1	Mid-latitude mixed-phase stratocumulus clouds and their interactions with aerosols:		
2	how ice processes affect microphysical, dynamic and thermodynamic development in		
3	those clouds and interactions?		
4			
5	Seoung Soo Lee ^{1,2} , Kyung-Ja Ha ² , M. G. Manoj ³ , Mohammad Kamruzzaman ^{4,5} , Hyungjun		
			Deleted: 6
6	Kim ⁶ , Nobuyuki Utsumi ⁷ , <u>Chang-Hoon Jung⁸, Junshik Um²</u> , Jianping Guo ⁹ , <u>Kyoung Ock</u>	\leq	Deleted: ⁷
7	Choi ^{10,11} , Go-Un Kim ¹²		Formatted: Font: (Default) Times New Roman Bold, (Asian) Batang, Font color: Auto
8			Formatted: Superscript
9	¹ Earth System Science Interdisciplinary Center, University of Maryland, College Park,		Formatted: Superscript
			Deleted: 8
10	Maryland, USA		Formatted: Superscript
11	² Department of Atmospheric Sciences, Division of Earth Environmental System, Pusan		Formatted: Font: (Default) Times New Roman Bold, (Asian) Batang, Font color: Auto
12	National University, Pusan, <u>Republic of Korea</u>		Deleted: South
13	³ Advanced Centre for Atmospheric Radar Research, Cochin University of Science and		
14	Technology, Kerala, India		
15	⁴ School of Mathematical Sciences, University of Adelaide, Adelaide, Australia		
16	⁵ Natural and Built Environments Research Centre, Division of Information Technology,		
17	Engineering and the Environment (ITEE), University of South Australia, Adelaide,		
18	Australia		
19	⁶ Institute of Industrial Science, University of Tokyo, Tokyo, Japan		
20	⁷ Nagomori Institute of Actuators, Kyoto University of Advanced Science, Japan		
21	⁸ Department of Health Management, Kyungin Women's University, Incheon, Republic of		
22	Korea		
23	State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences,		Deleted: ¶ ⁶ Institute of Industrial Science, University of Tokyo, Tokyo, Japan¶
24	Beijing 100081, China		⁷ Nagomori Institute of Actuators, Kyoto University of Advanced Science, Japan [¶]

Deleted: 8

		2		
34	¹⁰ Department of Atmospheric Sciences, University of Washington, Seattle, Washington,		(Formatted: Superscript
35	USA	~		Formatted: Font: (Default) Times New Roman, Font color: Auto
35	<u>U5A</u>		Y	Formatted: Line spacing: Double, Pattern: Clear
36	¹¹ Department of Atmospheric Sciences, Yonsei University, Seoul, Republic of Korea			Formatted: Superscript
37	¹² Marine Disaster Research Center, Korea Institute of Ocean Science and Technology,			Formatted: Font: (Default) Times New Roman, Font color: Auto
			(Formatted: Superscript
38	Pusan, Republic of Korea			Formatted: Font: (Default) Times New Roman, (Asian) Times New Roman, 12 pt, Font color: Auto
39			\int	Formatted: Font: (Default) Times New Roman, (Asian) Times New Roman, 12 pt, Font color: Auto
40 41			Ì	Formatted: Font: (Default) Times New Roman, (Asian) Times New Roman, 12 pt, Font color: Auto
42				
43				
44				
45				
46				
47 48				
49				
50				
51				
52				
53				
54				
55				
56				
57				

- 60 Office: (303) 497-6615
- 61 Cell: (609) 375-6685

- 62 Fax: (303) 497-5318
- 63 E-mail: cumulss@gmail.com, <u>slee1247@umd.edu</u>

Corresponding author: Seoung Soo Lee

64	Abstract		Deleted: ¶
65			9
66	Mid-latitude mixed-phase stratocumulus clouds and their interactions with aerosols remain		1
67	poorly understood. This study examines the roles of ice processes in those clouds and their		
68	interactions with aerosols using a large-eddy simulation (LES) framework. Cloud mass		
69	becomes much lower in the presence of ice processes and the Wegener-Bergeron-Findeisen		9
70	(WBF) mechanism in the mixed-phase clouds as compared to that in warm clouds. This is		1
71	because while the WBF mechanism enhances the evaporation of droplets, the low		
72	concentration of <u>aerosols acting as</u> ice <u>nucleating particles</u> (INP) and cloud ice number		1
73	concentration (CINC) prevent the efficient deposition of water vapor. In the mixed-phase		9 9
74	clouds, the increasing concentration of aerosols that act as cloud condensation nuclei (CCN)		Deleted: interactions
75	decreases cloud mass by increasing the evaporation of droplets through the WBF	111112	Deleted: aerosols as
76	mechanism and decreasing the intensity of updrafts. In contrast to this, in the warm clouds,		Deleted: nucl
		- 10	Deleted: ei
77	the absence of the WBF mechanism makes the increase in the evaporation of droplets	1	Deleted: N
78	inefficient, eventually enabling cloud mass to increase with the increasing concentration of	l	Deleted: whose mass is contributed by the evaporation
79	aerosols acting as CCN. Here, the results show that when there is an increasing	(Deleted: aerosols as
80	concentration of aerosols that act as INP, the deposition of water vapor is more efficient		
81	than when there is the increasing concentration of aerosols acting as CCN, which in turn	(Deleted: aerosols as
82	enables cloud mass to increase in the mixed-phase clouds.		
83			
84			
85			
86			
87			
88			
89			
90			
91			
92			
93			
94	۲		Deleted: ¶
I			1

128 **1. Introduction**

129

130 Stratiform clouds such as the stratus and stratocumulus clouds play an important role in 131 global hydrologic and energy circulations (Warren et al. 1986, 1988; Stephens and 132 Greenwald 1991; Hartmann et al. 1992; Hahn and Warren 2007; Wood, 2012). Aerosol 133 concentrations have increased significantly as a result of industrialization. Increasing 134 aerosols are known to decrease droplet size and thus increase the albedo of stratiform 135 clouds (Twomey, 1974, 1977). Increasing aerosols may also suppress precipitation and, 136 hence, alter the mass and lifetime of those clouds (Albrecht, 1989; Guo et al., 2016). These 137 aerosol effects strongly depend on how increasing aerosols affect entrainment at the tops 138 of the planetary boundary layer (PBL) (Ackerman et al., 2004) and disrupt global 139 hydrologic and energy circulations. However, these effects are highly uncertain and thus 140 act to cause the highest uncertainty in the prediction of future climate (Ramaswamy et al., 141 2001; Forster et al., 2007). Most of the previous studies on stratiform clouds and their 142 interactions with aerosols to reduce the uncertainty have dealt with warm stratiform clouds 143 and have seldom considered ice-phase cloud particles (e.g., ice crystals) (Ramaswamy et 144 al., 2001; Forster et al., 2007; Wood, 2012). In reality, especially during wintertime when 145 the surface temperature approaches the freezing temperature, stratiform clouds frequently 146 involve ice particles and associated processes such as deposition and freezing. Since 147 particularly in midlatitudes, stratiform clouds are generally way below the <u>altitude</u> of 148 homogeneous freezing, in these clouds, liquid and ice particles usually co-exist. 149 The water-vapor equilibrium saturation (or saturation pressure) is lower for ice particles 150 than for liquid particles. In mixed-phase clouds where liquid- and ice-phase hydrometeors 151 coexist, when a given water-vapor pressure is higher than the equilibrium pressure for 152 liquid particles, ice and liquid particles grow together via deposition and condensation, 153 respectively, while competing for water vapor. When a given water-vapor pressure is lower 154 than or equal to the equilibrium pressure for liquid particles, ice (liquid) particles can 155 experience supersaturation (undersaturation or saturation), In this situation, liquid particles evaporate, while water vapor is deposited onto ice crystals. Water vapor in the air, which 156 157 is depleted by the deposition onto ice crystals, is re-supplied by water vapor that is produced by the evaporation of droplets. The re-supplied water vapor in turn deposits onto 158

4

Deleted: These aerosol effects on stratiform clouds

Deleted: level

Deleted: level of

Deleted: this eventually induces

Deleted: for a certain amount of environmental water vapor

Deleted:

Deleted: to

166 ice crystals. In other words, due to differences in the water-vapor equilibrium saturation 167 pressure between ice and liquid particles, ice particles eventually grow at the expense of liquid particles. This is so-called Wegener-Bergeron-Findeisen (WBF) mechanism 168 169 (Wegener 1911; Bergeron 1935; Findeisen 1938). 170 The occurrence of the WBF mechanism depends on updrafts, humidity, associated 171 supersaturation and microphysical factors such as cloud-particle concentrations and sizes 172 (Korolev, 2007). Also, it needs to be pointed out that when the WBF mechanism starts and 173 how long it lasts depend on how a timescale for updrafts and associated supersaturation is 174 compared to that for phase-transition processes as a part of microphysical processes 175 (Pruppacher and Klett, 1978). Korolev (2007) have utilized a parcel-model concept to 176 come up with conditions of updrafts and microphysical factors where the WBF mechanism 177 is operative. 178 The evolution of cloud particles as well as their interactions with aerosols is strongly 179 dependent on thermodynamic and dynamic conditions such as humidity, temperature and 180 updraft intensity (Pruppacher and Klett, 1978; Khain et al., 2008). Interactions between ice 181 and liquid particles in mixed-phase clouds, which include the WBF mechanism, change 182 thermodynamic and dynamic conditions where cloud particles grow. Impacts of these 183 changes on the development of mixed-phase clouds and their interactions with aerosols 184 have not been understood well. 185 • Over the last decades, numerous studies have been performed to improve our 186 understanding of mixed-phase clouds by focusing on clouds in the Arctic and over the 187 Southern Ocean. It has been found that the prevalence of mixed-phase clouds over the 188 Arctic enables them to have a substantial impact on radiative and hydrologic circulations 189 (e.g., Shupe et al., 2001, 2005; Intrieri et al., 2002; Dong and Mace, 2003; Zuidema et al., 190 2005; Hu et al., 2010; Kanitz et al., 2011; Morrison et al., 2011; Huang et al., 2012). In 191 addition, Rangno and Hobbs (2001), Lohmann (2002) and Borys et al. (2003) have 192 proposed not only cloud condensation nuclei (CCN) but also ice nucleating particles, (INP,) 193 affect mixed-phase clouds by altering microphysical variables (e.g., number concentrations

- 194 and sizes of cloud particles) and dynamic variables (e.g., updrafts). However, Lance et al.
- 195 (2010) and Jackson et al. (2012) have indicated that these aerosol effects on mixed-phase
- 196 clouds have not been clearly identified due to lack of data of meteorological and cloud

Deleted: This mechanism changes the thermodynamic and dynamic environmental conditions where cloud particles grow.

Deleted: Note that the development of clouds and its interactions with aerosols are strongly dependent on environmental thermodynamic and dynamic conditions such as humidity (saturation level), wind and stability (e.g., Khain et al., 2008; Lee et al., 2008)

Deleted: . Hence, environmental conditions, affected by the WBF mechanism, are likely to result in the development of mixed-phase stratiform clouds and its interactions with aerosols that are different from those in warm clouds. However, the level of the understanding of the development of mixed-phase stratiform clouds and its interactions with aerosols has been very low.

Deleted: n Deleted: uclei Deleted: N

et al. (2016) have reported that climate models have not been able to represent mixedphased clouds and their interactions with aerosols reasonably well and this has been one
important reason why climate models have produced large errors in simulating energy and
hydrologic budgets and circulations. <u>Young et al. (2017) have reported that the</u>
parametrization of ice-crystal nucleation can be a key reason for the misrepresentation of
mixed-phase clouds in models.
This study aims to gain a better understanding of mixed-phase stratocumulus clouds

conditions in which aerosols influence those clouds. Naud et al. (2014) and Bodas-Salcedo

212

220 and interactions between those clouds and aerosols. The better understanding enables us to 221 gain a more general understanding of stratiform clouds and their interactions with aerosols, 222 which better elucidates roles of clouds and aerosol-cloud interactions in climate. This in 223 turn provides valuable information to better parameterize stratiform clouds and interactions 224 for climate models. To fulfill the aim, this study focuses on effects of the interplay between 225 ice crystals and droplets on those clouds, and interactions of these effects with aerosols 226 using a large-eddy simulation (LES) Eulerian framework. The LES framework reasonably resolves microphysical and dynamic processes at turbulence scales and thus we can obtain 227 228 process-level understanding of those effects and interactions. Note that with the Eulerian 229 framework, instead of tracking down individual air parcels, which can be pursued with the 230 Lagrangian framework, this study looks at updrafts, microphysical factors, phase-transition 231 processes and their evolution, which are averaged over grid points in a domain, to examine 232 the overall interplay between ice and liquid particles over the whole domain. Also, in the 233 LES framework, air parcels go through various updrafts, microphysical factors and 234 feedbacks between them. Thus, unlike in Korolev (2007), an air parcel in the LES 235 framework can repeatedly experience conditions where the WBF mechanism does not 236 work and those where the mechanism works as it moves around three-dimensionally. 237 Hence, chasing down air parcels in terms of conditions (e.g., updrafts and microphysical 238 factors) for processes such as the WBF mechanism is enormous task and not that viable. 239 This motivates us to embrace the approach that adopts the averaged updrafts, microphysical 240 factors and phase-transition processes to examine the overall interplay between ice and

241 <u>liquid particles which includes the WBF mechanism. To help this approach to identify the</u>

Deleted:

Deleted: large-eddy simulation (

Deleted:)

247	
247	Mixed-phase stratiform clouds have been formed frequently over the Korean
248	Peninsula in midlatitudes, These clouds have been affected by the advection of aerosols
249	from East Asia (e.g., Lee et al., 2013; Oh et al., 2015; Eun et al., 2016; Ha et al., 2019).
250	However, we do not have a clear understanding of those clouds and impacts of those
251	aerosols, which are particularly associated with the industrialization of East Asia, on them
252	in the Peninsula (Eun et al., 2016). Motivated by this, we examine those clouds and effects
253	of the advected aerosols from East Asia on them over an area in the Korean Peninsula as a
254	way of better understanding those clouds and aerosol-cloud interactions in them
255	
256	2. Case description
257	
258	A system of mixed-phase stratocumulus clouds was observed in the Seoul area in Korea
259	over a period between 00:00 LST (local solar time) on January 12th and 00:00 LST on
260	January 14th in 2013. The Seoul area is a conurbation area composed of the Seoul capital
261	city and adjacent highly populated cities. The population of the Seoul area is estimated at
262	twenty-five million. Coincidently, during this period, there is advection of an aerosol layer

245 overall interplay between ice and liquid particles clearly, this study utilizes sensitivity 246

simulations.

263 from the west of the Seoul area (or from East Asia) to it and this lifts aerosol concentrations

- 264 in the Seoul area. This type of advection has been monitored by island stations in the Yellow Sea (Eun et al., 2016; Ha et al., 2019). For this study, the advection is monitored 265
- 266 and identified by comparisons in PM10 and PM2.5, representing aerosol mass, between a
- 267 ground station in Baekryongdo island, located in the Yellow Sea, and ground stations in
- 268 and around the Seoul area. These stations observe and measure PM10 and PM2.5 using the
- 269 beta-ray attenuation method (Eun et al., 2016; Ha et al., 2019). PM stands for particulate
- 270 matter and PM10 (PM2.5) is the total mass of aerosol particles whose diameter is smaller
- 271 than 10 (2.5) µm per unit volume of the air. In Figure 1, the island and the Seoul area are
- 272 included in a rectangle that represents an area of interest in terms of the advection of the
- 273 aerosol layer. Figure 2a shows the time series of PM10 and PM2.5, observed, and measured
- 274 by the ground station on the island and a representative ground station in the Seoul area,
- between January 10th and 19th in 2013 when there is strong advection of aerosols from East 275

Deleted: and Deleted: t

7

Deleted: since its industrialization

Deleted:

Deleted: raises Deleted: the level of

Deleted: measured

283	Asia to the Seoul area. Around 00:00 LST on January 12th, aerosol mass starts to increase
284	and reaches its peak at 09:00 LST on January 12th on the island. Then, there is a subsequent
285	increase in aerosol mass in the Seoul area, which starts around 05;00 LST on January 12th,
286	and it reaches its peak at 18:00 LST on January 12th in the Seoul area due to the advection
287	of aerosols from East Asia to the Seoul area through the island. Figures 2b and 2c show
288	observed and measured aerosol mass distribution in the rectangle in Figure 1 at 05;00 LST
289	and 18:00 LST on January 12th, respectively. To construct Figures 2b and 2c, observed and
290	measured aerosol mass concentrations by the ground stations are interpolated into
291	equidistant points in the rectangle. Consistent with the time series, there is the high aerosol
292	mass in and around the island due to the advection of aerosols from the East-Asia continent
293	at 05:00 LST on January 12th (Figure 2b). Then, the advection continues to move aerosol
294	mass eastward further to the Seoul area, resulting in a subsequent decrease in aerosol mass
295	in and around the island and an increase in aerosol mass in the Seoul area at 18:00 LST on
296	January 12th (Figure 2c). In this study, we examine how this advection of aerosols affects
297	the observed mixed-phase stratocumulus clouds in the Seoul area.
298	
299	3. LES and simulations
300	
301	3.1 LES
302	
303	As a LES Eulerian model, we use the Advanced Research Weather Research and
304	Forecasting (ARW) model (version 3.3.1), which is a nonhydrostatic compressible model
305	(Michalakes et al., 2001; Klemp et al., 2007). Prognostic microphysical variables are
306	transported with a 5th-order monotonic advection scheme (Wang et al., 2009). Shortwave
307	and longwave radiation is parameterized by the Rapid Radiation Transfer Model (RRTM;
308	Mlawer et al., 1997; Fouquart and Bonnel, 1980). The effective sizes of hydrometeors are
309	calculated in an adopted microphysics scheme and the calculated sizes are transferred to
310	the RRTM to consider effects of the effective sizes on radiation.
311	To represent microphysical processes, the LES model adopts a bin scheme based on
312	the Hebrew University Cloud Model described by Khain et al. (2011). The bin scheme

Deleted: 10 Deleted: 3

Deleted: 3

Deleted:

Deleted: 3

313 solves a system of kinetic equations for the size distribution functions of water drops, ice

319 crystals or cloud ice (plate, columnar and branch types), snow aggregates, graupel and hail, 320 as well as CCN and INP. Water drops whose size is smaller than 80 µm in diameter are 321 classified to be cloud droplets (or cloud liquid), while drops whose size is greater than 322 80 µm in diameter are classified to be rain drops (or rain). Each size distribution is 323 represented by 33 mass doubling bins, i.e., the mass of a particle m_k in the kth bin is 324 determined as $m_k = 2m_{k-1}$. 325 A cloud-droplet nucleation parameterization based on Köhler theory represents cloud-326 droplet nucleation. Arbitrary aerosol mixing states and aerosol size distributions can be fed 327 to this parameterization. To represent heterogeneous ice-crystal nucleation, the 328 parameterizations by Lohmann and Diehl (2006) and Möhler et al. (2006) are used. In these 329 parameterizations, contact, immersion, condensation-freezing, and deposition nucleation 330 paths are all considered by taking into account the size distribution of INP, temperature 331 and supersaturation. Homogeneous aerosol (or haze particle) and droplet freezing is 332 also considered following the theory developed by Koop et al. (2000). 333 334 3.2 Control run

335

336 For a three-dimensional simulation of the observed case of mixed-phase stratocumulus 337 clouds, i.e., the control run, a domain with a 100-m resolution just over the Seoul area as 338 shown in Figure 1 is adopted. The control run is for a period between 00:00 LST on January 339 12th and 00:00 LST on January 14th in 2013. The length of the domain in the east-west 340 (north-south) direction is 220 (180) km. In the vertical domain, the resolution coarsens with 341 height. The resolution in the vertical domain is 20 m just above the surface and 100 m at 342 the model top that is at ~ 5 km in altitude, 343 Initial and boundary conditions of potential temperature, specific humidity, and 344 wind for the simulation are provided by reanalysis data. These data are produced by the

345 Met Office Unified Model (Brown et al., 2012) every 6 hours on a 0.11° × 0.11° grid. These 346 data represent the synoptic-scale environment. An open lateral boundary condition is 347 employed for the control run. Surface heat fluxes are predicted by the Noah land surface

348 model (LSM; Chen and Dudhia, 2001). When clouds start to form around 08:00 LST on Deleted: ice nuclei IN

Deleted: IN

Deleted: The 100 vertical layers with a terrain-following sigma coordinate are in the domain, and the model top is 500 hPa. This corresponds to the vertical resolution of 50 m on average.

and 263.9 K, respectively.

356 The horizontally homogeneous aerosol properties are assumed in the current version 357 of the ARW model. To consider the advection of aerosols and the associated 358 spatiotemporal variation of aerosol properties such as composition and number 359 concentration, this assumption of the aerosol homogeneity is abandoned. For this 360 consideration, an aerosol preprocessor is developed to represent the variability of aerosol properties. Observed background aerosol properties such as aerosol mass (e.g., PM10 and 361 362 $PM_{2.5}$) at observation sites are interpolated into model grid points and time steps by this 363 aerosol preprocessor.

