

1 New Methodology Shows Short Atmospheric Lifetimes of

2 Oxidized Sulfur and Nitrogen due to Dry Deposition

3 Katherine Hayden¹, Shao-Meng Li^{1,2*}, Paul Makar¹, John Liggio¹, Samar G. Moussa¹, Ayodeji
4 Akingunola¹, Robert McLaren³, Ralf M. Staebler¹, Andrea Darlington¹, Jason O'Brien¹, Junhua
5 Zhang¹, Mengistu Wolde⁴, Leiming Zhang¹

6 ¹Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario,
7 Canada, M3H 5T4

8 ²College of Environmental Science and Engineering, Peking University, Beijing 100871 China

9 ³Center for Atmospheric Chemistry, York University, 4700 Keele Street, Toronto, Ontario,
10 Canada

11 ⁴National Research Council Canada, Flight Research Laboratory, Ottawa, Canada K1A 0R6

12 *corresponding authors shaomeng.li@pku.edu.cn; Katherine.hayden@canada.ca

13 For submission to *Atmospheric Chemistry and Physics*

14 Abstract

15 The atmospheric lifetimes of pollutants determine their impacts on human health, ecosystems
16 and climate and yet, pollutant lifetimes due to dry deposition over large regions have not been
17 determined from measurements. Here, a new methodology based on aircraft observations is used
18 to determine the lifetimes of oxidized sulfur and nitrogen due to dry deposition over $(3-6)\times 10^3$
19 km² of boreal forest in Canada. Dry deposition fluxes decreased exponentially with distance
20 from the Athabasca oil sands sources, located in northern Alberta, resulting in lifetimes of 2.2-26
21 hours. Fluxes were 2-14 and 1-18 times higher than model estimates for oxidized sulfur and
22 nitrogen, respectively, indicating dry deposition velocities which were 1.2-5.4 times higher than
23 those computed for models. A Monte-Carlo analysis with five commonly used inferential dry
24 deposition algorithms indicates that such model underestimates of dry deposition velocity are
25 typical. These findings indicate that deposition to vegetation surfaces are likely under-estimated
26 in regional and global chemical transport models regardless of the model algorithm used. The
27 model-observation gaps may be reduced if surface pH, and quasi-laminar and aerodynamic
28 resistances in algorithms are optimized as shown in the Monte-Carlo analysis. Assessing the air
29 quality and climate impacts of atmospheric pollutants on regional and global scales requires
30 improved measurement-based understanding of atmospheric lifetimes of these pollutants.

31

33 **1 Introduction**

34 Deposition represents the terminating process for most air pollutants and the starting
35 point for ecosystem impacts. Understanding deposition is critical in determining the atmospheric
36 lifetimes and spatial scale of atmospheric transport of pollutants, which in turn, dictates their
37 ecosystem (WHO, 2016; Solomon et al., 2007) and climate (Samset et al., 2014) impacts. In
38 particular, atmospheric lifetimes (τ) of oxidized sulfur and nitrogen compounds influence their
39 concentrations and column burdens in air, which affect air quality and hence human exposure
40 (WHO, 2016). Furthermore, the lifetime of these species affects their contributions to
41 atmospheric aerosols, with a consequent influence on climate via changes to radiative transfer
42 through scattering and cloud formation (Solomon et al., 2007). In addition, their deposition can
43 exceed critical load thresholds causing aquatic and terrestrial acidification, and eutrophication in
44 the case of nitrogen deposition (Howarth, 2008; Bobbink et al., 2010; Doney, 2010; Vet et al.,
45 2014; Wright et al., 2018). Quantifying τ and deposition thus provides a crucial assessment of
46 these regional and global impacts.

47 Deposition occurs through wet and dry processes. While wet deposition fluxes can be
48 measured directly (Vet et al., 2014), there are few validated methods for dry deposition fluxes
49 (Wesley and Hicks, 2000), and none which estimates deposition over large regions. Dry
50 deposition fluxes (F) may be obtained using micrometeorological measurements for pollutants
51 for which fast response instruments are available. However, these results are only valid for the
52 footprints of the observation sites, typically hundreds of meters (Aubinet et al., 2012), and their
53 extrapolation to larger regions may suffer from representativeness issues. As a result,
54 atmospheric lifetimes τ with respect to dry deposition have not been determined through direct
55 observations. On a regional scale, dry deposition fluxes are typically derived [using an inferential](#)

56 approach by multiplying network-measured or model-predicted air concentrations with dry
57 deposition velocities (V_d) (Sickles and Shadwick, 2015; Fowler et al., 2009; Meyers et al., 1991),
58 which are derived using resistance-based inferential dry deposition algorithms (Wu et al., 2018),
59 and compared with limited micrometeorological flux measurements (Wesley and Hicks, 2000;
60 Wu et al., 2018; Finkelstein et al., 2000; Matsuda et al., 2006; Makar et al., 2018) for validation.
61 When applied to a regional scale, an inferential-algorithm derived V_d may have significant
62 uncertainties (Wesley and Hicks, 2000; Aubinet et al., 2012; Wu et al., 2018; Finkelstein et al.,
63 2000; Matsuda et al., 2006; Makar et al., 2018; Brook et al., 1997). For example, inferred V_d for
64 SO₂, despite being the most studied and best estimated, may be underestimated by 35% for forest
65 canopies (Finkelstein et al., 2000). Underestimated V_d for SO₂ and nitrogen oxides can
66 contribute to model over-prediction of regional and global SO₂ concentrations (Solomon et al.,
67 2007; Christian et al., 2015; Chin et al., 2000), or under-prediction of global oxidized nitrogen
68 dry deposition fluxes (Paulot et al., 2018; Dentener et al., 2006).

69 Here, a new approach is presented to determine τ with respect to dry deposition and F for
70 total oxidized sulfur (**TOS**, the sulfur mass in SO₂ and particle-SO₄ (pSO₄)) and total reactive
71 oxidized nitrogen (**TON**, the nitrogen mass in NO, NO₂, and others designated as NO_z) on a
72 spatial scale of (3-6)×10³ km², using aircraft measurements. This approach provides a unique
73 methodology to determine τ and F over a large region. Coupled with analyses for chemical
74 reaction rates (for **TOS** compounds), the average V_d for **TOS** and **TON** over the same spatial
75 scale were also determined. The airborne measurements were obtained during an intensive
76 campaign from August to September 2013 in the **Athabasca Oil Sands Region (AOSR)**
77 (Gordon et al., 2015; Liggio et al., 2016; Li et al., 2017; Baray et al., 2018; Liggio et al., 2019) in

78 northern Alberta, Canada. Direct comparisons with modelled dry deposition estimates are made
79 to assess their uncertainties and the spatial-temporal scales of air pollutant impacts.

80 **2 Methods**

81 **2.1 Lagrangian Flight Design**

82 Details of the airborne measurement program have been described elsewhere (Gordon et
83 al., 2015; Liggio et al., 2016; Li et al., 2017; Liggio et al., 2019; Baray et al., 2018). Briefly, an
84 instrumented National Research Council of Canada's Convair-580 research aircraft was flown
85 over the [Athabasca oil sands region](#) (AOSR) in Alberta, Canada from August 13 to September 7,
86 2013. The flights were designed to determine emissions [from mining activities in the AOSR](#),
87 assess [their](#) atmospheric transformation processes and gather data for satellite and numerical
88 model validation. Three flights were flown to study transformation and deposition processes by
89 flying a Lagrangian pattern so that the same pollutant air mass was sampled at different time
90 intervals downwind of emission sources for a total of 4-5 [hours and up to 107-135 km downwind](#)
91 [of the AOSR sources](#). Flights 7 (F7, Aug 19), 19 (F19, Sep 4) and 20 (F20, Sep 5) took place
92 during the afternoon when the boundary layer was well established. The flights were conducted
93 in clear sky conditions so wet deposition processes were insignificant. [As shown in Figure 1](#),
94 [t](#)[The aircraft flew tracks perpendicular to the oil sands plume at multiple altitudes between 150 to](#)
95 [1400 m agl and multiple intercepts of the same plume downwind. Vertical profiles conducted as](#)
96 [spirals were flown at the centre of the plume which provided information on the boundary layer](#)
97 [height and extent of plume mixing. The flight tracks closest to the AOSR intercepted the main](#)
98 [emissions from the oil sands operations; t](#)[There were no other anthropogenic sources as the](#)
99 [aircraft flew further downwind of the AOSR.](#)

100 **2.2 Aircraft Measurements**

101 A comprehensive suite of detailed gas- and particle-phase measurements were made from
102 the aircraft. Measurements pertaining to the analysis in this paper are discussed below.

103 **SO₂ and NO_y.** Ambient air was drawn in through a 6.35 mm (1/4") diameter PFA sampling line
104 taken from a rear-facing inlet located on the roof towards the rear of the aircraft. The inlet was
105 pressure-controlled to 770 mm Hg using a combination of a MKS pressure controller and a
106 Teflon pump. Ambient air from the pressure-controlled inlet was fed to instrumentation for
107 measuring SO₂ and NO_y. The total sample flow rate was measured at 4988 cm³ min⁻¹ of which
108 SO₂ and NO_y were 429 and 1085 cm³ min⁻¹, respectively. SO₂ was detected via pulsed
109 fluorescence with a Thermo 43iTLE (Thermo Fisher Scientific, Franklin, MA, USA). NO_y (also
110 denoted as Total Oxidized Nitrogen (TON)) was measured by passing ambient air across a
111 heated (325°C) molybdenum converter that reduces reactive nitrogen oxide species to NO. NO
112 was then detected through chemiluminescence with a modified Thermo 42iTLE (Thermo Fisher
113 Scientific, Franklin, MA, USA) run in NO_y mode. An inlet filter was used for SO₂ to exclude
114 particles, but NO_y was not filtered prior to the molybdenum converter. NO_y includes NO, NO₂,
115 HNO₃ and other oxides of nitrogen such as peroxy acetyl nitrate and organic nitrates- (Dunlea et
116 al., 2007; Williams et al., 1998). Although there was no filter on the NO_y inlet to exclude
117 particles, the inlet was not designed to sample particles (i.e. rear-facing PFA tubing). As a result,
118 pNO₂ was not included as part of NO_y (TON). The conversion efficiency of the heated
119 molybdenum converter and inlet transmission was evaluated with NO₂ and HNO₃ and found to
120 be near 100% and >90%, respectively. Other NO_y species are expected to have a be greater
121 conversion efficiency than that of HNO₃. Previous studies conducted by Williams et al. (1998)
122 showed similar molybdenum converter efficiencies including that of n-propyl nitrate near 100%.

