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Abstract. Severe vortex-wide ozone loss in the Arctic would expose nearly 650 million people and ecosystem to unhealthy 

ultra-violet radiation levels. Adding to these worries, and extreme events as the harbingers of climate change, clear signature 

of an ozone hole (ozone column values below 220 DU) appeared over the Arctic in March and April 2020. Sporadic 15 

occurrences of ozone hole values at different regions of vortex for almost three weeks were found for the first time in the 

observed history in the Arctic. Furthermore, a record-breaking ozone loss of about 2.0–3.4 ppmv triggered by an 

unprecedented chlorine activation (1.5–2.2 ppbv) matching to the levels of Antarctic ozone hole conditions was also 

observed. The polar processing situation led to the first-ever appearance of loss saturation in the Arctic. Apart from these, 

there were also ozone-mini holes in December 2019 and January 2020 driven by atmospheric dynamics. The large loss in 20 

ozone in the colder Arctic winters is intriguing and that demands rigorous monitoring of the region. Our study suggests that 

the very colder Arctic winters in near future would also very likely to experience even more ozone loss and encounter ozone 

hole situations, provided the stratospheric chlorine levels still stay high there. 

1 Introduction 

Apart from its significance of shielding the harmful ultra-violet (UV) radiation reaching the surface of earth, stratospheric 25 

ozone is a key component in regulating the climate (e.g. Riese, et al., 2012). Changes in stratospheric ozone are always a big 

concern for both public health and climate (WMO, 2018; Bais et al., 2019). Due to unbridled emissions of Ozone Depleting 

Substances (ODS) to the atmosphere since the 1930s stratospheric chlorine peaked in the polar stratosphere in the early 

2000s (Newman et al., 2007; Engel et al., 2018; WMO, 2018). Therefore, the first signatures of polar ozone loss appeared 

over Antarctica by the late 1970s (Chubachi et al., 1984; Farman et al., 1985) and it peaked to saturation levels in late 1980s 30 

(Kuttippurath et al., 2018). Recent studies have demonstrated the effectiveness of Montreal Protocol in reducing halogen 

gases, with a corresponding positive trend in ozone in Antarctica (Salby et al., 2011; Kuttippurath et al., 2013; Solomon et 
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al., 2016; Chipperfield et al., 2017) and in northern mid-latitudes (Steinbrecht et al., 2014; Nair et al., 2015; Weber et al., 

2018). However, a positive trend in the Arctic ozone is not reported yet because of the large dynamically driven inter-annual 

variability of ozone there (Kivi et al., 2013; WMO, 2018). 35 

 

Antarctic winters are very cold and the ozone hole is a common feature of these winters since the late 1970s. There were 

winters with very low temperatures with stronger vortex that showed relatively larger loss in ozone, such as the winters of 

1996, 2000, 2003, 2006 and 2015 (Bodeker et al., 2005; Chipperfield et al., 2017). There were also winters with high 

temperatures and smaller ozone losses as in the case of 1998, 2002, 2012 and 2019 (Müller et al., 2008; de Laat et al., 2010; 40 

Kuttippurath et al., 2015). Yet, the inter-annual variability of ozone loss in the Antarctic is very small in the recent decades. 

On the other hand, colder winters with large losses of ozone (e.g. > 1.5 ppmv of loss) are rare in the Arctic (Rex et al., 2015). 

For instance, the Arctic winters 1995, 1996, 2000, 2005 and 2011 were very cold with large loss of ozone, up to 25–30%, but 

are still significantly smaller than the 40–55% ozone loss occurrence in the Antarctic (Kuttippurath et al., 2013; Pommereau 

et al., 2018).  45 

 

The Arctic vortex is short-lived and frequently disturbed by planetary wave activity. The vortex normally strengthens by 

mid-December or early January and dissipates by mid-March. Major and minor warmings are common features of Arctic 

winters. However, the vortex dissipates and ozone loss terminates when the major warmings occur there. In an earlier study, 

Kuttippurarth et al. (2012) observed an increasing trend in major warmings, and ozone loss is found to be proportional to the 50 

timing of the major warmings, as early winter warmings produce smaller loss in the Arctic winters. Since 1979, during the 

satellite era, there were two extreme winters with large loss of ozone in the Arctic; 2005 and 2011 (Coy et al., 1997; Feng et 

al., 2007; Horowitz et al., 2011). The occurrence of extreme events is a signature of climate change and so are the extreme 

cold winters with large loss in ozone (e.g. IPCC, 2007). Previous studies have postulated that the cold winters will get even 

colder with large loss in ozone (Sinnhuber et al., 2000; Rex et al., 2004; Chipperfield et al., 2005; Rider et al., 2013). 55 

Analyses of the past colder Arctic winters indicate that it is likely that the colder winters may experience large loss in ozone, 

as in the case of 2005, 2016 and 2011.  Here, we show that the Arctic winter in 2020 was very cold with the largest ozone 

loss in the observational record and met the condition for an ozone hole for the first time, by using different data, methods 

and other assessment parameters. 

2 Methods 60 

We have used two ozone profile datasets from the satellites. The level 2 data from the  

(i) Microwave Limb Sounder (MLS) v4.2 and  

(ii) Ozone Mapping and Profiler Suite (OMPS) v2.5 (ozone).  

(iii) We have also used the ozonesonde measurements from the Arctic stations at Alert (62.34° N, 82.49° W) 

and Eureka (79.99° N, 85.90° W). These measurements have an uncertainty of 5–10%.  65 
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Three satellite-based total column ozone (TCO) data are also employed (level 3) to analyses the ozone hole: 

(iv) Ozone Monitoring Instrument (OMI, DOAS v003), 

(v)  OMPS (v2.1), 

(vi)  Global Ozone Monitoring Experiment (GOME) (GDP4.8), 70 

(vii) Modern-Era Retrospective analysis for Research and Applications (MERRA)-2 and  

(viii) Brewer spectrometers from Alert and Eureka.  

