019; Tan et al., 2018). The top-down or semi bottom-up approach based on the unified framework of 

source categories, calculating method, chemical speciation scheme, and spatial and temporal allocations was commonly used 

in the emission inventory development, where emissions were handled separately for different source categories (e.g., power, 

industry, transport, residential/domestic and agriculture) with limited spatial resolutions ranged from 10 to 27 km (Kurokawa 50 
et al., 2013; Li et al., 2017; Ohara et al., 2007; Streets et al., 2003).  In some cases, higher resolution emission inputs were 

achieved via GIS spatial interpolation for subregional (i.e., 10-15 km resolution) application. Information such as stack location, 

road network and population density was applied as surrogate data for spatial reallocation (Du, 2008). For the case when ultra-

high resolution (i.e., 1-3 km resolution) was needed, it was often supplemented with the bottom-up approach using the detailed 

activity data (i.e., exact emission locations and its relevant emission amounts) in the emission inventory development (HKEPD, 55 
2011). For the category of small/medium industrial sources where location information was frequently missing in the top-

down/semi bottom-up emission approach, the population density was used as the surrogate, giving the fact that population 

density was considered a good proxy for accessing employment, goods and services (Giuliano and Small, 1993). Historically, 

this approach seemed to be quite robust to capture the factory location due to: 1) the Danwei/socialist work units which 

enforced jobs and residences to be closed to each other to reduce travel distance (Yang, 2006), and 2) factory jobs were 60 
typically included accommodation (i.e., dormitory) for attracting foreign workers. With limited transport infrastructure, 

dormitories were usually within a few kilometres away from the factories. However, in recent years, the land-use and housing 

reforms in China has led to a spatial separation of jobs and residences, the strong factory-residence pattern has slowly 

diminished in Chinese cities as efficient public transportation has emerged. With the adaptation of industrial park in the urban 

renewal process, it further expedited the separation of industrial-related employment (in the outskirt of the city) from residential 65 
space (city centre) (Zhao et al., 2017). As a result, there is a need to reconsider how industrial emissions are handled in the 

top-down/semi bottom-up emission approach, searching for a suitable surrogate for the emission reallocation.  

In this study, the concept of a blue-roof industrial surrogate was introduced for the first time for Chinese industrial 

emission allocation. The approach assumed the majority of industrial buildings (both factories and its warehouses) in China 

were single-story non-concrete buildings with their rooftop was made out of galvanized metal coated with blue epoxy. In this 70 
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development, satellite imagery with zoom level 14 (i.e., Google®) was adopted and processed with HSV-based colour 

classification for generating the province-level spatial surrogate. The Community Multi-Scale Air Quality (CMAQ) based 

PATH-2016 platform with 3km MIX inventory was then applied to evaluate the impacts of air quality predictions between 

population and blue-roof based methods, and the simulated results of PM2.5, NO2, and O3 were then compared to local 

observation data and CMAQ results from the point/area based bottom-up approach (hereafter referred to as “btmUp case”) 75 
from Zhang et al. (2020) to assess its model performance (HKEPD, 2011; Li et al., 2017). 

2 Methodology 

A new allocation method called “blue-roof” industrial allocation was introduced in the top-down/semi bottom-up 

emission approach for better allocating the scattered Non-Power Generation (NPG) industrial emissions in China. In this study, 

the CMAQ model and the regional Asian emission inventory-MIX were applied to evaluate the effectiveness of the new 80 
allocation method on the performance of air quality prediction.  The target simulation year is 2015, and the details of each 

component are described below: 

2.1 Study area, simulation domain, and observation network 

The Guangdong-Hong Kong-Macao Greater Bay Area (GBA), also known as the Pearl River Delta (PRD), was adopted 

as the study area for the industrial allocation test. The characteristic of diverse industrial clusters (e.g., garment, electronics, 85 
and plastic factories) scattered across the area creates an ideal testbed for spatial examination. The GBA area consists of two 

special administrative regions (Hong Kong and Macao) and nine Chinese municipalities, including Guangzhou, Shenzhen, 

Zhuhai, Foshan, Huizhou, Dongguan, Zhongshan, Jiangmen, and Zhaoqing in Guangdong Province with a total area coverage 

over 56,000 km2. It is classified as one of the world-class manufacturing hubs in China.  In this study, the CMAQ based PATH-

2016 was adopted to evaluate the influence of air quality prediction from the new allocation method. The PATH-2016 90 
modelling platform consists of 4 nested domains, including East Asia and Southeast Asia (D1), Southeastern China (D2), and 

GBA)/PRD (D3), and Hong Kong (D4) with resolutions of 27 km, 9 km, 3 km and 1 km, respectively. For this study, only 

D1-D3 was applied as it already covered the entire GBA with a reasonable spatial resolution (e.g., 3 km) for regional air quality 

simulation, as shown in Figure 1. Details of PATH-2016 and its model setting are discussed in the later section. For evaluating 

the performance of CMAQ air quality prediction, the China National Environmental Monitoring Centre (CNEMC) and the 95 
Guangdong-Hong Kong-Macao Pearl River Delta Regional Air Quality Monitoring Network (HKEPD, 2016) with over 75 

surface observation stations were adopted (available at http://www.cnemc.cn/, last access: 10 September 2020). These stations 

measure various air pollutants, including PM2.5, PM10, SO2, NO2, and O3. 