Formatted: Superscript

Formatted: Superscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

123 Interferences from alkenes or NH_3 were assumed to be negligible (Williams et al., 1998; Dunlea
124 et al. 2007). Species like NO_3 radical and N_2O_5 are expected to be low in concentration as they
125 photolyze quickly during daytime. Zeros were performed 3-5 times per flight for all
126 instruments both the SO_2 and NO_y instruments by passing ambient air through an in-line Koby
127 King Jr cartridge for ~5 minutes. For the NO_y measurements pre-reactor zeroes (dynamic
128 instrument zero) were also obtained periodically throughout each flight using either ambient air
129 or a Koby King Jr. air purifier. Multiple calibrations were conducted before, during and after the
130 study using National Institute Standards and Technology reference standards. Data were
131 recorded at a time resolution of 1 second and corrected for a sampling time delay of 1-3 seconds
132 depending on the instrument. Detection limits were determined as 2 times the standard deviation
133 of the values acquired during zeroes; NO_y was 0.09 ppbv and SO_2 was 0.70 ppbv (Table S1).
134 **Aerosols.** Multiple aerosol instruments sub-sampled from a forward facing, shrouded, isokinetic
135 particle inlet (Droplet Measurement Technologies, Boulder, CO, USA). A Time-of-Flight High
136 Resolution Aerosol Mass Spectrometer (AMS) (Aerodyne Research Inc.) was used to measure
137 non-refractory submicron aerosol components including pSO_4 , pNO_3 , pNH_4 , and p-organics.
138 Details of the AMS and its operations have been published elsewhere (DeCarlo et al., 2006).
139 The instrument was operated in mass spectrometry V-mode with a sampling time resolution of
140 10 seconds. Filtered measurements were taken 4-5 times per flight to determine background
141 signals. Detection limits of 0.048, 0.036, 0.235 and 0.236 ug m^{-3} for pSO_4 , pNO_3 , pNH_4 and p-
142 organics were determined using 3 times the standard deviation of the average of filtered time
143 periods for all flights (Table S1). Ionization efficiency calibrations using monodisperse
144 ammonium nitrate were performed during the study with an uncertainty of $\pm 9\%$. Data were
145 corrected for a sampling time delay of 10 seconds by comparing with faster response instruments

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Line spacing: Double

Formatted: Superscript

146 e.g. a wing-mounted Forward Scattering Spectrometer Probe Model 300 (FSSP-300) and an in-
147 board Ultra High Sensitivity Absorption Spectrometer (UHSAS) (both from Droplet
148 Measurement Technologies). The FSSP and UHSAS instruments measure particle diameters
149 that range from 3200 nm – 20 μm and 50 nm - 1 μm , respectively. The AMS data were
150 processed using AMS data analysis software (Squirrel, version 1.51H and PIKA, version 1.10H).
151 The particle collection efficiency (CE) of the AMS was determined through comparisons of was
152 applied to the data and determined by comparing the total AMS-derived mass with the mass
153 derived estimated from the size distribution measurements from of the UHSAS assuming a
154 density based on the chemical composition. The collection efficiency CE for F7 and F20 was
155 0.5 for both flights, and for F19 it was 1.0. The CE was applied to all AMS species for the
156 duration of each flight (Figure S1). Since the AMS measures only particle mass $< 1 \mu\text{m}$ (PM₁) in
157 diameter, the mass of SO₄ formed through OH oxidation was scaled upward to account for all
158 particle sizes that H₂SO₄ vapor could potentially condense on. The scaling factor was
159 determined using the surface area ratio of PM₁/PM₂₀ from the aircraft particle measurements,
160 assuming that the condensation process is approximately proportional to the surface area. from
161 the aircraft particle measurements. PM₁ measurements were from the UHSAS and PM₂₀ were
162 from the FSSP300. As the ratio did not vary significantly in the plumes, one single value was
163 used between each set of screens; in F19 the ratio between screens ranged from 0.6 to 0.8, in F20
164 the ratio ranged from 0.8 to 0.9, and in F7 the ratio ranged from 0.7 to 0.9 (Liggio et al., 2016).
165
166 Measurements are discussed in terms of total oxidized sulfur (TOS, the sulfur mass in SO₂ from
167 the Thermo SO₂ instrument and particle-SO₄ (pSO₄) from the AMS instrument) and total

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Indent: First line: 0 cm

Formatted: Subscript

168 reactive oxidized nitrogen (TON, the nitrogen mass in reactive oxidized nitrogen species, from
169 the Thermo NO_y instrument, often denoted NO_y).

Formatted: Subscript

170 **Volatile Organic Compounds (VOCs).** Selected VOCs were used to estimate the OH
171 concentrations used for determining oxidation rates for SO₂. VOCs were measured with a proton
172 transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS, Ionicon Analytik GmbH,
173 Austria) as well as through discrete canister grab samples. The PTR-ToF-MS and its operation,
174 along with the details of the canister sampling and lab analyses during the study were described
175 in detail previously (Li et al., 2017). Briefly, the PTR-ToF-MS used chemical ionization with
176 H₃O⁺ as the primary reagent ion. Gases with a proton affinity greater than that of water were
177 protonated in the drift tube. The pressure and temperature of the drift tube region were

178 maintained at a constant 2.15 mbar and 60°C, respectively for an E/N of 141 Td (Townsend, 1
179 Td=10¹⁷ V cm²). E/N refers to the reduced electric field parameter in the drift tube; E is the
180 electric field and N is the number density of the gas in the drift tube. The E/N ratio can affect the
181 reagent ion distribution in the drift tube and VOC fragmentation (de Gouw and Warneke; 2007).

Formatted: Superscript

Formatted: Superscript

182 The protonated gases were detected using a high-resolution time of flight mass spectrometer at a
183 time resolution of 2 seconds. Instrumental backgrounds were performed in flight using a
184 custom-built zero-air generating unit. The unit contained a catalytic converter heated to 350°C
185 with a continuous flow of ambient air at a flow rate of one litre per minute. The data were
186 processed using Tofware software (Tofwerk AG). Calibrations were performed on the ground
187 using gas standard mixtures from Ionicon, Apel-Reimer and Scott-Marrin for 22 compounds.
188 The canister samples were collected in pre-cleaned and passivated 3L stainless steel canisters
189 that were subsequently sent to an analytical laboratory for GC-FID/MS analyses for a suite of
190 150 hydrocarbon compounds.

191 **Meteorology and aircraft state parameters.** Meteorological measurements have been
192 described elsewhere (Gordon et al., 2015). In brief, 3-D wind speed and temperature were
193 measured with a Rosemount 858 probe. Dew point was measured with an Edgetech hygrometer
194 and pressure was measured with a DigiQuartz sensor. Aircraft state parameters including
195 positions and altitudes were measured with GPS and a Honeywell HG1700 unit. All
196 meteorological measurements and aircraft state parameters were measured at a 1 s time
197 resolution.

198

199 **2.3 Mass transfer rates in the atmosphere**

200 Mass transfer rates (T) across flight screens (Figure 1) were determined using an
201 extension of the Top-down Emission Rate Retrieval Algorithm (TERRA) developed for emission
202 rate determination using aircraft measurements (Gordon et al., 2015). Briefly, at each plume
203 interception location, the level flight tracks were stacked to create a virtual screen. Background
204 subtracted pollutant concentrations and horizontal wind speeds normal to the screen were
205 interpolated using kriging. The background for SO_2 was ~ 0 ppb and pSO_4 was $0.2 - 0.3 \mu\text{g m}^{-3}$
206 which was subtracted from the pSO_4 measurements before mass transfer rates were calculated
207 (Liggio et al., 2016). Integration of the horizontal fluxes across the plume extent on the screen
208 yields the transfer rate T in units of t hr^{-1} . Using SO_2 as an example,

$$209 T_{\text{SO}_2} = \int_{s_1}^{s_2} \int_{z_1}^{z_2} C(s, z) u_n(s, z) ds dz \quad (1)$$

Formatted: Superscript

210 where $C(s, z)$ is the background subtracted concentration at screen coordinate s and z , which
211 represent the horizontal and vertical axes of the screen. The $u_n(s, z)$ is the horizontal wind speed
212 normal to the screen at the same coordinates.

213 Since the lowest flight altitude was 150 magl, it was necessary to extrapolate the data to
214 the surface as per the procedures described previously (Gordon et al., 2015). Extrapolation to the
215 surface methods were compared and differences were included in the uncertainty estimates. The
216 main sources of SO_2 were from elevated facility stacks associated with the desulfurization of the
217 raw bitumen (Zhang et al., 2018). The stacks with the biggest SO_2 emissions range in height
218 from 76.2 to 183.0 m. Since the main source of SO_2 is from the elevated facility stacks, the
219 uncertainty for a single screen is estimated at 4% (Gordon et al., 2015). NO_y was also
220 extrapolated linearly to the surface and the mass transfer rates were similarly compared to other
221 extrapolation methods. NO_y sources include the elevated facility stacks and surface sources such
222 as the heavy hauler trucks operating in the surface mines. The uncertainty in the resulting
223 transfer rate T for a single screen is estimated to be larger at 8%, as a larger fraction of the NO_y
224 mass may be below the lowest measurement altitude (Gordon et al., 2015). Sulfur and nitrogen
225 data were also extrapolated linearly to background values from the highest altitude flight tracks
226 upwards to the mixed layer height, which was determined from vertical profiles of pollutant
227 mixing ratios, temperature and dew point (Table 1).
228 Two different approaches, a finite jump
229 model and a gradient flux approach (Stull, 1988; Degrazia et al., 2015), were used to estimate the
230 potential upward loss across the interface between the boundary layer and the free troposphere
231 for sulfur. In both approaches, the upward S flux was a minor loss at $< 45 \text{ g}/\text{km}^2/\text{hr}^{\frac{1}{2}}$ about 3
232 orders of magnitude lower than the several to many $\text{kg}/\text{km}^2/\text{hr}^{\frac{1}{2}}$ horizontal advectional
233 transport that were determined using TERRA. For N, the upward flux was estimated to be -570
234 $\text{g}/\text{km}^2/\text{hr}^{\frac{1}{2}}$ so although a larger flux than S, it is about factor of 18 lower than the TON fluxes
derived from observations.

Formatted: Subscript

Formatted: Subscript

Formatted: Not Highlight

Formatted: Superscript

Formatted: Not Highlight

235 Changes in the mass transfer rate T (denoted ΔT) in units of $t \text{ hr}^{-1}$ were then calculated as
236 the differences in T between pairs of virtual screens. The uncertainty in ΔT was estimated as 8%
237 for TOS and 26% for TON as supported by emission rate uncertainties determined for box
238 flights (Gordon et al., 2015). The uncertainty analysis for box flights is applicable to ΔT here, as
239 both account for uncertainties with an upwind and a downwind screen. The ΔT uncertainties
240 were propagated through subsequent calculations.

241 Knowing the change in mass transfer rate ΔT , and accounting for the net rates of
242 chemical loss and formation between screens for SO_2 and pSO_4 , the deposition rates (and
243 subsequently the deposition flux in tonnes S (or N) $\text{km}^{-2} \text{ hr}^{-1}$, Section 2.4 were determined for the
244 sulfur compounds as follows, using sulfur compounds as an example:

$$\Delta T_{\text{SO}_2} = T_{\text{SO}_2}(t_2) - T_{\text{SO}_2}(t_1) = X_{\text{SO}_2} - D_{\text{SO}_2} \quad (2)$$

$$\Delta T_{\text{pSO}_4} = T_{\text{pSO}_4}(t_2) - T_{\text{pSO}_4}(t_1) = X_{\text{pSO}_4} - D_{\text{pSO}_4} \quad (3)$$

$$\Delta T_{\text{TOS}} = T_{\text{TOS}}(t_2) - T_{\text{TOS}}(t_1) = -D_{\text{TOS}} \quad (4)$$

248 where X_{SO_2} is the rate of chemical reaction loss of sulfur mass in SO_2 , X_{pSO_4} is the rate of
249 chemical formation of sulfur mass as pSO_4 , D_{SO_2} and D_{pSO_4} are deposition rates of sulfur mass in
250 SO_2 and pSO_4 respectively, and t_1 and t_2 are plume interceptions times at Screen 1 and Screen 2,
251 respectively. Note that the chemical loss rate of SO_2 is set to be equivalent to the formation rate
252 of pSO_4 ie. $X_{\text{SO}_2} = X_{\text{pSO}_4}$. Equation 4 for TOS can also similarly be written as shown in Equation
253 5.

$$\Delta T_{\text{TOS}} = \Delta T_{\text{SO}_2} + \Delta T_{\text{pSO}_4} = -D_{\text{SO}_2} - D_{\text{pSO}_4} \quad (5)$$

255 Units in Equations 2 to 5 are all in $t \text{ hr}^{-1}$. Reaction with the OH radical was considered to be the
256 most significant chemical loss of SO_2 and the most significant path for the formation of pSO_4 .