 

These total column measurements have an uncertainty of 2–5%. The ozone and other trace gas profiles are provided in 

pressure co-ordinates, which are converted to isentropic coordinates using the temperature data from the same satellite. We 75 

use the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalyses ERA5 potential vorticity (PV) on a 

1°x1° grid to determine the vortex edge. The PV data are also converted to isentropic coordinates using the ER5 temperature 

data. We computed the equivalent latitude at each isentropic level at 5 K intervals from 350 to 800 K, and are then used to 

compute the vortex edge using the Nash et al. (1996) criteria. We use measurements inside the polar vortex for ozone loss 

analysis. The missing values in satellite measurements were filled with linear interpolation (poison_grid_fill). 80 

 

We have taken ozone, ClO, HNO3 and N2O from the Aura MLS measurements. The ozone measurements at 240 GHz have a 

vertical resolution of 2–3 km, vertical range of 261–0.02 hPa and an accuracy of 0.1–0.4 ppmv. The vertical range of HNO3 

measurements is 215–1.5 hPa, vertical resolution is 2–4 km, with an accuracy of 0.1–2.4 ppbv, depending on altitude. The 

N2O measurements are available for the 68–0.46 hPa vertical range, and 68 hPa roughly equivalent to 400 K isentropic level. 85 

The data were extrapolated up to 350 K by performing exponential fitting to N2O vertical distribution at 400–600 K by 

considering the exponential change of N2O with altitude. The accuracy of retrievals at 190 GHz is about 2–55 ppbv at this 

altitude range and the vertical resolution is about 2.5–3 km. The vertical resolution of ClO measurements at 640 GHz is 

about 3–3.5 km over 147–1 hPa, and the accuracy of measurements is about 0.2–0.4 ppbv. The measurements also have 

latitude-dependent bias of about 0.2–0.4 ppbv, depending on altitude (Livesey et al., 2013; Santee et al., 2008; Froidevaux et 90 

al., 2008).   

 

The OMPS consists of three sensors that measure scattered solar radiances in overlapping spectral ranges and scan the same 

air masses within 10 min. The nadir measurements are used to retrieve ozone total column and vertical profiles (NP). The 

Limb Profiler (LP) measures profiles with high vertical resolution (∼ 2–3 km) and the LP retrievals are in good agreement 95 

with other satellite measurements and the differences are mostly within 10% (Kramarova et al., 2018). The OMPS TCO 

shows 0.6–1.0% differences with Brewer and Dobson ground-based TCO measurements across the latitudes, and are also 

biased  
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+2% when the TCO is above 220 DU (Bais et al., 2014). The Global Ozone Monitoring Instrument (GOME‐2) was flown on 

MetOp‐A satellite in 2006. The GOME-2 ozone column has a positive bias in the northern high latitudes of about 0.5–3.5% 100 

(Layola et al., 2011). The Ozone Monitoring Instrument (OMI) TCO measurements have an accuracy of about 5% in the 

polar regions (Kroon et al., 2008; Kuttippurath et al., 2018). The Brewer spectrometers operates in the UV region and their 

ozone observations have an accuracy of about 5%. 

 

The ozone loss is estimated using two different methods and four different data sets to make sure the analyses are correct and 105 

robust. The first method used is the widely used profile descent method, wherein the N2O data are used for the calculations 

of air mass descent in the polar vortex. The reference profile of N2O was taken from the month of December, and therefore, 

the loss calculations are presented from December (May for Antarctic) onwards. The second method used for the calculation 

of ozone is the passive tracer method, for which a passive odd-oxygen tracer is simulated using a CTM (Chemical Transport 

Model) and is subtracted from the measured ozone to find the ozone loss, as the changes in tracer is modulated only by the 110 

dynamics (Feng et al., 2005). We have used the SLIMCAT model for the tracer calculations (Chipperfield, 2006). 

3. Results and discussion 

3.1 The exceptional meteorology of the Arctic winter 2020 

Figure 1 shows the times series of stratospheric meteorology in the Arctic winter 2020 compared to that of the longest 

winters 1997 and 2011. Time series of the meteorological parameters for all Arctic winters since 1979 are also shown (grey 115 

coloured curves) for comparison. In general, the temperatures are between 210 and 195 K. In 2020, the temperatures were 

about 195 K in December, 190–195 K in January–March and 195–205 K in April. However, the minimum temperature in 

late winter 2020 is generally lower than 195 K, about 115 days from December through early April. The temperatures are 

lower than those in the 2011 winter, and the temperatures in late March and April are lowest on the observational record. 

The temperatures are below 200 K in late December and early January, which is important for chlorine activation. The lower 120 

temperatures in late December through mid-March are key to large ozone loss and are a common phenomenon in winters 

with large loss of ozone (e.g. 1995, 2000, 2005 and 2011). Therefore, the higher temperatures were also the reason for the 

relatively small ozone loss in 1997; although it was a winter with a strong vortex up to the end of April. Since minor 

warmings (mWs) are very common in the Arctic polar winters, we also examined the occurrence of mW events with 

temperature at 90° (North Pole) and 60° N at 10 hPa and zonal winds at 60° N at 10 hPa. The analyses show a small increase 125 

in temperature on 5 February 2020 (i.e. a minor warming) and a corresponding change in zonal winds.  

 

The temperatures were consistently lower than the nitric acid trihydrate (NAT) threshold of 195 K and therefore, large areas 

of Polar Stratospheric Clouds (PSCs) are observed from December to mid-February. The PSC area (APSC) was about 4 

million km2 in December at 460 K, but it doubled in January through mid-March. The APSC from mid-February to late 130 
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March is also largest on the observational record (Figure 1). The low temperatures (i.e. lower than 188 K) also produced 

very high amount of ice PSCs at the end of January and early February (up to 4 million km2) when the lowest temperatures 

in 40 years were recorded in the Arctic. This is the largest ice PSC ever observed in terms of its area, volume and number of 

days of appearance (i.e. frequency) in the Arctic and the area is twice that of the winter 2011. The PSC area shrunk to half of 

its area in late January and February, as the lower stratospheric temperature increased during the period. This was the only 135 

occasion that the temperature increased and PSC areas limited to below 4 million km2 in the winter 2020. Note that the PSC 

area and volume were largest in 2016, not in 2020 (Figure S1) (Kirner et al., 2015). 