2.2 PATH-2016 and MIX inventory 

The PATH-2016 is a WRF-CMAQ (Community Multi-Scale Air Quality model) Air Quality system used by the 100 
HKSAR government for air quality-related policy. It has been validated in several studies (HKEPD, 2011, 2019; Zhang, 2020).  

In this study, CMAQ version 5.0.2 with AERO5 aerosol module and CB05CL carbon bond chemical mechanism driven by 

WRF version 3.7.1. was adopted for air quality simulation.  The model setup for CMAQ simulation is summarized in Table 1, 

and WRF meteorological validation can be found in Zhang (2020) and HKEPD (2019). The initial/boundary conditions for 

the outermost domain, D1 was generated from the global model GEOS-Chem outputs for Asian pollution background (Lam 105 
and Fu, 2010). In terms of the model emissions, the majority of the anthropogenic emissions were adopted from the Asian 

emission inventory, MIX. The MIX is a regional emission inventory developed to support the Model Inter-Comparison Study 

for Asia (MICS-Asia) and the Task Force on Hemispheric Transport of Air Pollution (TF HTAP) (Li et al., 2017). It consists 
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of 5 anthropogenic emission source categories, including point, industry, transport, residential, and agriculture (NH3 only) with 

a resolution of 0.25° (~27km), and its emission base year is for 2010.  In this study, the MIX inventory was first scaled to the 110 
target simulation year of 2015 based on available sector-based control technologies (Li et al., 2019; Zhang, 2020; Zheng et al., 

2018). The derived emission totals from each sector, except for the industrial emissions, were then temporally and spatially 

interpreted into 27km (D1), 9km (D2), and 3km (D3) resolutions using the top-down emission method described in Du (2008).  

Detailed methodology and validation of the base year 2015 emission inventory were extensively discussed and can be found 

in our previous publications (Zhang et al., 2021; Zhang et al., 2020). As Hong Kong emissions were not well presented in the 115 
MIX inventory due to the limitation of spatial resolution, the bottom-up emissions from the PATH-2016 platform were adopted 

for Hong Kong emissions. For the remaining sectors that were not available from the MIX inventory, it was adopted from the 

PATH-2016 study (Zhang, 2020). These include MEGAN biogenic, GFED biomass burning, Marine and sea-salt emissions 

(Athanasopoulou et al., 2008; Giglio et al., 2013; HKEPD, 2019; Ng et al., 2012).  

2.3 Case study for nonpoint source industrial allocation 120 

The purpose of CMAQ simulation is to evaluate the performance of the new industrial allocation method on its effect 

on air quality prediction in China. Two CMAQ scenarios tailored for the industrial allocation methods were proposed and 

tested with the MIX inventory. These scenarios are 1) population-based method and 2) blue-roof based method. Details of 

each method are described in the later section. For each scenario, two months of CMAQ air quality simulation were performed. 

The selection of winter (January) and summer (August) months from 2015 was to allow better reflection of air quality impacts 125 
from the change of Asian monsoon in Southern China. The choice of using 2015 as the based year was to permit more local 

observation data to be available in the GBA area from the Chinese national observation network (operated after late 2013), 

moreover, to better fit with the modelling effort in 2016 Air Quality Objectives (AQOs) review that has also applied PATH-

2016 model (Zhang, 2020). 

2.3.1 Base case - population-based method 130 

The population-based method (hereafter referred to as “base case”) is commonly applied in the top-down emission inventory 

to allocate residential (area) or NPG industrial sector in the regional emission inventory (Du, 2008; Li et al., 2017; Ohara et 

al., 2007). It utilizes population or population density as a spatial proxy to distribute the sectorial emissions into the simulation 

grids. It assumes a strong association is present between population and industrial emissions. In this study, the Oak Ridge 

National Laboratory (ORNL)’s LandScan global population data with the resolution of ~1 km (30″ X 30″) gridded spatial 135 
resolution was applied to allocate industrial emissions. To allow the separation of urban population from the rural population 

in LandScan grids, a threshold value of 1,500 people per square kilometres was adopted, in which any grid values that were 

greater than this number were considered as urban grids (Liu et al., 2003). The basic equation for estimating the gridded 

emissions (𝐸!,#) using urban population is shown in Eq (1). 𝐸! is the total emission in a province (m), and U_popn /U_popm 

is the ratio of urban population from a grid (n) to the province total. This value is commonly referred to as the spatial allocation 140 
factor, and it is a dimensionless value ranged between 0 to 1. The collection of spatial allocation factors in the gridded matrix 

is called a spatial surrogate. In this study, all the calculations and the spatial interpretation were performed in ArcGIS to yield 

CMAQ-ready emissions.   