Formatted: Subscript

Formatted: Subscript

Formatted: Font: Not Italic

Formatted: Not Superscript/ Subscript

257 (further details in SI Section S4.) X_{SO_2} and X_{pSO_4} were determined using estimated OH radical
258 concentrations, which were determined using the methodology described in SI Section
259 S4. Although TON encompasses a range of different N species with expected differences in
260 their deposition rates, it was not possible to quantitatively separate their chemical
261 formation/losses from their deposition rates with this method, ~~thus the~~ Formatted: Not Highlight
262 Dry deposition rates, D_{SO_2} and D_{pSO_4} , and their uncertainties were determined using Eq. (2) and Formatted: Indent: First line: 0 cm
263 (3). For total oxidized sulfur TOS (i.e., sulfur in $SO_2 + pSO_4$) and total oxidized nitrogen TON
264 (i.e., nitrogen in NO_y) the chemistry term is not relevant, and thus, the dry deposition rate D_{TOS}
265 was directly determined from ΔT_{TOS} using equation (4), and respectively for TON.
266

267 2.4 Dry deposition fluxes and dry deposition velocities

268 Average dry deposition fluxes (F) for TOS and TON were obtained by dividing the
269 deposition rates D in $t\ hr^{-1}$ with the footprint surface area of the plume between two adjacent Formatted: Superscript
270 screens (Figure 1 grey shaded regions), as shown in Equation 65 for the dry deposition flux F_{TOS}
271 of TOS (in $t\ S\ km^{-2}\ hr^{-1}$): Formatted: Superscript

$$272 F_{TOS} = \frac{D_{TOS}}{Area} \quad (65)$$

273 where the surface area, $Area$, was identified as the geographic area under the plume extending to
274 the edges of the plume where concentrations fell to background levels (i.e. SO_2 to ~ 0 ppb; SO_4
275 $\sim 0.2\ \mu g\ m^{-3}$). This approach was similarly used to derive deposition fluxes from an air quality
276 model, Global Environmental Multiscale – Modelling Air-quality and Chemistry (GEM-MaCH)
277 (Moran et al., 2010; also see SI Section S5 for details). The geographic surface area uncertainty
278 is estimated at 5%. Dry deposition fluxes between the sources and the first screen were also

279 estimated using change in mass transfer rate ΔT based on the extrapolated transfer rates back to
 280 the source region ('extended' region). The surface area boundaries for these 'extended' regions
 281 were determined using latitude and longitude coordinates that were weighted by emissions. This
 282 was done by first using the average wind direction from Screen 1 and creating a set of parallel
 283 back trajectories (~20) starting at different parts of Screen 1 back across the source region. For
 284 **TON**, the NO_x emission sources along each back trajectory were weighted by their NO_x
 285 emissions to obtain an emissions-weighted center location with latitude and longitude
 286 coordinates for each back trajectory. The line connecting these emissions-weighted center
 287 locations formed the boundary of the extended surface area. The extended surface area was
 288 similarly determined for **TOS** based upon the known locations of the major SO₂ point sources.
 289 The uncertainty of the 'extended' regions is estimated at 10% based on repeated optimizations of
 290 the geographical area. Surface areas are visualized as grey shaded regions between screens in
 291 Figure 1 and tabulated in SI Table S1.

292 Spatially-averaged dry deposition velocities, V_d , based on the aircraft measurements were
 293 determined over the surface area between screens using average plume concentrations across
 294 pairs of screens at about 40 meters above the ground for **TOS**, SO₂ and TON (e.g. Equation 76
 295 for SO₂ in units of cm s⁻¹). Although TOS includes the S in both SO₂ and pSO₄, only SO₂ is used
 296 in the calculation of V_d since the deposition behaviour of gases and particles differ substantially,
 297 and particles additionally have size-dependent deposition rates (Emerson et al., 2020). As the
 298 dominant form of TOS is SO₂ (>92%) the deposition behaviour of TOS is expected to be largely
 299 driven by that of SO₂. The measured TON does not include pNO_x.

300
$$V_d = \frac{F_{SO_2}}{[SO_2]} \quad (76)$$

Formatted: Font: Italic

Formatted: Subscript

Formatted: Not Superscript/ Subscript

Formatted: Superscript

Formatted: Subscript

Formatted: Subscript

Formatted: Font: Bold, Italic

Formatted: Font: Bold, Italic, Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

301 The largest source of uncertainty in V_d calculated this way was the determination of
302 concentration at 40 meters above the surface as the measurements were extrapolated from the
303 lowest aircraft altitude to the surface and interpolated concentrations were used. The
304 measurement-derived V_d are compared with those from the air quality model GEM-MACH
305 which uses inferential methods.

306
307
308

309 **2.5 Monte-Carlo simulations of dry deposition velocities using multiple resistance-based
310 parameterizations**

311 Parameterization of dry deposition in inferential algorithms is commonly based on a
312 resistance approach with dry deposition velocity depending on three main resistance terms as
313 below:

314
$$V_d = \frac{1}{R_a + R_b + R_c} \quad (87)$$

315

316 where R_a , R_b and R_c represent the aerodynamic, quasi-laminar sublayer and bulk surface
317 resistances respectively. Although these resistance terms are common among many regional air
318 quality models (Wu et al., 2018), the formulae used (and inputs in to these formulae) to calculate
319 the individual resistance terms differ significantly among the inferential deposition algorithms.
320 To assess the potential for a general underestimation of V_d across different inferential deposition
321 algorithms, and to compare with the aircraft-derived V_d , five different inferential deposition

322 algorithms, including that used in the GEM-MACH model for calculating V_d (Wu et al., 2018)
323 were incorporated into a Monte-Carlo simulation for V_d for SO₂. NO_y was not considered here,
324 as its measurement includes multiple reactive nitrogen oxide species with different individual
325 deposition velocities. We note that many of the inferential algorithms are based on observations
326 of SO₂ and O₃ deposition made at single sites, and the extent to which a chemical is similar to
327 SO₂ or O₃ features into its V_d calculation – the comparison thus has relevance for species aside
328 from SO₂.

329 The five deposition algorithms considered are denoted ZHANG, NOAH-GEM, C5DRY,
330 WESLEY and GEM-MACH and are—compared in Wu et al. (2018) (except the algorithm in
331 GEM-MACH). The five algorithms all use a big-leaf approach for calculating V_d i.e. V_d is
332 based on the resistance-analogy approach for calculating dry deposition velocity where V_d is the
333 reciprocal sum of three resistance terms R_a , R_b and R_c . Although the approach is similar, the
334 formulations of R_a , R_b and R_c between the algorithms are substantially different (Table 1 in Wu
335 et al., 2018). Results from Wu et al (2018) suggest that the differences in R_a+R_b between
336 different models would cause a difference in their V_d values on the order of 10-30% for most
337 chemical species (including SO₂ and NO₂), although the differences can be much larger for
338 species with near-zero R_a such as HNO₃.

339 To perform the simulations, formulae for the first four algorithms were taken from Wu et
340 al. (2018) and for GEM-MACH taken from Makar et al. (2018). The stomatal resistance in the
341 ZHANG algorithm was from Zhang et al. (2002). The GEM-MACH formula (Equation 8.7 in
342 the SI of Makar et al. (2018)) for mesophyll resistance R_{mx} contained a typo (missing the Leaf
343 Area Index (LAI)) and was corrected for as follows:

344 $R_{mx} = [LAI(H^*/3000 + 100 f_0)]^{-1}$ (98)

345 Prescribed input values were constrained by the range of possible values consistent with the
346 conditions during the aircraft flights and are shown in SI Table S3 with associated references.
347 Calculations for the R_a term were based on unstable and dry conditions as observed during the
348 aircraft flights. The Monte-Carlo simulation generated a distribution of possible V_d values,
349 based on randomly generated values of the input variables to each algorithm and selected from
350 Gaussian distributions with a range of 3 sigma for all input parameters. All simulations were
351 performed with the same input values that were common between the algorithms.

352 **3 Results and Discussion**

353 **3.1 Meteorological and Emissions Conditions during the Transformation Flights**

354 Three aircraft flights, Flights 7 (F7), 19 (F19) and 20 (F20) were conducted in
355 Lagrangian patterns where the same plume emitted from oil sands activities was repeatedly
356 sampled for a 4-5 hour period and up to 107-135 km downwind of the AOSR. The first screen of
357 each flight captured the main emissions from the oil sands operations with no additional
358 anthropogenic sources between subsequent screens downwind. The main sources of nitrogen
359 oxides were from exhaust emissions from off-road vehicles used in open pit mining activities and
360 sulfur and nitrogen oxides from the elevated facility stack emissions associated with the
361 desulfurization of raw bitumen (Zhang et al., 2018). As depicted in Figure 1, F7 and F19
362 captured a plume that contained both sulfur and nitrogen oxides. The westerly wind direction
363 and orientation of the aircraft tracks on F20 resulted in the measurement of two distinct plumes;
364 one plume exhibited increased levels of sulfur and nitrogen oxides mainly from the facility
365 stacks, and the other plume contained elevated levels of nitrogen oxides, mainly from the open
366 pit mining activities, and no SO_2 .

Formatted: Subscript

367 During the experiments, the dry deposition rates (D) ($t \text{ hr}^{-1}$) were quantified under
368 different meteorological conditions and emissions levels of **TOS** and **TON** (E_{TOS} and E_{TON}) for
369 the three flights (see Table 1). These differences played important roles in the observed pollutant
370 concentrations and resulting dry deposition fluxes for F7, F19 and F20. Mixed layer heights
371 (MLH) were derived from aircraft vertical profiles that were conducted in the centre of the
372 plume at each downwind set of transects. The profiles of temperature, dew point temperature,
373 relative humidity and pollutant mixing ratios were inspected for vertical gradients indicating a
374 contiguous layer connected to the surface. The highest MLH was determined for F7 at 2500
375 magl whereas F19 had the lowest MLH at 1200 magl (Table 1). In F20, the MLH was 2100
376 magl. The combination of a high MLH in F7 with the highest wind speeds resulted in the lowest
377 pollutant concentrations of the three flights. In F19, lower wind speeds and the lowest mixed
378 layer heights led to the highest pollutant levels. F20 had emissions and meteorological
379 conditions that were in between F7 and F19 resulting in pollutant concentrations between those
380 of F7 and F19.

381 Emission rates of SO_2 and NO_x (designated as E_{TOS} and E_{TON}) from the main sources in
382 the AOSR were estimated from the aircraft measurements and varied significantly between the
383 three flight days. The measurement-based emission rates of E_{TOS} and E_{TON} were taken from the
384 mass transfer rates of T_{SO2} and T_{NOy} (described in Methods) by extrapolating backwards to the
385 source locations in the AOSR using exponential functions (Figure 2, Section 3.2). For **TOS**, the
386 source location was set at 57.017N, -111.466W, where the main stacks for SO_2 emissions are
387 located. For **TON**, the source locations were determined from geographically weighted
388 locations. Emission rates E_{TOS} and E_{TON} for each flight are shown in Table 1.