 

The potential vorticity (PV) analyses at ~17 km (about 460 K potential temperature level) show that the polar vortex was 

very strong in the lower stratosphere in 2020. The PV values were consistently higher than the previous cold (i.e. 1995, 140 

2000, 2005 and 2011) and long-lasting (e.g. 1997 and 2011) winters in March and April. This indicates that the winter 2020 

had the strongest vortex in the recent history, as demonstrated by the PV time series of different Arctic winters (Figure 1, 

second panel, left). However, the zonal winds were strongest in 1997 during the March-April period. The Arctic vortex in 

any winter would be frequently disturbed by planetary waves that emanate from the troposphere. In general, planetary wave 

numbers 1, 2 and 3 are mostly responsible for the momentum transfer to the stratosphere. This dynamical activity would 145 

increase the temperature in the lower stratosphere and trigger stratospheric warmings. The warmings can be minor or major, 

depending on the strength of wave activity, increasing the polar temperature and eventually disturbing the polar vortex. The 

vortex can be distorted, displaced, elongated and even split in two in accordance with the potency of momentum imparted by 

the waves. When the polar vortex is disturbed, the ozone loss will be smaller and the final warming can be as early as in late 

February or early March, as for most Arctic winters (e.g. Manney et al., 2003; Kuttippurath et al., 2012; Goutail et al., 2015). 150 

The diagnosis with heat flux and the eddy heat flux associated with waves demonstrates that the momentum transported from 

the troposphere to stratosphere was very weak in the winter 2020 (in the range of -20 to 30 Km s-1), and the heat flux values 

are zero or negative (e.g. -10 Km s-1 in February) during most part of the winter. These analyses are also in agreement with 

the eddy heat flux computed for the waves, as they also show smaller wave momentum to the stratosphere. In short, the eddy 

heat flux and wave heat flux show smaller values in January-April; indicating the reason for the less disturbed long-lasting 155 

vortex in 2020.  

 

The potential vorticity analyses show a strong and large vortex in early December (Figure 2). The vortex began to grow and 

occupied the entire polar region by early January. The lowest temperatures of the past 40 years was recorded by the end of 

January and the vortex was exceptionally strong and large. The mW distorted and elongated the vortex in early February, but 160 

the vortex was still strong and continued to be intact until the last week of April 2020. The extraordinary persistence of a 

strong and undisturbed Arctic vortex in March and April is evident in the PV maps.  
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3. 2 Strong air mass descent and associated ozone distribution 

Figure 3 shows the distribution of ozone, ClO, N2O, HNO3 and the ozone loss estimated for the winter 2020 using satellite 

observations. We use the measurements from MLS on the Aura satellite (Livesey et al., 2015). The MLS measurements are 165 

one of the best currently available data for polar ozone loss analyses, as the instrument provides measurements of some key 

ozone-related chemistry trace gases such as ClO, N2O and HNO3 to delineate the features of chlorine activation, vortex 

descent and denitrification, respectively (Manney et al., 2020). The ozone distributions in the vortex show < 1.0 ppmv in 

December, slightly higher values of about 1.5 ppmv in February and smaller than 1.0 ppmv from Mid-March to the end of 

April at 400 K. The measurements show exceptionally small values of ozone, about 0.5 ppmv or below, during the period 170 

mid-March through to the end of April at 350–450 K. The ozone values show < 2.5 ppmv from December to mid-January, < 

2 ppmv January and February and < 1.0 ppmv in March-April at 350–450 K, and about 2–4 ppmv above 500 K; suggesting 

an unusual reduction in ozone in December and late January. The ozone values are about 3–4 ppm above 550 K throughout 

the winter; implying little reduction in ozone there. The unusual feature here is the extremely small ozone of 1.0 ppmv in 

early December and in March–April below 450 K (about 16 km). This reveals huge loss of ozone in the lower stratosphere 175 

and therefore, we have quantified the ozone loss for the winter. We use the profile descent method using the trace of air 

motions N2O and is a widely used method for ozone loss estimation (Bremer et al., 2002; Rex et al., 2002; Jin et al., 2006). 

 

For instance, the MLS measurements show N2O values were 250 ppbv at 400 K, 150 ppbv at 500 K and 50 ppbv at 600 K in 

December. The N2O observations show strong air mass descent with values down to 100 ppbv at 400 K and about 25–50 180 

ppbv above 500 K in early February. Again, N2O values exhibit below 50 ppbv in late March at 400 K. The N2O 

distributions show below 50 ppbv at all altitudes from early February onwards; suggesting substantial dynamic descent in the 

stratosphere. When a particular altitude is considered, e.g. the 450 K potential temperature level, the N2O values show 160 

ppbv in early December, 100 ppbv in early January, 50 ppbv in early February and smaller than 50 ppbv thereafter. On the 

other hand, the N2O distributions show 50 ppbv in early December and below that value afterwards at 500 K. The severe air 185 

mass descent in this winter is further depicted in Figure S2, where monthly correlation between ozone an N2O are presented.  

3.3 Ozone loss and mini-holes in December and January 

There were vortex-wide PSC occurrences in the first week of December, about 2-4 million km2 in area (APSC) and about 70 

million km3 in volume (VPSC). The APSC and VPSC dropped significantly afterwards and then gradually increased again 

by mid-December to 10 million km2 and 120 million km3, respectively. An unusual increase in activated chlorine is observed 190 

during the first week of December in conjunction with the appearance of PSCs. The temperatures began to decrease from 

198 K in mid-December to 187 K by the end of January. The chlorine activation peaked and showed record levels of ClO, 

about 1.5–2.0 ppbv at 400–600 K, during this period. The chemical ozone loss began in early January with about 0.5 ppmv 
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and increased to 1.5 ppmv by the end of January below 500 K. The loss above that altitude is always lower than 0.5 ppmv, 

which shows that the ozone loss is restricted to the altitudes below 21 km (i.e. 550 K).  195 

 