𝐸!,# = 𝐸! ×
$_&'&!
$_&'&"

	,           (1) 

where 𝐸!,# is the emission in nth grid for mth province, 𝐸! is the total emission in mth province, 𝑈_𝑝𝑜𝑝# is the urban population 145 
count in nth grid, 𝑈_𝑝𝑜𝑝! is the total population in mth province. 
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2.3.2 Blue-roof case: blue-roof based method 

The “blue-roof based method” (hereafter referred to as “blue-roof case”) adopted the concept of rooftop colour for 

associating the location of industrial buildings.  In China, warehouse and industrial rooftops are commonly made out of 

galvanized metals with a coat of colour epoxy (i.e.,  light blue, green, pink, and purple). As more than 90% (by general 150 
observation) of these industrial roofs are in light blue, this unique feature was captured and applied to develop the new 

allocation method.  To derive the allocation factor for each grid for the modelling domain, satellite imagery was used. Among 

different imagery products (e.g., Google®, Bing®, Baidu®, Latsat8, and SPOT7), the Google imagery was selected for the 

basis of the analysis, as it provided their products with less processing effort for different zoom levels. Overall, the zoom level 

14 or above (~ 9.5 metre/pixel or above) has been confirmed to be sufficient for use in the colour detection process for major 155 
industrial rooftops in China.  Considering the study required to process a relatively large area, the lowest possible zoom level 

(i.e., 14) was preferred.  In this development, the QGIS platform v2.16 with two plugins (i.e., OpenLayers and Python) was 

adopted to provide a smooth process of overlaying satellite imagery with the Google Maps API v3 and to perform a pixel-

based HSV colour detection (i.e., OpenCV) in QGIS. The colour detection method utilized HSV colour space for better 

identifying blue colours in given images. The choice of using OpenLayers (OL) at that time was to avoid the violation of the 160 
Terms Of Service (TOS) regarding the direct usage of Tile Map Services. As for now, this type of operation is no longer 

allowed under the updated TOS by Google®. To perform a similar process, one may choose to use Google Earth Engine or 

Bing/Baidu Maps API with OL. Figure 2 shows the basic flow chart of the process. Overall, about 2,000 map tiles that 

contained “blue-roof“ were processed using the HSV algorithm for the area of the D3 domain. At last, the identified blue-roofs 

were then converted into polygons and stored into a shapefile. As the HSV algorithm was unable to distinguish the blue ocean 165 
and river features from blue-roofs, a removal process using the shapefiles of coastal line and inland waterbody was applied to 

eliminate the falsely identified waterbody using ArcGIS.  The resulted blue-roof shapefile was then spatially interpreted with 

China administrative (i.e., province) boundaries and CMAQ raster grids to yield the information of gridded blue-roof areas 

(𝐵_𝑎𝑟𝑒𝑎#) and total blue-roof areas for each province (𝐵_𝑎𝑟𝑒𝑎!). This information was further applied to province total 

emission (𝐸!) to calculate the gridded emissions (𝐸!,#) using Eq (2): 170 

𝐸!,# = 𝐸! ×
(_)*+)!
(_)*+)"

,          (2) 

where 𝐸!,# is the emission in nth grid for mth province; 𝐸! is the total emission in mth province; 𝐵_𝑎𝑟𝑒𝑎# is the total blue-roof 

area in nth grid; 𝐵_𝑎𝑟𝑒𝑎! is the total blue-roof area in mth province. 

3 Results and discussion 

3.1 HSV value selection, data training, and results of blue-roof colour identification 175 

The satellite imagery of Google Map Tiles with zoom level 14 (which was retrieved between 2015-16 for this study) had 

exhibited a colour variation due to the inconsistent environmental conditions (e.g., cloud cover, visibility, and brightness of 

the day) when the images were taken.  As these collective images were taken from different seasons or years, the aggregated 

images might not reflect a single snapshot of a specific time. To determine suitable parameters for the HSV algorithm, an 

optimization process that iteratively searches for high hit rates, low false detection and false alarm rates (See Supplement 180 
Eq(S1-S3) for definition) was applied. Three urban areas are Jing-Jin-Ji (Baoding area with 332 km2), Yangtze River Delta 

(Shanghai area with 1,336 km2), and GBA (Fushan area with 1,194 km2) were picked as the training dataset as we recognized 

that cities and regions might have their own building styles and development patterns, choosing these three regions not only 

allowed more diverse samples to be included in the training dataset but also incorporated the potential effect of solar incident 
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angles on image colour (i.e., different brightness) under different latitudinal positions and time of satellite passing. To obtain 185 
the “ground truth” reference for iterative comparison, manual digitization of blue-roofs using the zoom level 16 data was 

performed for those three areas. The result of the iterative process shows that not a single set of HSV ranges was sufficient to 

capture the blue colour variation exhibited in the google images. As there was a broad spectrum of blue colours (e.g., low cyan, 

cyan blue, low blue) found in the satellite images, four sets of HSV ranges were used for the blue roof identification algorithm, 

in which each set of HSV ranges were adopted to identify an independent section of “blue colour” from the HSV solid cylinder. 190 
It should be noted that as the ranges of HSV values are considered as business confidential information under the project 

agreement, the exact values are not disclosed here. In general, the applied HSV values were ranged between 193° and 230° for 

Hue (H), 17% and 90% for Saturation (S), and 40% and 100% for Value (V).  Figure 3a-c shows samples of training images 

(100 km2) in Baoding, Shanghai, and GBA, and Table 2 shows the summary of the training performance. 