Surface sites that measure PM2.5 and PM10 in the domain observe the variability of 364 365 aerosol properties. Here, we assume that PM2.5 and PM10 represent the mass of aerosols 366 that act as CCN. These sites resolve the variability with high spatiotemporal resolutions, 367 since they are distributed with about 1 km distance between them and measure aerosol 368 mass every ~10 minutes. However, they do not measure other aerosol properties such as 369 aerosol composition and size distributions. There are additional sites of the aerosol robotic network (AERONET; Holben et al., 2001) in the domain with distances of ~10 km between 370 371 them. Hence, these AERONET sites provide data with coarser resolutions as compared to 372 those of the $PM_{2.5}$ and PM_{10} data, although information on aerosol composition and size 373 distributions are provided by the AERONET sites. In this study, the variability of properties 374 of aerosols that act as CCN over the domain is represented by using data from the high-375 resolution PM2.5/PM10 sites, while the relatively low-resolution data from the AERONET 376 sites are used to represent aerosol composition and size distributions, 377 According to AERONET measurements during the period with the observed 378 stratocumulus clouds, aerosol particles, on average, are an internal mixture of 70 % 379 ammonium sulfate and 30 % organic compound. This organic compound is assumed to be 380 water soluble and composed of (by mass) 18 % levoglucosan ($C_6H_{10}O_5$, density = 1600 kg 381

381 m⁻³, van't Hoff factor = 1), 41 % succinic acid ($C_6O_4H_6$, density = 1572 kg m⁻³, van't Hoff 382 factor = 3), and 41 % fulvic acid ($C_{33}H_{32}O_{19}$, density = 1500 kg m⁻³, van't Hoff factor = 5) 383 based on a simplification of observed chemical composition. Aerosol chemical

composition in this study is assumed to be represented by this mixture in all parts of the

Deleted:

386	domain during the whole simulation period, based on the fact that aerosol composition does		
387	not vary significantly over the domain during the whole period with the observed clouds.		
388	Aerosols before their activation can affect radiation by changing the reflection, scattering,		
389	and absorption of shortwave and longwave radiation. However, these impacts on radiation		
390	are not considered in this study, since the mixture does not include a significant amount of		
391	radiation absorbers such as black carbon. Based on the AERONET observation, the size		Deleted: as exemplified in Figure 2d,
392	distribution of background aerosols acting as CCN is assumed to follow the tri-modal log-		Deleted: aerosols as
393	normal distribution as shown in Figure 2d. Stated differently, the size distribution of		
394	background <u>aerosols acting as</u> CCN in all parts of the domain during the whole simulation		Deleted: aerosols as
395	period is assumed to follow size distribution parameters or the shape of distribution as		
396	shown in Figure 2d; by averaging size distribution parameters (i.e., modal radius and		Deleted: .
397	standard deviation of each of nuclei, accumulation and coarse modes, and the partition of		
398	aerosol number among those modes) over the AERONET sites and the period with the		
399	stratocumulus clouds, the assumed shape of the size distribution of background aerosols in		
400	Figure 2d is obtained. Since the AERONET observation shows that the shape of the size		
401	distribution does not vary significantly over the domain during the simulation period, we		
402	believe that this assumption is reasonable., With the assumption above, PM2.5 and PM10 are		Deleted: By averaging size distribution pa
403	converted to the background number concentrations of aerosols acting as CCN. These		radius and standard deviation of each of nuc coarse modes, and the partition of aerosol nu modes) over the AERONET sites and the pe
404	background number concentrations, associated aerosol size distribution and composition		stratocumulus clouds, the assumed shape of background aerosols is obtained.
405	are interpolated or extrapolated to grid points immediately above the surface and time steps		Deleted: aerosols as
406	in the simulation. Background aerosol concentrations are assumed not to vary with height	1	Deleted:
407	from immediately above the surface to the PBL top, however, above the PBL top, they are		
408	assumed to reduce exponentially with height. Aerosol size distribution and composition do		
409	not vary with height. Once background aerosol properties (i.e., aerosol number		
410	concentrations, size distribution and composition) are put into each grid point and time step,		
411	those properties at each grid point and time step do not change during the course of the		
412	simulation.		
413	For the control run, aerosol properties of <u>INP</u> and CCN are assumed to be identical		Deleted: IN
414	except that the concentration of background <u>aerosols acting as JNP</u> is assumed to be 100		Deleted: aerosols as
415	times lower than the concentration of background <u>aerosols acting as</u> CCN at each of time		Deleted: IN
1			Deleted: aerosols as

arameters (i.e., modal clei, accumulation and umber among those eriod with the f the size distribution of

Delet	ed: IN		
Delet	ed: aerosols as		
Delet	ed: IN		
Delet	ed: aerosols as		

steps and grid points. This is based on a general difference in concentration between CCN
and INP (Pruppacher and Klett, 1978).
Once clouds form and background aerosols start to be in clouds, those aerosols are
not background aerosols anymore and the size distribution and concentrations of those
aerosols begin to evolve through aerosol sinks and sources. These sinks and sources include
advection and aerosol activation (Fan et al., 2009). For example, activated particles are
emptied in the corresponding bins of the aerosol spectra. In clouds, aerosol mass included
in hydrometeors, after activation, is moved to different classes and sizes of hydrometeors
through collision-coalescence and removed from the atmosphere once hydrometeors that
contain aerosols reach the surface. In non-cloudy areas, aerosol size and spatial
distributions are set to follow background counterparts. In other words, for this study, we
use "the aerosol recovery method" where immediately after, clouds disappear completely
at any grid points, aerosol size distributions and number concentrations at those points
recover to background properties, that background aerosols at those points have before
those points are included in clouds. In this method, there is no time interval between the
cloud disappearance and the aerosol recovery, Here, when the sum of mass of all types of
hydrometeors (i.e., water drops, ice crystals, snow aggregates, graupel and hail) is not zero
at a grid point, that grid point is considered to be in clouds. When this sum becomes zero,
clouds are considered to disappear.
It is notable that in clouds, processes such as aerosol activation, which is related to
aerosol-cloud interactions and the nucleation scavenging, and aerosol transportation by
wind and turbulence, and impacts of these processes on aerosol size distribution and
concentrations are considered in this study as in other models that explicitly predict aerosol
size distribution and concentrations such as the chemistry version of the Weather Research
and Forecasting (WRF) model (WRF-Chem) (Grell et al., 2005; Skamarock et al., 2008).
When clouds disappear, in those other models, without nudging aerosols to observed
background counterparts, aerosols just evolve based on the emissions of aerosols around
the surface, aerosol chemical and physical processes, aerosol transportation and so on.
However, in the ARW, model used here, aerosols are forced to be nudged into observed
background aerosols and this may act as a weakness of the aerosol recovery (or nudging)
method.

Deleted:	IN

(Deleted:	I

'n

•(Deleted: control the evolution of aerosol size distribution
•(Formatted: Font: (Asian) Batang
-(Deleted: A
•(Deleted: A

Deleted: Background aerosol concentrations are assumed not to vary with height in the planetary boundary layer (PBL), however, above the PBL, they are assumed to reduce exponentially with height
Deleted: once
Deleted: counterparts
Formatted: Font: (Default) Times New Roman, (Asian) Batang, 12 pt, Not Italic, Font color: Auto
Formatted: Font: (Asian) Batang
Formatted: Font: (Default) Times New Roman, (Asian) Batang, 12 pt, Not Italic, Font color: Auto
Formatted: Font: (Asian) Times New Roman
Formatted: Font: (Default) Times New Roman, 12 pt, Not Italic, Font color: Auto
Formatted: Font: (Default) Times New Roman, 12 pt, Not Italic, Font color: Auto
Formatted: Font: (Default) Times New Roman, 12 pt, Not Italic, Font color: Auto
Formatted: Font: (Default) Times New Roman, 12 pt, Not Italic, Font color: Auto
Formatted: Font: (Default) Times New Roman, 12 pt, Not Italic, Font color: Auto
Formatted: Font: (Default) Times New Roman, 12 pt, Not Italic, Font color: Auto
Formatted: Font: (Default) Times New Roman, 12 pt, Not Italic, Font color: Auto
Formatted: Font: (Default) Times New Roman, 12 pt, Not Italic, Font color: Auto
Formatted: Font: (Default) Times New Roman, 12 pt, Not Italic, Font color: Auto
Formatted: Font: (Default) Times New Roman, 12 pt, Not Italic, Font color: Auto
Formatted: Font: (Default) Times New Roman, 12 pt, Not Italic, Font color: Auto
Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto

Formatted: Font: (Asian) Times New Roman

	Numerous CSRM studies have adopted this aerosol recovery method and proven that
	it is able to simulate overall_cloud and precipitation_properties reasonably well (e.g.,
	Morrison and Grabowski, 2011; Lebo and Morrison, 2014; Lee et al., 2016; Lee et al.,
	2018). These properties include cloud fraction, cloud-top height, cloud-bottom height,
9	cumulative precipitation, precipitation frequency distribution, mean precipitation rate,
!	cloud-system organization and precipitation spatiotemporal distributions. These studies
1	nave shown that there is good consistency between those simulated properties and observed
<u>c</u>	counterparts. The good consistency means that the percentage difference in those
ŗ	properties between simulations and corresponding observation is ~ 10 to 20% or less.
_	The recovery of aerosols to their background counterparts is mainly to keep aerosol
<u>c</u>	concentrations outside clouds in the simulation at observed counterparts. Other models that
6	explicitly predict aerosol concentrations with no use of the aerosol recovery method are
r	not able to simulate aerosol spatiotemporal distributions and their evolutions which are
i	dentical to those observed, although those models require a much larger amount of
<u>c</u>	computational resources and time than the aerosol recovery method. This is mainly because
<u>t</u>]	here are uncertainties in the representation of aerosol chemical and physical processes and
tl	hese processes consume a large amount of computational resources and time in those
n	nodels, For this study, particularly to simulate the variation of aerosol concentrations over
g	rid points and time steps induced by the aerosol advection as observed with the minimized
<u>u</u>	se of computational resources and time, observed aerosol concentrations, based on the
<u>c</u>	observed PM data and the assumed aerosol size distribution and composition, are applied
t	o grid points and time steps in the simulation directly via the aerosol preprocessor, in
<u>a</u>	issociation with the aerosol recovery method. In this way, background aerosol
<u>(</u>	concentrations (or background aerosols or aerosols outside clouds), in the simulation are
<u>e</u>	xactly identical to those observed, in case we neglect possible errors from the assumption
9	on aerosol size distribution and composition, and the interpolation or extrapolation of
1	observed data to grid points and time steps in the simulation. In addition, those background
	aerosols from observation are results of processes related to aerosols in real nature (e.g.,
	aerosol emissions, cloud impacts on aerosols via scavenging processes, aerosol chemical
-	and physical processes and aerosol transportation by wind and turbulence), Hence, by
	adopting background aerosols, as they are in observation, for the simulation, not only we

Formatted: Automatically adjust right indent wh defined, Adjust space between Latin and Asian te space between Asian text and numbers	
Deleted: aerosol properties and their impacts on	
Deleted: s	
Deleted:).	
Formatted: Font: (Default) Times New Roman, Italic, Font color: Auto	12 pt, Not
Formatted	[1]
Formatted	[2]
Formatted	[3]
Formatted	[4]
Formatted	[5]
Deleted: The impacts of cloud processes on the prop	
Formatted	[7]
Formatted	[8]
Formatted	[9]
Formatted	[10]
Formatted	[11]
Formatted	[12]
Formatted	[13]
Formatted	[14]
Formatted	[15]
Formatted	[16]
Formatted	[17]
Formatted	[18]
Formatted	[19]
Formatted	[20]
Formatted	[21]
Formatted	[22]
Formatted	[23]
Formatted	[24]
Formatted	[25]
Formatted	[26]
Formatted	[27]
Formatted	[28]
Formatted	[29]
Formatted	[30]
Formatted	[31]
Formatted	[32]
Formatted	[33]
Formatted	[34]
Formatted	[35]
Formatted	[36]

520	are able to consider the transportation of background aerosols by wind (or aerosol	Formatted: Font: (Default) Times New Roman, 12 pt, Not Italic, Font color: Auto
521	advection) and associated aerosol evolutions as observed but also we are able to consider	Formatted: Font: (Default) Times New Roman, 12 pt, Not Italic, Font color: Auto
522	the evolution of background aerosols induced by the other aerosol-related processes as	Formatted: Font: (Default) Times New Roman, 12 pt, Not
523	observed in the simulation. We believe that this balances out the weakness of the aerosol	Italic, Font color: Auto Formatted: Font: (Default) Times New Roman, 12 pt, Not
524	recovery method to result in the reasonable simulation of the selected case, as is evidently	Italic, Font color: Auto
525	shown by the fact that simulated cloud properties are in a good agreement with observed	Formatted: Font: (Default) Times New Roman, 12 pt, Not Italic, Font color: Auto
526	counterparts as described below,	Formatted: Font: (Default) Times New Roman, 12 pt, Not Italic, Font color: Auto
527		Formatted: Font: (Default) Times New Roman, 12 pt, Not
528	3.3 Additional runs	Italic, Font color: Auto Formatted: Font: (Default) Times New Roman, 12 pt, Not
529		Italic, Font color: Auto
530	To examine effects of the aerosol advection on the observed stratocumulus clouds over the	Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto
531	Seoul area, the control run is repeated by removing the increase in aerosol concentrations	Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto
532	due to the aerosol advection. This repeated run is referred to as the low-aerosol run. In the	Formatted: Font: (Default) Times New Roman, 12 pt, Not Italic, Font color: Auto
533	low-aerosol run, to remove the increase in aerosol concentrations, background aerosol	Formatted: Font: (Default) Times New Roman, 12 pt, Not Italic, Font color: Auto
534	concentrations after 05:00 LST on January 12th do not evolve with the aerosol advection	Formatted: Font: Not Bold
535	and, are, assumed to have background aerosol concentrations at 05;00 LST on January 12th	Formatted: Automatically adjust right indent when grid is
536	at every time step and grid point only for the concentration of background aerosols acting	defined, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers
537	as CCN. Here, the time- and domain-averaged concentration of background <u>aerosols acting</u>	Deleted: 3
538	as CCN after 05;00 LST on January 12 th in the low-aerosol run is lower than that in the	Deleted: but
		Deleted: is
539	control run by a factor of \sim 3. It is notable that there are no differences in the concentration	Deleted: 3
540	of background aerosols acting as <u>INP</u> between the control and low-aerosol runs. This is to	Deleted: 3
541	isolate effects of CCN, which accounts for most of aerosols, on clouds from those effects	Deleted: IN
542	of JNP via comparisons between the runs. Via the comparisons, we are able to identify how	Deleted: IN
543	advection-induced increases in the concentration of aerosols acting as CCN affect clouds.	
544	The ratio of the concentration of background <u>aerosols acting as CCN at 05;00</u> LST on	Deleted: aerosols as
545	January 12 th to that after 05;00 LST on January 12 th varies among grid points and time steps,	Deleted: 3
546	since the concentration varies spatiotemporally throughout the simulation period in the	(Deleted: 3
547	control run. This means that a factor by which the concentration of background <u>aerosols</u>	Deleted: aerosols as
548	acting as CCN varies after 05:00 LST on January 12th between the control and low-aerosol	"(Deleted: 3
549	runs is different for each of the time steps and grid points.	

Formatted: talic, Font co	Font: (Default) Times New Roman, 12 pt, No olor: Auto	ot
ormatted: talic, Font co	Font: (Default) Times New Roman, 12 pt, No olor: Auto	ot
Formatted: talic, Font co	Font: (Default) Times New Roman, 12 pt, No olor: Auto	ot
Formatted: talic, Font co	Font: (Default) Times New Roman, 12 pt, No olor: Auto	ot
Formatted: talic, Font co	Font: (Default) Times New Roman, 12 pt, No olor: Auto	ot
Formatted: talic, Font co	Font: (Default) Times New Roman, 12 pt, No olor: Auto	ot
Formatted: talic, Font co	Font: (Default) Times New Roman, 12 pt, No olor: Auto	ot
Formatted: color: Auto	Font: (Default) Times New Roman, 12 pt, Fo	ont
Formatted: color: Auto	Font: (Default) Times New Roman, 12 pt, Fo	ont
Formatted: talic, Font co	Font: (Default) Times New Roman, 12 pt, No olor: Auto	ot
Formatted: talic, Font co	Font: (Default) Times New Roman, 12 pt, No olor: Auto	ot
ormatted:	Font: Not Bold	
lefined, Adju	Automatically adjust right indent when grid is st space between Latin and Asian text, Adjus en Asian text and numbers	
Deleted: 3		
Deleted: but		
Deleted: is		
Deleted: 3		
Deleted: aero	osols as	
Deleted: 3		
Deleted: IN		
Deleted: IN		_

(Deleted: aerosols as
~~(Deleted: 3
(Deleted: 3

Deleted: aerosols as	
Deleted: 3	

563 To examine effects of the interplay between ice crystals and droplets on the adopted system of stratocumulus clouds and its interactions with aerosols, the control and low-564 565 aerosol runs are repeated by removing ice processes. These repeated runs are referred to as 566 the control-noice and low-aerosol-noice runs. In the control-noice and low-aerosol-noice 567 runs, only aerosols acting as CCN, droplets (i.e., cloud liquid), raindrops and associated 568 phase-transition, processes (e.g., condensation and evaporation) exist, and aerosols acting 569 as INP, all solid hydrometeors (i.e., ice crystals, snow, graupel, and hail) and associated 570 phase-transition processes (e.g., deposition and sublimation) are turned off, regardless of 571 temperature. Via comparisons between the control and control-noice runs, we aim to 572 identify effects of the interplay between ice crystals and droplets on the adopted system. 573 Via comparisons between a pair of the control and low-aerosol runs and that of the control-574 noice and low-aerosol-noice runs, we aim to identify effects of the interplay between ice 575 crystals and droplets on interactions between the system and aerosols. Henceforth, the pair 576 of the control and low-aerosol runs is referred to as the ice runs, while the pair of the 577 control-noice and low-aerosol-noice runs is referred to as the noice runs. To better understand findings in Section 4.1.1, which explain how the interplay between 578 579 ice crystals and droplets affects stratocumulus clouds, the control run is repeated by 580 increasing the concentration of background aerosols acting as JNP by a factor of 10 and 581 100 at each time step and grid point. These repeated runs are detailed in Section 4.1.2 and 582 referred to as the INP-10 and INP-100 runs, respectively. To better understand findings in 583 Section 4.2.1, which explain how aerosols acting as CCN affect the interplay between ice 584 crystals and droplets, the control run is repeated by reducing the concentration of 585 background aerosols acting as INP in the same way as the concentration of background 586 aerosols acting as CCN is reduced in the low-aerosol-run as compared to that in the control 587 run. This repeated run is referred to as the INP-reduced run and detailed in Section 4.2.2. 588 To see the roles played by the sedimentation of ice particles in stratiform clouds and their 589 interactions with aerosols, the control, INP-10, INP-100, low-aerosol and INP-reduced 590 runs are repeated with the sedimentation of ice particles turned off. These repeated runs are 591 referred to as the control-no-sedim, INP-10-no-sedim, INP-100-no-sedim, low-aerosol-no-592 sedim and INP-reduced-no-sedim runs, and detailed in Sections 4.1.3 and 4.2.3. Table 1 593 summarizes all of the simulations in this study,

Deleted: aerosols as

Deleted: microphysical	
Deleted: aerosols as	
Deleted: IN	

Deleted: IN

Moved down [1]: Table 1 summarizes all of the simulations in this study. To better understand findings in Section 4.2.1, which Deleted: IN Deleted: IN

15

Moved (insertion) [1]

Deleted: .

604	4. Results
605	
606	4.1 Effects of the interplay between ice crystals and droplets on clouds
607	
608	4.1.1 The control and control-noice runs
609	
610	Figure 3a shows the time series of the domain-averaged liquid-water path (LWP), ice-water
611	path (IWP) and water path (WP), which is the sum of LWP and IWP, for the control run,
612	and LWP for the control-noice run. Since in the control-noice run, there are no ice particles,
613	LWP acts as WP in the run. WP is higher in the control-noice run than in the control run
614	throughout the whole simulation period. This higher WP in the control-noice run
615	accompanies the higher average cloud fraction over time steps with non-zero cloud fraction.
616	The average cloud fraction is 0.98 and 0.92 in the control-noice and control runs,
617	respectively. At the initial stage before 20:00 LST on January 12th differences in WP
618	between the runs are not as significant as those after 20:00 LST on January 12 th (Figure
619	3a). The differences in WP between the runs are greatest around 00:00 LST on January
620	13 th when WP reaches its maximum value in each of the runs (Figure 3a). These differences
621	decrease as time goes by after around 00:00 LST on January 13 th (Figure 3a). The time-
622	and domain-averaged WP over the period between 00:00 LST (local solar time) on January
623	12th and 00:00 LST on January 14th is 18 and 55 g m ⁻² in the control and control-noice
624	runs, respectively. Associated with this, the WP peak value reaches 83 g m $\frac{2}{v}$ in the control
625	run, while the value reaches 230 g m ² / ₂ in the control-noice run (Figure 3a). Over most of
626	the simulation period, IWP is greater than LWP in the control run except for the period
627	between ${\sim}22{:}00$ LST on January 12th and ${\sim}01{:}00$ LST on January 13th (Figure 3a). In the
628	control run, the time- and domain-averaged IWP and LWP are 11 and 7 g m ⁻² , respectively.
629	Results here indicate that when solid and liquid particles coexist, cloud mass, represented
630	by WP, reduces a lot as compared to that when liquid particles alone exist. To evaluate the
631	control run, satellite and ground observations can be utilized. In the case of the Moderate
632	Resolution Imaging Spectroradiometer, one of representative polar orbiting image sensors
633	on board satellites, it passes the Seoul area only at 10:30 am and 1:30 pm every day, hence,
634	the sensor is not able to provide reliable data that cover the whole simulation period.

Deleted: , although	
Deleted: a	
Deleted: th	
Formatted: Superscript	
Formatted: Superscript	
Deleted: th	
Deleted: th	
Formatted: Superscript	
Formatted: Superscript	
Deleted: th	
Deleted: g m ⁻³	
Deleted: ³	
Deleted: ³	
Deleted: ³	

Deleted: g m⁻³ Deleted: ³

647	Multifunctional Transport Satellites (MTSAT), which are geostationary satellites and
648	available in the East Asia, do not provide reliable data of LWP and IWP, although they
649	provide comparatively reliable data of cloud fraction and cloud-top height throughout the
650	whole simulation period (Faller, 2005). Ground observations provide data of cloud fraction
651	and cloud-bottom height throughout the whole simulation period. Here, the simulated cloud
652	fraction, and cloud-bottom height are compared to those from ground observations, while
653	the simulated cloud-top height is compared to that from the MTSAT. The average cloud
654	fraction over time steps with non-zero cloud fraction is 0.92 and 0.86 in the control run and
655	observation, respectively. The average cloud-bottom height over grid columns and time
656	steps with non-zero cloud-bottom height is 230 (250) m in the control run (observation).
657	The average cloud-top height over grid columns and time steps with non-zero cloud-top
658	height is 2.2 (2.0) km in the control run (observation), For this comparison between the
659	control run and observation, observation data are interpolated into grid points and time
660	steps in the control run. The percentage difference in each of cloud fraction, cloud-bottom
661	and -top heights between the control run and observations is $\sim 10\%$ and thus the control
662	run is considered performed reasonably well for these variables.
663	Condensation and deposition are the main sources of cloud mass in the control run.
664	Since in the control-noice run, there are no ice particles, deposition is absent, and thus,
665	condensation alone acts as the main source of cloud mass. As seen in Figure 3b,
666	condensation rates in the control-noice run are much higher than the sum of condensation
667	and deposition rates in the control run. Associated with this, there is greater cloud mass in
668	the control-noice run than in the control run, although deposition is absent in the control-
669	noice run. However, at the initial stage before 20:00 LST on January 12th, differences
670	between the sum in the control run and condensation rate in the control-noice run are not
671	as significant as compared to those after 20:00 LST on January 12th (Figure 3b). Hence,
672	those differences increase as time progresses after the initial stage. Those differences are
673	greatest around 00:00 LST on January 13th when the sum in the control run or condensation
674	rate in the control-noice run reaches its maximum value. The differences decrease as time
675	goes by after around 00:00 LST on January 13th. Condensation rate, deposition rate in the
676	control run, and condensation rate in the control-noice run are similar to LWP, IWP in the
677	control run, and LWP in the control-noice run, respectively, in terms of their temporal

Deleted: nce
Deleted: ,
Deleted: and
Deleted: s
Deleted: are
Deleted: ose
Deleted: and ground observations
Deleted: hen the domain-averaged WP
Deleted: is not zero
Deleted: s
Deleted: and -top
Deleted: s
Deleted: and grid points with non-zero WP
Deleted: are
Deleted: and 1
Deleted: .3
Deleted: (1.5
Deleted: s
Deleted: , respectively
Deleted: Hence, t
Deleted: as phase-transition processes

Deleted: become significant and

evolutions (Figures 3a and 3b). This similarity confirms that deposition and condensation
are the main sources of IWP and LWP, respectively, and control cloud mass. Thus,
understanding the evolutions of condensation and deposition is equivalent to understanding
those of LWP and IWP, respectively. Hence, in the following, to understand evolutions of
cloud mass and its differences between the simulations in this study, we analyze evolutions
of condensation, deposition, and their differences between the runs.