In general, the ozone loss starts in December in the middle stratosphere and then gradually progresses towards the lower 

stratosphere by January. The loss would be below 0.5 ppmv in December and about 0.5–1.0 ppmv in January in the lower 

stratosphere in cold Arctic winters. However, in the Arctic winter 2020, the ClO and ozone loss show unusually high values 

of about 1.5–2.0 ppbv and 1.5–2.0 ppmv, respectively. Since chlorine activation of this scale requires sunlight, and there is 200 

no sunlight in the Arctic vortex in early winter, the appearance of huge amounts of ClO during this period is surprising. The 

only possibility to have such high-levels of chlorine activation is the displacement of vortex to the sunlit latitudes. The 

analyses of vortex position in early December and late January (Figure 2) reveal that the vortex was at 55°–60° N. Therefore, 

a strong polar vortex, very low temperatures, large volumes of PSCs and shift of vortex to the sun light part of mid-latitudes 

caused the unprecedented chlorine activation and ozone loss in the first week of December and late January. 205 

 

In addition to the ozone loss inside the vortex, there is another interesting phenomenon in December and January. The 

analyses of TCO show that there were ozone holes of about 300–700 km2 size during the first week of December (1–6 

December 2019) and on 26 January 2020 (Figure 4). The lowest TCO measured of the winter was also on the latter date. 

However, the ozone holes were not inside the vortex, but in the mid-latitudes. A detailed analysis with TCO, PV, 210 

temperature and ClO reveal that those ozone holes were dynamically driven, as there was rapid air mass transport to the 

southern Arctic in early December and late January. These ozone hole occurrences due to rapid changes in weather patterns 

are generally called “ozone mini holes” and they return to normal levels of ozone in few days (e.g. Rieder et al., 2013). We 

used the HYSPLIT trajectory model to find the air mass transport at three different altitudes (17, 18 and 19 km) in the lower 

stratosphere, where the mini-holes are found (Figure 4, right panels). The air mass exported from mid- and low latitudes has 215 

very low PV values, lower temperature and high ClO. It suggests that the TCO transported from mid-latitudes triggered the 

ozone “holes” (ozone values < 220 DU). To further examine the lower ozone loss values to the levels of an ozone hole 

outside the vortex, we selected two ozonesonde measurements in the region (Alert: 62.34° N, 82.49° W and Eureka: 79.99° 

N, 85.90° W), and are shown in bottom panels for selected dates in December and January. These measurements show 

significant reduction in ozone Coy et al., 1997; Feng et al., 2007; Horowitz et al., 2011between 12 and 18 km; confirming 220 

the findings from satellite total column measurements.  

 

It should be mentioned that there was already large chemical loss of ozone inside the Arctic vortex in early December and 

late January owing to the conventional polar ozone loss chemistry (as shown in Figure 3). However, the ozone mini-holes 

that appeared outside the vortex were primarily triggered by the dynamics. We cross-checked TCO from OMI (Bias et al., 225 

2014), OMPS (Flynn et al., 2014), GOME-2 (Layola et al., 2011) and MERRA-2 (Gelaro et al., 2017), and found that the 

ozone mini-holes were present all these TCO datasets.  
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3.4  Prolonged chlorine activation and chemical ozone loss 

When the Arctic winters are very cold, chlorine activation occurs in the lower stratosphere at 400–500 K in January and 

February there. In 2011, the chlorine activation was observed up to the end of February and was intermittent with a peak 230 

value of about 1.6 ppbv, and was mostly at 400–500 K (e.g. Manney et al., 2011; Kuttippurath et al., 2012; Livesey et al., 

2015; Griffin et al., 2018). Conversely, in the Arctic winter 2020, there was continuous and sustained chlorine activation 

from December to early April, except during the mW periods of mid-December and early February. The ClO values are also 

0.5 ppbv larger than those observed in the winter 2011. Therefore, strong chlorine activation was observed in March-April 

with ClO values of about 1.0–1.6 ppbv at 400–550 K and the peak ClO value is about 2.1 ppbv.  235 

 

The minor warming (Figure 1) made a break in chlorine activation (Figure 3 for ClO) in early March. Nevertheless, the 

temperature decreased shortly thereafter, which produced continued chlorine activation until early April at 400–550 K. The 

ozone loss deepened in March and peaked by the end of March, and showed the maximum of about 1.5–3.4 pmv at a broader 

altitude range, up to 500 K. The ozone loss above that altitude (i.e. 550 K) was about 0.5–1 ppmv, which is still larger than 240 

that of any other Arctic winter. In fact, the loss of 1.0 ppmv is the peak loss observed in normal or moderately cold winters 

of the Arctic (Kuttippurath et al., 2013); suggesting the severity of ozone loss even at the higher altitudes in this winter. The 

maximum loss was recorded at the end of March to the end of April, about 2–3.4 ppmv at 400–500 K and about 0.5–1.5 

ppmv at 500–600 K. Furthermore, when compared to the early winter values, the late winter low HNO3 values suggest very 

severe denitrification, about 2–4 ppbv in the same period at 350–450 K (e.g. Manney t al., 2020). The HNO3 values in the 245 

lower stratosphere in March–April are about 60–80% lower than that of the December–February values at the same altitude 

levels (Pommereau et al., 2018; Lindenmaier et al., 2012). The gravest denitrification was in December, with values of about 

0–2 ppbv below 400 K and 4–6 ppbv at 400–450 K. Therefore, high chlorine activation and strong denitrification (as 

deduced from the HNO3 analyses shown in Figure 3) provided an unprecedented situation for large ozone loss of about 2–3.4 

ppmv in the lower stratosphere in March–April.  250 

 

Since the ozone loss in 2020 is exceptionally large, we have employed another set of measurements to estimate ozone loss to 

reconfirm that the derived results are robust. The loss estimated from OMPS measurements together with other analyses are 

shown in Figure 5 (left). The maximum ozone loss profile extracted from the OMPS data show very good agreement with 

that from the MLS measurements for the Arctic winter 2020. The peak ozone loss values show about 2–2.8 ppmv in the 255 

lower stratosphere below 550 K. Since the maximum ozone loss profiles are averaged for few days, the loss values are 

slightly lower than that of MLS measurements. The lower stratosphere shows similar ozone loss values, but the loss above 

500 K shows slightly smaller values (0.1–0.5 ppmv) due to the low bias of OMPS measurements at these altitudes as 

compared to the MLS measurements (Kramarova et al., 2018). The comparison with OMPS confirms that the method 
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adopted for ozone loss is robust. Our estimates are in good agreement with that of Manney et al. (2020) and Wohltmann et 260 

al. (2020), as they also derive a loss of about 2.3–2.8 ppmv below 450 K from the MLS measurements inside the vortex.  