Overall, 74% to 88% (hit rates) of the blue roof areas were successfully identified by the algorithm, while the false 195 
detection rates and false alarm rates were ranged between 35% to 51% and 0.1% to 0.5%, respectively. The low percentages 

of false alarm rates indicate only a small amount of non-blue-roof areas were included by the algorithm.  For a closer look at 

the results of false detection rates, it reveals that the false identification was mainly concentrated around the building 

boundaries because of the fuzziness of the building edges from the zoom level 14 satellite images. The percentages of false 

detection rates varied for images in different areas as the clearness of satellite images depending on the atmospheric conditions 200 
(e.g. cloudiness, air pollution, etc.) at the time they were taken. Comparing with the images of Shanghai and GBA, the Baoding 

image has a relatively higher degree of blurriness which explained why the false detection rate for the Baoding was higher 

than those in the other two training areas. While the false selection around the building edges may incur different levels of 

errors to the blue-roof identification result, however, it does not generally affect the spatial distribution of the blue roof areas 

selected by the algorithm. It is observed that the GBA area has a low hit rate (i.e., 74%) due to more scattered/isolated 205 
development than the other areas. In Boading and Shanghai, industrial parks are more common than in GBA. Buildings 

clustered together might have contributed to higher hit rates, but at the same time caused high false detection rates, as the gap 

between buildings was also included as blue-roof. To better evaluate the algorithm response to different environmental 

condition, another 7 areas (approximately 100 km2 each) covering a wide variety of geographical locations and features were 

selected to validate the blue-roof identification algorithm, as shown in Figure 3d-j. The results in Table 2 show that the 210 
algorithm achieved between 76-92%, 9-54%, and 0-0.3% for the hit rates, false detection and false alarm rates, respectively. 

These similar results found in  Nagqu, Baoji, Kaifeng, Xi’an, and Zhengzhou indicate that the algorithm is relatively stable 

across the continent of China. For the remote areas in Taklimakan Desert and Yunnan (Figure 3i and 3j), it should be noted 

that the “ground truth” blue-roof areas were zero, so the hit rates were inapplicable for these two test images. 

3.2 Blue-roof allocation process and CMAQ ready emission 215 

Large spatial data with various geospatial information (e.g., province shapefile) was processed through ArcGIS to create 

the gridded emissions for the CMAQ model. As mentioned, the selected blue-roof areas from the HSValgorithm have first 

undergone a spatial operation for removing the falsely identified water bodies from the blue-roof dataset. The data was then 

used to compute the gridded total blue-roof areas in each grid (See Figure  4a). Furthermore, the total blue-roof areas in each 

province (i.e., Guangdong, Guangxi, and Jiangxi) within the domain were also generated. Figure 4b shows the province spatial 220 

surrogate (i.e., (_)*+)!
(_)*+)"

 in eq (2)) that was created for the GBA emission allocation. The values in each grid in the surrogate 

file should fall between 0 to 1, and the total in the province should sum up to 1.0 for data integrity.  The yellow grids (values 

greater than 0) were clustered around the centre of PRD, reflecting the high density of blue-roof buildings were identified 

along the pearl rivers, and the yellow lines extended from PRD indicates that small remoted industrial areas were built along 
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the major highways in GBA. For the grids with magenta (values with 0), it is confirmed to be hilly areas,  forests, or water 225 
reservoirs, no blue-roof building was identified.  

At last, for generating the final gridded industrial emissions,  the spatial surrogate was applied to the MIX industrial 

emissions to spatially allocate the province-level emissions into the CMAQ grids. All sectoral emissions, including power, 

transportation, industrial, residential, agriculture and others were aggregated together with the newly produced industrial 

emissions to generate the CMAQ ready gridded emissions for air quality simulation. Figure 5 shows the daily column total of 230 
CMAQ ready PM2.5 emissions (January 1, 2015) for the base case, blue-roof case, and point/area based btmUp case from 

Zhang et al. (2020). In general, more spatial spreading is observed in the blue-roof case than in the base case within the GBA 

area, but the spread is not as wide as in the point/area based btmUp case. The widespread of PM2.5 emission in the btmUp case 

is attributed to the inclusion of both industrial point and industrial area sources, which was not applied the same way as in the 

base and blue-roof cases. In the base case (Figure 5a), emission (over 200 g/s/grid of PM2.5) is intensely clustered around the 235 
city centres of Guangzhou (GZ) and Foshan (FZ). A circular belt of intense PM2.5 emission is observed along the coast of 

Zhujiang River Estuary in Shenzhen (SZ).  In contrast, PM2.5 emission in the blue-roof case (Figure 5b) is more widely spread 

across the region, with additional focuses in Dongguan (DG) and north of Zhongshan (ZS). The hotspots of PM2.5 exhibited in 