706 The qualitative nature of differences in WP, which represents cloud mass, over the 707 whole simulation period between the control and control-noice runs is initiated and 708 established during the initial stage of cloud development before 20:00 LST on January 12th 709 (Figures 3a and 3b). Hence, to understand mechanisms that initiate differences in WP 710 between the control and control-noice runs, deposition, condensation and associated 711 variables are analyzed for the initial stage. Note that synoptic or environmental conditions 712 such as humidity and temperature are identical between the control and control-noice runs. 713 These conditions act as initial and boundary conditions for the simulations and thus initial 714 and boundary conditions are identical between the runs. Also, during the initial stage, 715 feedbacks between dynamics (e.g., updrafts) and microphysics just start to form and thus 716 are not fully established as compared to those feedbacks after the initial stage. This enables 717 us to perform analyses of deposition and condensation during the initial stage by reasonably 718 excluding a large portion of complexity caused by those feedbacks. Hence, those analyses 719 during the initial stage can provide a clearer picture of either microphysical or dynamic 720 mechanisms that control differences in results between the runs. 721 During the initial stage before 20:00 LST on January 12th, evaporation rates, averaged 722 over the cloud layer, are higher in the control run than in the control-noice run and this is 723 contributed by the WBF mechanism which facilitates evaporation of droplets and 724 deposition onto ice crystals (Figure 3c). In addition, it should be noted that ice crystals 725 consume water vapor that is needed for droplet nucleation. This makes it difficult for 726 droplets to be activated in the control run as compared to a situation in the control-noice 727 run. Associated with the more evaporation and difficulty in droplet activation, droplets 728 disappear more and form less, leading to a situation where cloud droplet number 729 concentration (CDNC) starts to be lower in the control run during the initial stage (Figure 730 3d). This is despite the higher entrainment rate at the PBL tops and associated more

Deleted: the control and control-noice Deleted: runs

Deleted: un due to

	19	
734	evaporation in the control-noice run than in the control run. The average entrainment rate	
735	over all grid points at the PBL tops and over the initial stage is 0.18 and 0.08 cm s^{-1} in the	Formatted: Superscript
736	control-noice and control runs, respectively. In this study, the entrainment rate is calculated	
737	as follows:	
738		
738 739	The entrainment rate = $dz_{i}/dt - w_{sub}$	Formatted: Font: Italic
	<u>Ine entrainment rate – azyat – w_{sub}</u>	
740		
741	Here, $\underline{z_i}$ is the PBL height and w_{sub} is the large-scale subsidence rate at the PBL top. As	Formatted: Font: Italic Formatted: Font: Italic, Subscript
742	seen in Figure 3c, the cloud layer is between ~200 m and ~1.5 km in the control run, while	
743	it is between ~200 m and ~2.5 km in the control-noice run. Then, during the initial stage,	Deleted: Associated with more evaporation, droplets disappear more, leading to a situation where cloud droplet number
744	the reduction in CDNC contributes, to a reduction in condensation in the control run as	concentration (CDNC) starts to be lower in the control run during the initial stage (Figure 3d).
745	compared to that in the control-noice run (Figure 3b). Fewer droplets mean that there is a	Deleted: leads
746	less integrated droplet surface area where condensation occurs and this contributes to less	
747	condensation in the control run. It should be noted that as seen in Figures 3c and 3d, air	
748	parcels go up higher, which also contribute to more condensation in the control-noice run	
749	than in the control run. However, aided by the fact that the water-vapor equilibrium	Deleted: Fewer droplets mean that there is a less integrated droplet surface area where condensation occurs and this induces less
750	saturation pressure is lower for ice particles than for liquid particles, deposition is	condensation in the control run.
751	facilitated at the initial stage in the control run whether the water-vapor pressure is higher	Deleted: e WBF mechanism
752	than the equilibrium pressure for liquid particles or not as long as the water-vapor pressure	
753	is higher than the equilibrium pressure for ice particles. This leads to greater deposition	Deleted: ,
754	than condensation in the control run at the initial stage (Figure 3b). This deposition is	Deleted: and
755	inefficient and the subsequent increase in deposition is not sufficient, so, the sum of	Deleted: t
756	condensation and deposition rates in the control run is slightly lower than condensation	
757	rate in the control-noice run at the initial stage (Figure 3b); this contributes to slightly lower	
758	WP in the control run than in the control-noice run during the initial stage (Figure 3a).	
759	Hence, slightly greater latent heating, which is associated with condensation, in the control-	
760	noice run than that, which is associated with the sum of deposition and condensation, in	
761	the control run develops during the initial stage. This initiate, stronger feedbacks between	Deleted: leads to
762	updrafts and latent heating in the control-noice run than in the control, run during the initial	Deleted: -noice
763	stage and these strong feedbacks are full established after the initial stage. This in turn	Deleted:
764	results in much stronger updrafts after the initial stage in the control-noice run than in the	Deleted: , which
I		

control run. Mainly due to these much stronger updrafts after the initial stage, the time- and
domain-averaged updrafts over the whole simulation period are also much greater in the
control-noice run than in the control run (Figure 4a). The much stronger updrafts produce
much larger WP in the control-noice run than in the control run after the initial stage (Figure
3a).
Results here indicate that the reduced cloud mass, due to the reduced condensation,
is not efficiently compensated by the gain of solid mass via deposition in the control run.

787 is not efficiently compensated by the gain of solid ol run. 788 If the reduced mass is efficiently compensated by deposition, that would lead to much 789 smaller differences in WP between the control and control-noice runs. Here, we 790 hypothesize that the inefficient deposition is related to cloud ice number concentration

- 791 (CINC) as seen in Figure 4b, The surface area of ice crystals is where deposition occurs.
- 792 We hypothesize that CINC and the associated integrated surface area of ice crystals are not
- 793 large enough to induce a large amount of deposition that can potentially make WP similar
- between the control and control-noice runs. Stated differently, it is hypothesized that water 794
- 795 vapor is not able to find enough surface area of ice crystals for the large amount of
- 796 deposition.
- 797

799

781

782

783

784

785

786

798

- a. LWP and IWP frequency distributions
- 800 As seen in Figure 5a, the control-noice run has the lower (higher) WP cumulative frequency for WP below (above) ~ 100 g m⁻² than the control run at the last time step. This means 801 802 that the lower average WP in the control run is mainly due to a reduction in WP above 803 ~100 g m⁻² in the control run. The LWP frequency reduces substantially in the control run 804 as compared to that in the control-noice run (Figure 5b). With this reduction, LWP above 805 ~ 800 g m⁻² disappears and there is in general two to three orders of magnitude lower LWP frequency for LWP below $\sim 800 \text{ g m}^{-2}$ in the control run than in the control-noice run 806 807 (Figure 5b).
- 808 As seen in Figure 5b, at the last time step, there is the presence of IWP frequency in
- 809 addition to the LWP frequency in the control run. Through the facilitated deposition, the
- IWP frequency is greater than the LWP frequency for IWP below ~ 200 g m⁻² in the control 810
- run. Particularly for IWP below ~ 100 g m⁻², the IWP frequency in the control run is greater 811

Deleted: D

Deleted: after the initial stage

Deleted: The WBF mechanism indicates that the surplus water vapor produced by evaporation acts as an additional source of deposition. If water vapor, including the surplus water vapor, is efficiently deposited onto ice crystals, then

Deleted:

Deleted: the increased evaporation and Deleted: subsequently

Deleted: CDNC and

Deleted: can be

Deleted: additional Deleted:

Deleted: T

Deleted: is

Deleted: than simulated

Deleted: of water vapor Deleted: much lower

Deleted: as compared to CDNC

Deleted:

Deleted: As seen in Figures 4b and 4c, CINC is ~ 2 orders of magnitude lower than CDNC. Hence, while there is a comparatively large number of droplets that can potentially produce lots of water vapor via evaporation, there is comparatively a small number of ice crystals and thus a small integrated surface area of ice crystals where water vapor can be deposited in the control run.

Deleted: It is hypothesized that this leads to a situation where water vapor, including that from the evaporation of lots of droplets, is not able to find enough surface area of ice crystals for efficient deposition, eventually leading to the inefficient deposition of the surplus water vapor in the control run.

Deleted: Through the WBF mechanism in the presence of ice particles, liquid particles evaporate and conden Hence, ...t

Deleted: t

Deleted: Through the WBF mechanism, which Deleted: s

850	than the LWP frequency in the control-noice run. This enables the greater WP frequency
851	in the control run than in the control-noice run for WP below $\sim 100~g~m^{\text{-}2}$ in spite of the
852	lower LWP frequency below ${\sim}100~g~m^{\text{-}2}$ in the control run (Figures 5a and 5b). However,
853	the lower IWP frequency for IWP above $\sim 100~g~m^{-2}$ in the control run than the LWP
854	frequency for LWP above $\sim 100~g~m^{-2}$ in the control-noice run contributes to the lower WP
855	frequency for WP above $\sim 100~g~m^{-2}$ in the control run (Figures 5a and 5b). The lower WP
856	frequency for WP above $\sim 100~g~m^{\text{-}2}$ in the control run is also contributed by the lower
857	LWP frequency for LWP above $\sim 100~g~m^{-2}$ in the control run (Figures 5a and 5b).

4.1.2 The <u>INP</u>-10 and <u>INP</u>-100 runs

861	To test above-mentioned hypothesis about the CINC-related inefficient deposition, the
862	control run is compared with the <u>JNP</u> -10 and <u>JNP</u> -100 runs (Table 1). In particular, in the
863	<u>INP</u> -100 run, the concentration of background <u>aerosols acting as JNP</u> becomes that of
864	background <u>aerosols acting as</u> CCN. This may be unrealistic. However, the main purpose
865	of the INP-10 and INP-100 runs, is to test the hypothesis and it is believed that the high
866	concentrations of background aerosols acting as JNP in the INP-10 and INP-100 runs are
867	able to clearly isolate the role of the <u>INP</u> concentration and CINC in WP by making a stark
868	contrast in the <u>INP</u> concentration and CINC between the control, <u>INP-10 and INP-100 runs</u>
869	As seen in Figure 6a, CINC averaged over grid points and time steps with non-zero
870	CINC increases by <u>a</u> factor, of \sim 5 (\sim 60), when the concentration of background <u>aerosols</u>
871	acting as JNP increases by a factor of 10 (100) from the control run to the JNP-10 (JNP-
872	100) run. With these increases in CINC, the average radius of ice crystals over grid points
873	and time steps with non-zero CINC decreases by ~15% and 25% in the JNP-10 and JNP-
874	100 runs, respectively. This induces increases in the integrated surface area of ice crystals
875	and thus deposition in the <u>JNP</u> -10 and <u>JNP</u> -100 runs as compared to those in the control
876	run (Figures 3b, 6b and 6c). These increases in deposition are more, because of greater
877	increases in the integrated surface area in the <u>INP-100 run than in the INP-10 run (Figures</u>
878	6b and 6c). Of interest is that the increase in deposition accompanies a decrease in
879	condensation in the <u>INP-10</u> and the <u>INP-100</u> runs as compared to that in the control run
880	(Figures 3b, 6b and 6c). This is because due to more deposition, more water vapor is

Deleted: IN Deleted: IN

Deleted:	
Deleted: comparatively low	
Deleted: and associated	
Deleted: IN	
Deleted: IN	
Deleted: IN	
Deleted: aerosols as	
Deleted: IN	
Deleted: aerosols as	
Deleted: repeated runs	
Deleted: aerosols as	
Deleted: IN	
Deleted: repeated runs	
Deleted: IN	
Deleted: IN	
Deleted: and repeated runs	
Deleted: s	
Deleted: aerosols as	
Deleted: IN	

transferred from air to ice crystals, which leaves less water vapor for droplet activation and condensation in the INP-10 run and INP-100 runs than in the control run when the watervapor pressure is higher than the water-vapor saturation pressure for liquid particles in air parcels. Greater deposition leaves less water vapor for droplet activation and condensation, leading to less activation and condensation in the INP-100 run than in the INP-10 run when the water-vapor pressure is higher than the water-vapor saturation pressure for liquid particles in air parcels. When the water-vapor pressure is lower than the water-vapor saturation pressure for liquid particles, increasing deposition induces the increasing evaporation of droplets and decreasing CDNC among the control, INP-10 and INP-100 runs in air parcels. This subsequently contributes to decreasing condensation among those runs when the water-vapor pressure becomes higher than the water-vapor saturation pressure for liquid particles in those air parcels. Associated with increases in deposition and decreases in condensation, IWP increases and LWP decreases in both of the INP-10 and INP-100 runs as compared to those in the control run. The time- and domain-averaged IWP, LWP and WP are 24 (47), 5 (3), and 29 (50) g m⁻² in the INP-10 (INP-100) run. Since there are greater increases in deposition and greater decreases in condensation, these increases in IWP and decreases in LWP are greater in the JNP-100 run than in the JNP-10 run. The increasing deposition and IWP contribute to increases in WP, while the decreasing condensation and LWP contribute to decreases in WP in the <u>INP</u>-10 and <u>INP</u>-100 runs. Figure 7a shows that there are increases in WP in the JNP-10 and JNP-100 runs as compared to WP in the control run and those increases are greater in the INP-100 run than in the INP-10 run. This means that the increases in deposition and IWP outweigh the decreases in condensation and LWP, respectively, in the <u>INP-10 and INP-100 runs</u>. This outweighing is greater and leads to greater increases in WP in the JNP-100 run than in the JNP-10 run (Figure 7a). As seen in Figure 7a, the enhanced

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

- average WP in the INP-100 (INP-10) run reaches 91% (53%) of that in the control-noice
- run, while the average WP in the control run accounts for only $\sim 30\%$ of that in the control-
- noice run. Accompanying this is that the time and domain-averaged updraft mass flux in
- 240 the INP-100 (INP-10) run over the whole simulation period reaches 95% (78%) of that in
- 941 the control-noice run. The average cloud-top height over grid columns and time steps with
- 942 non-zero cloud-top height in the INP-100 (INP-10) run, particularly over the initial stage

Deleted: IN

Deleted: IN
Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto
Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto
Deleted: IN
Deleted: IN

λ	Deleted: IN
(Deleted: IN
λ	Formatted: Superscript
()	Deleted: IN
//	Deleted: IN
()	Deleted: IN
//	Deleted: IN
7,0	Deleted: (not shown)
4	Deleted: IN
4	Deleted: IN
Á	Deleted: IN
λ	Deleted: IN
Å	Deleted: IN
4	Deleted: IN
Å	Deleted: IN
Ά	Deleted: IN
λ	Deleted: IN
λ	Deleted: run
(Deleted: the IN
_(Deleted: 5
$\langle \rangle$	Deleted: run
7)	Deleted: ~
\/)	Deleted: 0
\\\X	Deleted: %
///	Deleted: ~
/(Deleted: 0
Ĭ	Deleted: 2

973	between 00:00 LST and 20:00 LST on January 12th, reaches 92% (80%) of that in the	
974	control-noice run. Hence, the increasing deposition in the INP-10 and INP-100 runs	
975	involves its positive feedbacks with dynamics and this eventually enables air parcels in the	
976	INP-100 run to go up nearly as high as in the control-noice run. Here, comparisons among	
977	the control, JNP-10 and JNP-100 runs confirm the hypothesis that ascribes much lower WP	
978	in the control run than in the control-noice run to the CINC-related inefficient deposition	
979	in the control run.	
980		
981	a. LWP and IWP frequency distributions	
982		
983	With the increasing concentration of <u>aerosols acting as JNP</u> and CINC from the control run	
984	to the <u>INP-10</u> run to the <u>INP-100</u> run, there are substantial increases in the IWP cumulative	
985	frequency, while there are substantial decreases in the LWP cumulative frequency at the	-
986	last time step (Figure 7b). These increases in the IWP frequency accompany increases in	
987	the IWP maximum value from ~200 g m ⁻² in the control run to ~1200 g m ⁻² in the INP-100	
988	run through ~500 g m ⁻² in the INP-10 run (Figure 7b). These decreases in the LWP	
989	frequency accompany decreases in the LWP maximum value from \sim 700 g m ⁻² in the control	
990	run to ~100 g m ⁻² in the INP-100 run through ~300 g m ⁻² in the INP-10 run (Figure 7b).	
991	The increases in the IWP frequency outweigh decreases in the LWP frequency between the	1
992	JNP-10 and JNP-100 runs (the JNP-10 and control run), leading to the greater average WP	
993	in the <u>INP</u> -100 run than in the <u>INP</u> -10 run (in the <u>INP</u> -10 run than in the control run).	
994		
995	4.1.3 Sedimentation of ice particles	
996		$\left(\right)$
997	With increasing concentrations of aerosols acting as INP between the control, INP-10 and	
998	INP-100 runs, there are changes in the sedimentation of ice particles and this induces	
999	changes in the precipitation rate at cloud bases. The average precipitation rate over all grid	
1000	points at cloud bases and over the whole simulation period is 0.004, 0.002, and 0.0006 g	
1001	$\underline{m}_{1}^{2} \underline{s}_{1}^{1}$ in the control, INP-10 and INP-100 runs, respectively. As mentioned above, there	
1002	are also changes in the deposition rate among those simulations. The time- and column-	

1003 averaged deposition rate is 0.027, 0.059 and 0.125 g m^{-2} s⁻¹ in the control, INP-10 and INP-

Formatted: Superscript

Deleted: IN	
Deleted: IN	
Deleted: comparatively low	
Deleted: and associated	

Deleted: aerosols as	
Deleted: IN	
Deleted: IN	
Deleted: IN	

Deleted: 3	
Deleted: 3	
Deleted: IN	
Deleted: 3	
Deleted: IN	
Deleted: ³	
Deleted: ³	
Deleted: IN	
Deleted: ³	
Deleted: IN	
Formatted: Normal,	, No bullets or numbering
Formatted: Font: B	old

-(Formatted: Superscript
-(Formatted: Superscript

1028	100 runs, respectively. As a first step to obtain the column average of a variable, at each	
1029	time step, the average value of the variable over each column is obtained by summing up	
1030	the value of the variable over the vertical domain in each of all columns in the domain and	
1031	dividing the sum by the total number of gird points in each column. This sum of the value	
1032	is obtained over all grid points in the vertical domain whether they have zero values of the	
1033	variable or not. The column average in this study is the average value (in each column) that	
1034	is summed up over all columns and divided by the total number of columns in the domain.	
1035	We see that the change in deposition rate from the control run to the INP-10 run (to the	
1036	INP-100 run) is 16 (29) times greater than that in the cloud-base precipitation rate. Hence,	
1037	the varying sedimentation of ice particles and associated precipitation is likely to play an	
1038	insignificant role in the varying cloud mass among the runs as compared to the varying	
1039	deposition. To confirm this, the control, INP-10 and INP-100 runs are repeated by setting	
1040	the fall velocity of ice particles to zero. These repeated runs are the control-no-sedim and	
1041	INP-10-no-sedim and INP-100-no-sedim runs. The time- and domain-averaged IWP, LWP	
1042	and WP are 11 (14), 7 (5) and 18 (19) g m ⁻² , respectively, in the control (control-no-sedim)	
1043	run. The time- and domain-averaged IWP, LWP and WP are 26 (49), 4 (2) and 30 (51) g	
1044	m ⁻² , respectively, in the INP-10-no-sedim (INP-100-no-sedim) run. Remember that the	
1045	time- and domain-averaged IWP, LWP and WP are 24 (47), 5 (3) and 29 (50) g m ⁻² ,	
1046	respectively, in the INP-10 (INP-100) run. The presence of the sedimentation decreases	
1047	IWP and increases LWP as compared to the situation with no sedimentation for each of the	
1048	runs. However, the average WP in the control-no-sedim run is still much lower than that in	
1049	the control-noice run. The average WP in the INP-100-no-sedim run (the INP-10-no-sedim	
1050	run) reaches 93% (55%) of that in the control-noice run and this is similar to the situation	
1051	among as the INP-10, INP-100 and control-noice runs. This demonstrates that the	
1052	sedimentation of ice particles and associated precipitation are not main factors that control	
1053	the variation of cloud mass among the control, INP-10 and INP-100 runs.	
1054	Σ	
1055	4.2 Aerosol-cloud interactions	•
1056		
1057	4.2.1 CCN	

Deleted: 1

Formatted: Font color: Auto Formatted: Font: Bold

Formatted: Normal, Indent: Left: 0.44", No bullets or numbering

1060	With advection-induced increases in aerosol concentrations between the control and	
1061	low-aerosol runs, there are aerosol-induced increases and decreases in IWP and LWP,	
1062	respectively (Figure 8a). The increases in IWP are outweighed by the decreases in LWP,	
1063	leading to aerosol-induced decreases in the average WP between the ice runs. This involves	
1064	aerosol-induced decreases in the average cloud fraction over time steps with non-zero	
1065	cloud fraction from 0.93 in the low-aerosol run to 0.92 in the control run. As seen in Figure	
1066	8b, the WP frequency is greater particularly for WP $< \sim \!\! 300$ g m^2, leading to the higher	
1067	average WP in the low-aerosol run than in the control run. As seen in Figure 8c, particularly	
1068	for WP below ${\sim}200~g$ m $^{-2},$ the IWP frequency increases, while the LWP frequency	
1069	decreases with increasing aerosols between the ice runs. The increase in the IWP frequency	
1070	is not able to outweigh the decrease in the LWP frequency, leading to aerosol-induced	
1071	decreases in the average WP between the ice runs. Results here are contrary to the	
1072	conventional wisdom that increasing concentrations of aerosols acting as CCN tend to	
1073	increase WP in stratiform clouds (Albrecht, 1989).	
1074	Between the noice runs, there is an increase in LWP (i.e., WP) with the increasing	
1075	concentration of aerosols acting as CCN (Figure 8a). This involves aerosol-induced	
1076	increases in the average cloud fraction over time steps with non-zero cloud fraction from	
1077	0.96 in the low-aerosol-noice run to 0.98 in the control-noice run. The greater LWP	
1078	frequency, concentrated in the LWP range between ${\sim}100$ and ${\sim}600$ g m^-2, leads to the	
1079	greater average LWP or WP in the control-noice run than in the low-aerosol-noice run	
1080	(Figures 8b and 8c).	
1081		
1082	a. Ice runs	
1083		
1084	1) Condensation and evaporation	
1085		
1086	The qualitative nature of aerosol-induced differences in deposition, IWP, condensation and	
1087	LWP over the whole simulation period between the ice runs is initiated and established	
1088	during the initial stage of cloud development before 20:00 LST on January 12th (Figure 8a).	
1089	To understand mechanisms that control aerosol-induced differences in deposition and	
1000		

1090 condensation as a way of understanding mechanisms that control those differences in IWP

Deleted:

Deleted:

Deleted: aerosols as

Deleted: aerosols as

and LWP, the time series of deposition rate, condensation rate and associated variables in each of the ice runs and differences in these variables between the ice runs is obtained for the initial stage. Since this study focuses on these differences in the variables as a representation of aerosol effects on clouds, in the following, the description of the differences is given in more detail by involving both figures and text as compared to the description of the variables in each of the ice runs, involving text only for the sake of brevity.