3. 5 The Arctic ozone loss in the context of other Arctic winters 

Arctic winters are normally warmer and occurrences of PSCs are sparse and infrequent. Therefore, chlorine activation and 

ozone loss is limited to the winters with very low temperatures in December–February (Tilmes et al., 2014; Goutail et al., 

2015; WMO, 2018; Newman et al., 2008; Kuttippurath et al., 2012). The ozone loss observed in warm winters (e.g. 2006 and 265 

2009) is about 0.5–0.7 ppmv, moderately cold winters (e.g. 2008 and 2010) is about 1.0–1.2 ppmv and very cold winters 

(e.g. 2005) is 1.4–1.6 ppmv (e.g. WMO, 2018). However, the ozone loss in the winter 2011 was about 1.0 ppmv (or 30–40 

DU), which is higher than that of other Arctic winters (about 2.1–2.3 ppmv or 100–100 DU) and was similar to the loss 

found in the warm Antarctic winters (e.g. 1988 and 2002) (Manney et al., 2011; Kuttippurath et al., 2012; Feng et al., 2015; 

Pommereau et al., 2018). We applied the same loss estimation method to the measurements for the Arctic winter 2011 to 270 

compare with that of the Arctic winter 2020. This would also test veracity of the loss estimation procedure and the results are 

shown in Fig. 5.  

 

The peak ozone loss in the Arctic winter 2011 shows about 2.1 ppmv, which is in very good agreement with all other 

available analyses for that winter (WMO, 2014, 2018; Griffin et al., 2018; Livesey et al., 2015). However, the ozone loss in 275 

the Arctic winter 2020 is about 0.7 ppmv higher than that in 2011, about 2.8 ppmv. The difference in ozone loss between the 

winters is negligible above 480 K. Therefore, it is evident that the ozone loss in the Arctic winter 2020 is undoubtedly the 

largest on the record and is significantly higher than that of any previous Arctic winter.  

 

Furthermore, we applied another loss estimation method to test robustness of the extreme ozone loss values; the passive 280 

method that uses a passive tracer (i.e. no chemistry) simulation. We have used the well-known and widely used 

TOMCAT/SLIMCAT model simulations for the tracer calculations (Chipperfield et al., 1999; Dhomse et al., 2019). The 

ozone loss computed with the passive method shows the peak value of about 2.3–2.5 ppmv at about 450 K in the Arctic 

winter 2020 (Figure 5, Second panel from the left). This ozone loss is slightly higher than that of the Arctic winter 2011, 

about 0.2 ppmv.  It is also observed that the ozone loss in 2020 is higher than that of 2011 below 475 K, but the loss 285 

estimated in latter winter exceeds about 0.3–0.5 ppmv above 475 K up to 700 K (e.g. Manney et al.,2020; Wholtmann et al., 

2020).  However, these ozone loss estimates are lower than that estimated with the descent method, about 0.5–0.7 ppmv 

depending on altitude. The analysis with ozone and N2O from the model indicates that modelled ozone is higher than (about 

1–1.5 ppmv) the measurements at these altitudes, which could be due to the slower dynamical descent in the model.  

 290 

It is clear that the ozone loss in 2020 is the largest among Arctic winters. Therefore, we also examined the evolution of 

chlorine activation in terms of the amount of ClO in each Arctic winter, as the total chlorine is decreasing in the stratosphere 
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due to the effect of Montreal Protocol (e.g. Strahan et al., 2017; WMO, 2018; Dhomse et al., 2019) and we expect a 

corresponding response in ozone loss in the polar winters.  Figure 6 shows the MLS ClO observations in each winter since 

2005. The analyses show that the chlorine activation was very severe and continuous for about four months in 2020. 295 

However, the highest ClO was observed in winter of 2016, in February. Many colder winters had the ClO values around 2 

ppbv as found in 2020, but the sustained chlorine activation that observed in 2020 was unique. Although the high ClO values 

in March were also observed in 2011, the chlorine activation was not as severe as in 2020 in early winter (December – 

January). On the other hand, the unprecedented chlorine activation observed in 2016 was more episodic, such as in mid-

December, mid-January to early February and late February. Therefore, the continuous and severe chlorine activation from 300 

December through March was the key for the record-breaking ozone loss in 2020. Figure 6(b) and (c) further illustrate that 

the peak ClO profiles or the time series of average ClO for the entire winter will not reveal the depth of chlorine activation. 

3.6 The Arctic ozone loss equals the levels of the Antarctic ozone loss 

The peak ozone loss in the Antarctic happens at around 500 K and the loss is severe from 400 to 600 K for five months 

continuously from August to November (Tilmes et al., 2006; Huck et al., 2005; Sonkaew et al., 2013; Kuttippurath et al., 305 

2015). In contrast, the Arctic winters are normally short and maximum ozone loss occurs at around 425–475 K for a period 

of about two months, from mid-January to mid-March (e.g. Kuttippurath et al., 2010; Manney et al., 2004). The ozone loss in 

the Arctic is restricted to the altitudes below 500 K. The ozone loss in the Arctic winter 2020 is very high and therefore, we 

compare the ozone loss with that in the Antarctic winters 2015 and 2019. The Antarctic winter 2015 was one of the coldest 

and 2019 was one of the warmest, and therefore, the assessment would give an upper and lower bound of ozone loss estimate 310 

for the Arctic winter 2020. 