(Figure 5b) are strongly aligned with the spatial pattern of hotspots from Cui et al. (2015), which was generated from the 

source apportionment method. In Shenzhen, the circular belt of high emission previously observed in the base case has been 240 
disappeared. Further investigation shows that the coastal area along the Zhujiang River Estuary has already been converted 

into recreation and residential areas. Due to the high population density found in the area, the base case had allocated a large 

amount of PM2.5 emission to the area. For small industrial areas, the blue-roof case also seems to outperform the base case as 

it has identified more scattered industrial areas in the region. As shown in BE (Figure 5), the blue-roof method is capable of 

capturing the small industrial towns (See supplementary Figure S1) along the major highways. For this particular example, the 245 
industrial area captured by the blue-roof method is located in the rural area of Qingyuan with over 20 petrochemical factories 

or warehouses, which has been missed in the base case. When comparing the blue-roof case with the point/area based btmUp 

case (Figure 5c), clear spots of PM2.5 underestimation were observed which are shown in the square boxes of Figure 5b pointing 

at the northeastern and southwestern sides of PRD, and north of Guangzhou. As the focus of the study is to investigate the 

improvement of the blue-roof surrogate in the MIX industrial sector, rather than the performance differences between the MIX 250 
unified emissions and local bottom-up emissions. Therefore, instead of showing the uncertainty of emission inventory which 

is infeasible here, we have developed spatial blue-roof surrogate (Figure 4b), the comparison of the model-ready emissions 

(Figure 5), and the time series plots of typical stations (Figure 7) to illustrate the performance of the blue-roof algorithm. 

3.3 CMAQ simulated air quality and statistical comparison 

3.3.1 Performance comparison between the base case and blue-roof case 255 

The CMAQ simulation was performed on both base case and blue-roof case to evaluate the air quality impacts of using 

different allocation methods for industrial emissions. In addition, to better understand how good the blue-roof method performs, 

the CMAQ results using the local point/area based btmUp emission method adopted from Zhang et al. (2020) were also 

included in the comparison. Figure 6 shows the simulated monthly average surface PM2.5 for base case (a, d), blue-roof case 

(b, e), and point/area based btmUp case (c, f); the left (a-c) and right (d-f) panels represent the January and August cases, 260 
respectively. As expected, the base case (top panel) has much lower spatial spreading when comparing with the blue-roof 

(middle panel) and the point/area based btmUp (bottom panel) cases illustrated in the earlier section. The wider spreading of 

PM2.5 in the blue-roof case (middle panel) was attributed to the redistribution of industrial emissions from highly populated 

areas (i.e., Guangzhou, Foshan and Shenzhen) found in the base case into other areas of GBA. The redistribution process has 

lowered the CMAQ prediction for those three urban areas, moreover, to reduce the PM2.5 prediction along the coast of Zhujiang 265 
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River Estuary at the circular belt of Shenzhen, which was mentioned in Figure 5a). As monsoon wind runs differently in 

summer and winter, it affects the regional pollutant transport and air quality prediction in the GBA area. For the winter case, 

with the effect of the northeast prevailing wind in January, the reduction of Guangzhou and Foshan emission/pollution (See 

Supplement Fig. S2) has a strong positive impact on both local and downwind regions (i.e., south of Guangzhou - Zhongshan, 

Zhuhai, and Macau). This is illustrated by the PM2.5 time-series plot of Zhongshan station (22°31'16.0"N 113°22'36.8"E) 270 
shown in Figure 7a) where the large PM25 overestimation in the base case (grey line) was significantly reduced into the more 

acceptable range shown in the blue-roof case (blue line). The Root Mean Square Error (RMSE) was trimmed down nearly in 

half by about 23.0 µg/m3 (from 49.2 µg/m3 in the base case to 26.2 µg/m3 in blue-roof case), demonstrating the effectiveness 

of using the blue-roof allocation method in the top-down emission approach. This is not entirely the same case for summer 

(August) when the prevailing wind is from the southwest that brings clean marine boundary to the region.  Although, in some 275 
situations, due to the presence of distant typhoon (e.g.,  Soudelor (August 4-11) and Goni (August 21-25)), the outermost of 

typhoon circulation had forced the wind direction changed to northeasterly and resulted in a similar transport phenomenon that 

causes the PM2.5 spikes in summer (Lam et al., 2018).  For the general situation during the non-typhoon condition, stronger 