- 1102
- 1103

i. CDNC and its relation to condensation and evaporation

1104

1105 Evaporation and condensation rates are higher in the control run than in the low-aerosol 1106 run throughout the initial stage and up to ~15:30 LST on January 12th, respectively (Figure 1107 9a). Increases in evaporation tend to make more droplets disappear, while increases in 1108 aerosol activation and resultant condensation counteract the disappearance more. The 1109 average CDNC over grid points and time steps with non-zero CDNC is larger in the control 1110 run than in the low-aerosol run not only over the initial stage but also over the whole 1111 simulation period (Figures 9a and 10a). This means that on average, the evaporatively-1112 driven increases in the disappearance of droplets are outweighed by the activation- and/or 1113 condensationally-enhanced counteraction particularly during the initial stage with 1114 increasing aerosol concentrations between the ice runs. As marked by a green-dashed box 1115 in Figure 9a, there are steady and rapid temporal increases in the CDNC differences between the ice runs over a period from 12:50 to 13:20 LST on January 12th. This is due to 1116 1117 steady and rapid temporal increases in CDNC, which are larger in the control run than in 1118 the low-aerosol run, over the period, More droplets or higher CDNC provides a larger 1119 integrated surface area of droplets where evaporation and condensation of droplets occur, 1120 and thus acts as more sources of evaporation and condensation. With steady and rapid 1121 temporal increases in CDNC as a source of evaporation and condensation, temporal 1122 increases in both evaporation and condensation show a jump (or a surge or a rapid increase) 1123 in them for the period between 12:50 and 13:20 LST on January 12th in each of the ice runs 1124 (Supplementary Figure 1). Here, evaporation occurs at grid points where the water-vapor 1125 pressure is lower than the water-vapor equilibrium saturation pressure for liquid particles

Deleted: s Deleted: is

Deleted: (Figure 9a)

Deleted: , which are linked to the WBF mechanism,

1130	and thus WBF mechanism can occur, while condensation occurs at grid points where the
1131	water-vapor pressure is higher than the water-vapor equilibrium saturation pressure for
1132	liquid particles. This jump is higher associated with the larger temporal increase in CDNC
1133	in the control run than in the low-aerosol run (Supplementary Figure 1), This induces
1134	differences in each of evaporation and condensation between the ice runs to jump, as <u>also</u>
1135	marked by the green-dashed box in Figure 9a, during the time period,
1136	The jump in differences in condensation between the ice runs is not as high as that in
1137	differences in evaporation between the ice runs (Figure 9a). This situation accompanies the
1138	fact that in each of the ice runs, the jump in evaporation is higher than that in condensation
1139	(Supplementary Figure 1). This means that differences in the jump between evaporation
1140	and condensation are greater in the control run than in the low-aerosol run (Supplementary
1141	Figure 1). Hence, evaporation-driven, jump in the disappearance of droplets outweighs
1142	condensation, driven jump in counteraction against the disappearance in each of the ice
1143	runs. Due to this, the increasing temporal trend of CDNC turns to its decreasing trend in
1144	each of the ice runs around 13:30 LST on January 12th. If the rate of this decrease in CDNC
1145	with time is equal between the ice runs, there is no decreasing trend in differences in CDNC
1146	between the runs. However, remember that differences in the jump between evaporation
1147	and condensation are greater in the control run than in the low-aerosol run. Hence, when
1148	the jumps occur, evaporation-induced disappearance of droplets is counteracted by
1149	condensation "less" in the control run than in the low-aerosol run. This induces the rate of
1150	the CDNC decrease to be greater in the control run than in the low-aerosol run. This in turn
1151	turns the increasing temporal trend of the CDNC differences between the ice runs to their
1152	decreasing trend around 13:30 LST on January 12th (Figure 9a).
1153	The decreasing temporal trend of CDNC contributes to a decreasing temporal trend
1154	of each evaporation and condensation, starting around 13:30 LST on January 12th, by
1155	reducing the integrated surface area of droplets in each of the ice runs. This decreasing
1156	trend of each evaporation and condensation is larger associated with the larger decreasing
1157	trend of CDNC in the control run than in the low-aerosol run (Supplementary Figure 1).
1158	This induces the increasing temporal trend of differences in each evaporation and
1159	condensation between the ice runs to change into their decreasing temporal trend around
1160	13:30 LST on January 12th (Figure 9a). The decreasing trend of evaporation in each of the

Deleted:

Deleted:	,
Deleted:	whic

let	ed:	which	

Deleted: a red

Formatted: Font: (Default) Batang, (Asian) Batang

Deleted: vely-driven

Deleted: ally

Deleted: and this outweighing is greater in the control run than in the low-aerosol run during the period with the jumps.
Formatted: Superscript
Formatted: Font: (Default) Times New Roman, (Asian) Times New Roman, 12 pt, Font color: Auto
Formatted: Font: (Default) Times New Roman, (Asian) Times New Roman, 12 pt, Font color: Auto
Formatted: Font: (Default) Times New Roman, (Asian) Times New Roman, 12 pt, Font color: Auto
Formatted: Font: (Default) Times New Roman, (Asian) Times New Roman, 12 pt, Font color: Auto
Formatted: Font: (Default) Times New Roman, (Asian) Times New Roman, 12 pt, Font color: Auto
Deleted: and this decreasing trend is larger

1170 ice runs is smaller than that in condensation (Supplementary Figure 1). Associated with 1171 this, the decreasing trend of differences in evaporation between the ice runs is smaller than 1172 that in condensation (Figure 9a). Stated differently, the temporal reduction in evaporation 1173 in each of the ice runs and its differences between the runs from 13:30 LST on January 12th 1174 onwards during the initial stage occurs to a less extent as compared to that in condensation 1175 and its differences. 1176 1177 ii. Evaporation and condensation efficiency 1178 1179 For a given humidity, the increase in the surface-to-volume ratio of droplets increases the 1180 evaporation (condensation) efficiency by increasing the integrated surface area of droplets 1181 per unit volume or mass of droplets. Here, evaporation (condensation) efficiency is defined 1182 to be the mass of droplets that are evaporated (condensed) per unit volume or mass of 1183 droplets. Aerosol-induced increases in the surface-to-volume ratio and thus evaporation 1184 and condensation efficiency are caused by aerosol-induced increases in CDNC and 1185 associated decreases in the droplet size. Increasing CDNC, in turn, increases competition 1186 among droplets for given water vapor needed for their condensational growth, leading to 1187 decreases in the droplet size. The average droplet radius over grid points and time steps 1188 with non-zero CDNC is 7.3, 9.8, 8.7, and 10.5 µm in the control, low-aerosol, control-noice 1189 and low-aerosol-noice runs, respectively. It is notable that the WBF-mechanism-induced 1190 evaporation per unit volume of droplets when the water-vapor pressure is lower than or 1191 equal to the water-vapor equilibrium saturation pressure for liquid particles but higher than 1192 the equilibrium pressure for ice particles is also strongly proportional to the surface-to-1193 volume ratio of droplets (Pruppacher and Klett, 1978). Hence, between the ice runs, 1194 enhanced evaporation efficiency by aerosol-induced increases in the surface-to-volume 1195 accompanies aerosol-enhanced WBF-mechanism-associated efficiency of ratio 1196 evaporation in addition to aerosol-enhanced efficiency of evaporation when the water-1197 vapor pressure is lower than the water-vapor equilibrium pressure for ice particles. 1198 With the steady and rapid temporal increase in CDNC, there is a steady and rapid 1199 temporal enhancement of the surface-to-volume ratio of droplets and evaporation 1200 efficiency in each of the ice runs between 12:50 and 13:20 LST on January 12th. Remember

Deleted: ose

Deleted:

1203 that these increases in CDNC are larger in the control run than in the low-aerosol run. This 1204 induces the greater temporal enhancement of the ratio and evaporation efficiency in the 1205 control run than in the low-aerosol run. The temporal enhancement of the ratio and 1206 evaporation efficiency accompanies the temporally enhancing WBF-mechanism-related 1207 efficiency of evaporation. This accompaniment boosts evaporation and enables the jump 1208 in temporal increases in evaporation to be greater than that in condensation in each of the 1209 ice runs. In association with the larger steady and rapid temporal increase in CDNC in the 1210 control run than in the low-aerosol run, the temporally enhancing WBF-mechanism-related 1211 efficiency of evaporation and its boost on evaporation enhance with increasing aerosol 1212 concentrations. This, in turn, enables greater aerosol-induced increases in evaporation than 1213 in condensation or the greater jump in differences in evaporation between the ices runs 1214 than that in condensation over the period between 12:50 and 13:20 LST on January 12th 1215 (Figure 9a). For the period between 12:50 and 13:20 LST, there is no steady and rapid 1216 temporal increase in differences in the entrainment rate at the PBL tops unlike the situation 1217 with CDNC differences between the ice runs (Figure 9b). Hence, the greater jump in 1218 differences in evaporation between the ice runs is not likely to be induced by entrainment. 1219 Even when both evaporation and condensation rates decrease with time in association 1220 with the decreasing temporal trend of CDNC and the surface-to-volume ratio of droplets 1221 over a period after 13:30 LST on January 12th during the initial stage in each of the ice 1222 runs, evaporation (condensation) rates are maintained higher throughout the initial stage 1223 (up to ~15:30 LST) in association with the higher CDNC and surface-to-volume ratio of 1224 droplets in the control run than in the low-aerosol run (Figure 9a). The presence of the 1225 WBF mechanism and entrainment facilitates evaporation and this acts against the temporal 1226 decrease in evaporation with time over the period in each of the ice runs. This counteraction 1227 by the WBF mechanism and entrainment reduces the temporal decrease in evaporation and 1228 enables evaporation to reduce temporally to a less extent as compared to condensation in 1229 each of the ice runs for the period (Supplementary Figure 1). This accompanies the 1230 differences in the temporal reduction between evaporation and condensation that are larger 1231 in the control run than in the low-aerosol run (Supplementary Figure 1). This, in turn, 1232 enables differences in evaporation between the ice runs to reduce to a less extent as 1233 compared to those in condensation over the period (Figure 9a). Due to this, differences (or

1234 aerosol-induced increases) in evaporation and associated aerosol-induced increases in 1235 evaporation-driven negative buoyancy between the ice runs are higher than those in 1236 condensation and condensation-driven positive buoyancy, respectively, for the period (Figure 9a). This induces the decreasing temporal trend of differences or aerosol-induced 1237 1238 increases in updraft mass fluxes between the ice runs over the period (Figure 9a). The 1239 decreasing temporal trend of aerosol-induced increases in updraft mass fluxes eventually 1240 leads to lower updraft mass fluxes in the control run than in the low-aerosol run, as 1241 represented by negative differences in updraft mass fluxes between the ice runs from 1242 ~15:30 LST onwards during the initial stage (Figure 9a). Associated with this, 1243 condensation becomes smaller in the control run, as represented by negative differences in 1244 condensation between the ice runs from ~15:30 LST onwards during the initial stage 1245 (Figure 9a).

1246 The role of the WBF mechanism described in this section can be clearly seen by 1247 comparing the ice runs in this section to the noice runs, with no WBF mechanism, detailed 1248 in the following Section b.

1249 1250

2) Deposition and condensation

1251

1252 The difference in deposition between the ice runs is negligible and does not vary much 1253 with time up to ~15:30 LST on January 12th when the difference starts to show its 1254 significant increase (Figure 9a). With the start of the decreasing temporal trend of condensation around 13:30 LST on January 12th, more water vapor, not used by 1255 1256 condensation, becomes available for deposition as compared to that before 13:30 LST on 1257 January 12th in each of the ice runs. Remember that this decreasing trend is greater in the control run than in the low-aerosol run. Hence, from 13:30 LST on January 12th onwards, 1258 1259 more water vapor is available for deposition in the control run than in the low-aerosol run. 1260 This leads to the start of larger aerosol-induced increases in deposition between the ice runs around 13:30 LST on January 12th as compared to those increases before \sim 13:30 LST on 1261 1262 January 12th (Figure 9a). The decrease in condensation in the control run continues and its 1263 differences between the runs grow even after the negative differences in condensation between the runs start to appear around 15:30 LST on January 12th. Hence, aerosol-induced 1264

1265 increases in the amount of water vapor, which is not used by condensation and available 1266 for deposition, continue even after 15:30 LST on January 12th. This enables aerosol-1267 induced increases in deposition between the ice runs to continue even after 15:30 LST on 1268 January 12th (Figure 9a). This is despite the evaporation-driven lower updraft mass fluxes in the control run than in the low-aerosol run from $\sim 15:30$ LST on January 12th onwards 1269 1270 (Figure 9a). This indicates that after ~ 15:30 LST on January 12th, the microphysical 1271 process which is related to the competition between deposition and condensation and tends 1272 to increase deposition with increasing aerosol concentrations outweighs dynamic processes 1273 (i.e., updraft mass fluxes) which tend to reduce deposition with increasing aerosol 1274 concentrations. 1275 The increasing temporal trend of aerosol-induced increases in deposition is not able 1276 to outweigh the increasing trend of aerosol-induced decreases in condensation between the 1277 ice runs after ~ 15:30 LST on January 12th (Figure 9a). Remember that there is no change 1278 in the background concentration of aerosols acting as INP between the ice runs. Hence, as 1279 seen in Figure 9a, there are negligible differences in CINC between the ice runs, although 1280 more water vapor starts to be available for deposition in the control run than in the low-1281 aerosol run around 13:30 LST on January 12th., This indicates that CINC per unit, water 1282 vapor available for deposition is lower in the control run. Hence, the available water vapor 1283 has more difficulty in finding the surface area of ice crystals for deposition in the control 1284 run. The more difficulty in finding the surface area of ice crystals for deposition makes the 1285 deposition of the more available water vapor less efficient in the control run than in the low-aerosol run. This damps down the increase in deposition particularly after ~ 13:30 LST 1286 1287 on January 12th in the control run. Then, aerosol-induced increases in deposition are not 1288 large enough to overcome aerosol-induced decreases in condensation in the control run 1289 particularly after ~ 15:30 LST on January 12^{th} (Figure 9a). This in turn leads to the lower

1290 average WP in the control run than in the low-aerosol run over the whole simulation period. 1291

- 1292 b. Noice runs
- 1293

1294 As between the ice runs, between the noice runs, the activation- and condensationally-

1295 enhanced counteraction outweighs the evaporation-induced decreases in CDNC, leading

Deleted: s (e.g., the WBF mechanism)

Deleted: which

Deleted: As discussed in Section 4.1, due to very low CINC as compared to CDNC, there is an insufficient integrated surface area of ice crystals for the deposition of available water vapor in the control run.

Deleted: aerosols as

Deleted: IN

Deleted: in comparison to the CINC differences, CDNC increases significantly with increasing aerosols between the ice runs. Hence, the ratio of CINC to CDNC is lower in the control run than in the low-aerosol run.

Deleted: CDNC and associated

Deleted: unit

Deleted: evaporation

Deleted: ,

Deleted: including that from droplet evaporation,

Deleted: Remember that there is more available water vapor for deposition, which increases deposition more in the control run than in the low-aerosol run, after ~ 13:30 LST on January 12th as compared to that before ~ 13:30 LST on January 12th. However, **Deleted:** t

elecea: t

1318	to increases in CDNC with increasing aerosol concentrations (Figures 9a, 9c, and 10b).
1319	However, in the noice runs, ice processes, the associated WBF mechanism and increase in
1320	the WBF-mechanism-associated efficiency of evaporation with increasing aerosol
1321	concentrations are absent, although aerosol-induced increases in entrainment at the PBL
1322	tops and surface-to-volume ratio of droplets are present. The average entrainment rate over
1323	all grid points at the PBL tops and over the whole simulation period is 0.71 and 0.60 cm s
1324	¹ in the control-noice and low-aerosol-noice runs, respectively. The average entrainment
1325	rate over all grid points at the PBL tops and over the whole simulation period is 0.13 and
1326	0.15 cm s^{-1} in the control and low-aerosol runs. There are aerosol-induced decreases in the
1327	average entrainment over the whole simulation period between the ice runs. The boost of
1328	evaporation by the WBF mechanism in each of the ice runs leads to greater evaporation
1329	efficiency by outweighing the lower entrainment rate in the control run than in the control-
1330	noice run and in the low-aerosol run than in the low-aerosol-noice run, Aerosol-induced
1331	increases in the boost lead to aerosol-induced greater increases in evaporation efficiency
1332	between the ice runs than between the noice runs despite aerosol-induced decreases
1333	(increases) in the entrainment rate between the ice (noice) runs for the whole simulation
1334	period, Particularly for the initial stage, evaporation efficiency in the control, low-aerosol,
1335	control-noice, and low-aerosol-noice runs is 1.61, 0.90, 0.21, and 0.12 %, respectively
1336	Here, to obtain evaporation efficiency, the cumulative values of evaporation and cloud-
1337	liquid mass at the last time step of the initial stage are calculated as follows:
1338	
1339	A cumulative value of an arbitrary variable " A " = $\iint AdVdt$ (1)
1340	
1341	Here, $dV = dxdydz$ and t represents time. x, y and z represent displacement in east-west,
1342	north-south and vertical directions, respectively. Evaporation rate in a unit volume of air,
1343	which is in a unit of kg m ⁻³ s ⁻¹ , at each grid point and time step is put into Eq. (1) as "A" to
1344	obtain the cumulative value of evaporation. To obtain the cumulative value of cloud-liquid
1345	mass, cloud-liquid mass in a unit volume of air at each grid point and time step is first
1346	divided by the time step. This divided cloud-liquid mass, which is also in a unit of kg m ⁻³
1347	s ⁻¹ , represents cloud-liquid mass per unit time and volume and is put into Eq. (1) as "A" to
1348	obtain the cumulative value of cloud-liquid mass. Then, the cumulative evaporation is

Deleted: b

32

Deleted: the
Formatted: Superscript

Deleted: T

Deleted: over the initial stage

Deleted: over the initial stage
Deleted: E
Deleted: .

Field Code Changed

1356	divided by the cumulative cloud-liquid mass to obtain the evaporation efficiency for each	
1357	of the runs.	
1358	With temporal increases in CDNC, which are larger in the control-noice run than in	
1359	the low-aerosol-noice run, leading to those in CDNC differences between the noice runs,	
1360	there are temporal increases in condensation and evaporation, which are larger in the	
1361	control-noice run than in the low-aerosol-noice run, and thus in their differences between	
1362	the noice runs (Figure 9c). Associated with aerosol-induced smaller increases in	 Deleted: b
1363	evaporation efficiency between the noice runs, aerosol-induced increases in condensation	
1364	are always greater than aerosol-induced increases in evaporation between the noice runs	
1365	during the initial stage (Figure 9c). This maintains aerosol-induced increases in updraft	 Deleted: b
1366	mass fluxes between the noice runs and leads to aerosol-induced increases in WP between	
1367	the noice runs. Also, with higher CDNC and associated smaller sizes of droplets, there is	
1368	suppressed autoconversion in the control-noice run as compared to that in the low-aerosol-	
1369	noice run. Here, autoconversion is the process of droplets colliding with and coalescing	 Formatted: Font: (Default) Times New Roman, 12 pt, Not
1370	each other to grow into raindrops. Due to this, the average precipitation rate over all grid	Italic, Font color: Auto Formatted: Font: (Default) Times New Roman, 12 pt, Not
1371	points at cloud bases and over the whole simulation period is lower in the control-noice	Italic, Font color: Auto
1372	run. The average cloud-base precipitation rate is 0.009 and 0.019 g m ⁻² s ⁻¹ in the control-	
1373	noice and low-aerosol-noice runs, respectively. The difference in this average precipitation	
1374	rate between the noice runs is \sim two times smaller than that in the time- and column-	
1375	averaged condensation rate. Hence, while aerosol-induced precipitation suppression	
1376	contributes to higher WP in the control-noice run, this contribution is not as significant as	
1377	that of aerosol-enhanced condensation.	
1378	In contrast to the situation in the noice runs, in the ice runs, after ~12:50 LST on January	 Deleted: is
1379	12th, aerosol-induced increases in condensation become lower than those in evaporation,	
1380	leading to aerosol-induced lower updrafts and WP (Figure 9a). This comparison between	 Deleted: a
1381	the ice and noice runs confirms that the presence of ice processes and the associated WBF	
1382	mechanism plays a critical role in the lower aerosol-induced increases in condensation than	 Deleted: smaller
1383	in evaporation in the ice runs. Figure 11 schematically depicts the flow of processes that	
1384	are described in Section 4.2.1.	
1385		 Formatted: Normal, No bullets or numbering
1386	<u>4.2.2, INP</u>	 Formatted: Normal, No Bullets of Humbering
1		 Deleted: IN

1393	
1394	So far, we have examined effects of the increasing concentration of aerosols acting as CCN.
1395	However, unlike situations in warm stratocumulus clouds that have garnered most of
1396	attention in terms of aerosol-cloud interactions, not only aerosols acting as CCN but also
1397	those acting as INP can affect mixed-phase stratocumulus clouds (Rangno and Hobbs, 2001;
1398	Lohmann, 2002; Borys et al., 2003). The above-described <u>INP-10 and JNP-100 runs as</u>
1399	compared to the control run identifies how the increasing concentration of aerosols acting
1400	as INP affects mixed-phase clouds. As seen in this comparison, the increasing
1401	concentration of aerosols acting as INP causes WP to increase, contrary to effects of the
1402	increasing concentration of <u>aerosols acting as</u> CCN. However, at each time step and grid
1403	point, a factor by which the concentration of background aerosols acting as CCN varies
1404	between the control and low-aerosol runs is different from that by which the concentration
1405	of background <u>aerosols acting as JNP</u> varies among the control, JNP-10 and JNP-100 runs.
1406	For better comparisons between CCN and <u>INP</u> effects, it is better to make consistency in
1407	the factors between simulations for CCN effects and those for INP effects. For this
1408	consistency, the INP-reduced run is performed as the repeated control run by reducing the
1409	concentration of background aerosols acting as <u>INP</u> (but not CCN) at each time step and
1410	grid point by the same factor as used for the reduction in the concentration of background
1411	aerosols acting as CCN in the low-aerosol run as compared to that in the control run. The
1412	INP-reduced run is compared to the control run to examine the INP effects. The INP-
1413	reduced run is identical to the low-aerosol run except that the concentration of background
1414	aerosols acting as <u>INP</u> but not CCN at every time step and grid point after 05:00 LST on
1415	January 12 th is assumed to have that at 0 <u>5;00</u> LST on January 12 th .
1416	Figure 9d shows the time series of differences in deposition rate, condensation rate
1417	and related variables between the control and INP-reduced runs. With the increasing
1418	concentration of background aerosols acting as JNP, there are more increases in CINC
1419	between those runs than between the control and low-aerosol runs (Figures 9a and 9d).
1420	During the initial stage before 20:00 LST on January 12th, overall, there is an increasing
1421	temporal trend in differences in CINC between the control and INP-reduced runs due to
1422	the larger increasing temporal trend in CINC in the control run than in the INP-reduced run
1423	(Figure 9d). Increasing CINC provides the increasing integrated surface area of ice crystals
I	