389 Model-based E_{TOS} and E_{TON} were also obtained from the 2.5 km x 2.5 km gridded
390 emissions fields that were specifically developed for model simulations of the large AOSR
391 surface mining facilities (Zhang et al., 2018) i.e. Suncor Millenium, Syncrude Mildred Lake,
392 Syncrude Aurora North, Shell Canada Muskeg River Mine & Muskeg River Mine Expansion,
393 CNRL Horizon Project and Imperial Kearn Mine. The emissions fields have been used in GEM-
394 MACH (described in SI Section S5) to carry out a number of model simulations (Zhang et al.,
395 2018; Makar et al., 2018) including for the present study. In this work, emissions were summed
396 from various sources including offroad, point (Continuous Emissions Monitoring (CEMS)), and
397 point (non-CEMS) for the surface mines to obtain total AOSR hourly emission rates for the
398 flight time periods of interest (Table 2). The standard deviations reflect the emissions variations
399 during the simulated flight.

400 **3.2 Mass Transfer Rates**

401 The mass transfer rates T (in $t \text{ hr}^{-1}$) across the virtual flight screens for all three flights are
402 shown for **TOS** and **TON** in Figure 1 and plotted in Figure 2. In F20, two distinct **TON** plumes
403 were observed, allowing separate T calculations for **TON**. Monotonic decreases in T were
404 observed for both **TOS** and **TON** during transport downwind in all flights, clearly showing dry
405 depositional losses. The deposition rate D (Methods, Section 2.3) was used to estimate the
406 cumulative deposition of **TOS** and **TON** as a fraction of E_{TOS} or E_{TON} and is shown in Figure 3
407 for F7, F19 and F20 for transport distances of up to 107-135 km downwind of the sources.
408 Curves were fitted to the **TOS** and **TON** dry deposition cumulative percentages from which $d_{1/e}$
409 and τ were determined (SI Table S1). The transport e-folding distance ($d_{1/e}$) was determined
410 where 63.2% of E_{TOS} (or E_{TON}) was dry deposited, i.e., $\sum_{d=0}^{d_{1/e}} D(d) = 0.368 E_{TOS}$. The
411 atmospheric lifetimes (τ) were derived as $\tau = d_{1/e}/u$, where u was the average wind speed across

Formatted: Superscript

412 the distance $d_{1/e}$. These estimates were compared with predictions from the regional air quality
413 model GEM-MACH (Makar et al., 2018; Moran et al., 2010; SI Section S5) using facility
414 emission rates (Table 2). For **TOS** during F19, (Figure 3b, e), the observed cumulative
415 deposition at the maximum distance accounted for 74±5% vs. the modelled 21% of E_{TOS} . The
416 measurements indicate that the cumulative deposition of TOS was due mostly to SO₂ dry
417 deposition (~92%), where SO₂ was ~100% of TOS closest to the oil sands sources decreasing to
418 94% farthest downwind. Although the modelled cumulative deposition of TOS was significantly
419 lower than the observations, the fractional deposition of SO₂ was similar, decreasing from
420 ~100% to 95% of TOS. Fitting a curve to D and interpolating the cumulative deposition fraction
421 to the 63.2% E_{TOS} loss leads to a $d_{1/e}$ of 71±1 km, versus 500 km for the model prediction.

Formatted: Subscript

422 Under the prevailing wind conditions, the observed distance indicates a τ for **TOS** of
423 approximately 2.2 hours, whereas the model prediction indicated 16 hours. Large observation-
424 based values and model prediction differences in lifetime were also evident for the other flights
425 (SI Table S1). Clearly, the model predictions significantly underestimated deposition and vastly
426 overestimated $d_{1/e}$ and τ . The observation-based values for τ are also lower than average
427 lifetimes of 1–2 days for SO₂ and 2–9 days for pSO₄ derived from global models (Chin et al.,
428 2000; Benkovitz et al., 2004; Berglen et al., 2004), which include the effects of wet deposition
429 and chemical conversion for SO₂, thus making their implicit residence times with respect to dry
430 deposition even longer.

431 For **TON** in F19 (Figure 3h, l), the observed cumulative deposition accounted for
432 49±11% of E_{TON} at the maximum flight distance, versus 19% predicted by the model. Similar
433 model underestimates for cumulative deposition fractions were found for F7 and F20.
434 Extrapolating to the 63.2% cumulative deposition fraction, $d_{1/e}$ was estimated to be 190±7 km for

435 F19 versus a predicted 650 km from the model, implying a τ of approximately 5.6 hours for the
436 measurement-based results and 23 hours for the model prediction. Again, analogous differences
437 for F7 and F20 were found (SI Table S1). Similar to TOS, the measurement-based $d_{1/e}$ and τ
438 values for TON were significantly smaller than commonly accepted lifetimes of a few days for
439 nitrogen oxides in the boundary layer (Munger et al., 1998).

440 **3.3 Dry Deposition Fluxes F**

441 Using the deposition rate D (in tonnes S or N hr^{-1}), the average dry deposition fluxes, F
442 (in tonnes S or N $km^{-2} hr^{-1}$), were calculated by dividing D by the plume footprint surface areas
443 estimated by extending to the plume edges where the concentrations fell to background levels
444 (Methods, Section 2.4). These footprints are shown as the gray shaded geographic areas in
445 Figure 1, totaling 3500, 5700 and 4200 km^2 for F7, F19, and F20 plumes, respectively; see SI
446 Table S1 for TON plume areas). Figure 4a shows F_{TOS} values for all three flights, exhibiting
447 exponential decreases with increasing distance away from the sources and showing e-folding
448 distances for F_{TOS} of 18, 27, and 55 km for F7, F19, and F20, respectively. More than 90% of
449 the decreases in F_{TOS} were accounted for by F_{SO2} . Similarly, F_{TON} decreased exponentially with
450 increasing transport distances in all flights (Figure 4c), exhibiting e-folding distances of 18 and
451 33 km for F7 and F19, and 55 and 189 km for the south and north TON plumes during F20,
452 respectively. These e-folding distances were similar to those for F_{TOS} , indicating similar rates of
453 decreases in F_{TON} with transport distances.

454 The potential for other processes to contribute to the derived TOS and TON fluxes were
455 considered including losses from the boundary layer to the free troposphere and re-emission of
456 TOS or TON species from the surface back to the gas-phase. Two different approaches, a finite
457 jump model and a gradient flux approach (Stull, 1988; Degrazia et al., 2015), were used to

Formatted: Superscript

Formatted: Superscript

Formatted: Not Highlight

458 estimate the potential upward loss across the interface between the boundary layer and the free
459 troposphere for sulfur and nitrogen. In both approaches, the upward S flux was a minor loss at <
460 $45 \text{ g km}^{-2} \text{ hr}^{-1}$, about 3 orders of magnitude lower than the several to many $\text{kg km}^{-2} \text{ hr}^{-1}$
461 horizontal advectional transport that were determined using TERRA. For N, the upward flux
462 was estimated to be $\sim 570 \text{ g km}^{-2} \text{ hr}^{-1}$, so although a larger flux than S, it is about factor of 18
463 lower than the TON fluxes derived from observations.

464 As expected from the τ and transport e-folding distance $d_{1/e}$ comparisons, the GEM-
465 MACH model F_{TOS} were significantly lower than the measurement-based F_{TOS} results (Figure
466 4a), with the model F_{TOS} e-folding distances usually large: 133, 797, and 57 km for F7, F19, and
467 F20, respectively, or 7.4, 29.5, and 1.1 times longer than the corresponding measurement results.
468 Part of the differences between model and measurement F_{TOS} could be explained by differences
469 in actual versus model emissions, E_{TOS} (Tables 1 vs 2). To remove the influence of emissions,
470 an emission-normalized flux ($=F_{TOS}/E_{TOS}$ and F_{TON}/E_{TON}) was calculated for both measurement
471 and model (SI Figure S24). Figure 4b shows the ratios of measurement to model normalized
472 emissions for TOS. The model emission-normalized fluxes F_{TOS}/E_{TOS} were lower than the
473 measurement-based values by factors of 2.5-14, 1.8-3.4, and 2.0-3.0 for F7, F19, and F20,
474 respectively, decreasing with increased transport distances. However, they coalesce to a factor
475 of 2 at the furthest distances sampled by the aircraft, indicating that the model F_{TOS} estimates
476 were biased low by similar factors. The decreasing trends suggest that at distances further
477 downwind, model fluxes may exceed measurement-based fluxes, albeit at magnitudes lower than
478 those shown in Figure 4a, which is consistent with earlier study results (Makar et al., 2018). For
479 F_{TON} , the model-predicted values were also lower than the measurement results, especially near
480 the sources (Figure 4c), and showed little variation with transport distances **from the oil sands**

481 sources for all flights, in strong contrast to the exponential decays observed from the aircraft.
482 However, the emission-normalized fluxes ($=F_{TON}/E_{TON}$) for the model approached those from
483 measurements within maximum flying distances for F19 and F20, although still significantly
484 lower for F7 ($>10x$) (Figure 4d).

485 **3.4 Dry Deposition Velocities V_d**

486 The shorter $d_{1/e}$ and τ , and larger deposition fluxes F near the sources determined from
487 the aircraft measurements compared to predictions by the GEM-MACH model indicate that the
488 model dry deposition velocities V_d was underestimated. Gas-phase V_d in the model is predicted
489 with a standard inferential “resistance” algorithm (Wesley, 1989; Jarvis, 1976), with resistance to
490 deposition calculated for multiple parameters including aerodynamic, quasi-laminar sublayer and
491 bulk surface resistances (Baldocchi, 1987). To demonstrate the model underestimation in V_d ,
492 comparisons between the measurement-based and model V_d were made where an evaluation of
493 V_d for TOS and TON was possible. All F_{SO_2} were converted into V_{d-SO_2} by dividing F_{SO_2} by
494 interpolated SO₂ concentrations at 40 meters above ground, averaging 1.2 ± 0.5 , 2.4 ± 0.4 , and
495 3.4 ± 0.6 cm s⁻¹ for F7, F19 and F20, respectively, across the plume footprints (Methods, Section
496 2.4 and SI Table S2). The corresponding model V_{d-SO_2} derived in the same way as the
497 observations was 0.72, 0.63, and 0.58 cm s⁻¹, 1.7-5.4 times lower than observations (SI Section
498 S5; SI Table S2). Interestingly, the median V_d for SO₂ of 4.1 cm s⁻¹ determined using eddy
499 covariance/vertical gradient measurements from a tower in the AOSR is higher than the mass
500 balanced method showing an even larger discrepancy compared to the model (SI Section S3;
501 Figure S54). Similarly, derived V_{d-TON} averaged 2.8 ± 0.8 , 1.6 ± 0.5 , 4.7 ± 1.4 and 2.2 ± 0.7 cm s⁻¹
502 F7, F19, F20 south plume, and F20 north plume, respectively (SI Table S2), 1.2-5.2 times higher
503 than the corresponding modelled V_{d-TON} of 1.4, 1.3, 0.92, and 0.90 cm s⁻¹.

504 Using the observations, it was not possible to derive individual TON deposition rates

Formatted: Font: 12 pt

505 separate from their chemical formation/losses. In previous modelling work, Makar et al. (2018),
506 use the GEM-MACH model and describe the relative contributions of different TOS and TON
507 species towards total S and N deposition in the AOSR. TON was dominated by dry NO_2 (g)
508 deposition fluxes close to the sources (>70% of total N close to the sources), and dry HNO_3 (g)
509 deposition increases with increasing distance from the sources (remaining < 30% of total N), and
510 other sources of TON having minor contributions to deposition (< 10%). Although TON
511 encompasses a range of different N species with expected differences in their deposition rates,
512 comparisons of $V_{d\text{-TON}}$ with the model show, nevertheless, that overall large differences do exist.