PM2.5 underestimation is observed in the blue-roof case than in the base case, worsening the Mean Bias (MB) from -7.0 in the 

base case to -12.4 µg/m3 in the blue-roof case.  In terms of RMSE,  there is nearly no difference between the base case (i.e., 280 
20.47 µg/m3) and blue-roof case (i.e., 20.48 µg/m3), as the performance degradation observed during the non-typhoon period 

was compensated by the improvement during the typhoon period. Figure 8 shows the comparison of spatial performance 

between the base and blue-roof cases. The “RMSE improvement” means that the blue-roof case has outperformed the base 

case (RMSEblue-roof case – RMSEbase case < 0), while the “RMSE impact” means that the blue-roof case has worsened the CMAQ 

performance (RMSEblue-roof case – RMSEbase case ³ 0). In general, the majority of stations in Guangzhou, Foshan and Dongguan 285 
have received a substantial improvement in both January and August, as shown in yellow colour, while some outer stations in 

southern and eastern parts of  PRD and Hong Kong get worse (i.e., RMSE impact) shown in red colour. These stations with 

the “RMSE impact” designation are primarily suburban areas where a mixed land-use pattern was identified. Overall, stations 

with “RMSE improvement” yield an average RMSE of 45.8 µg/m3 and 30.6 µg/m3 for the base and blue-roof cases in January, 

respectively, which translates to about -12.3 µg/m3 for the RMSE improvement.  This number is much larger than +0.7 µg/m3 290 
in magnitude obtained from the group with the “RMSE impact” designation, which illustrates the improvement has outweighed 

the impact. For August, the differences in RMSE(blue-roof case – base case) under the “RMSE improvement” and “RMSE impact” are 

-4.5 µg/m3 and +0.73 µg/m3, respectively. Although there are quite a number of stations (~25+) is fallen into the category of 

“RMSE impact”, their actual RMSE differences are relatively small (e.g., ~75% of stations with RMSE less than 1 µg/m3). 

Hence, it doesn’t cause any concern for the blue-roof method. Detailed statistical results for each station have been incorporated 295 
into Appendix Table S1 and S2, and the corresponding station locations are available in Appendix Figure S3. 

3.3.2 Performance comparison between the blue-roof case and point/area based btmpUp case 

It is essential to evaluate the performance of which the blue-roof case can perform using observations, while it is also 

interesting to investigate the difference in the performance of the blue-roof allocation method with the local point/area based 

bottom-up method under a relatively fine-resolution (i.e., 3 km) condition. In general, the CMAQ simulated PM2.5 using the 300 
blue-roof method (middle panel of Figure 6) has shown a lower spatial spreading than the one using the point/area based 

btmUp approach (bottom panel of Figure 6). The low spread of PM2.5 in the blue-roof case may be attributed to the insufficient 

separation of existing industrial emissions. As the blue-roof emission approach took the entire industrial emissions and treated 

them as location-based emissions without assigning any portion of them to area source, lacking the representation of industrial 

area sources (e.g., fugitives) in the inventory may have resulted in a less spatial spread, as shown in Figure 5b. Moreover, the 305 
base unit of industrial emissions in the current approach is “province-level”, which is insufficient to distinguish the industrial 

speciality for different cities or counties within the domain. From the time-series analysis shown in Figure 7a and b,  the RMSE 
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performance of the blue-roof case (blue line) is quite comparable with the point/area based btmUp case (orange line) and 

observations (yellow dots). This particular example of the blue-roof case (Figure 7b) can even outperform the point/area based 

btmUp case in predicting PM2.5. From Appendix Table S1 and S2, the average RMSE in January (August) for the base, blue-310 
roof and btmUp cases are 44.8 (25.7) µg/m3 33.3 (22.4) µg/m3, and 27.8 (18.3) µg/m3, respectively. This illustrates the blue-

roof case has outperformed the base case, but still is not as good as the local point/area btmUp case. Figure 9 shows the PM2.5 

performance of different station types (see Appendix Figure S3).  As expected, the point/area based btmUp case has the lowest 

RMSE among the cases for all station types, while there is a clear improvement of RMSE in urban stations in the blue-roof 

case; Implementing the blue-roof method has eliminated some of the extreme outliers from the base case, forming a much 315 
more narrowed RMSE range. In terms of rural and suburban stations, minor RMSE improvements (i.e., mean values) have 

been observed. It should be aware that the wider RMSE range showed in the blue-roof case (as compared with the base case) 

for the suburban category in Figure 9a is just a visual illusion. As the maximum RMSE value of the base case in the suburban 

category has been plotted as an outliner (dot) instead of a regular line in the upper whisker. Hence, the RMSE range (the two-

end whiskers) in the blue-roof case is visually taller than the one in the base case.  Appendix Figure S4 shows the station (i.e., 320 
CN_1352A) that corresponds to the maximum RMSE in the suburban category, and better performance has been obtained 

from the blue-roof case (blue line). In the station, the RMSE in January (August) for the base and blue-roof cases are 84.4 

(36.0) µg/m3 and 50.0 (27.5) µg/m3, respectively. 