-(Deleted: IN
-(1	Deleted: IN
•(1	Deleted: IN
·(1	Deleted: aerosols as
.(Deleted: IN
.(Deleted: aerosols as
·(I	Deleted: IN
(Deleted: aerosols as
-(1	Deleted: aerosols as

Deleted: aerosols as	
Deleted: IN	
Deleted: is repeated	
Deleted: IN	
Deleted: This repeated run is referred to as	
Deleted: t	
Deleted: IN	
Deleted: and	
Deleted: IN	
Deleted: IN	
Deleted: IN	
Deleted: 3	
Deleted: 3	
Deleted: c	
Deleted: IN	
Deleted: aerosols as	
Deleted: IN	
Deleted: c	
Deleted: IN	
Deleted: IN	
Deleted: c	

1458	for deposition. This leads to the increasing temporal trend in deposition, which is larger in	
1459	the control run, and in differences in deposition between the control and INP-reduced runs	(
1460	(Figure 9d). However, due to no changes in the concentration of the background <u>aerosols</u>	
1461	acting as CCN between the control and <u>INP</u> -reduced runs, there are negligible differences	
1462	in CDNC between the control and <u>INP</u> -reduced runs as compared to those between the	(
1463	control and low-aerosol runs (Figures 9a and 9d). More evaporation occurs in the control	
1464	run than in the INP-reduced run and this is contributed by the more deposition and	
1465	associated WBF mechanism (Figure 9d). Also, more entrainment contributes to the more	
1466	evaporation in the control run (Figure 9b). Between the INP-reduced and control runs, with	
1467	no increases in the concentration of background aerosols acting as CCN, increases in the	
1468	surface-to-volume ratio of droplets and the associated enhancement in the WBF-	
1469	mechanism-related efficiency of evaporation are negligible as compared to those between	
1470	the control and low-aerosol runs. Note that there are overall larger increases in entrainment	
1471	and associated evaporation between the control and INP-reduced runs than between the	
1472	control and low-aerosol runs (Figure 9b). The negligible enhancement in the WBF-	
1473	mechanism-related efficiency of evaporation overshadows the overall larger increases in	
1474	entrainment and associated evaporation between the control and INP-reduced runs. This	
1475	leads to aerosol-induced overall smaller increases in evaporation between the control and	
1476	INP-reduced runs than between the control and low-aerosol runs (Figures 9a and 9d).	
1477	Mainly due to the increase in evaporation, there is more negative buoyancy and	
1478	updraft mass fluxes start to reduce in the control run as compared to those in the INP-	1
1479	reduced run around 12:50 LST on January 12th (Figure 9d). Eventually, updraft mass fluxes	
1480	in the control run become smaller than those in the <u>INP</u> -reduced run around 15:50 LST on	
1481	January 12 th (Figure 9 <u>d</u>). This decrease occurs to a lesser extent mainly due to overall	(
1482	smaller aerosol-induced increases in evaporation between the control and INP-reduced	(
1483	runs than between the control and low-aerosol runs (Figures 9a and 9d). Associated with	(
1484	weaker updrafts in the control run, condensation in the control run becomes smaller than	
1485	that in the INP-reduced run around 15:50 LST on January 12th but to a lesser degree as	(
1486	compared to that between the control and low-aerosol runs (Figures 9a and 9d).	(
1487	When there is aerosol-induced reduction in condensation, there starts to be more	

1488 available water vapor for deposition and thus aerosol-induced increases in deposition

Deleted: IN	
Deleted: c	
Deleted: aerosols as	
Deleted: IN	
Deleted: IN	
Deleted: c	
Deleted: deposition induces more	
Deleted: n	
Deleted: via the WBF mechanism	
Deleted: IN	
Deleted: c	
Deleted: IN	
Deleted: aerosols as	<

Deleted: This contributes to aerosol-induced smaller increases in evaporation between the control and IN-reduced runs than between the control and low-aerosol runs (Figures 9a and 9c).
Deleted: IN
Deleted: c
Deleted: IN
Deleted: c
Deleted: IN
Deleted: c

Deleted: IN Deleted: c

	30		
1513	between the control and <u>INP</u> -reduced runs jump around 15:50 LST on January 12 th (Figure		Deleted: IN
1514	9d). This is similar to the situation between the control and low-aerosol runs. However,		Deleted: c
1515	due to greater aerosol-induced increases in CINC and the associated integrated surface area		
1516	of ice crystals, after \sim 15:50 LST on January 12th, there are greater aerosol-induced		
1517	increases in deposition between the control and <u>INP</u> -reduced runs than between the control		Deleted: IN
1518	and low-aerosol runs (Figures 9a and 9d). Remember that the decrease in condensation,		Deleted: c
1519	starting around 15:50 LST on January 12th, between the control and INP-reduced runs is		Deleted: IN
1520	smaller than that between the control and low-aerosol runs. This enables the increase in		
1521	deposition to overcome the decrease in condensation between the control and <u>JNP</u> -reduced		Deleted: IN
1522	runs. The larger increase in deposition than the decrease in condensation between the		
1523	control and INP-reduced runs eventually makes updrafts in the control run greater than		Deleted: IN
1524	those in the <u>JNP</u> -reduced run around 18:50 LST on January 12 th (Figure 9d).	~~~~	Deleted: IN
1525	Initiated by aerosol-induced greater increase in deposition during the initial stage,		Deleted: c
1526	there is aerosol-induced greater increase in IWP between the control and INP-reduced runs		Deleted: IN
1527	than between the control and low-aerosol runs over the whole simulation period (Figure		
1528	12). Initiated by aerosol-induced smaller decrease in condensation during the initial stage,		
1529	there is aerosol-induced smaller decrease in LWP between the control and <u>JNP</u> -reduced		Deleted: IN
1530	runs than between the control and low-aerosol runs over the whole simulation period		
1531	(Figure 12). This greater increase in IWP dominates over the smaller decrease in LWP		
1532	between the control and INP-reduced runs, leading to an increase in WP in the control run		Deleted: IN
1533	as compared to that in the <u>INP</u> -reduced run with an increase in the average cloud fraction		Deleted: IN
1534	over time steps with non-zero cloud fraction from 0.89 in the INP-reduced run to 0.92 in		
1535	the control run, This is in contrast to the situation between the control and low-aerosol runs.		Deleted: .
1536	Hence, comparisons between the control, INP-reduced and the low-aerosol runs		Deleted: IN
1537	demonstrate that whether there is an increasing concentration of <u>aerosols acting as INP</u> or		Deleted: aerosols as
1538	CCN has substantial impacts on how WP responds to the increasing concentration of		Deleted: IN
1539	aerosols		Formatted: Font: Bold
1540			
1541 1542	4.2.3 Sedimentation of ice particles		Formatted: Outline numbered + Level: 3 + Numbering Style: 1, 2, 3, + Start at: 3 + Alignment: Left + Aligned at: 0.5" + Indent at: 1"
I		1000	Formatted: List Paragraph Indent: Left: 1 38"

Formatted: List Paragraph, Indent: Left: 1.38"

1560 With increasing concentrations of aerosols acting as CCN between the control and low-1561 aerosol runs, the size and fall velocity of ice crystals do not change significantly at the 1562 initial stage. The average ice-crystal radius over grid points and time steps with non-zero 1563 CINC for the initial stage is 54 and 52 µm in the control and low-aerosol runs, respectively. 1564 This means that aerosol-induced changes in the sedimentation of ice crystals do not affect 1565 CINC, the associated integrated surface area of ice crystals and deposition significantly. 1566 Moreover, as described in Section 4.2.1, the CDNC evolution (but not the CINC evolution) 1567 plays a critical role in the different evolution of evaporation, condensation, and deposition 1568 at the initial stage between the runs. Hence, it is not likely that aerosol-induced changes in 1569 the sedimentation of ice crystals and associated ice particles such as snow, and associated 1570 CINC have a significant impact on aerosol-induced changes in those phase-transition 1571 processes at the initial stage and subsequently at later stages. To check this out, the control 1572 and low-aerosol runs are repeated by setting the fall velocity of ice particles (including ice 1573 crystals) to zero. These repeated runs are the control-no-sedim and low-aerosol-no-sedim 1574 runs. Hence, in these repeated runs, there are no aerosol-induced changes in the 1575 sedimentation of ice particles. The time- and domain-averaged IWP, LWP and WP are 14 1576 (12), 5 (8) and 19 (20) g m⁻², respectively, in the control-no-sedim (low-aerosol-no-sedim) 1577 run. The time- and domain-averaged IWP, LWP and WP are 11 (10), 7 (9), 18 (19) g m⁻², 1578 respectively, in the control (low-aerosol) run. The presence of the sedimentation decreases 1579 IWP and increases LWP as compared to the situation with no sedimentation for each of the 1580 control and low-aerosol runs. The differences in IWP and LWP between the control-no-1581 sedim and low-aerosol-no-sedim runs is slightly greater than that between the control and 1582 low-aerosol runs. Hence, the presence of impacts of aerosols acting as CCN on the 1583 sedimentation reduces aerosol impacts on IWP and LWP. However, results here show that 1584 the qualitative nature of impacts of aerosols acting as CCN on cloud mass does not vary, 1585 whether there are changes in the sedimentation of ice particles with increasing 1586 concentrations of aerosols acting as CCN. This indicates that the presence of the 1587 sedimentation and its aerosol-induced changes is not a factor that controls the qualitative 1588 nature of impacts of aerosols acting as CCN on cloud mass. 1589 With increasing concentrations of aerosols acting as INP between the control and INP-

1590 reduced runs, the size and fall velocity of ice crystals change at the initial stage. The

Formatted: Superscript

1591 average ice-crystal radius over grid points and time steps with non-zero CINC for the initial 1592 stage is 54 and 59 µm in the control and INP-reduced runs, respectively. To see the effect 1593 of these changes in the size and associated sedimentation of ice particles on the qualitative 1594 nature of results between the control and INP-reduced runs, the INP-reduced run is 1595 repeated by setting the fall velocity of ice particles to zero. This repeated run is referred to 1596 as the INP-reduced-no-sedim run. The time- and domain-averaged IWP, LWP and WP are 1597 14 (11), 5 (6) and 19 (17) g m⁻², respectively, in the control-no-sedim (INP-reduced-no-1598 sedim) run, while the time- and domain-averaged IWP, LWP and WP are 11 (7), 7 (8) and 1599 18 (15) g m_s^2 , respectively, in the control (INP-reduced) run. The presence of the 1600 sedimentation decreases IWP and increases LWP as compared to the situation with no 1601 sedimentation for each of the control and INP-reduced runs. The difference in IWP 1602 between the control-no-sedim and INP-reduced-no-sedim runs is smaller than that between 1603 the control and INP-reduced runs. The difference in LWP between the control-no-sedim 1604 and INP-reduced-no-sedim runs is not different from that between the control and INP-1605 reduced runs. Hence, the presence of impacts of aerosols acting as INP on the 1606 sedimentation enhances aerosol impacts on IWP, although the presence does not affect 1607 aerosol impacts on LWP. However, the qualitative nature of impacts of aerosols acting as 1608 INP on cloud mass also does not vary, whether there are changes in the sedimentation of 1609 ice particles with increasing concentrations of aerosols acting as INP. This indicates that 1610 the presence of the sedimentation and its aerosol-induced changes is not a factor that 1611 controls the qualitative nature of impacts of aerosols acting as INP on cloud mass. 1612 1613 5. Summary and conclusions

1614

1615 When it comes to stratocumulus clouds and their interactions with aerosols, warm clouds, 1616 which are composed of liquid particles only, have garnered most of the attention. However, 1617 in mid-latitudes, particularly during the wintertime, there are frequent occurrences of 1618 mixed-phase stratocumulus clouds, which are composed of both liquid and solid particles. 1619 The level of understanding of mechanisms that control the development of these mixed-1620 phase clouds and their interactions with aerosols has been low. Motivated by this, this study 1621 aims to improve our understanding of the development of these mixed-phase stratocumulus

38

Formatted: Superscript

1622 clouds and their interactions with aerosols by focusing on roles of ice particles and 1623 processes in the development and interactions. 1624 Ice crystals (i.e., cloud ice) and their interactions with droplets (i.e., cloud liquid) in a 1625 selected system of mixed-phase stratocumulus clouds lower cloud mass substantially as 1626 compared to that in warm stratocumulus clouds. This is due to insufficient compensation 1627 of the reduced condensation and LWP by deposition and IWP in the mixed-phase clouds. 1628 This insufficient compensation is related to low CINC and associated low integrated 1629 surface area of ice crystals in the mixed-phase clouds, As the concentration of aerosols 1630 acting as INP and CINC increase, deposition enhances and this enables cloud mass in the 1631 mixed-phase clouds to be similar to that in the warm clouds. 1632 In the mixed-phase clouds, with the increasing concentration of aerosols acting as 1633 CCN, there are decreases in cloud mass. In the mixed-phase clouds, aerosol-induced 1634 increases in the evaporation of droplets, which involve the WBF mechanism, and their 1635 impacts on updrafts outweigh aerosol-intensified feedbacks between condensation and 1636 updrafts. This leads to aerosol-induced decreases in cloud mass. However, in the warm 1637 clouds, with the increasing concentration of aerosols acting as CCN, there are increases in 1638 cloud mass. Due to the absence of the WBF mechanism, in the warm clouds, aerosol-1639 induced increases in the evaporation of droplets are not as efficient as in the mixed-phase 1640 clouds. This enables aerosol-intensified feedbacks between condensation and updrafts to 1641 induce aerosol-induced increases in cloud mass in the warm clouds. With the increases in 1642 the concentration of aerosols acting as JNP, there are aerosol-induced greater increases in 1643 CINC and deposition than with the increases in the concentration of aerosols acting as 1644 CCN. This enables the increasing concentration of aerosols acting as JNP to induce 1645 increases in cloud mass, which is in contrast to the situation with the increasing 1646 concentration of aerosols acting as CCN.

1647 It is generally true that the conventional wisdom of stratiform clouds and aerosol

1648 effects on them has been established mostly by relying on warm clouds (Ramaswamy et

- al., 2001; Forster et al., 2007; Wood, 2012). For example, this wisdom generally indicates
- 1650 that increasing concentrations of <u>aerosols acting as</u> CCN increase cloud mass (Albrecht,
- 1651 1989). However, in contrast to this, this study shows that in the mixed-phase stratiform
- 1652 clouds, the increasing concentration of <u>aerosols acting as</u> CCN can reduce cloud mass via

Deleted: via the WBF mechanism

Deleted:

Deleted: Through the WBF mechanism between ice crystals (i.e., cloud ice) and droplets (i.e., cloud liquid) in the mixed-phase clouds, there are significant increases in the evaporation of droplets. This involves the disappearance of droplets, and subsequently increases in water vapor. These increases in water vapor enhance deposition. However,

Deleted: the increased water vapor or the surplus water vapor is not deposited onto ice crystals efficiently due to the much lower concentrations of aerosols as IN and CINC than the concentrations of aerosols as CCN and CDNC, respectively. This results in the much lower average cloud mass (i.e., WP) in the mixed-phase clouds than in the warm clouds. A

Deleted:	aerosols as
Deleted:	IN

Deleted:	s
Deleted:	aerosols as

Deleted: aerosols as

-(Deleted: aerosols as
-(Deleted: IN
(Deleted: aerosols as
-(Deleted: aerosols as
-(Deleted: IN

(Deleted: aerosols as

Deleted: The increasing concentration of aerosols as CCN does not increase CINC and thus deposition as significantly as the increasing concentration of aerosols as IN, leading to a situation where increases in evaporation dominate the response of cloud mass to the increasing concentration of aerosols.

Deleted:

Deleted: aerosols as

Deleted: aerosols as

1/0/	CON induced channels in interactions hoters on its and limit densities. It is also also we determ		Related: 4
1686	<u>CCN-induced changes in interactions between ice and liquid particles.</u> It is also shown that		Deleted: through the WBF mechanism which involves efficient evaporation of droplets and inefficient deposition of water vapor onto ice crystals
1687	the increasing concentration of <u>aerosols acting as JNP</u> enhances cloud mass via INP-		Deleted: aerosols as
1688	induced changes in interactions between ice and liquid particles, in contrast to roles of the		Deleted: IN
1689	increasing concentration of aerosols acting as CCN in cloud mass. In addition, this study		Deleted: aerosols as
1690	finds that the presence of ice particles, and its interactions with liquid particles reduce, cloud		Deleted: WBF mechanism
1691	mass in the mixed-phase clouds as compared to that in warm clouds. Mid-latitude winter		Deleted: s
1692	stratiform clouds and high-latitude clouds such as the Arctic stratiform clouds frequently		
1693	involve ice particles as well as liquid particles. As discussed in Stevens and Feingold		(Deleted: and hence are affected by the WBF mechanism and IN
1694	(2009), our lack of understanding of these clouds and their interactions with aerosols has		
1695	made a significant contribution to the high uncertainty in the prediction of climate change.		
1696	Hence, to reduce this uncertainty especially by reducing the related uncertainty in climate		
1697	models, we have to go beyond the warm-cloud-based traditional parameterizations of		
1698	clouds and their interactions with aerosols in climate models. For this, this study indicates		
1699	that it is imperative to develop new parameterizations that consider impacts of interactions		Deleted: the impacts of
1700	between ice and liquid particles on clouds, and the interplay of those impacts with varying		Deleted: the WBF mechanism
1701	concentrations of aerosols acting not only as CCN but also as INP,		Deleted: and IN
1702	Note that many of the previous studies of mixed-phase stratocumulus clouds (e.g.,	$\langle \rangle$	Deleted: their
	<u>Note that many of the previous studies of mixed-phase stratocumulus clouds (e.g.,</u>		Deleted: nteractions
		X	Deletedu annuala
1702 1703	Ovchinnikov et al., 2011; Possner et al., 2017) have focused on roles of cloud-top radiative		Deleted: aerosols
	Ovchinnikov et al., 2011; Possner et al., 2017) have focused on roles of cloud-top radiative cooling, entrainment and sedimentation of ice particles in mixed-phase stratocumulus		Deleted: aerosols Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto
1703	-		Formatted: Font: (Default) Times New Roman, 12 pt, Font
1703 1704	cooling, entrainment and sedimentation of ice particles in mixed-phase stratocumulus		Formatted: Font: (Default) Times New Roman, 12 pt, Font
1703 1704 1705	cooling, entrainment and sedimentation of ice particles in mixed-phase stratocumulus clouds and their interactions with aerosols. However, there have not been many studies that		Formatted: Font: (Default) Times New Roman, 12 pt, Font
1703 1704 1705 1706	cooling, entrainment and sedimentation of ice particles in mixed-phase stratocumulus clouds and their interactions with aerosols. However, there have not been many studies that focus on roles of microphysical interactions, which involve microphysical processes (e.g.,		Formatted: Font: (Default) Times New Roman, 12 pt, Font
1703 1704 1705 1706 1707	cooling, entrainment and sedimentation of ice particles in mixed-phase stratocumulus clouds and their interactions with aerosols. However, there have not been many studies that focus on roles of microphysical interactions, which involve microphysical processes (e.g., evaporation, condensation and deposition) and factors (e.g., cloud-particle concentrations		Formatted: Font: (Default) Times New Roman, 12 pt, Font
1703 1704 1705 1706 1707 1708	cooling, entrainment and sedimentation of ice particles in mixed-phase stratocumulus clouds and their interactions with aerosols. However, there have not been many studies that focus on roles of microphysical interactions, which involve microphysical processes (e.g., evaporation, condensation and deposition) and factors (e.g., cloud-particle concentrations and sizes), between ice and liquid particles in those clouds and their interplay with aerosols.		Formatted: Font: (Default) Times New Roman, 12 pt, Font
1703 1704 1705 1706 1707 1708 1709	cooling, entrainment and sedimentation of ice particles in mixed-phase stratocumulus clouds and their interactions with aerosols. However, there have not been many studies that focus on roles of microphysical interactions, which involve microphysical processes (e.g., evaporation, condensation and deposition) and factors (e.g., cloud-particle concentrations and sizes), between ice and liquid particles in those clouds and their interplay with aerosols. Hence, we believe that this study contributes to the more general understanding of mixed-		Formatted: Font: (Default) Times New Roman, 12 pt, Font
1703 1704 1705 1706 1707 1708 1709 1710	cooling, entrainment and sedimentation of ice particles in mixed-phase stratocumulus clouds and their interactions with aerosols. However, there have not been many studies that focus on roles of microphysical interactions, which involve microphysical processes (e.g., evaporation, condensation and deposition) and factors (e.g., cloud-particle concentrations and sizes), between ice and liquid particles in those clouds and their interplay with aerosols. Hence, we believe that this study contributes to the more general understanding of mixed-		Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712	cooling, entrainment and sedimentation of ice particles in mixed-phase stratocumulus clouds and their interactions with aerosols. However, there have not been many studies that focus on roles of microphysical interactions, which involve microphysical processes (e.g., evaporation, condensation and deposition) and factors (e.g., cloud-particle concentrations and sizes), between ice and liquid particles in those clouds and their interplay with aerosols. Hence, we believe that this study contributes to the more general understanding of mixed-		Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713	cooling, entrainment and sedimentation of ice particles in mixed-phase stratocumulus clouds and their interactions with aerosols. However, there have not been many studies that focus on roles of microphysical interactions, which involve microphysical processes (e.g., evaporation, condensation and deposition) and factors (e.g., cloud-particle concentrations and sizes), between ice and liquid particles in those clouds and their interplay with aerosols. Hence, we believe that this study contributes to the more general understanding of mixed-		Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714	cooling, entrainment and sedimentation of ice particles in mixed-phase stratocumulus clouds and their interactions with aerosols. However, there have not been many studies that focus on roles of microphysical interactions, which involve microphysical processes (e.g., evaporation, condensation and deposition) and factors (e.g., cloud-particle concentrations and sizes), between ice and liquid particles in those clouds and their interplay with aerosols. Hence, we believe that this study contributes to the more general understanding of mixed-		Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713	cooling, entrainment and sedimentation of ice particles in mixed-phase stratocumulus clouds and their interactions with aerosols. However, there have not been many studies that focus on roles of microphysical interactions, which involve microphysical processes (e.g., evaporation, condensation and deposition) and factors (e.g., cloud-particle concentrations and sizes), between ice and liquid particles in those clouds and their interplay with aerosols. Hence, we believe that this study contributes to the more general understanding of mixed-		Formatted: Font: (Default) Times New Roman, 12 pt, Font color: Auto

4	\mathbf{n}	
1	()	
т	v	

1733 Code/Data availability

The Code/data used are currently private and stored in our private computer system. Opening the data to the public requires approval from funding sources. Since funding projects associated with this work are still going on, these sources do not allow the data to be open to the public; 2–3 years after these project ends, the data can be open to the public. However, if there is any inquiry about the data, contact the corresponding author Seoung

1739 Soo Lee (slee1247@umd.edu).

1740

1741 Author contributions

SSL and KJH established essential initiative ideas to start this work. While SSL worked on
the analysis of simulation data, KJH and MGM worked on the analysis of observation data.
MK, HK, NU, and JG participated in the preliminary analysis of simulation and
observation data, and provided ideas to improve the presentation of results by reviewing
the manuscript. KOC and GUK provided ideas to deal with reviewers' comments, while
CHJ and JU performed additional simulations and associated analysis to handle those