513

514

515 **3.5 Monte-Carlo simulations of V_d for SO_2**

516 To further demonstrate observation-model differences, V_d distributions of SO_2 from five
517 common inferential dry deposition algorithms (Wu et al., 2018; Makar et al., 2018) were
518 determined for the conditions encountered during the flights using a Monte-Carlo approach as
519 described in Methods, Section 2.5). Results for the V_d simulations algorithms are shown in
520 Figure 5a. Histograms for all five algorithms have peak V_d values at $\sim 1 \text{ cm s}^{-1}$ or lower.
521 Probability distributions for the individual resistance terms, R_a , R_b , and R_c showed that the
522 dominant resistance driving V_d was the R_c term (SI Figure S32). Also shown in Figure 5a are the
523 measurement-derived V_d for Flights 7, 19 and 20, and that from the Osiki-ôtin ground site. The
524 observed V_d values are larger than the V_d values for most of the simulations, with the exception
525 of Flight 7, where the Zhang et al. (2002), NOAH-GEM (Wu et al., 2018) and C5DRY (Wu et
526 al., 2018) algorithms' distributions agree with the observations. All algorithms are biased low

527 relative to the observations for the remaining flights, and the Oski-ôtin ground site. It is noted
528 that the ground-site observations that were derived using a standard flux tower methodology (SI
529 Section S3) at a single site, appeared to be higher than all other V_d ; nevertheless, these
530 observations are closer to the aircraft values than the algorithm estimates. These results indicate
531 that an underestimation of V_d relative to both aircraft and ground based measurements in the
532 AOSR ~~region~~ is not unique to the GEM-MACH model or its dry deposition algorithm; similar
533 results would occur with the other algorithms included in the Monte-Carlo simulations, all of
534 which are used within other regional models.

535 To investigate the possible reasons behind the low model V_d relative to the observations,
536 a series of sensitivity tests using SO₂ were conducted. Differences in model V_d have been shown
537 to be mainly due to differences in the calculated R_c (Wu et al., 2018), and sensitivity tests here
538 indicated that R_c is particularly sensitive to the cuticular resistance R_{cut}. Hence, factors causing
539 R_{cut} to change can have significant impact on model V_d . In some of the algorithms, R_{cut} and
540 other resistance terms are dependent on the effective Henry's Law constant K_H^{*} for SO₂. The
541 Monte-Carlo simulations for Figure 5 assumed a surface pH= 6.68 resulting in a K_H^{*} of 1x10⁵ for
542 SO₂. Additional Monte-Carlo simulations were performed for the GEM-MACH dry deposition
543 algorithm by adjusting K_H^{*} assuming different pH with small variations from a pH=6.68
544 significantly changing R_c, R_{cut}, and V_d (SI Figure S43). In Figure 5b – red dashed line, with a
545 surface pH change from 6.68 to 8, consistent with possible alkaline surfaces in the AOSR
546 (Makar et al., 2018), in the GEM-MACH simulation, the V_d distribution is moved to larger
547 values) with its peak value shifting from 0.6 to 1.4 cm s⁻¹. These results show that model V_d may
548 be highly sensitive to assumed surface pH, at least when using some inferential dry deposition
549 algorithms which are pH-dependent. However, Figure 5b shows that this pH-associated increase

550 in V_d is still insufficient to encompass the range of measurement-derived V_d . Increasing pH to 8
551 for the GEM-MACH simulation reduces R_{cut} , hence R_c , to values much smaller than R_a and R_b ,
552 suggesting that model V_d cannot further increase without reductions in both R_a and R_b . In other
553 words, R_a and R_b were probably overestimated in the current deposition velocity algorithms. By
554 using the Zhang et al. (2002) R_a and the NOAH-GEM (Wu et al., 2018) R_b parameterizations in
555 the GEM-MACH algorithm, a further shift of the GEM-MACH V_d distribution to larger values
556 was found, with the range encompassing most of the observations (Figure 5b, pink dashed line).

557 The potential for re-emission of TOS and TON species was also considered. Fulgham et
558 al. (2020) report that the bidirectional fluxes of volatile organic acids are driven by an
559 equilibrium partitioning between surface wetness and the atmosphere. The observations
560 presented here represent the net flux of all processes including the effects of deposition and any
561 potential re-emissions of TOS and TON compounds should this process occur. As the results
562 show a net downward flux (i.e. net deposition), if any re-emission was occurring, it would be
563 smaller than the deposition fluxes observed here, which are themselves higher than shown by
564 currently available deposition algorithms. This implies that the deposition part of the flux must
565 be even larger than the net observed flux and the measured net fluxes presented here should then
566 be considered as minimum values. The current deposition algorithms do not include

567 bidirectional fluxes for inorganics, and adjustments related to pH in some situations may not be
568 sufficient to parameterize deposition fluxes. A bidirectional approach may be needed that would
569 include not only $[H^+]$, but surface heterogeneous reactions, to determine near-surface equilibrium
570 concentrations of co-depositing gases such as ammonia and nitric acid.

571 It is clearly from the Monte-Carlo simulations for SO_2 V_d comparisons, inferential dry
572 deposition algorithms as used in regional and global chemical transport models need to be further

Formatted: Font: 12 pt, Not Highlight

Formatted: Font: 12 pt

Formatted: Font: 12 pt, Not Highlight

Formatted: Font: 12 pt

Formatted: Font: 12 pt, Not Highlight

Formatted: Font: 12 pt

573 validated and improved, especially over large geographic regions. Here, the role of pH was
574 identified for improvement in some algorithms along with possible improvement in aerodynamic
575 and quasi-laminar sublayer resistance parameters. Yet, for other algorithms and for **TON**
576 compounds, the model low-biases in V_d remain to be investigated.

Formatted: Font: Bold, Italic

577 The underestimates suggest that the applications of these algorithms in regional or global
578 models may significantly underestimate model-predictions of **TOS** dry depositional loss from the
579 atmosphere. Underestimates in V_d are the result of a combination of uncertainties in the
580 parameterizations of each algorithm. In the case of the algorithm used in GEM-MACH, by
581 adjusting the assumed surface pH from 6.68 to 8 (justifiable given the considerable dust
582 emissions in the region (Zhang et al., 2018)), the model V_d moved closer to the aircraft-derived
583 values (Figure 5b), reducing the model-observation gap by approximately 2/3. In addition,
584 substituting the aerodynamic resistance and quasi-laminar sublayer resistance parameterizations
585 in the GEM-MACH algorithm with that from Zhang et al. (2002) and NOAH-GEM (Wu et al.,
586 2018), respectively, resulted in a further increase in the model V_d distribution that encompasses
587 most of the observations (Figure 5b). Clearly, different algorithms respond differently to
588 changes in the parameterizations, and validation and adjustment to each algorithm needs
589 measurement-based results over large regions such as derived here.

590

591 **4 Conclusions**

592 The atmospheric transport distances and lifetimes $d_{1/e}$ and τ determined from the aircraft
593 measurements are substantially shorter than the GEM-MACH model predictions, and the dry
594 deposition fluxes F and velocities F and V_d near sources are larger compared to the predictions
595 by GEM-MACH and five inferential dry deposition velocity algorithms, respectively. There are

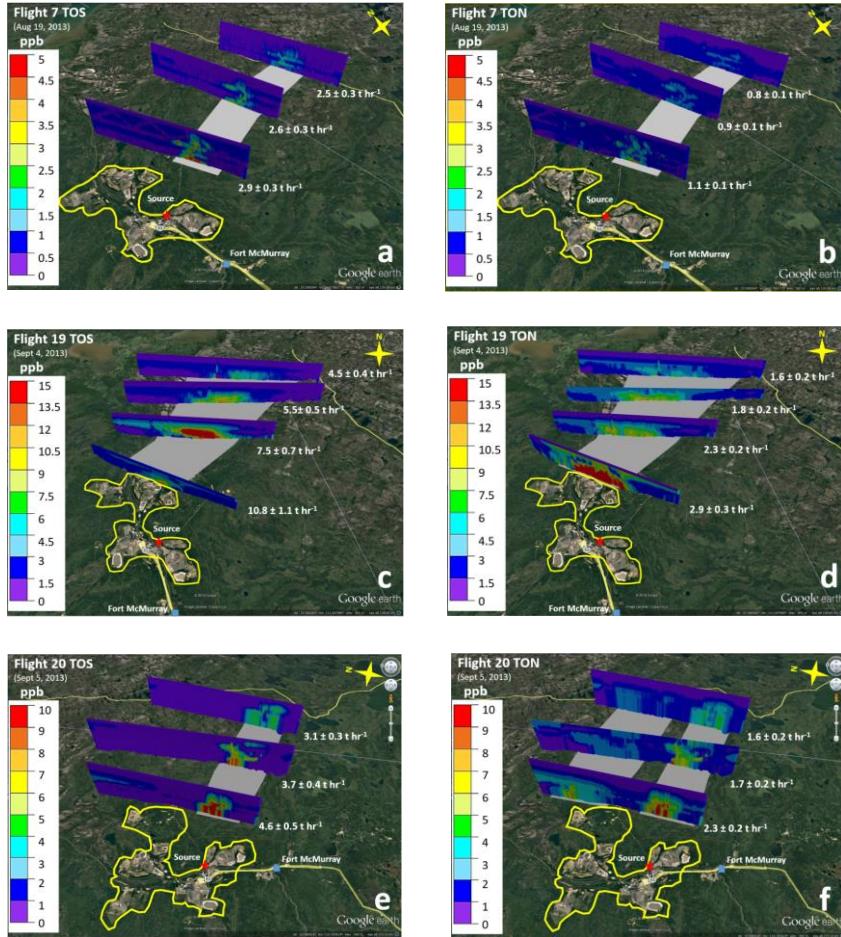
596 important implications for these measurement-model discrepancies. Such discrepancies indicate
597 that regional or global chemical transport models using these algorithms are biased low for local
598 deposition and high for long-range transport and deposition, and **TOS** and **TON** loss from the
599 atmosphere are significantly under-predicted, resulting in overestimated lifetimes. **While the**
600 **measurements took place over a relatively short time period, these results indicate that TOS and**
601 **TON may be removed from the atmosphere at about twice the rate as predicted by current**
602 **atmospheric deposition algorithms. This, in turn, implies a potentially significant impact on**
603 **deposition over longer time scales (potentially weeks to months) and relevance towards**
604 **cumulative environmental exposure metrics such as critical loads and their exceedance. A faster**
605 **near-source deposition velocity for emitted reactive gases may imply less S and N mass being**
606 **available for long range transport, reducing concentrations and deposition further downwind.**
607 **The near-source higher deposition velocity, thus has the important implication of a reduction in**
608 **more distant and longer timescale deposition for locations further from the sources. Moreover,**
609 **emissions assessed through network measurements or budget analysis of atmospheric **TOS** and**
610 **TON** (Sickles and Shadwick, 2015; Paulot et al., 2018; Berglen et al., 2004) may be
611 **underestimated due to lower V_d used in these estimates, and may require reassessing the**
612 **effectiveness of control policies. Shorter τ for **TOS** and **TON** reduces their atmospheric spatial**
613 **scale and intensity of smog episodes, potentially reducing human exposures (Moran et al., 2010).**
614 **Importantly, shorter τ for **TOS** and **TON** reduces their contribution to atmospheric aerosols;**
615 **consequently, the negative direct and indirect radiative forcing from these sulfur and nitrogen**
616 **aerosols are reduced, reducing their cooling effects on climate (Solomon et al., 2007). These**
617 **impacts suggest that more measurements to determine τ and F for these pollutants across large**
618 **geographic scales and different surface types are necessary to better quantify their climate and**

619 environmental impacts in support of policy. While in the past such determination was difficult
620 and/or impossible, the present study provides a viable methodology to achieve such a goal.