3.3.3 Performance of other air pollutants 

At last, to better understand the overall impacts on local air quality prediction, Table 3 shows the comparison of 325 
performance statistics among the base case, blue-roof case and point/area based btmUp case for PM2.5, NO2, and O3. In general, 

all three pollutants received some improvements when switching from the populated based method to the blue-roof allocation 

method. A more significant improvement of RMSE is observed in PM2.5 and NO2, which ranges from 3.3-11.5 µg/m3 for PM2.5 

and 2.3-2.7 ppb for NO2. The result is somewhat expected as industrial sector is the largest contributor of PM2.5 and NO2 

emissions in the MIX inventory.  In terms of MB, slight degradation is observed in PM2.5, which may either be caused by the 330 
slight underestimation of total PM2.5 emission in GBA or insufficient generation of secondary organic PM2.5 from CMAQ, 

which is commonly observed in version 5.02. For NO2, slight improvement is observed, which is resulted from the removal of 

large overestimations in the city centre of GZ, FZ, and SZ. Among 75 observation stations, on average, 25 stations received 

an improvement in RMSE for PM2.5 and NO2. The largest RMSE improvement is observed in the Foshan area with -151 µg/m3 

improvement in PM2.5 (See Supplement Fig. S2) and 33 ppb in NO2. This result clearly reflects the weakness and limitation of 335 
the population-based method for industrial allocation in the fine-resolution grid. In some stations (i.e., 7), higher RMSE (i.e., 

an average of 1.8 µg/m3 for PM2.5 and 1.9 ppb for NO2) are observed.  For ozone, minor improvement (i.e., 0.2 ppb and 0.6 

ppb in RMSE) has been found which may attribute to the improvement in NO2 prediction and consequently affect the NOx 

titration process in ozone chemistry. As the improvement is at a marginal level, it is concluded the improvement is limited.  

When comparing the blue-roof case with the local point/area based btmUp case, a lower RMSE of PM2.5 has been 340 
observed in the blue-roof case (Table 3). The difference in the RMSE reflects there is still room for improvement in the blue-

roof method. From the large negative MB observed in the MIX emission cases on PM2.5, one suggestion would be to scale up 

the sectorial PM2.5 totals from the MIX inventory using an inverse modelling approach (e.g., satellite inversion or source 

apportionment), which may lead to a better initial PM2.5 emission for CMAQ modelling.  In terms of NO2 and O3, comparable 

results (i.e., RMSE) are obtained between the blue-roof and point/area based btmUp cases. Although there is slightly higher 345 
RMSE (23.9 ppb vs 18.6 ppb in August) on one of the blue-roof cases, in general, they are all fallen within a similar range of 

values.  In terms of MB, the values in the blue-roof case vary across the seasons, with positive MB on NO2 and negative MB 

on O3 in January, while positive MB on both NO2 and O3 in August. For the point/area based btmUp case, negative MB has 

been observed in both January and August. Among the seasons, it is noted that reducing NO2 emission in the blue-roof case in 
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January may improve the MB of both NO2 and O3 as it reduces the NO2 titration effect in the ozone formation process and 350 
causes higher ozone. However, since the MB (i.e., 3 to 5 ppb) of NO2 are relatively small (as compared with the MB of PM2.5 

(-10 to -15 µg/m3), no NO2 adjustment is recommended. 

3.4 Conclusion remarks 

In this work, we developed a new method called the “blue-roof allocation method” for assigning industrial emissions 

for the gridded air quality simulation.  The proposed method not only provides an alternative way of handling Chinese 355 
industrial emissions from the existing population-based method but also allows a higher resolution (up to 3 km) can be 

generated for local air quality study. As the rapid urban redevelopment and mature public transportation network (e.g., 

metro/train system) were emerging in China, the relationship of proximity between living place and the workplace was slowly 

diminished. Hence, the traditional method using population density as a spatial proxy for industrial emissions has become 

obsolete.  360 
 In the blue-roof allocation method, satellite images from zoom level 14 were applied as the basis for blue-roof 

extraction. An HSV colour detection algorithm was developed and trained to carry out blue-roof identification. The captured 

blue-roofs were then converted and stored as individual polygons for further process. The sequence of ArcGIS subprocesses 

was applied to generate spatial surrogate and gridded emissions.  The gridded emissions were tested with CMAQ air quality 

simulations for January and August of 2015. The results show that large improvements are observed on both PM2.5 and NO2 365 
predictions when compared with the traditional method (i.e., population-based method). By using the blue-roof method,  not 

only reduced the emission errors from large metropolitan areas but also effectively captured the scattered industrial areas 

located in the rural area.  The emission allocation using the blue-roof method has decluttered the urban emissions, allowing 

better spreading across the region. We are confident that the new method is capable of generating high-resolution input (up to 

3km) for local air quality modelling and yield reasonable air quality results. Please aware that the assumption of the blue-roof 370 
method where larger blue-roof has more emissions may not always be sufficient under different resolutions. Therefore, further 

increasing the spatial resolution to lower than 3 km (e.g., 1 km) should be performed with cautions. Before the point/area based 

bottom-up approach with the unit process data is fully available in China, this method will be a useful technique for handling 

industrial emissions in China. 

4 Code/Data availability 375 

The simulated output is available from the corresponding author on reasonable request. 
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9 Figures and Tables 

Table 1. Configuration of CMAQ air quality simulation  

 
Table 2. Test results of selected locations for the blue roof identification algorithm. 480 

Region Area (Size in km2) Hit Rate  False Detection 
Rate False Alarm Rate 

Baoding# Urban (332) 88% 51% 0.5% 
Shanghai# Urban (1,336) 76% 38% 0.2% 
GBA# Urban (1,194) 74% 35% 0.4% 
Nagqu Urban (100) 92% 9% 0.3% 
Baoji Suburban (100) 87% 54% 0.2% 
     
Kaifeng Suburban (100) 76% 31% 0.2% 
Xi’an Suburban (100) 76% 24% 0.3% 
Zhengzhou Suburban (100) 91% 8% 0.1% 
Taklimakan 
Desert Remote (100) N/A 0% 0.0% 

Yunnan Remote (100) N/A 0% 0.0% 
# Training areas (only a subarea of its region). 