1748 <u>comments.</u>

1749

1750 Competing interests

1751 The authors declare that they have no conflict of interest.

1752

1/753 Acknowledgements 1754

 $1755 \qquad \text{This study is supported by the National Research Foundation of Korea (NRF) grant funded}$

by the Korea government (MSIT) (No. NRF2020R1A2C1003215) and the "Construction

1757 of Ocean Research Stations and their Application Studies" project, funded by the Ministry

1758 of Oceans and Fisheries, South Korea

1759

1760

- 1761
- 1762
- 1763
- 1764

Deleted:

1786	References	Deleted: ¶
1787		
1788	Ackerman, A. S., Kirkpatrick, M. P., Stevens, D. E., and Toon, O. B.: The impact of	
1789	humidity above stratiform clouds on indirect aerosol climate forcing, Nature, 432,	
1790	<u>1014-1017, 2004.</u>	
1791	Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245,	
1792	1227-1230, 1989.	
1793	Bergeron, T.: On the physics of clouds and precipitation. Proces Verbaux de l'Association	
1794	de Meteorologie, International Union of Geodesy and Geophysics, 156-178, 1935.	
1795	Bodas-Salcedo, A., Hill, P. G., Furtado, K., Williams, K. D., Field, P. R., Manners, J. C.,	(Deleted: ¶
1796	Hyder, P., and Kato, S.: Large contribution of supercooled liquid clouds to the solar	
1797	radiation budget of the Southern Ocean, J. Climate, 29, 4213-4228,	
1798	doi:10.1175/JCLI-D-15-0564.1, 2016.	
1799	Borys, R. D., Lowenthal, D. H., Cohn, S. A. and Brown, W. O. J.: Mountaintop and radar	
1800	measurements of anthropogenic aerosol effects on snow growth and snowfall rate.	
1801	Geophys. Res. Lett., 30, 1538, doi:10.1029/2002GL016855 ,2003.	
1802	Brown, A., Milton, S., Cullen, M., Golding, B., Mitchell, J., and Shelly, A.: Unified	
1803	modeling and prediction of weather and climate: A 25-year journey, Bull. Am	
1804	Meteorol. Soc. 93, 1865–1877, 2012.	
1805	Chen, F., and Dudhia, J.: Coupling an advanced land-surface hydrology model with the	
1806	Penn State-NCAR MM5 modeling system. Part I: Model description and	
1807	implementation, Mon. Wea. Rev., 129, 569-585, 2001.	
1808	Dong, X., and Mace, G. G.: Arctic stratus cloud properties and radiative forcing derived	
1809	from ground-based data collected at Barrow, Alaska. J. Climate, 16, 445-461,	
1810	doi:10.1175/1520-0442(2003)016,0445:ASCPAR.2.0.CO;2, 2003.	
1811	Eun, SH., Kim, BG., Lee, KM., and Park, JS.: Characteristics of recent severe haze	
1812	events in Korea and possible inadvertent weather modification, SOLA, 12, 32-36,	
1813	2016.	
1814	Faller, K: MTSAT-1R: A multifunctional satellite for Japan and the Asia-Pacific region,	
1815	Proceedings of the 56th IAC 2005, Fukuoda, Japan, Oct. 17-21, 2005, IAC-05-	
1816	B3.2.04	

- Fan, J., Yuan, T., Comstock, J. M., et al.: Dominant role by vertical wind shear in regulating
 aerosol effects on deep convective clouds, J. Geophys. Res., 114,
- 1839 doi:10.1029/2009JD012352, 2009.
- 1840 Findeisen, W.: Kolloid-meteorologische Vorgange bei Neiderschlagsbildung. Meteor. Z.,
 1841 55, 121–133, 1938.
- Forster, P., et al., Changes in atmospheric constituents and in radiative forcing, in: Climate
 change 2007: the physical science basis, Contribution of working group I to the Fourth
 Assessment Report of the Intergovernmental Panel on Climate Change, edited by
- 1845 Solomon, S., et al., Cambridge Univ. Press, New York, 2007.
- Fouquart, Y., and Bonnel, B.: Computation of solar heating of the Earth's atmosphere: anew parameterization, Beitr. Phys. Atmos., 53, 35-62, 1980.
- 1848 Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C.,
 1849 and Eder, B.: Fully coupled online chemistry in the WRF model, Atmos.
 1850 Environ., 39, 6957–6976, 2005.
- Guo, J., M. Deng, S. S. Lee, F. Wang, Z. Li, P. Zhai, H. Liu, W. Lv, W. Yao, and X. Li:
 Delaying precipitation and lightning by air pollution over the Pearl River Delta. Part
 I: Observational analyses, J. Geophys. Res. Atmos., 121, 6472–6488,
 doi:10.1002/2015JD023257, 2016.
- Ha, K.-J., Nam, S., Jeong, J.-Y., et al., Observations utilizing Korean ocean research
 stations and their applications for process studies, Bull. Amer. Meteor. Soc., 100,
 2061-2075, 2019.
- Hahn, C. J., and Warren, S. G.: A gridded climatology of clouds over land (1971–96) and
 ocean (1954–97) from surface observations worldwide. Numeric Data Package NDP-
- 1860 026EORNL/CDIAC-153, CDIAC, Department of Energy, Oak Ridge, TN, 2007.
- Hartmann, D. L., Ockert-Bell, M. E., and Michelsen, M. L.: The effect of cloud type on
 earth's energy balance—Global analysis, J. Climate, 5, 1281–1304, 1992.
- Holben, B. N., Tanré, D., Smirnov, et al.: An emerging ground-based aerosol climatology:
 Aerosol optical depth from AERONET, J. Geophys. Res., 106, 12067–12097, 2001.
- Hu, Y., Rodier, S., Xu, K.-M., Sun, W., Huang, J., Lin, B., Zhai, P., and Josset, D.:
 Occurrence, liquid water content and fraction of supercooled water clouds from
- combined CALIOP/IIR/MODIS measurements, J. Geophys. Res., 115, D00H34,

Formatted: Default Paragraph Font, Font: (Default) Times New Roman, (Asian) Malgun Gothic, 12 pt, Font color: Black, Pattern: Clear

Formatted: Default Paragraph Font, Font: (Default) Times New Roman, (Asian) Malgun Gothic, 12 pt, Font color: Black, Pattern: Clear

Formatted: Font: (Default) Times New Roman, (Asian) Malgun Gothic, 12 pt, Font color: Black, Pattern: Clear

Formatted: Font: (Default) Times New Roman, (Asian) Malgun Gothic, 12 pt, Font color: Black, Pattern: Clear

Formatted: Indent: Left: 0", Hanging: 2 ch

Formatted: Font: (Default) Times New Roman, (Asian) Malgun Gothic, 12 pt, Font color: Black, Pattern: Clear

Formatted: Font: (Default) Times New Roman, (Asian) Malgun Gothic, 12 pt, Font color: Black, Pattern: Clear

Formatted: Font: (Default) Times New Roman, (Asian) Malgun Gothic, 12 pt, Font color: Black, Pattern: Clear 1868 doi:10.1029/2009JD012384, 2010.

- Huang, Y., Siems, S. T., Manton, M. J., Protat, A. and Delanöe, J.: A study on the lowaltitude clouds over the Southern Ocean using the DARDAR-MASK, J. Geophys.
 Res., 117, D18204, doi:10.1029/2012JB009424, 2012.
- 1872 Intrieri, J. M., Shupe, M. D., Uttal, T. and McCarty, B. J.: An annual cycle of Arctic cloud
 1873 characteristics observed by radar and lidar at SHEBA, J. Geophys. Res., 107, 8030,
 1874 doi:10.1029/2000jc000423, 2002.
- 1875 Jackson, R. C., and Coauthors: The dependence of Arctic mixed-phase stratus ice cloud
 1876 microphysics on aerosol concentration using observations acquired during ISDAC
 1877 and M-PACE, J. Geophys. Res., 117, D15207, doi:10.1029/2012JD017668, 2012.
- 1878 Kanitz, T., Seifert, P., Ansmann, A., Engelmann, R., Althausen, D., Casiccia, C. and
 1879 Rohwer, E. G.: Contrasting the impact of aerosols at northern and southern
 1880 midlatitudes on heterogeneous ice formation, Geophys. Res. Lett., 38,
 1881 L17802,doi:10.1029/2011GL048532, 2011.
- 1882 Khain, A., BenMoshe, N. and Pokrovsky, A.: Factors determining the impact of aerosols
 1883 on surface precipitation from clouds: Attempt of classification, J. Atmos. Sci., 65,
 1884 1721 1748, 2008.
- 1885 Khain, A., Pokrovsky, A., Rosenfeld, D., Blahak, U., and Ryzhkoy, A.: The role of CCN in
 1886 precipitation and hail in a mid-latitude storm as seen in simulations using a spectral
- 1887 (bin) microphysics model in a 2D dynamic frame, Atmos. Res., 99, 129–146, 2011.
- 1888 Klemp, J. B., Skamarock, W. C., and Dudhia, J.: Conservative split-explicit time
 1889 integration methods for the compressible nonhydrostatic equations, Mon. Weather
 1890 Rev., 135, 2897 2913, 2007.
- 1891 Koop, T., Luo, B. P., Tsias, A. and Peter, T.: Water activity as the determinant for
 1892 homogeneous ice nucleation in aqueous solutions, Nature, 406, 611-614, 2000.
- Lance, S., Brock, C. A., Rogers, D. and Gordon, J. A.: Water droplet calibration of the
 Cloud Droplet Probe (CDP) and inflight performance in liquid, ice and mixed-phase
 clouds during ARCPAC, Atmos. Meas. Tech., 3, 1683–1706, doi:10.5194/amt-31683-2010, 2010.
- 1897 Lebo, Z. J., and Morrison, H.: Dynamical effects of aerosol perturbations on simulated
 1898 idealized squall lines, Mon. Wea. Rev., 142, 991-1009, 2014.

1899	Lee, S., Ho, CH., Lee, Y. G., Choi, HJ. and Song, CK.: Influence of transboundary air	
1900	pollutants from China on the high-PM10 episode in Seoul, Korea for the period	
1901	October 16-20, 2008. Atmos. Environ., 77, 430-439, 2013.	
1902	Lee, S. S., Kim, BG., and Yum, S. S., et al.: Effect of aerosol on evaporation, freezing and	
1903	precipitation in a multiple cloud system, Clim. Dyn., 48, 1069-1087, 2016.	
1904	Lee, S. S., Donner, L. J., Phillips, V. T. J. and Ming, Y.: The dependence of aerosol effects	
1905	on clouds and precipitation on cloud-system organization, shear and stability. J.	
1906	Geophys. Res., 113, D16202, doi:10.1029/2007JD009224, 2008.	
1907	Lohmann, U.:Aglaciation indirect aerosol effect caused by soot aerosols, Geophys. Res.	Deleted: 1
1908	Lett., 29, doi:10.1029/2001GL014357, 2002.	
1909	Michalakes, J., Chen, S., Dudhia, J., Hart, L., Klemp, J., Middlecoff, J. and Skamarock,	
1910	W.: Development of a next generation regional weather research and forecast model,	
1911	in Developments in Teracomputing: Proceedings of the Ninth ECMWF Workshop on	
1912	the Use of High Performance Computing in Meteorology, edited by W. Zwieflhofer	
1913	and N. Kreitz, pp. 269 – 276, World Sci., Singapore, 2001.	
1914	Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.: RRTM, a	
1915	validated correlated-k model for the longwave, J. Geophys. Res., 102, 16663-1668,	
1916	1997.	
1917	Morrison, A. E., Siems, S. T. and Manton, M. J.: A three year climatology of cloud-top	
1918	phase over the Southern Ocean and North Pacific, J. Climate, 24, 2405-	
1919	2418,doi:10.1175/2010JCLI3842.1, 2011.	
1920	Morrison, H., and Grabowski, W. W.: Cloud-system resolving model simulations of aerosol	
1921	indirect effects on tropical deep convection and its thermodynamic environment,	
1922	Atmos. Chem. Phys., 11, 10503–10523, 2011.	
1923	Möhler, O., et al, Efficiency of the deposition mode ice nucleation on mineral dust particles,	
1924	Atmos. Chem. Phys., 6, 3007-3021, 2006.	
1925	Naud, C., Booth, J. F. and Del Genio, A. D.: Evaluation of ERA-Interim andMERRA	
1926	cloudiness in the Southern Ocean, J. Climate, 27, 2109-2124, doi:10.1175/JCLI-D-	
1927	13-00432.1, 2014.	
1928	Oh, HR., Ho, CH., Kim, J., Chen, D., Lee, S., Choi, YS., Chang, LS., and Song, C	
1929	K.: Long-range transport of air pollutants originating in China: A possible major cause	

1931	of multi-day high-PM10 episodes during cold season in Seoul, Korea. Atmos.
1932	Environ., 109, 23–30, 2015.
1933	Ovchinnikov, M., Korolev, A., and Fan, J.; Effects of ice number concentration on
1934	dynamics of a shallow mixed-phase stratiform cloud, J. Geophys. Res., 116, D00T06,
1935	doi:10.1029/2011JD015888, 2011.
1936	Possner, A., Ekman, A. M. L., and Lohmann, U.: Cloud response and feedback processes
1937	in stratiform mixed-phase clouds perturbed by ship exhaust, Geophys. Res. Lett., 44,
1938	<u>1964–1972, doi:10.1002/2016GL071358, 2017.</u>
1939	Pruppacher, H. R. and Klett, J. D.: Microphysics of clouds and precipitation, 714pp, D.
1940	Reidel, 1978.
1941	Rangno, A. L., and Hobbs, P. V.: Ice particles in stratiform clouds in the Arctic and possible
1942	mechanisms for the production of high ice concentrations, J. Geophys. Res., 106,15
1943	065–15 075, doi:10.1029/2000JD900286, 2001.

- 1944 Ramaswamy, V., et al.: Radiative forcing of climate change, in Climate Change 2001: The 1945 Scientific Basis, edited by J. T. Houghton et al., 349-416, Cambridge Univ. Press, 1946 New York, 2001.
- 1947 Shupe, M. D., Uttal, T., Matrosov, S, Y. and Rrisch, A. S.: Cloud water contents and 1948 hydrometeor sizes during the FIRE Arctic clouds experiment, J. Geophys. Res., 106, 1949 15 015-15 028, doi:10.1029/2000JD900476, 2001.
- 1950 Shupe, M. D., Uttal, T. and Matrosov, S. Y.: Arctic cloud microphysics retrievals from 1951 surface-based remote sensors at SHEBA, J. Appl. Meteor., 44, 1544-1562, 1952 doi:10.1175/JAM2297.1, 2005.
- 1953 Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Wang, 1954 W., and Powers, J. G.; A description of the advanced research WRF version 3, NCAR 1955 Tech. Note NCAR/TN-475+STR, 113 pp., Boulder, Colo., 2008.
- Stephens, G. L., and Greenwald, T. J.: Observations of the Earth's radiation budget in 1956
- 1957 relation to atmospheric hydrology. Part II: Cloud effects and cloud feedback. J. 1958 Geophys. Res., 96, 15 325-15 340, 1991.
- Stevens, B., and Feingold, G.: Untangling aerosol effects on clouds and precipitation in a 1959 1960 buffered system, Nature, 461, 607-613, 2009.
- 1961 Twomey, S.: The influence of pollution on the shortwave albedo of clouds, J. Atmos. Sci.,

Formatted: Font: (Asian) Malgun Gothic, 12 pt, Font color: Black, (Asian) Korean
Formatted: Font: (Asian) Malgun Gothic, 12 pt, Font color: Black, (Asian) Korean
Formatted: Indent: Left: 0", Hanging: 2 ch
Formatted: Font: (Asian) Malgun Gothic, 12 pt, Font color: Black, (Asian) Korean
Formatted: Font: (Asian) Malgun Gothic, 12 pt, Font color: Black, (Asian) Korean
Formatted: Font: (Asian) Malgun Gothic, 12 pt, Font color: Black, (Asian) Korean
Formatted: Font: (Asian) Malgun Gothic, 12 pt, Font color: Black, (Asian) Korean
Formatted: Font: (Asian) Malgun Gothic, 12 pt, Font color: Black, (Asian) Korean
Formatted: Font: (Asian) Malgun Gothic, 12 pt, Font color: Black, (Asian) Korean
Formatted: Font: (Asian) Malgun Gothic, 12 pt, Font color: Black, (Asian) Korean
Formatted: Font: (Asian) Malgun Gothic, 12 pt, Font color: Black, (Asian) Korean
Formatted: Font: (Asian) Malgun Gothic, 12 pt, Font color: Black, (Asian) Korean
Formatted: Font: (Asian) Malgun Gothic, 12 pt, Font color: Black, (Asian) Korean

Formatted: Default Paragraph Font, Font: (Default) Times New Roman, (Asian) Malgun Gothic, 12 pt, Font color: Black, Pattern: Clear

Formatted: Default Paragraph Font, Font: (Default) Times New Roman, (Asian) Malgun Gothic, 12 pt, Font color: Black, Pattern: Clear

Formatted: Font: (Default) Times New Roman, (Asian) Malgun Gothic, 12 pt, Font color: Black, Pattern: Clear

Formatted: Font: (Default) Times New Roman, (Asian) Malgun Gothic, 12 pt, Font color: Black, Pattern: Clear

Formatted: Default Paragraph Font, Font: (Default) Times New Roman, (Asian) Malgun Gothic, 12 pt, Font color: Black, Pattern: Clear

Formatted: Font: (Default) Times New Roman, (Asian) Malgun Gothic, 12 pt, Font color: Black, Pattern: Clear

Formatted: Indent: Left: 0", Hanging: 2 ch

Formatted: Font: (Default) Times New Roman, (Asian) Malgun Gothic, 12 pt, Font color: Black, Pattern: Clear

Formatted: Font: (Default) Times New Roman, (Asian) Malgun Gothic, 12 pt, Font color: Black, Pattern: Clear

46

- 1962 34, 1149-1152, 1977.
- 1963 Twomey, S.: Pollution and the Planetary Albedo, Atmos. Env., 8,1251-1256, 1974.
- 1964 Wang, H., Skamarock, W. C., and Feingold, G.: Evaluation of scalar advection schemes in
- the Advanced Research WRF model using large-eddy simulations of aerosol-cloudinteractions, Mon. Wea. Rev., 137, 2547-2558, 2009.
- 1967 Warren, S. G., Hahn, C. J., London, J., Chervin, R. M., and Jenne, R. L.: Global distribution
- 1968 of total cloud cover and cloud types over land. NCAR Tech. Note NCAR/TN-
- 1969 273+STR, National Center for Atmospheric Research, Boulder, CO, 29 pp. + 200
- 1970 maps, 1986.

- 1971 Wegener, A.: Thermodynamik der Atmosphare. J. A. Barth, 311 pp, 1911.
- 1972 Wood, R.: Stratocumulus clouds, Mon. Wea. Rev., 140, 2373-2423, 2012.
- 1973 <u>Young, G., Connolly, P. J., Jones, H. M., and Choularton, T. W.: Microphysical sensitivity</u>
 1974 of coupled springtime Arctic stratocumulus to modelled primary ice over the ice pack,
 1975 marginal ice, and ocean, Atmos. Chem. Phys., 17, 4209–4227,
 1976 https://doi.org/10.5194/acp-17-4209-2017, 2017.
- 1977 Zuidema, P., Westwater, E. R., Fairall, C. and Hazen, D.: Ship-based liquid water path
 1978 estimates in marine stratocumulus, J. Geophys. Res., 110, D20206,
 1979 doi:10.1029/2005JD005833, 2005.
- Formatted: Font: (Default) Times New Roman, (Asian) Malgun Gothic, 12 pt, Font color: Black, Pattern: Clear Formatted: Indent: Left: 0", Hanging: 2 ch

1999 FIGURE CAPTIONS

2000

2007

Figure 1. A rectangle represents the domain of interest in terms of the aerosol advection. A dot on the top-right corner of the rectangle marks a station that measures PM_{10} and $PM_{2.5}$ in Backryongdo island as detailed in Section 2. An area to the east of the yellow line in the rectangle is the Seoul area. In the Seoul area, a dot marks a representative station that measures PM_{10} and $PM_{2.5}$ in the Seoul area as detailed in Section 2. A closed dotted line marks the boundary of the Seoul city.

2008 Figure 2. (a) Time series of PM₁₀ and PM_{2.5} observed at the ground station in Baekryongdo

2009 island (BN) and a representative ground station in the Seoul area (SL). The abscissa

2010 represents days, between January 10th and 19th in 2013. The blue (red) arrow marks time

2011 when aerosol mass starts to increase in BN (SL) due to the advection of aerosols from East

2012 Asia to the Seoul area. The spatial distribution of <u>PM2.5</u>, which is observed and measured

2013 by the ground stations and interpolated into grid point over the rectangle in Figure 1, at (b)

2014 05:00 LST and (c) 18:00 LST on January 12th in 2013. (d) Aerosol size distribution at the

2015 surface. N represents aerosol number concentration per unit volume of air and D represents

2016 aerosol diameter.2017

2018 Figure 3. Time series of (a) the domain-averaged liquid-water path (LWP), ice-water path

2019 (IWP) and water path (WP), which is the sum of LWP and IWP, for the control run, and

LWP for the control-noice run, and (b) the domain-averaged condensation rates, deposition rates and the sum of those rates in the control run and condensation rates in the control-

2022 noice run. (c) Vertical distribution of the time- and domain-averaged evaporation rates and

2023 (d) the average CDNC over grid points and time steps with non-zero CDNC for the initial

stage between 00:00 LST and 20:00 LST on January 12th

2025

2026 Figure 4. Vertical distributions of (a) the time- and domain-averaged updraft mass fluxes

2027 for the control and control-noice runs<u>and</u> (b) the average cloud ice number concentration

2028 (CINC) over grid points and time steps with non-zero CINC (for the whole domain and

2029 simulation period in the control run).