 

The peak ozone loss estimated using the vortex descent method is about 2.8 ppmv at 480 K in the Antarctic winter 2015 and 

about 2.3 ppmv at 490 K in 2019 (Figure 5). The ozone loss in Antarctic 2015 shows consistently higher values (about 0.1–

0.5ppmv) than that of 2019 up to 550 K, and the loss is similar above that altitude in both winters. The ozone loss is about 315 

1.0 ppmv at 370 K, and 2.6 ppmv at 460 K, 1.5 ppmv at 550 K, 0.5 ppmv at 650 K and it terminates at 700 K in the Antarctic 

winter 2015. In the Arctic winter 2020, the ozone loss shows about 0.3 ppmv at 370 K, 2.0 ppmv at 430 K and 480 K, 1.5 

ppmv at 550 K and loss terminates above that altitude. The peak ozone loss is about 2.3 ppmv and is at 460–470 K. On the 

other hand, the loss in the Antarctic winters above 470 K is very large and reaching up to 700 K. The peak ozone loss in the 

Arctic winter 2020 is about 2.8 (2.3) ppmv and is at 460–470 K. This is also the main difference between the Arctic and 320 

Antarctic ozone loss, as the broader and larger ozone loss above the 470 K in the Antarctic. The difference is almost 1.0 

ppmv above the peak ozone loss altitude. Therefore, the ozone loss in the Arctic winter 2020 is either equal or larger than 

that of the Antarctic winter 2019 below 470 K, but the loss is smaller than that of the Antarctic winters above 525 K.  
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We applied the passive method also to further examine the estimated loss in the Arctic and Antarctic winters (Figure 5, 325 

second panel from the left). The ozone loss estimated with the passive method exhibits smaller values in the lower 

stratosphere in comparison with that derived from the descent method. The loss is about 0.2 ppmv at 350 K, 1.6 ppmv at 400 

K and 2.3 ppmv at 450 K in the Arctic winter 2020. The peak loss is recorded at 450–460 K and the loss decreases with 

altitude, about 1.5 ppmv at 500 K and 0.1 ppmv at 530 K. In the Antarctic winter 2019, the ozone loss shows similar values 

as that of the Arctic winter 2020 at 370–420 K, but slightly smaller than that of the Arctic winter at 420–470 K. The 330 

maximum ozone loss in Antarctic winter 2019 is estimated at 470 K, about 2.3 ppmv, and about 0.5–1.5 ppmv above that 

altitude, which is higher than that of the Arctic winter 2020. Furthermore, the Arctic ozone loss halts at about 550 K, 

whereas the Antarctic ozone loss at this altitude is as high as 1.5 ppmv.  In the Antarctic winter 2015, the ozone loss is about 

1.0 ppmv at 370 K, 2.0 ppmv at 400 K and the peak loss of about 2.8 ppmv at 475 K. The loss gradually decreases with 

altitude, such as 2.1 ppmv at 500 K, 1.5 ppmv at 550 K, 1.0 ppmv at 600 K and 0.5 ppmv at 650 K. The ozone loss in the 335 

Antarctic winter 2015 is thus, higher than that of the Antarctic winter 2019 and the Arctic winter 2020, about 0.5–1.5 ppmv, 

depending on the altitude. The assessment further gives strong evidence that the peak ozone loss in the Arctic winter 2020 

equals to that of the warm winters of Antarctic (e.g. 2019). The loss estimation method can have uncertainty in the range of 

3–5%, depending on the winter months. For instance, the monthly mean ozone loss and its standard deviation for each winter 

month of 2020 are shown in Figure S3. A complete error analyses of the ozone loss method is already presented in 340 

Kuttippurath et al. (2010). 

3.7 The first appearance of ozone loss saturation in the Arctic 

Ozone loss saturation is a common feature of Antarctic winters since 1987 (Kuttippurath et al., 2018; Jin et al., 1996). 

However, as compared to the Antarctic, the Arctic winters are relatively short (December to March), stratospheric 

temperatures are about 10 K higher, occurrence of PSCs are infrequent, denitrification is modest and thus, ozone loss is 345 

moderate.  Therefore, the Arctic never encountered the ozone loss saturation (i.e. the complete loss of ozone at some 

altitudes in the lower stratosphere between 400 and 550 K) there.  Apart from these, the ozone loss normally happens only 

up to 25–30% in the Arctic winters and henceforth, the loss saturation was unexpected for the Arctic conditions. Figure 5 

(right) shows the ozone profile measurements by ozonesondes at two Arctic stations, Alert (82.50° N, 62.33° W) and Eureka 

(80.05 N, 86.42 W), on selected days. The ozone profiles measured at selected Antarctic stations are also shown for 350 

comparisons. In general, the ozone loss saturation in Antarctica occurs at the altitude between 400 and 500 K (e.g. Davis: 

68.6°S, 78.0°E and Marambio: 64° S, 56° W), and the altitude range would go up to 550 K for the stations that are always 

inside the vortex, as shown for Syowa. The ozone loss observed at Davis and Marambio is always smaller than that at 

Neumayer, South Pole and Syowa. Therefore, ozone loss saturation is also comparatively infrequent and occurs at limited 

altitudes in the Antarctic. Here, the ozonesonde measurements at Alert (on 08 April 2020) show loss saturation at the 355 

altitudes 420–475 K (e.g. Wilka et al., 2021). The measurements at Eureka (on 10 April 2020) show loss saturation with 

about 99% ozone loss at altitudes between 420 and 460 K. The time series of ozone measurements, as analysed from the 
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available measurements, show that the ozone loss saturation occurred at these station in early April (Figure S4). The vertical 

shading in the figure for 0.2 ppmv shows the ozone loss saturation criterion with respect to the ozone volume mixing ratios 

(Smit et al., 2007), and the ozonesonde measurements have an uncertainty of 5–10%. Yet, the ozone measurements at Alert 360 

and Eureka are in the saturation limit and thus also provide first evidence for the occurrence of ozone loss saturation in the 

Arctic. The loss saturation suggests that the Arctic has entered an exigent climate change scenario and our analyses are 

consistent with the analyses of Wohltmann et al. (2020), who also report about 90–93% loss of ozone in the 450–475 K 

altitude range in this winter. 