621

622

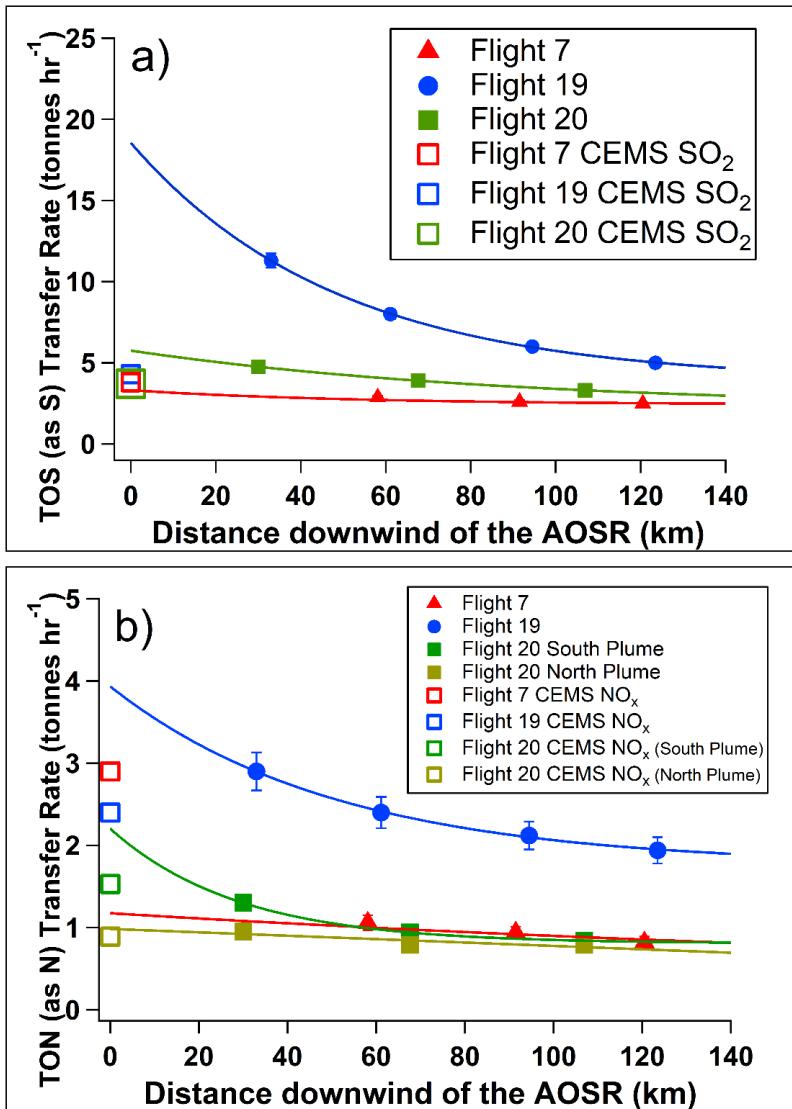
623 **Table 1.** Average observed meteorological conditions and facility emission rates of **TOS** (E_{TOS})
 624 and **TON** (E_{TON}), (determined from extrapolated (to distance=0) transfer rates; Figure 1) for
 625 **TOS** and **TON** during the F7, F19 and F20 flights. SP=south plume; NP=north plume.


Flight	Date	Time (UTC)	Mean wind speed (m/s)	Mean wind direction (°)	Mixed layer height (m agl)	E_{TOS} (t/hr)	E_{TON} (t/hr)
7	Aug 19/13	2007–0108	13.0±1.0	256±11.7	2500±100	3.4	1.2
19	Sep 4/13	1854–2353	9.5±1.9	218±16	1200±100	18.5	3.9
20	Sep 5/13	1933–2436	8.9±1.2	281±11	2100±100	5.8	2.2 (SP) 1.2 (NP)

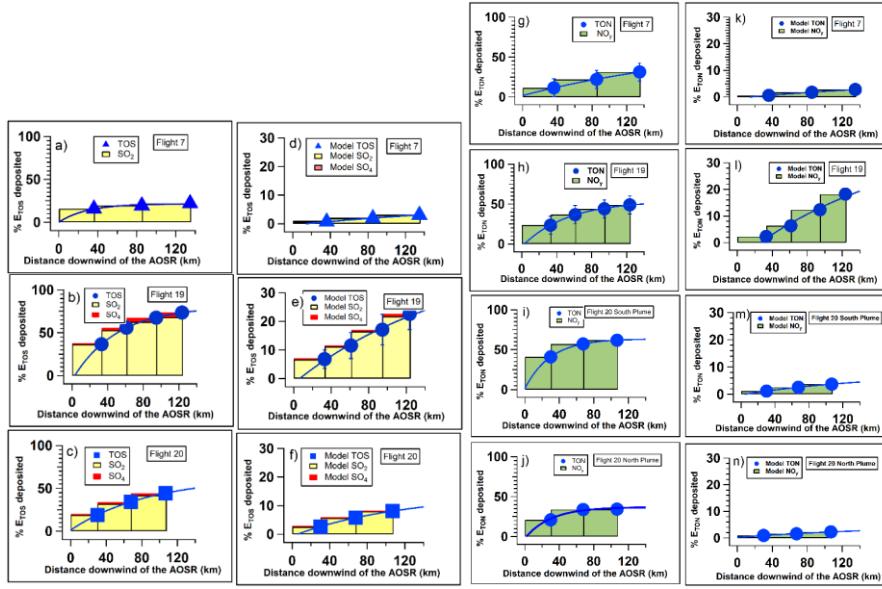
626

627 **Table 2.** Model average meteorological conditions and facility emission rates of **TOS** (E_{TOS}) and
 628 **TON** (E_{TON}) during the F7, F19 and F20 flights as described above. SP=south plume; NP=north
 629 plume.

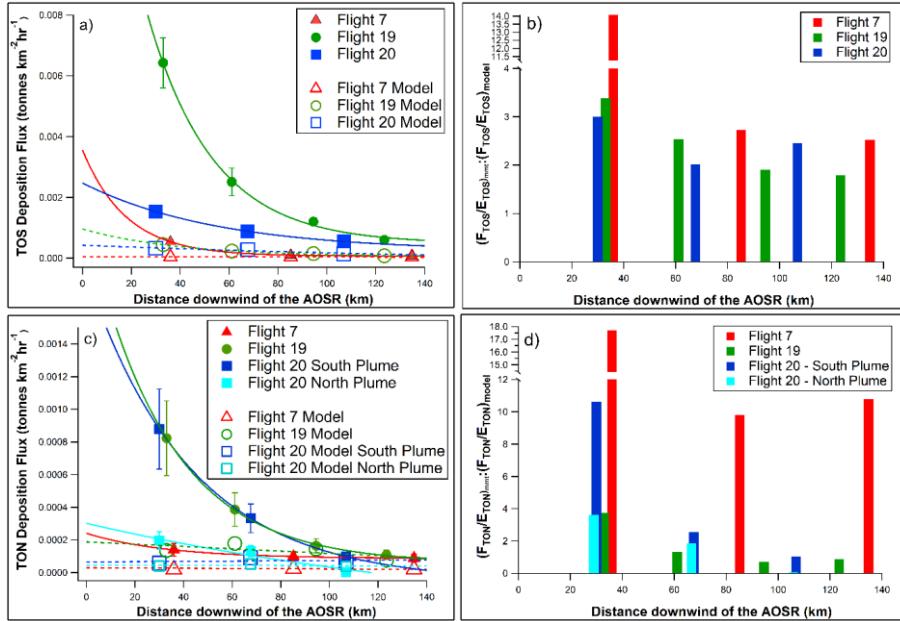
Flight	Date	Time (UTC)	mean wind speed (m/s)	mean wind direction (°)	mixed layer height (m agl)	E_{TOS} (t/hr)	E_{TON} (t/hr)
7	Aug 19/13	2007–0108	12.6±0.3	253±5.0	1670±80	3.8	2.9
19	Sep 4/13	1854–2353	8.1±1.0	225±4.6	1450±43	4.3	2.4
20	Sep 5/13	1933–2436	9.1±0.7	275±1.6	1590±42	3.7	1.5 (SP) 0.9 (NP)


630

631


632

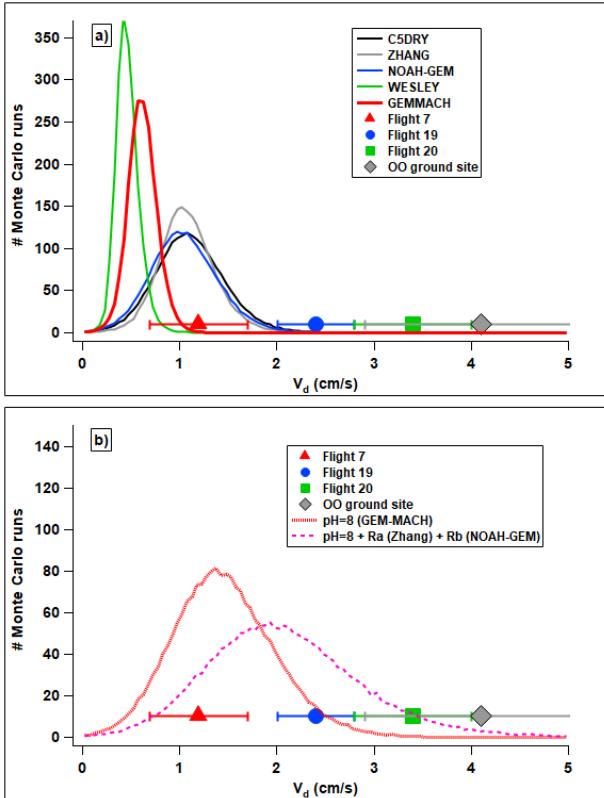
633 **Figure 1. TOS (total oxidized sulfur) and TON (total oxidized nitrogen) plumes downwind of**
 634 **the AOSR during three Lagrangian flights, F7, F19 and F20. The AOSR facilities are enclosed**
 635 **by the yellow outline. The transfer rates T in $t S$ or $N \text{ hr}^{-1}$ across each screen are shown. The**
 636 **grey shaded surface areas are identified as the geographic footprint under the plumes. Data:**
 637 **Google Image © 2018 Image Landsat / Copernicus.**



638

639 **Figure 2.** TERRA-derived transfer rates of (a) TOS and (b) TON for F7, F19 and F20. The
 640 vertical bars indicate the propagated uncertainties. The model emission rates E_{TOS} and E_{TON} are
 641 shown by the open symbols.

643 **Figure 3.** Cumulative dry deposition as a percentage of emissions *of* E_{TOS} (a to f) or E_{TON} (g to
 644 n) for F7, F19 and F20 measurements *and* with corresponding GEM-MACH model predictions.
 645 The bars show the dry deposition due to SO_2 and pSO_4 . The curves were fitted to the **TOS** and
 646 **TON** dry deposition percentages from which $d_{I/e}$ and τ were determined.