2030

Deleted: in the	
Deleted: Baekryongdo island	
Formatted: Subscript	
Formatted: Subscript	
Deleted: and	
Deleted: a	
Deleted: a	

Deleted: tes

Deleted: PM_{2.5} Deleted: 3

Formatted: Superscript

Deleted: th

Deleted:	
----------	--

Deleted: cloud droplet number concentration (CDNC) over grid points and time steps with non-zero CDNC and (c) Deleted: the

2044	Figure 5. Cumulative frequency of (a) WP in the control run and LWP, which is WP, in	
2045	the control-noice run and (b) LWP and IWP in the control run and LWP in the control-	
2046	noice run at the last time step.	
2047		
2048	Figure 6. (a) Vertical distributions of the average CINC over grid points and time steps	For
2049	with non-zero CINC (for the whole domain and simulation period) in the control, INP-10,	Dele
2050	and <u>INP</u> -100 runs. Time series of the domain-averaged condensation rates, deposition rates	Dele
2051	and the sum of those rates (b) in the <u>INP-10</u> run and (c) in the <u>INP-100</u> run. In (b) and (c),	Dele
2052	condensation rates in the control-noice run are additionally displayed.	Dele
2053		
2054	Figure 7. (a) Time series of the domain-averaged LWP, IWP and WP for the control run,	
2055	LWP for the control-noice run and WP for the JNP-10 and JNP-100 runs. (b) Cumulative	Dele
2056	frequency of LWP, IWP and WP for the control, JNP-10 and JNP-100 runs at the last time	Dele
2057	step.	Dele
2058		
2059	Figure 8. (a) Time series of the domain-averaged LWP, IWP and WP for the control and	
2060	low-aerosol runs, and LWP, which is also WP, for the control-noice and low-aerosol-noice	
2061	runs. (b) Cumulative frequency of WP for the control, low-aerosol run, control-noice and	
2062	low-aerosol-noice runs, and (c) LWP and IWP for the control and low-aerosol runs and	
2063	LWP in the control-noice and low-aerosol-noice runs at the last time step.	
2064		
2065	Figure 9. (a)_Time series of differences in the domain-averaged updraft mass fluxes,	
2066	deposition, condensation and evaporation rates, the average CDNC (CINC) over grid	
2067	points with non-zero CDNC (CINC) between the control and low-aerosol runs (the control	Dele
2068	run minus the low-aerosol run). (b) Time series of differences in the average entrainment	
2069	rate over all grid points at the PBL tops between the control and low-aerosol runs (the	
2070	control run minus the low-aerosol run) and between the control and INP-reduced runs (the	Dele
2071	control run minus the INP-reduced run). (c) Same as (a) but between the control-noice and	Dele
2072	low-aerosol-noice runs (the control-noice run minus the low-aerosol-noice run) and (d)	Dele
2073	same as (a) but between the control and INP-reduced runs (the control run minus the INP-	Dele
2074	reduced run). Dashed lines in (a), (b), (c) and (d) represent zero differences. In (c), due to	Dele
1		Dolo

Formatted: Tab stops: 5.5", Left
Deleted: IN
Deleted: IN
Deleted: IN
Deleted: IN

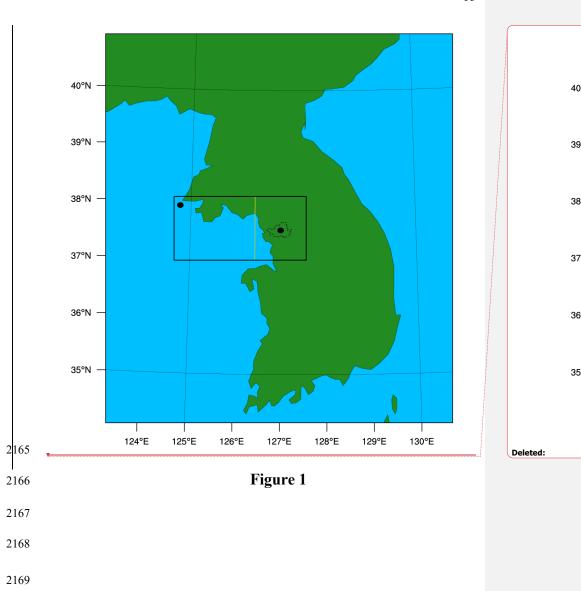
Deleted: IN Deleted: IN Deleted: IN Deleted: IN

Deleted: (a)

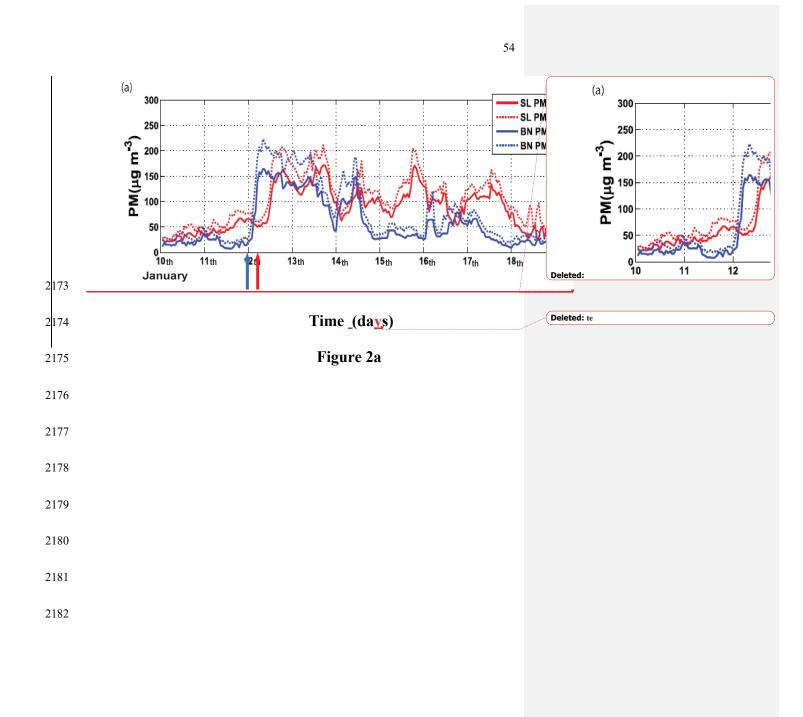
Delete	d: , (b)
Delete	d: c
Delete	d: IN
Delete	d: IN
Delete	d:
Delete	d: and
Delete	d: b

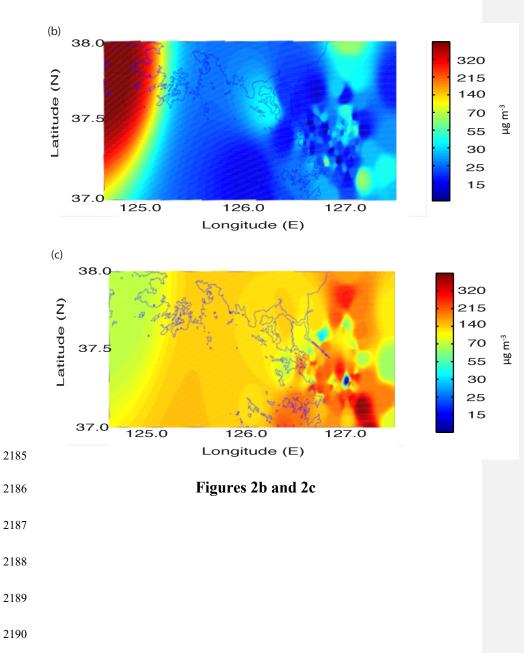
	50		
2091	the absence of ice processes in the noice runs, differences in deposition rates and CINC are		
2092	absent. A green-dashed box in (a) and (b) marks a time period when steady and rapid		
2093	temporal increases in the CDNC differences, and a jump in differences in each of		Deleted: between the ice runs
2094	condensation and evaporation rates between the control and low-aerosol runs occur (see	\leq	Deleted: occur,
2095	text for details).		Deleted: while a red-dashed box in (a) marks a time period when a
2095	text for details).		C Deleted: s
2090 2097	Figure 10. (a) Vertical distributions of the average CDNC over grid points and time steps		
2098	with non-zero CDNC (for the whole domain and simulation period) (a) in the control and		
2099	low-aerosol runs, and (b) in the control-noice and low-aerosol-noice runs.		
2100	iow-acrosof runs, and (b) in the control-noice and low-acrosof-noice runs.		
2100	Figure 11. A schematic diagram that depicts the flow of processes that are described in		
2102	Section 4.2.1 and associated with responses of clouds to increasing <u>aerosols acting as</u> CCN.		• (Deleted: aerosols as
2103			
2104	Figure 12. Time series of the domain-averaged LWP, IWP and WP for the control, low-		
2105	aerosol and <u>INP</u> -reduced runs, and LWP, which is also WP, for the control-noice and low-		e Deleted: IN
2106	aerosol-noice runs.		
2107			
2108			
2109			
2110			
2111			
2112			
2113			
2114			Deleted:
2115			
2116			
2117			
2118			
2119		1	1
2120			}
2121	•		
I	Sananana and an		

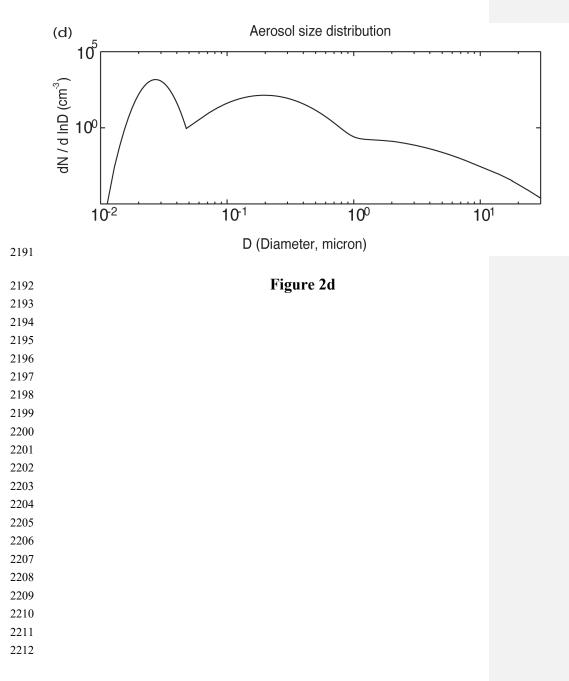
	Increases in the background concentration of <u>aerosols</u>		Background			• Deleted: aerosols as
Simulations	acting as	Ice	concentration	Ice-particle	_	Formatted Table
Simulations	CCN due to	processes	of <u>aerosols</u>	Sedimentation		Deleted: aerosols as
	the aerosol		acting as INP			Deleted: IN
	advection					
	after 0 <u>5;00</u>					Deleted: 3
	LST on					
	January 12 th					
Cantual	Durant	Durant	100 times lower than the background	Durant		
Control run	Present	Present	concentration	Present		
			of <u>aerosols</u>			Deleted: aerosols as
			acting as CCN			
Low- aerosol run	Absent	Present	Same as in the control run	Present		
Control- noice run	Present	Absent	Absent	Present		
Low- aerosol- noice run	Absent	Absent	Absent	Present		
INP-10 run	Present	Present	10 times higher than in the control	Present		Deleted: IN
			run			
			100 times			
<u>INP</u> -100	Present	Present	higher than	Dracant		Deleted: IN
run	riesem	riescht	in the control	Present		
			run			
INP-			<u>Reduced in</u> <u>the same way</u> <u>as CCN is</u>			
reduced run	Present	Present	reduced in the low-	Present		
			<u>aerosol run</u>			
<u>Control-no-</u> <u>sedim</u>	Present	Present	Same as in the control run	<u>Absent</u>		

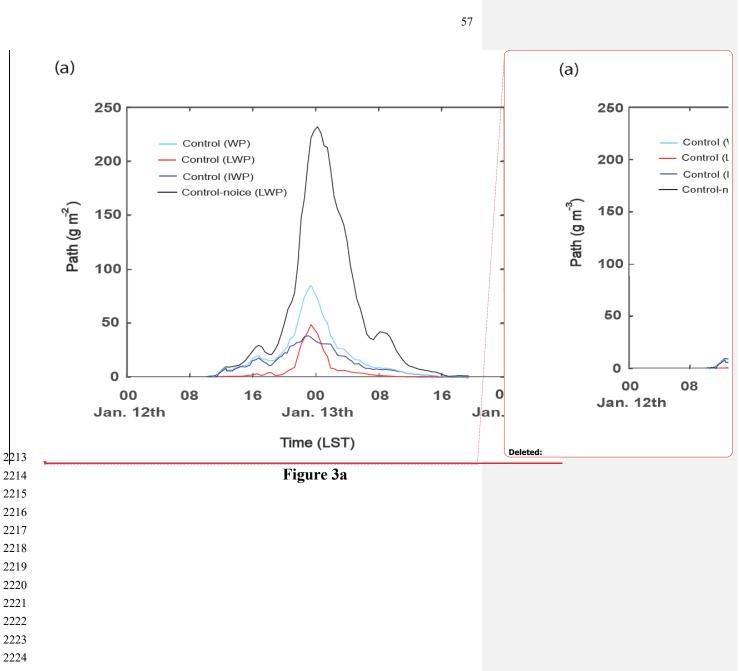

<u>Low-</u> <u>aerosol-no-</u> <u>sedim</u>	<u>Absent</u>	Present	Same as in the control run	<u>Absent</u>
INP-10-no- sedim	Present	Present	Same as in the INP-10 run	<u>Absent</u>
INP-100- no-sedim	Present	Present	Same as in the INP-100 run	<u>Absent</u>
<u>INP-</u> <u>reduced-</u> <u>no-sedim</u>	Present	Present	Same as in the INP- reduced run	<u>Absent</u>

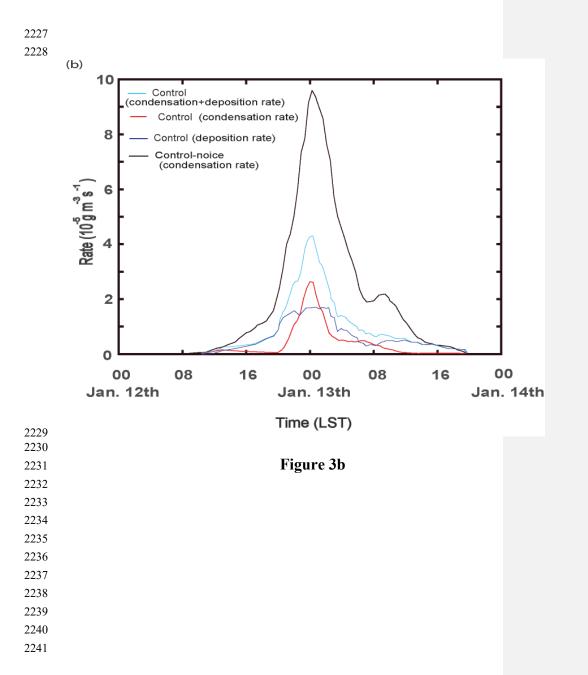
2154	Table 1. Summary of simulations
------	---------------------------------