 
Table 3. Summary of performance statistics in the case study. 

Pol. Mon. 

RMSE MB Improvement (RMSE) Worsening  (RMSE) 

Base 
case 

BR 
case 

Btm
Up 
case 

Base 
case 

BR 
case 

Btm 
Up 
case 

No. of 
Station 

BR-  
Base Max. No. of 

Station 
BR - 
Base Max. 

PM2.5 JAN 44.8 33.3 27.8 -10.5 -15.4 -0.7 23 -22 -151 8 2 4.6 
(µg/m3) AUG 25.7 22.4 18.3 -11.3 -13.7 -6.4 17 -8 -64 8 1.6 2.3 
NO2 JAN 28.5 25.7 26.1 4.6 2.8 -18.7 30 -5 -33 2 1.2 1.3 
(ppb) AUG 26.2 23.9 18.6 5.2 3.7 -11.9 28 -5 -31 11 2.6 4.1 
O3 JAN 24.1 23.9 24.2 -4.5 -3.5 -8.8 11 -2 -5 5 1.6 1.9 
(ppb) AUG 31.6 31 29.9 7.2 8 -4.9 13 -2 -10 1 1.4 1.4 
Note: Pol: Pollutant; Mon: Month; BR: Blue-roof case; RMSE: Root Mean Square Error; MB: Mean Bias; Max: Maximum. The table on the right 
only shows the station with ±1 change in RMSE.  

  

Configuration Options 
Model Code  CMAQ Version 5.0.2 
Horizontal Grid Mesh D1-27km/D2-9km/D3-3km  

(D3 - 152 x 110 grids with total area of ~180,000 km2) 
Vertical Grid Mesh 26 Layers  
Grid Interaction One-way nesting 
Initial Conditions  GEOS-CHEM global chemistry model for 27 km domain; finer 

grid domains based on next coarser grid 
Boundary Conditions  GEOS-CHEM global chemistry model for 27 km domain  
Emissions    
Emissions Processing MIX with a top-down approach 
Sub-grid-scale Plumes  No PinG  
Chemistry    
Gas-Phase Chemistry CB05  
Aerosol Chemistry AE5/ISORROPIA 
Secondary Organic Aerosols SORGAM 
Cloud Chemistry  RADM 
N2O5 Reaction Probability 0.01 – 0.001 
Horizontal Transport   
Eddy Diffusivity K-theory 
Vertical Transport   
Eddy Diffusivity ACM2  
Deposition Scheme M3Dry  
Numeric   
Gas-Phase Chemistry Solver EBI  
Horizontal Advection Scheme PPM  
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 485 
Figure 1: a) CMAQ simulation domains and b) D3 domain with observations. 

 

 
Figure 2. System flowchart for extract blue-roof industrial buildings. 
 490 

  
Figure 3: Selected locations for data training (a-c) and data validation (d-j); a) Baoding, b) Shanghai, and c) GBA, and d) Nagqu, e) 
Baoji, f) Kaifeng, g) Xi’an, h) Zhengzhou, i) Taklimakan Desert, and j) Yunnan (Google). 

Figure 4: a) Snapshot of D3 (3km) domain grids, and b) Calculated spatial surrogate.  
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 495 
 

 
Figure 5: Daily column total of PM2.5 emission from D3 (3 km) domain: a) Base case,  b) Blue-roof case, and c) point/area based 
BtmUp case. Note: Blue arrows indicate Foshan (FS), Guangzhou (GZ), Shenzhen (SZ), Dongguan (DG), Zhongshan (ZS), and BE 
(Blue-roof Example). Boxes indicate the locations with large spatial differences between the blue-roof and the btmUp cases. 500 
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Figure 6: CMAQ predicted monthly surface PM2.5; a) January base case, b) January blue-roof case, c) January point/area based 505 
BtmUp case, d) August base case, e) August blue-roof case, and f) August point/area based BtmUp case. 
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Figure 7: Time series of PM2.5 at station CN_1379A (22°31'16.0"N 113°22'36.8"E) – Zhongshan; a) January and b) August. 

 510 
Figure 8: Spatial comparison of RMSE performance between the base case and blue-roof case: a) January and b) August. Stations 
with yellow colour indicates “RMSE improvement” where the RMSE of the blue-roof case is lower than the RMSE of the base case 
(RMSEblue-roof case – RMSEbase case < 0). Stations with red colour refers to as “RMSE impact” (RMSEblue-roof case – RMSEbase case  ³ 0), 
meaning that the situation gets worse after using the blue-roof algorithm (© (Google)). 

 515 

 
Figure 9: Performance of PM2.5 under different station types: a) January and b) August. 