647

648 **Figure 4.** Dry deposition fluxes F_{TOS} and F_{TON} (in $\text{t km}^{-2} \text{hr}^{-1}$) determined from measurements
 649 (solid symbols) and GEM-MACH model predictions (open symbols). (a) F_{TOS} , (b) ratios of
 650 measurement to model normalized emissions $F_{\text{TOS}}/E_{\text{TOS}}$, (c) F_{TON} , and (d) ratios of measurement
 651 to model normalized emissions $F_{\text{TON}}/E_{\text{TON}}$.
 652

Formatted: Superscript

Formatted: Superscript

653

654 **Figure 5.** (a) Distributions of V_d for SO_2 from Monte-Carlo simulations using 5 different
655 deposition parameterizations (Wu et al., 2018; Makar et al., 2018) and (b) Monte-Carlo
656 simulations for the GEM-MACH algorithm using a pH=8 and using a pH=8 plus replacing the
657 GEM-MACH algorithm R_a and R_b formulae with that from Zhang et al. (2002) and NOAH-GEM
658 (Wu et al., 2018), respectively. Aircraft-derived V_d for F7, F19 and F20 as well as the median
659 value for the Oski-otin ground site (SI Figure S54) are shown in both (a) and (b) for comparison.
660

661 **References**

662 Aubinet, M., Vesala, T. and Papale, D. (Eds.): Eddy Covariance. Springer Atmospheric Sciences,
663 Springer, Dordrecht, 2012.

664 Baldocchi, D.D., Vogel, C.A., and Hall, B.: A canopy stomatal resistance model for gaseous
665 deposition to vegetated surfaces, *Atmos. Env.*, **21**, 91-101, [https://doi.org/10.1016/0004-6981\(87\)90274-5](https://doi.org/10.1016/0004-6981(87)90274-5), 1987.

666

667 Baray, S., Darlington, A., Gordon, M., Hayden, K.L., Leithead, A., Li, S.-M., Liu, P.S.K.,
668 Mittermeier, R.L., Moussa, S.G., O'Brien, J., Staebler, R., Wolde, M., Worthy, D. and
669 McLaren, R.: Quantification of methane sources in the Athabasca Oil Sands Region of
670 Alberta by aircraft mass balance, *Atmos. Chem. Phys.*, **18**, 7361-7378,
671 <https://doi.org/10.5194/acp-18-7361-20182018>.

672 Benkovitz, C.M., Schwartz, S.E., Jensen, M.P., Miller, M.A., Easter, R.C. and Bates, T.S.:
673 Modeling atmospheric sulfur over the Northern Hemisphere during the Aerosol
674 Characterization Experiment 2 experimental period, *J. Geophys. Res.*, **109**, D2220,
675 <https://doi.org/10.1029/2004JD004939>, 7, 2004.

676 Berglen, T.F., Berntsen, T.K., Isaksen, I.S.A. and Sundet, J.K.: A global model of the coupled
677 sulfur/oxidant chemistry in the troposphere: The sulfur cycle, *J. Geophys. Res.*, **109**, D19310,
678 <https://doi.org/10.1029/2003JD003948>, 2004.

679 Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M., Bustamante,
680 M., Cinderby, S., Davidson, E., Dentener, F., Emmett, B., Erisman, J-W., Fenn, M., Gilliam,
681 F., Nordin, A., Pardo, L. and De Vries, W.: Global assessment of nitrogen deposition effects
682 on terrestrial plant diversity: a synthesis, *Ecol. Appl.* **20**, 30-59, <https://doi.org/10.1890/08-1140.1>, 2010.

683

684 Brook, J.R., Di-Giovanni, F., Cakmak, S. and Meyers, T.P.: Estimation of dry deposition
685 velocity using inferential models and site-specific meteorology – uncertainty due to siting of
686 meteorological towers, *Atmos. Environ.*, **31**, 3911-3919, [https://doi.org/10.1016/S1352-2310\(97\)00247-1](https://doi.org/10.1016/S1352-2310(97)00247-1), 1997.

685

686

687

688 Chin, M., Savoie, D.L., Huebert, J., Bandy, A.R., Thornton, D.C., Bates, T.S., Quinn, P.K.,
689 Saltzman, E.S. and De Bruyn, W.J.: Atmospheric sulfur cycle simulated in the global model
690 GOCART: Comparison with field observations and regional budgets, *J. Geophys. Res.*, **105**,
691 24689-24712, <https://doi.org/10.1029/2000JD900384>, 2000.

692

693 Christian, G., Ammann, M., D'Anna, B., Donaldson, D.J. and Nizkorodov, S.A.: Heterogeneous
694 photochemistry in the atmosphere, *Chem. Rev.* **115**, 4218-4258,
<https://doi.org/10.1021/cr500648z>, 2015.

695 DeCarlo, P.F. , Kimmel, J.R., Trimborn, A., Northway, M.J., Jayne, J.T., Aiken, A.C., Gonin,
696 M., Fuhrer, K., Horvath, T., Docherty, K.S., Worsnop, D.R., Jimenez, J.L.: Field-
697 deployable, high-resolution, time-of-flight aerosol mass spectrometer, *Anal. Chem.*, 8281-
698 9289, <https://doi.org/10.1021/ac061249n>, 2006.

699 de Gouw, J. and Warneke, C.: Measurements of volatile organic compounds in the earth's atmosphere
700 using proton-transfer-reaction mass spectrometry, *Mass Spectrom. Rev.*, **26**, 223-257,
701 <https://doi.org/10.1002/mas.20119>, 2007.

702 Degrazia, G.A., Maldaner, S., Buske, D., Rizza, U., Buligon, L., Cardoso, V., Roberti, D.R.,
703 Acevedo, O., Rolim, S.B.A. and Stefanello, M.B.: Eddy diffusivities for the convective
704 boundary layer derived from LES spectral data, *Atmos. Pollut. Res.*, **6**, 605-611,
705 <https://doi.org/10.5094/APR.2015.068>, 2015.

706 Dentener, F., Drevet, J., Lamarque, J.F., Bey, I., Eickhout, B., Fiore, A.M., Hauglustaine, D.,
707 Horowitz, L.W., Krol, M., Kulshrestha, U.C., Lawrence, M., Galy-Lacaux, C., Rast, S.,
708 Shindell, D., Stevenson, D., Van Noije, T., Atherton, C., Bell, N., Bergman, D., Butler, T.,
709 Cofala, J., Collins, B., Doherty, R., Ellingsen, K., Galloway, J., Gauss, M., Montanaro, V.,
710 Müller, J.F., Pitari, G., Rodriguez, J., Sanderson, M., Solmon, F., Strahan, S., Schultz, M.,
711 Sudo, K., Szopa, S. and Wild, O.: Nitrogen and sulfur deposition on regional and global
712 scales: A multimodel evaluation, *Global Biogeochem. Cycle*, **20**, GB4003,
713 <https://doi.org/10.1029/2005GB002672>, 2006.

714 Doney, S.C. The growing human footprint on coastal and open-ocean biogeochemistry, *Science*
715 **328**, 1512-1516, DOI: 10.1126/science.1185198, 2010.

716 Dunlea, E.J., Herndon, S.C., Nelson, D.D., Volkamer, R.M., San Martini, F., Sheehy, P.M.,
717 Zahniser, M.S., Shorter, J.H., Wormhoudt, J.C., Lamb, B.K., Allwine, E.J., Gaffney, J.S.,
718 Marley, N.A., Grutter, M., Marquez, C., Blanco, S., Cardenas, B., Retama, A., Ramos
719 Villegas, C.R., Kolb, C.E., Molina, L.T., and Molina, M.J.: Evaluation of nitrogen dioxide
720 chemiluminescence monitors in a polluted urban environment, *Atmos. Chem. Phys.*, **7**,
721 2691-2704, <https://doi.org/10.5194/acp-7-2691-2007>, 2007.

722 Emerson, E.W., Hodshire, A.L., DeBolt, H.M., Bilsback, K.R., Pierce, J.R., McMeeking, G.R.,
723 and Farmer, D.K., Revisiting particle dry deposition and its role in radiative effect estimates,
724 *Proc. Natl. Acad. Sci. U.S.A.*, **117** (42), 26076-26082, doi: 10.1073/pnas.2014761117, 2020.

725 Finkelstein, P.L., Ellestad, T.G., Clarke, J.F., Meyers, T.P., Schwede, D.B., Hebert, E.O. and
726 Neal, J.A.: Ozone and sulfur dioxide dry deposition to forests: Observations and model
727 evaluation, *J. Geophys. Res.*, **105**, 15365-15377, <https://doi.org/10.1029/2000JD900185>,
728 2000.

729 Fowler, D., Pilegaard, K., Sutton, M.A., Ambus, P., Raivonen, M., Duyzer, J., Simpson, D.,
730 Fagerli, H., Fuzzi, S., Schjoerring, J.K., Granier, C., Neftel, A., Isaksen, I.S.A., Laj, P.,
731 Maione, M., Monks, P.S., Burkhardt, J., Daemgen, U., Neirynck, J., Personne, E., Wichink-
732 Kruit, R., Butterbach-Bahl, K., Flechard, C., Tuovinen, J.P., Coyle, M., Gerosa, G., Loubet,
733 B., Altimir, N., Gruenhage, L., Ammann, C., Cieslik, S., Paoletti, E., Mikkelsen, T.N., Ro-
734 Poulsen, H., Cellier, P., Cape, J.N., Horváth, L., Loreto, F., Niinemets, Ü., Palmer, P.I.,
735 Rinne, J., Misztal, P., Nemitz, E., Nilsoon, D., Pryor, S., Gallagher, M.W., Vesala, T., Skiba,
736 U., Bruggemann, N., Zechmeister-Boltenstern, S., Williams, J., O'Dowd, Facchini, M.C., de
737 Leeuw, G., Flossman, A., Chaumerliac, N. and Erisman, J.W.: Atmospheric composition
738 change: ecosystems-atmosphere interactions, *Atmos. Environ.*, **43**,
739 <https://doi.org/10.1016/j.atmosenv.2009.07.068>, 5193-5267, 2009.

Formatted: Font: (Default) Times New Roman
Formatted: Font: (Default) Times New Roman

Formatted: English (Canada)
Formatted: English (Canada)

740 Fulgham, S.R., Millet, D.B., Alwe, H.D., Goldstein, A.H., Schobesberger, S., and Farmer, D.K.,
741 Surface wetness as an unexpected control on forest exchange of volatile organic acids,
742 *Geophys. Res. Lett.*, **47**, e2020GL088745, <https://doi.org/10.1029/2020GL088745>, 2020.

743 Gordon, M., Li, S.-M., Stabler, R., Darlington, A., Hayden, K., O'Brien, J. and Wolde, M.:
744 Determining air pollutant emission rates based on mass balance using airborne measurement
745 data over the Alberta oil sands operations, *Atmos. Meas. Tech.*, **8**, 3745-3765,
746 <https://doi.org/10.5194/amt-8-3745-2015>, 2015.

747 Howarth, R.W. Review: coastal nitrogen pollution: a review of sources and trends globally and
748 regionally, *Harmful Algae*, **8**, 14-20, <https://doi.org/10.1016/j.hal.2008.08.015>, 2008.

749 Jarvis, P.G. The interpretation of the variations in leaf water potential and stomatal conductance
750 found in canopies in the field, *Phil. Trans. R. Soc. Lond., B.*, **273**, 593-610,
751 <https://doi.org/10.1098/rstb.1976.0035>, 1976.