3.8 The first-ever ozone hole in the Arctic? 365 

Since the ozone hole is defined with respect to TCO measurements (i.e. below 220 DU), we analysed the TCO 

measurements, which are shown in Figure 7. It shows the lowest TCO measurements made in the Arctic polar region in the 

winter 2020 by three different satellite instruments, OMI, OMPS and GOME. As shown in the figure, the OMI 

measurements show TCO below 300 DU for almost all winter months inside the vortex, as defined by the Nash et al. (1996). 

The measurements show around 230 DU in early December, about 260 DU in January, about 218–260 DU in February, 370 

around 220 DU in March and around 240 DU in April. There are ozone values lower than or equal to 220 DU in early (01–

05) December, late (25–26) January, some days (05, 12, 17–22) in March and few days in early (06–07) April. The 

occurrences of these low ozone values in December and January are associated with ozone mini-holes triggered by 

dynamics. However, the appearances of ozone hole values in March and April are driven by chemistry and is our topic of 

discussion. The ozone holes measured by OMI corresponding to the dates are also shown in the ozone maps in the top panel 375 

and the exact dates of ozone hole occurrences based on OMPS and MERRA-2 data are given in Table S1. The OMPS total 

column agrees well with that of the OMI measurements throughout the period, where the differences are mostly 2–3 DU and 

are within the uncertainty of both instruments (i.e. about 5–10%). The OMPS measurements have captured all features of 

OMI measurements throughout the winter. The GOME measurements are very close to the OMI and OMPS measurements 

too, but are slightly higher in January and February due to the limited coverage of northern polar region by GOME in winter 380 

months. As the winter progresses, its coverage improves and therefore, the March and April measurements are in excellent 

agreement with other satellite observations. The TCO measurements at Alert also manifest the ozone hole values of about 

200 DU in two days of April; corroborating the satellite observations (Figure 7).   

 

We also estimated the partial column ozone loss from the ozone profiles of OMPS and MLS satellites (Figure 7, bottom 385 

panel).  The ozone loss is calculated with respect to the passive method (Feng et al., 2005). The Arctic winters usually show 

total column ozone (TCO) loss of about 70–80 DU in cold winters, about 45–50 DU in warm winters, and about 90–120 DU 

in exceptionally cold winters such as in 2005 and 2011 (Goutail et al., 2015; Kuttippurath et al., 2012b; Rex et al., 2005; 

Manney et al., 2003). The largest column ozone loss ever measured was in the Arctic winter 2011, and was about 100 DU as 

assessed from all available studies (Griffin et al., 2018; Kuttippurath et al., 2012; Manney et al., 2011). On the other hand, 390 
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the Antarctic ozone column loss is about twice that of the Arctic, about 150–160 DU, but slightly lower about 100–120 DU 

in very warm winters (1988 and 2002) and in early years (e.g. 1979–1985) of ozone loss there (Huck et al., 2005; Tilmes et 

al., 2006; Kuttippurath et al., 2015). The analyses clearly suggest that even the partial column ozone loss in the Arctic winter 

2020 is about 115 DU at 350–550 K, which is higher than that of the Arctic winter 2011 and equal to that of the loss found in 

the Antarctic winters 1979–1985, 2002 and 2019.  395 

 

Since the ozone loss in the Arctic winter 2020 is up to the levels of that found in Antarctic winters, we examined the 

occurrence of ozone holes using TCO data from OMPS and MERRA-2 and the results are presented in Figure 8 for selected 

ozone hole days. The first appearance of ozone holes in the Antarctic winters are also shown for comparison. There are clear 

and identifiable ozone holes in March and April 2020 and were hundreds of kilometres wide to demarcate the regions below 400 

220 DU. The ozone maps show that the holes in March and April 2020 were larger than that of the Antarctic ozone holes in 

October 1979 and 1980. Therefore, ozone loss in the Arctic winter 2020 is roughly comparable to the Antarctic ozone loss 

and the appearance of ozone hole for several weeks demonstrate that the Arctic winters enter a new era of ozone depletion 

events, and signal significant changes in the climate of the region. However, as the ozone holes were not very large and were 

not present for continuously for months as they occur over the Antarctic, the situation could termed only as the appearance 405 

of signatures of ozone hole in Arctic winter 2020.  

 

4. Conclusions 

The Antarctic ozone hole is present for the past forty years, and the impact of ozone hole on public health is mostly restricted 

to the southern high and mid-latitudes. The ozone hole has also influenced the climate of the southern hemisphere by 410 

changing the winds, temperature and precipitations in different regions. On the other hand, the biggest concern about the 

polar ozone loss in the stratosphere has always been an Arctic ozone hole, because such an ozone hole can occur anywhere 

beyond 45° N in the densely populated northern mid and high latitudes. The changes in associated UV radiation incidence 

would also affect the flora and fauna of the region. If such a situation arose, that would trigger ecosystem damage and 

impose serious threat to public health (e.g. Newman et al., 2009). Nevertheless, it is believed that an ozone hole over the 415 

Arctic would be unlikely due to relatively higher temperature and shorter wintertime ozone loss period there. Furthermore, 

the winters are always prone to several minor and frequent major warmings (almost a major warming per winter), which 

would restrict the lifetime of the polar vortex, PSC occurrence and chlorine activation to limit the extent and severity of 

ozone loss. However, the Arctic winter 2020 was exceptional as it was characterised by strong vortex from December 

through the end of April, large and widespread PSCs, and unprecedented and prolonged chlorine activation with peak ClO 420 

values of about 2.0 ppbv. The high chlorine activation in early December and early January produced larger loss in ozone 

(e.g. 1–1.5 ppmv below 430 K in early January) in the Arctic that has never occurred before. The continued high chlorine 

activation from January to mid-April caused a record-breaking ozone loss of about 2.5–3.4 ppmv at 400–600 K, and 

triggered the first-ever ozone hole of Arctic in March and April 2020. The unprecedented chlorine activation (e.g. January 
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through March, above 0.7 ppbv) and severe denitrification (60–80%) also set up an atmosphere to have the first ever 425 

occurrence of ozone loss saturation in the Arctic. 