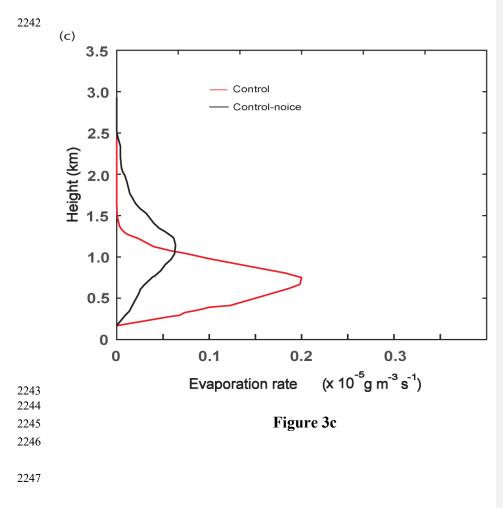

2<mark>155</mark> 2156

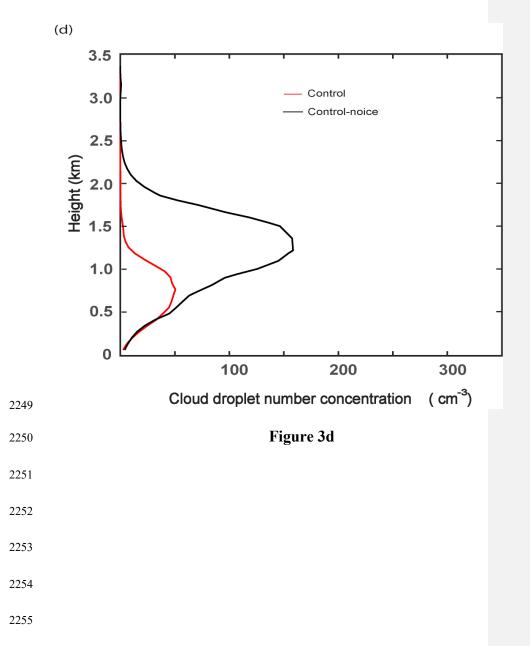

Deleted: ¶

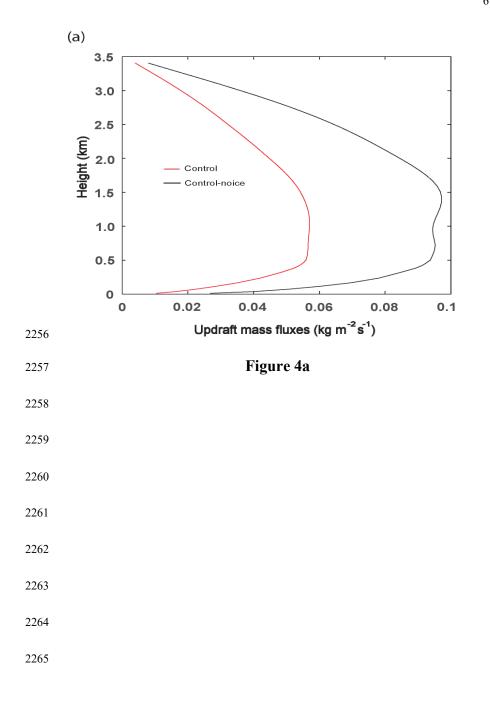

Formatted Table

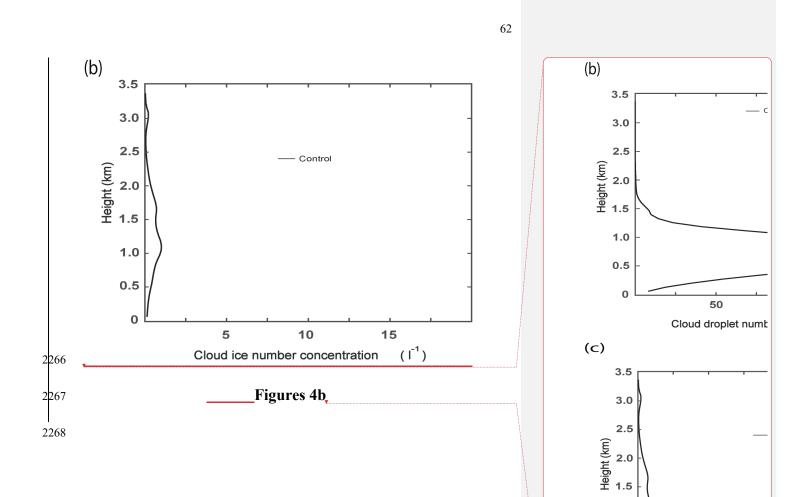


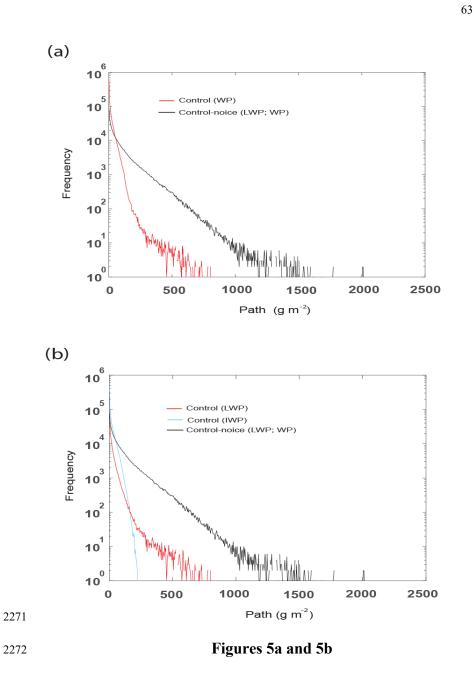


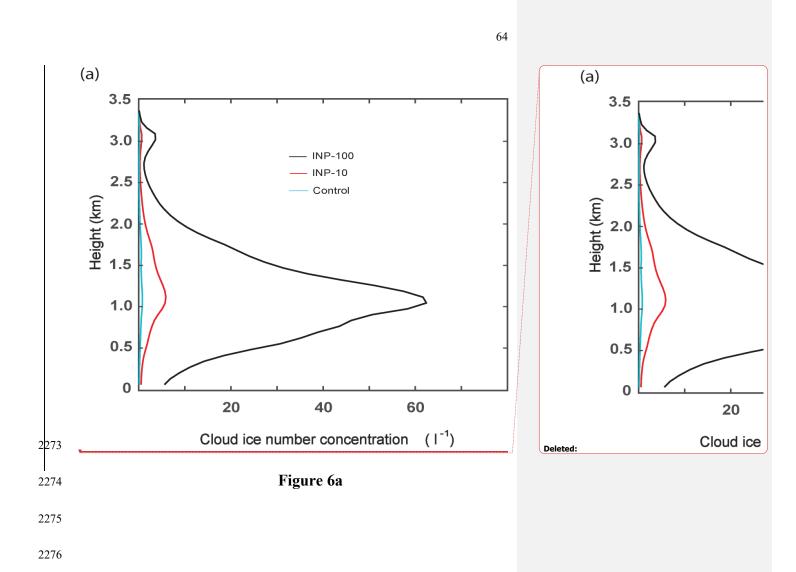


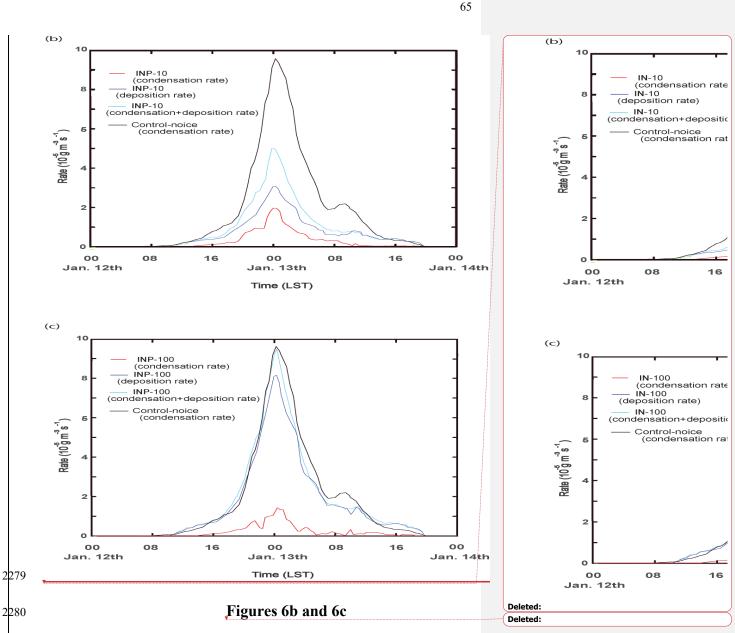


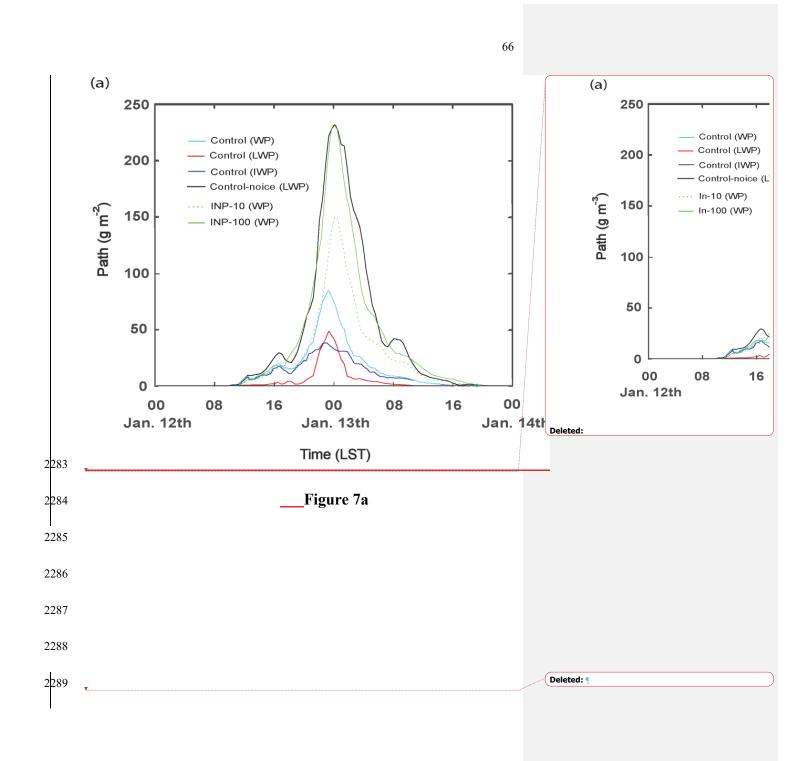


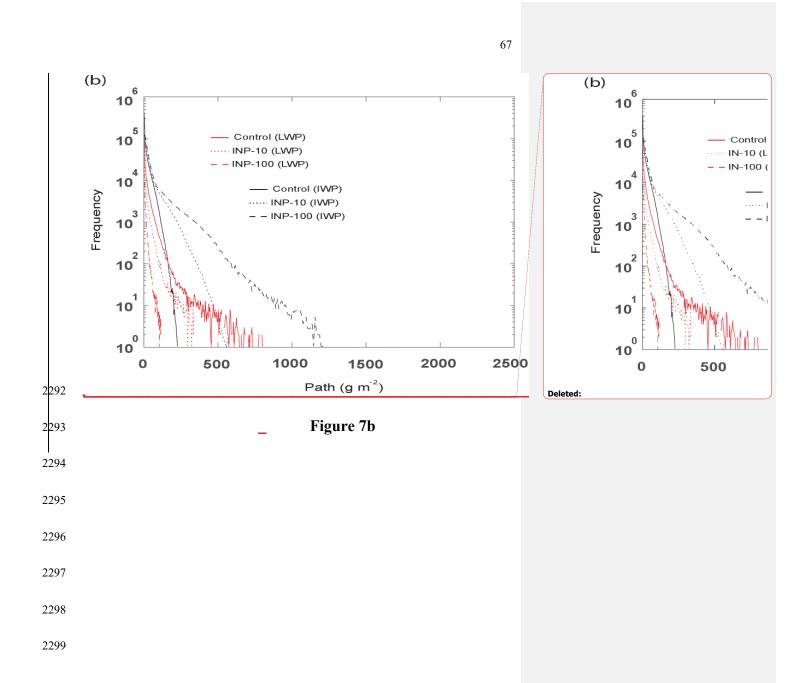


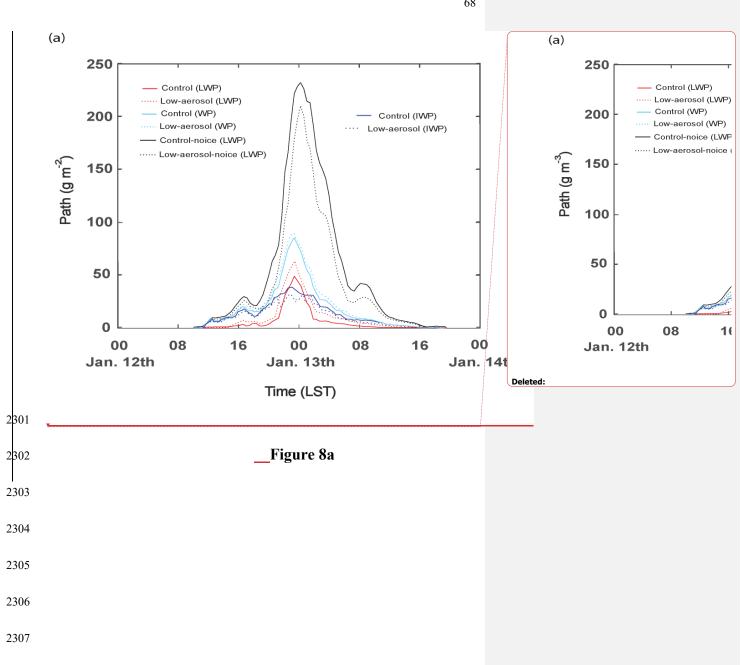


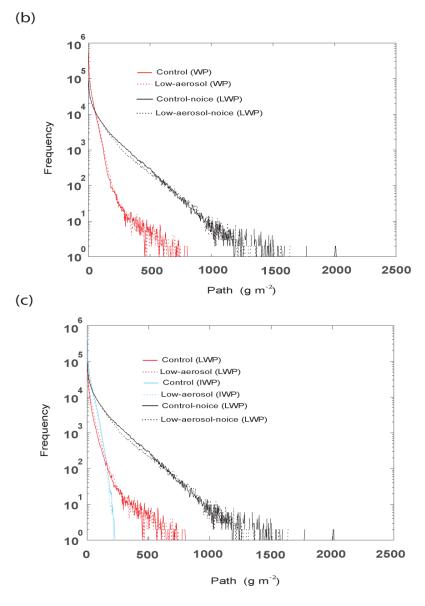

1.0

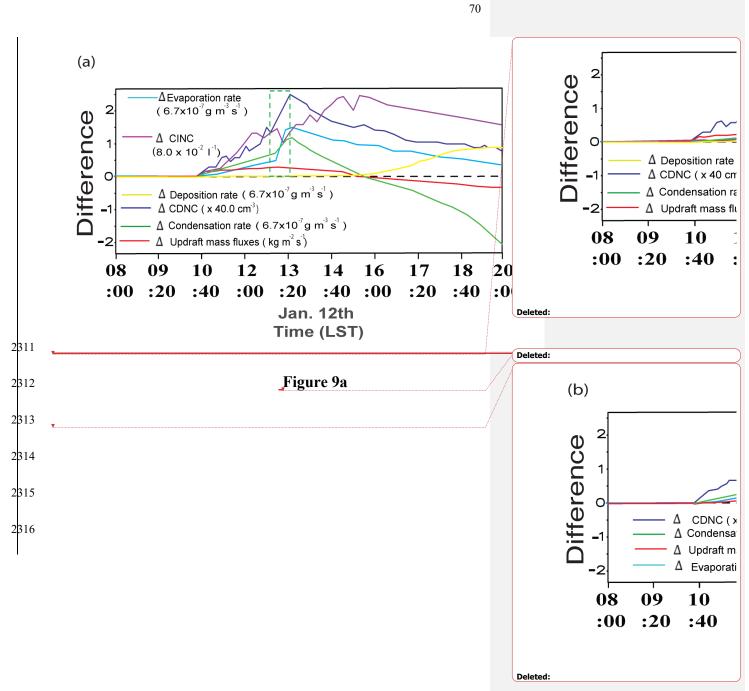

0.5

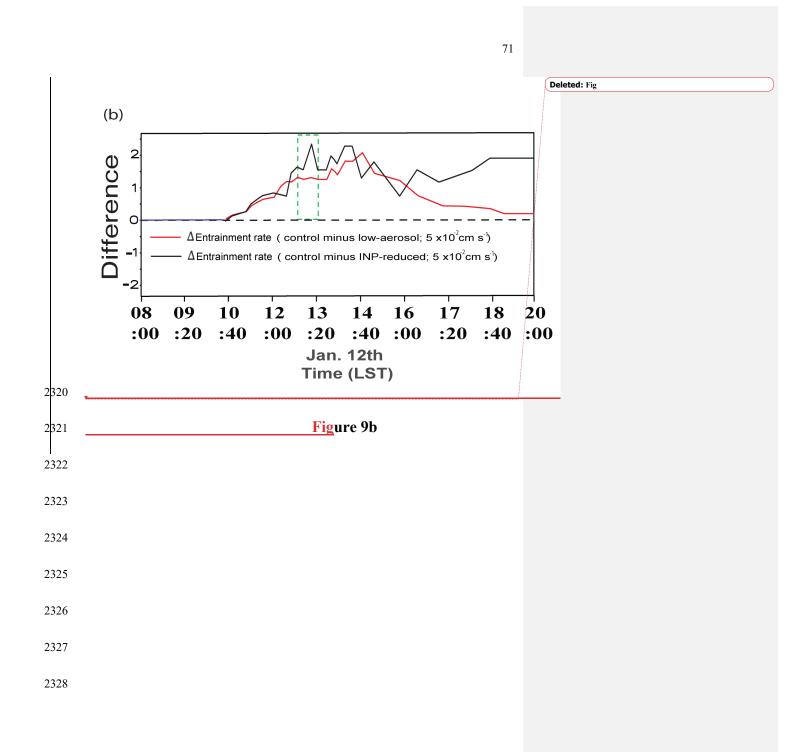

0

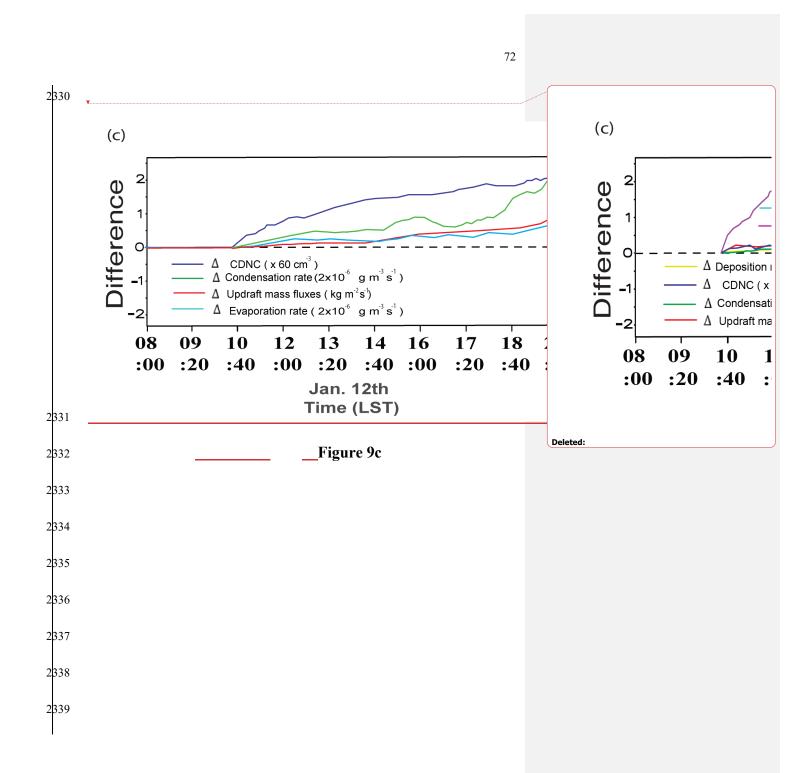

Deleted: Deleted: and 4c 5 Cloud ice number

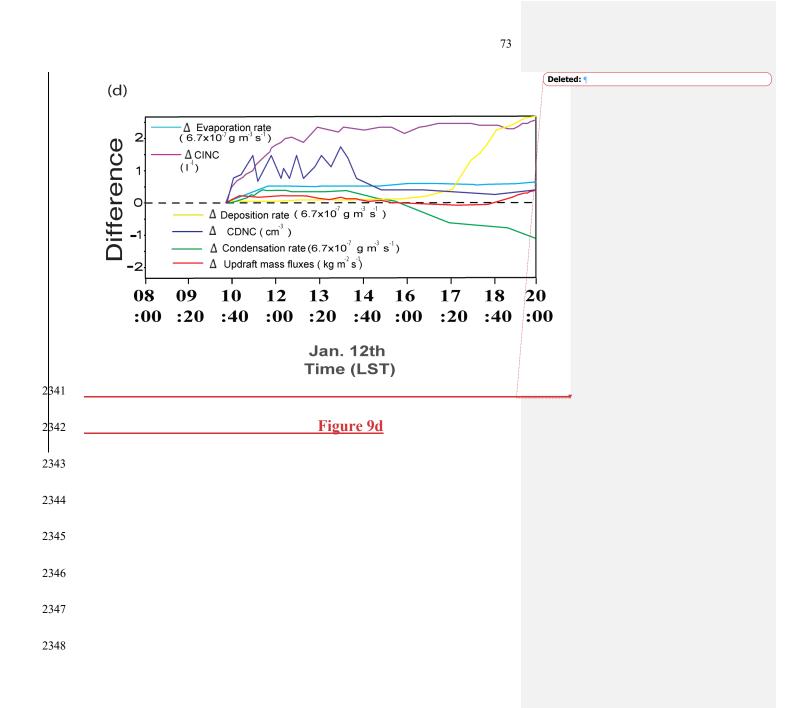


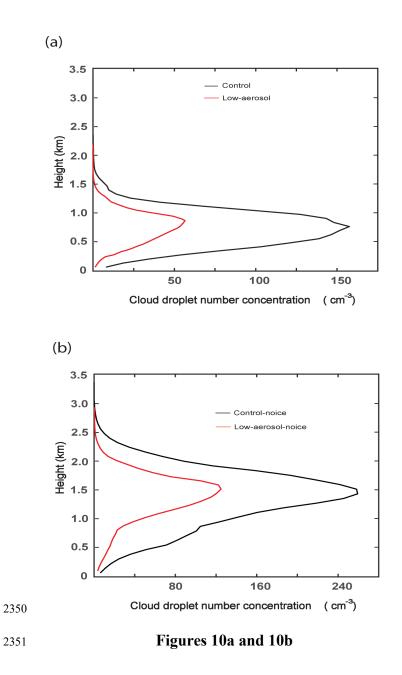


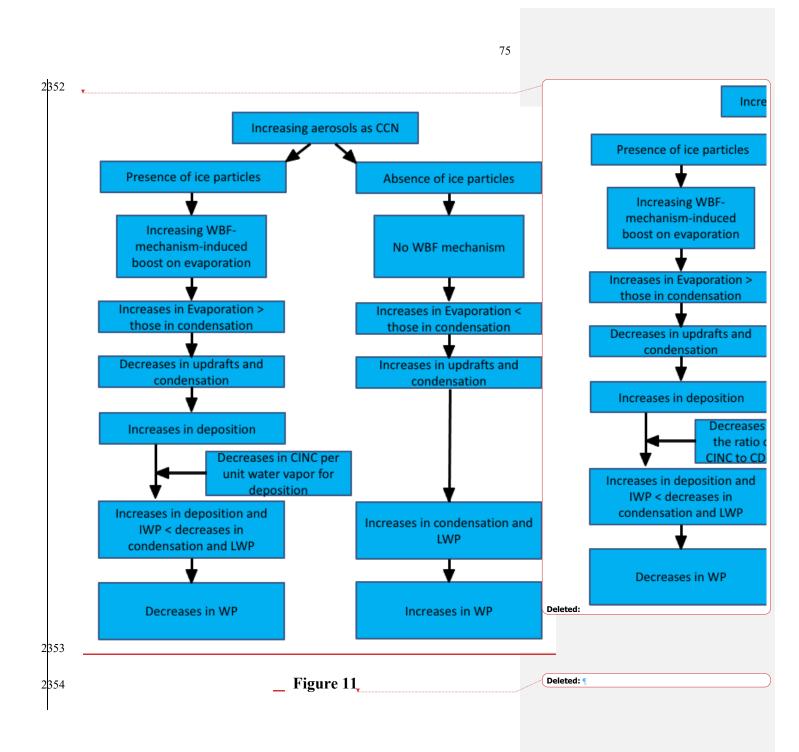


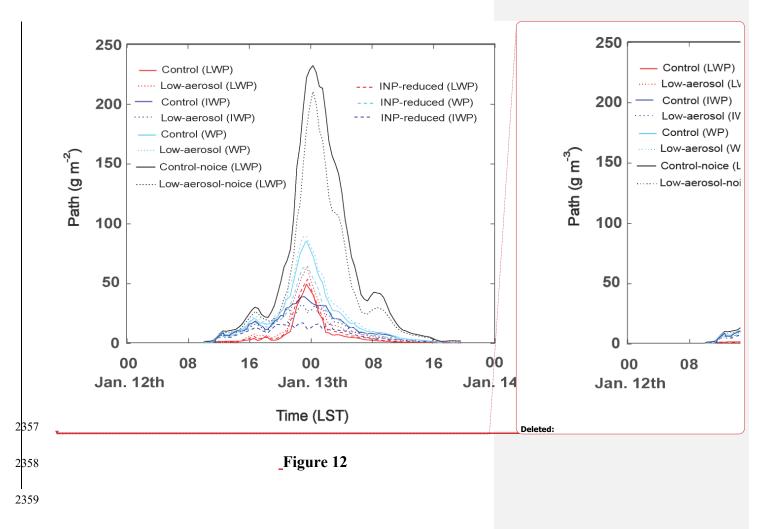







Figures 8b and 8c





Page 13: [1] Formatted	Seoung Soo Lee	5/12/21 8:04:00 AM
Font: (Default) Times New Rom	an, 12 pt, Not Italic, Font color: Auto	
Page 13: [2] Formatted	Seoung Soo Lee	5/12/21 8:04:00 AM
Font: (Default) Times New Rom	an, 12 pt, Not Italic, Font color: Auto	
Page 13: [3] Formatted	Seoung Soo Lee	5/12/21 8:04:00 AM
Font: (Default) Times New Rom	an, 12 pt, Not Italic, Font color: Auto	
Page 13: [4] Formatted	Seoung Soo Lee	5/12/21 8:04:00 AM
Font: (Default) Times New Rom	an, 12 pt, Not Italic, Font color: Auto	
Page 13: [5] Formatted	Seoung Soo Lee	5/12/21 8:04:00 AM
Font: (Default) Times New Rom	an, 12 pt, Not Italic, Font color: Auto	
Page 13: [6] Deleted	Seoung Soo Lee	5/12/21 8:04:00 AM
	-	
Page 13: [7] Formatted	Seoung Soo Lee	5/12/21 8:03:00 AM
Font: (Default) Open Sans, 11.5		
Page 13: [8] Formatted	Seoung Soo Lee	5/12/21 8:09:00 AM
Font: (Default) Times New Rom	an, 12 pt, Not Italic, Font color: Auto	
Page 13: [9] Formatted	Seoung Soo Lee	5/12/21 8:09:00 AM
Font: (Default) Times New Rom	an, 12 pt, Not Italic, Font color: Auto	
Page 13: [10] Formatted	Seoung Soo Lee	5/12/21 8:09:00 AM
Font: (Default) Times New Rom	an, 12 pt, Not Italic, Font color: Auto	
Page 13: [11] Formatted	Seoung Soo Lee	5/12/21 8:09:00 AM
Font: (Default) Times New Rom	an, 12 pt, Not Italic, Font color: Auto	
Page 13: [12] Formatted	Seoung Soo Lee	5/12/21 8:09:00 AM
Font: (Default) Times New Rom	an, 12 pt, Not Italic, Font color: Auto	
Page 13: [13] Formatted	Seoung Soo Lee	5/12/21 8:09:00 AM
Font: (Default) Times New Rom	an, 12 pt, Not Italic, Font color: Auto	
Page 13: [14] Formatted	Seoung Soo Lee	5/12/21 8:09:00 AM
Font: (Default) Times New Rom	an, 12 pt, Not Italic, Font color: Auto	
Page 13: [15] Formatted	Seoung Soo Lee	5/12/21 8:09:00 AM
Font: (Default) Times New Rom	an, 12 pt, Not Italic, Font color: Auto	
Page 13: [16] Formatted	Seoung Soo Lee	5/12/21 8:09:00 AM
	an, 12 pt, Not Italic, Font color: Auto	
Page 13: [17] Formatted	Seoung Soo Lee	5/12/21 8:09:00 AM
	an, 12 pt, Not Italic, Font color: Auto	
Page 13: [18] Formatted	Seoung Soo Lee	5/12/21 8:09:00 AM
-	an, 12 pt, Not Italic, Font color: Auto	-,,
Page 13: [19] Formatted	Seoung Soo Lee	5/12/21 8:09:00 AM
	an, 12 pt, Not Italic, Font color: Auto	0, 11, 21 0.09.00 AP
Page 13: [20] Formatted	Seoung Soo Lee	5/12/21 8:09:00 AM
age 13. [20] Formatten	Security Sou Lee	5/12/21 0:09:00 AM

Page 13: [21] Formatted	Seoung Soo Lee	5/12/21 8:09:00 AM
Font: (Default) Times New Rom	an, 12 pt, Not Italic, Font color: Auto	
Page 13: [22] Formatted	Seoung Soo Lee	5/12/21 8:09:00 AM
Font: (Default) Times New Rom	an, 12 pt, Not Italic, Font color: Auto	
Page 13: [23] Formatted	Seoung Soo Lee	5/12/21 8:09:00 AM
Font: (Default) Times New Rom	an, 12 pt, Not Italic, Font color: Auto	
Page 13: [24] Formatted	Seoung Soo Lee	5/12/21 8:09:00 AM
Font: (Default) Times New Rom	an, 12 pt, Not Italic, Font color: Auto	
Page 13: [25] Formatted	Seoung Soo Lee	5/12/21 8:09:00 AM
Font: (Default) Times New Rom	an, 12 pt, Not Italic, Font color: Auto	
Page 13: [26] Formatted	Seoung Soo Lee	5/12/21 8:09:00 AM
Font: (Default) Times New Rom	an, 12 pt, Not Italic, Font color: Auto	
Page 13: [27] Formatted	Seoung Soo Lee	5/12/21 8:09:00 AM
Font: (Default) Times New Rom	an, 12 pt, Not Italic, Font color: Auto	
Page 13: [28] Formatted	Seoung Soo Lee	5/12/21 8:09:00 AM
Font: (Default) Times New Rom	an, 12 pt, Not Italic, Font color: Auto	
Page 13: [29] Formatted	Seoung Soo Lee	5/30/21 7:54:00 AM
Font: (Default) Times New Rom	an, 12 pt, Not Italic, Font color: Auto	
Page 13: [30] Formatted	Seoung Soo Lee	5/30/21 7:54:00 AM
Font: (Default) Times New Rom	an, 12 pt, Not Italic, Font color: Auto	
Page 13: [31] Formatted	Seoung Soo Lee	5/30/21 7:54:00 AM
Font: (Default) Times New Rom	an, 12 pt, Not Italic, Font color: Auto	
Page 13: [32] Formatted	Seoung Soo Lee	5/30/21 7:54:00 AM
Font: (Default) Times New Rom	an, 12 pt, Not Italic, Font color: Auto	
Page 13: [33] Formatted	Seoung Soo Lee	5/30/21 7:54:00 AM
Font: (Default) Times New Rom	an, 12 pt, Not Italic, Font color: Auto	
Page 13: [34] Formatted	Seoung Soo Lee	5/30/21 7:54:00 AM
Font: (Default) Times New Rom	an, 12 pt, Not Italic, Font color: Auto	
Page 13: [35] Formatted	Seoung Soo Lee	5/30/21 7:54:00 AM
Font: (Default) Times New Rom	an, 12 pt, Not Italic, Font color: Auto	
		5/30/21 7:54:00 AM