752 Li, S.-M., Leithead, A., Moussa, S.G., Liggio, J., Moran, M.D., Wang, D., Hayden, K.,
753 Darlington, A., Gordon, M., Staebler, R., Makar, P.A., Stroud, C.A., McLaren, R., Liu,
754 P.S.K., O'Brien, J., Mittermeier, R.L., Zhang, J., Marson, G., Cober, S.G., Wolde, M. and
755 Wentzell, J.J.B.: Differences between measured and reported volatile organic compound
756 emissions from oil sands facilities in Alberta, Canada, *Proc. Natl. Acad. Sci.*, **114**, E3756-
757 E3765, <https://doi.org/10.1073/pnas.1617862114>, 2017.

758 Liggio, J., Li, S.-M., Hayden, K., Taha, Y.M., Stroud, C., Darlington, A., Drollette, B.D.,
759 Gordon, M., Lee, P., Liu, P., Leithead, A., Moussa, S.G., Wang, D., O'Brien, J., Mittermeier,
760 R.L., Brook, J.R., Lu, G., Staebler, R., Han, Yuemei, Tokarek, T.W., Osthoff, H.D., Makar,
761 P.A., Zhang, J., Plata, D.L. and Gentner, D.R.: Oil sands operations as a large source of
762 secondary organic aerosols, *Nature*, **534**, 91-94, <https://doi.org/10.1038/nature17646>, 2016.

763 Liggio, J., Li, S.-M., Staebler, R., Hayden, K., Darlington, A., Mittermeier, R.L., O'Brien, J.,
764 McLaren, R., Wolde, M., Worthy, D. and Vogel, F.: Measured Canadian oil sands CO₂
765 emissions are higher than estimates made using internationally recommended methods,
766 *Nature Comm.*, **10**, 1863, <https://doi.org/10.1038/s41467-019-09714-9>, 2019.

767 Makar, P.A., Akingunola, A., Aherne, J., Cole, A.S., Akililu, Y., Zhang, J., Wong, I., Hayden, K.,
768 Li, S.-M., Kirk, J., Scott, K., Moran, M.D., Robichaud, A., Cathcart, H., Baratzedah, P.,
769 Pabla, B., Cheung, P., Zheng, Q. and Jeffries, D.S.: Estimates of exceedances of critical loads
770 for acidifying deposition in Alberta and Saskatchewan, *Atmos. Chem. Phys.*, **18**, 9897-9927,
771 <https://doi.org/10.5194/acp-18-9897-2018>, 2018.

772 Matsuda, K., Watanabe, I., Wingpud, V. and Theramongkol, P.: Deposition velocity of O₃ and
773 SO₂ in the dry and wet season above a tropical forest in northern Thailand, *Atmos. Environ.*,
774 **40**, 7557-7564, <https://doi.org/10.1016/j.atmosenv.2006.07.003>, 2006.

775 Meyers, T.P., Hicks, B.B., Hosker Jr, R.P., Womack, J.D. and Satterfield, L.C.: Dry deposition
776 inferential measurement techniques. II. Seasonal and annual deposition rates of sulfur and
777 nitrate, *Atmos. Environ.*, **25**, 2631-2370, [https://doi.org/10.1016/0960-1686\(91\)90110-S](https://doi.org/10.1016/0960-1686(91)90110-S),
778 1991.

779 Moran, M.D., Ménard, S., Pavlovic, R., Anselmo, D., Antonopoulos, S., Makar, P.A., Gong, W.,
780 Gravel, S., Stroud, C., Zhang, J., Zheng, Q., Robichaud, A., Landry, H., Beaulieu, P.-A.,
781 Gilbert, S., Chen, J. and Kallaur, A.: Recent advances in Canada's national operational AQ
782 forecasting system. In: Steyn DG, Rao ST (Eds) *Air Pollution Modelling and Its Application*,
783 Springer, Dordrecht, 289,
784 https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1007%2F978-94-007-5577-2_37, 2010.

785

786 Munger, J.W., Fan, S., Bakwin, P.S., Goulden, M.L., Goldstein, A.H., Colman, A.S. and Wolfsy,
787 S.C.: Regional budgets for nitrogen oxides from continental sources: Variations of rates for
788 oxidation and deposition with season and distance from source regions, *J. Geophys. Res.*, **103**,
789 8355-8368, <https://doi.org/10.1029/98JD00168>, 1998.

790 Paulot, F., Malyshev, S., Nguyen, T., Crounse, J.D., Shevliakova, E. and Horowitz, L.W.:
791 Representing sub-grid scale variations in nitrogen deposition associated with land use in a
792 global Earth system model: implications for present and future nitrogen deposition fluxes over
793 North America, *Atmos. Chem. Phys.* **18**, 17963-17978, <https://doi.org/10.5194/acp-18-17963-2018>, 2018.

794

795 Samset, B.H., Myhre, G., Herber, A., Kondo, Y., Li, S.-M., Moteki, N., Koike, M., Oshima, N.,
796 Schwarz, J.P., Balkanski, Y., Bauer, S.E., Bellouin, N., Berntsen, T.K., Bian, H., Chin, M.,
797 Diehl, T., Easter, R.C., Ghan, S.J., Iversen, T., Kirkevåg, A., Lamarque, J.-F., Lin, G., Liu,
798 X., Penner, J.E., Schulz, M., Seland, Ø., Skeie, R.B., Stier, P., Takemura, T., Tsigaridis, K.
799 and Zhang, K.: Modelled black carbon radiative forcing and atmospheric lifetime in AeroCom
800 Phase II constrained by aircraft observations, *Atmos. Chem. Phys.* **14**, 12465–12477,
801 doi:10.5194/acp-14-12465-2014, 2014.

802 Sickles, J.E. & Shadwick, D.S. Air quality and atmospheric deposition in the eastern US: 20
803 years of change. *Atmos. Chem. Phys.*, **15**, 173-197, <https://doi.org/10.5194/acp-15-173-2015>,
804 2015.

805

806 Solomon, S., Quin, M., Manning, Z., Chen, M. Marquis, K.B., Averyt, M., Tignor, M., and
807 Miller, H.L. (Eds): *Climate Change 2007: The Physical Science Basis, IPCC AR4*,
808 Cambridge University Press, 2007.

809 Stull, R. *Introduction to Boundary Layer Meteorology*, Kluwer Academic Press, 1988.

810 Vet, R., Artz, R.S., Carou, S., Shaw, M., Ro, C.-U., Aas, W., Baker, A., Bowersox, V.C.,
811 Dentener, F., Galy-Lacaux, C., Hou, A., Pienaar, J., Gillett, R., Forti, M.C., Gromov, S., Hara,
812 H., Khodzher, T., Mahowald, N.M., Nickovic, S., Rao, P.S.P. and Reid, N.W.: A global
813 assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations,
814 organic acids, acidity and pH, and phosphorus, *Atmos. Environ.*, **93**, 3-100,
815 <https://doi.org/10.1016/j.atmosenv.2013.10.060>, 2014.

816 Wesley, M.L. Parameterization of surface resistances to gaseous dry deposition in regional-scale
817 numerical models, *Atmos. Environ.*, **23**, 1293-1304,
818 [https://ui.adsabs.harvard.edu/link_gateway/1989AtmEn..23.1293W/doi:10.1016/0004-6981\(89\)90153-4](https://ui.adsabs.harvard.edu/link_gateway/1989AtmEn..23.1293W/doi:10.1016/0004-6981(89)90153-4), 1989.

819

Field Code Changed

820 Wesley, M.L. & Hicks, B.B. A review of the current status of knowledge on dry deposition,
821 *Atmos. Environ.*, **34**, 2261-2282,
822 [https://ui.adsabs.harvard.edu/link_gateway/2000AtmEn..34.2261W/doi:10.1016/S1352-2310\(99\)00467-7](https://ui.adsabs.harvard.edu/link_gateway/2000AtmEn..34.2261W/doi:10.1016/S1352-2310(99)00467-7), 2000.

← Formatted: Space After: 0 pt

Field Code Changed

824 WHO, Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease, 2016.

825 Williams, E.J., Baumann, K., Roberts, J.M., Bertman, S.B., Norton, R.B., Fehsenfeld, F.C.,
826 Springston, S.R., Nennermacker, L.J., Newman, L., Olszyna, K., Meagher, J., Hartsell, B.,
827 Edgerton, E., Pearson, J.R., and Rodgers, M.O., Intercomparisons of ground-based NO_y
828 measurement techniques, *J. Geophys. Res.*, **103**, 22,621-22,280,
829 <https://doi.org/10.1029/98JD00074>, 1998.

← Formatted: Space After: 0 pt

830 Wright, L.P., Zhang, L., Cheng, I. and Aherne, J.: Impacts and effects indicators of atmospheric
831 deposition of major pollutants to various ecosystems - a review, *Aerosol Air Quality Res.*, **18**,
832 1953-1992, <https://doi.org/10.4209/aaqr.2018.03.0107>, 2018.

← Formatted: Space After: 0 pt

833 Wu, Z., Schwede, D.B., Vet, R., Walker, J.T. Shaw, M. Staebler, R. and Zhang, L.: Evaluation
834 and intercomparison of five North American dry deposition algorithms at a mixed forest site,
835 *J. Adv. Mod. Earth Sys.*, **10**, 1571-1586, <https://doi.org/10.1029/2017MS001231>, 2018.

836 Zhang, L., Moran, M.D., Makar, P., and Brook, J.R.: Modelling gaseous dry deposition in
837 AURAMS: a unified regional air-quality modelling system, *Atmos. Environ.*, **36**, 537-560,
838 2002.Zhang, J., Moran, M.D., Zheng, Q., Makar, P.A., Baratzadeh, P., Marson, G., Liu, P.
839 and Li, S.-M.: Emissions preparation and analysis for multiscale air quality modeling over
840 the Athabasca Oil Sands Region of Alberta, Canada, *Atmos. Chem. Phys.*, **18**, 10459-
841 10481, <https://doi.org/10.5194/acp-18-10459-2018>, 2018.

842

843 **Author Contribution:**

844 KH, SML, JL, SM, RM, RS, JO, MW all contributed to the collection of aircraft observations in the field.
845 KH, RM and JO made the SO₂, NO_y and pSO₄ measurements and carried out subsequent QA/QC of data.
846 RM analyzed canister VOCs and provided OH concentration estimates. SM provided OH estimates from
847 MCM modelling as a comparison. AD contributed to the development of TERRA. JL wrote the Monte
848 Carlo code. PM and AA ran the model and provided model analyses. JZ provided emissions data. LZ and
849 RS provided deposition algorithm parameters. KH and SML wrote the paper input from all co-authors.

850 **Code availability**

851 All the computer code associated with the TERRA algorithm, including for the kriging of pollutant data, a
852 demonstration dataset and associated documentation is freely available upon request. The authors request
853 that future publications which make use of the TERRA algorithm cite this paper, Gordon et al., Liggio et
854 al., or Li et al. as appropriate.

859 **Data availability**

860 All data used in this publication are freely available on the Canada-Alberta Oil Sands Environmental
861 Monitoring Information Portal: <https://www.canada.ca/en/environment-climate-change/services/oil->
862 [sands-monitoring/monitoring-air-quality-alberta-oil-sands.html](https://www.canada.ca/en/environment-climate-change/services/oil-sands-monitoring/monitoring-air-quality-alberta-oil-sands.html)

863

864 **Acknowledgements:**

865 The authors thank the National Research Council of Canada flight crew of the Convair-580, the
866 Air Quality Research Division technical support staff, **Julie Narayan for in-field data**
867 **management support**, and Stewart Cober for the management of the study. The project was
868 funded by the Air Quality program of Environment and Climate Change Canada and the Oil
869 Sands Monitoring (OSM) program. It is independent of any position of the OSM program.

870

871 The authors declare no competing interests.