  

Another interesting aspect of this winter was the dynamically driven, but chemically modified ozone mini-holes in 

December and January. These mini- holes were larger than the Antarctic ozone holes of 1979 and early 1980s.  

 430 

The analyses presented use multiple data sets, different ozone loss estimation methods, and several parameters to make a 

robust statistics and balanced assessment on the polar processing ozone loss in the Arctic winter 2020. Yet, all the methods, 

data, and parameters converge to provide an undeniable fact of the first-ever ozone hole opened over the Arctic with the first 

appearance of ozone loss saturation. Henceforth, the unique Arctic winter surfaces the first sign of climate change over the 

region, and sends warning signals across the latitudes about the impact of changes in climate. Yet, the ozone loss in the 435 

Arctic cannot not be called as “an ozone hole”, as it was in an extreme winter, and the ozone hole (or sustained large loss) 

and loss saturation situations were not continuous for months as in the Antarctic ozone hole. Extreme weather events are 

harbingers of climate change and therefore, the ozone loss in the Arctic winter 2020 can also be considered as a signature of 

climate change in the region.    

 440 
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Figure 1: Meteorology of the Arctic winter 2020. The temperature, zonal winds, potential vorticity (PV), heat flux, wave 

eddy heat flux, and area and volume of polar stratospheric clouds (PSC) for the Arctic winter 2020 as compared to previous 

Arctic winters. The shaded area shows the standard deviation from the mean. 
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Figure 2: Polar vortex evolution in the Arctic winter 2020. The evolution of polar vortex in the Arctic winter 2020. The 690 

vortex situation in the lower stratospheric altitude of about 460 K (~17 km) is illustrated. The vortex edge is calculated with 

respect to the Nash et al. (1996) criterion at each altitude.  
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Figure 3: Ozone loss in the Arctic polar vortex in 2020. The distribution of ClO, HNO3, N2O and ozone (top to bottom) as 

measured by the Microwave Limb Sounder (MLS) for the Arctic winter 2020. The bottom panel shows the ozone loss 

estimated using the MLS ozone by applying the tracer descent method (see Methods and supplementary file). The vortex 

edge is computed in accordance with Nash et al. (1996) criterion. The vortex-sampled data are then averaged over each day 720 

and are shown.  
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 730 

Figure 4: The ozone mini-holes in December 2019 and January 2020. The total ozone observations by Ozone Monitoring 

Instrument (OMI) on 03 December 2019 and 26 January 2020. The potential vorticity (PV) maps for the corresponding dates 

are shown on the right. The air mass trajectories computed using the HYSPLIT model at 17, 18 and 19 km are also 

illustrated in the PV maps. The ozonesonde measurements in December and January at Alert (62.34° N, 82.49° W) and 

Eureka (79.99° N, 85.90° W) are shown in the bottom panel and are also shown in the maps as red and magenta stars, 735 

respectively.  
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 740 

 

 

 

Figure 5: The Arctic and Antarctic Ozone Loss Saturation and Chlorine activation. Left. The ozone loss estimated 

using the Microwave Limb Sounder (MLS) measurements by applying the vortex descent method for the Arctic winter 745 

2019–2020 compared to the Arctic winter 2011, and the Antarctic winters 2015 and 2019. The ozone loss estimated with 

Ozone Mapping and Profiler Suite (OMPS) measurements is also shown. Second from the left: The ozone loss estimated 

using the passive tracer method for the Arctic winter 2020, and the Antarctic winters 2015 and 2019. Second from the 

right: The activated profiles ClO measured by MLS for the Arctic winters 2011 and 2020, and the Antarctic winters 2015 

and 2019. The profiles of peak ClO values are shown from each winter. Right: Ozonesonde measurements from selected 750 

Antarctic and Arctic stations. The Antarctic ozonesonde measurements (Davis, Marambio and Syowa) from past winters and 

the Arctic measurements (Alert and Eureka) from the Arctic winter 2020. The grey color represents an ozone profile without 

ozone depletion in Arctic and Antarctic. The grey-shaded region represents the ozone loss saturation threshold.  

 

 755 

 

 

 

 

 760 

 

 

25 

 

https://doi.org/10.5194/acp-2020-1313
Preprint. Discussion started: 24 February 2021
c© Author(s) 2021. CC BY 4.0 License.



 

 

 765 

Figure 6: Chlorine activation the Arctic winters 2005–2020. (a) The temporal evolution of ClO in the Arctic winters as 

measured by the Microwave Limb Sounder (MLS) inside the vortex. (b) The maximum ClO measured inside the vortex in 

each winter from 2005 to 2020. (c) The maximum ClO profiles measured inside the vortex for Arctic winters since 2005. 

The high chlorine activation with high ClO value are shown in bright colours and others are faded in (a) and (c). Since the 

chlorine activation timing is different in different winters, the peak ClO observed between December and April/March are 770 

shown.  
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 785 

Figure 7: Arctic ozone hole in the total column and partial column ozone. Top: The maps of total column ozone from 

the OMI satellite measurements in the Arctic for selected ozone hole days for the winter 2020. Middle panel: The lowest 

(5%) TCO measured inside the vortex from three different satellite measurements (OMI, GOME and OMPS). The difference 

in total column measurements are due to the difference in coverage of the measurements in the Arctic region. The ozone hole 

criterion of 220 DU is indicated by the dotted line. The total column ozone (TCO) measurements at Alert station are also 790 

shown (red solid circles). Bottom. The partial column ozone loss computed at the altitude range 350–550 K from the MLS 

and OMPS measurements. The ozone loss estimated in the Antarctic winters at the same altitude range is shown as the grey-

colored area.  
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Figure 8: The first-ever ozone hole in the Arctic? The maps of total column ozone from MERRA-2 and OMPS satellite 805 

measurements for selected days. Ozone hole is defined as the area below 220 DU of ozone, as demarcated by the white 

contour. The top panel shows the early years of Antarctic ozone hole, the middle panel shows the ozone-mini holes driven by 

dynamics, and the bottom panel shows the ozone holes observed in the Arctic winter 2020.  
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