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Seasonality of the particle number concentration and size
distribution: a global analysis retrieved from the network of Global
Atmosphere Watch (GAW) near-surface observatories
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Abstract

Aerosol particles are a complex component of the atmospheric system which influences climate directly by interacting with
solar radiation, and indirectly by contributing to cloud formation. The variety of their sources, as well as the multiple
transformations they may undergo during their transport (including wet and dry deposition), result in significant spatial and
temporal variability of their properties. Documenting this variability is essential to provide a proper representation of aerosols

and cloud condensation nuclei (CCN) in climate models. Using measurements conducted in 2016 or 2017 at 62 ground based
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stations around the world, this study provides the most up-to-date picture of the spatial distribution of particle number
concentration (Nw:) and number size distribution (PNSD, from 39 sites). A sensitivity study was first performed to assess the
impact of data availability on Nit's annual and seasonal statistics, as well as on the analysis of its diel cycle. Thresholds of
50% and 60% were set at the seasonal and annual scale, respectively, for the study of the corresponding statistics, and a slightly
higher coverage (75%) was required to document the diel cycle.

Although some observations are common to a majority of sites, the variety of environments characterizing these stations made
it possible to highlight contrasting findings, which, among other factors, seem to be significantly related to the level of
anthropogenic influence. The concentrations measured at polar sites are the lowest (~10? cm) and show a clear seasonality,
which is also visible in the shape of the PNSD, while diel cycles are in general less evident barehr-marked, due notably to the
absence of a regular day-night cycle in some seasons. In contrast, the concentrations characteristic of urban environments are
the highest (~10%-10* cm™®) and do not show pronounced seasonal variations, whereas diel cycles tend to be very regular over
the year at these stations. The remaining sites, including mountain and non-urban continental and coastal stations, do not
exhibit as obvious common behaviour as polar and urban sites and display, on average, intermediate N (~102-10% cm3).
Particle concentrations measured at mountain sites, however, are generally lower compared to nearby lowland sites, and tend
to exhibit somewhat more pronounced seasonal variations as a likely result of the strong impact of the atmospheric boundary
layer (ABL) influence in connection with the topography of the sites. ABL dynamics also likely contribute to the diel cycle of
Niot Observed at these stations. Based on available PNSD measurements, CCN-sized particles (ke >50—2100-am considered
here as either >50 nm or >100 nm) can represent from a few percent to almost all of N, corresponding to seasonal medians
on the order of ~10 to 1000 cm™, with seasonal patterns and a hierarchy of the site types broadly similar to those observed for
Ntot-

Overall, this work illustrates the importance of in-situ measurements, in particular for the study of aerosol physical properties,
and thus strongly supports the development of a broad global network of near surface observatories to increase and homogenize
the spatial coverage of the measurements, and guarantee as well data availability and quality. The results of this study also
provide a valuable, freely available and easy to use support for model comparison and validation, with the ultimate goal of
contributing to improvement of the representation of aerosol-cloud interactions in models, and, therefore, of the evaluation of

the impact of aerosol particles on climate.

1. Introduction

Atmospheric aerosol particles are an essential component of the climate system. They affect the Earth’s radiation balance
directly by interacting with solar radiation, and indirectly by contributing to cloud formation. These effects, and in particular
the latter, are widely recognized as one of the largest sources of uncertainty in climate change projections (IPCC, 2013), further
reflecting the difficulty of obtaining an accurate representation of aerosols and cloud condensation nuclei (CCN, i.e. one of

the critical elements in the evaluation of cloud aerosol interactions) in climate models. In addition to the large diversity of their
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sources (primary or secondary, natural or anthropogenic), particles undergo transformations that lead to changes in their
properties during transport. Also, in contrast with greenhouse gases, they have a short lifetime, which results in a highly
heterogeneous distribution in space and time. Providing reliable observations of aerosol properties at appropriate spatial and
temporal scales is therefore essential, and requires combined approaches adapted to the diversity of these scales and the
information they can provide for climate studies. Satellite observations can document extensive aerosol properties with
significant geographic coverage, but they have only limited temporal resolution and are only partially adapted to the study of
some aerosol properties such as the size distribution. Also, due to atmospheric boundary layer (ABL) structure segregation of
vertical air masses and evolution of such structures on a daily basis (e.g. Gierens et al., 2019), it is currently very difficult to
attribute aerosol properties measured with satellite observations to defined depths in the ABL. In contrast, in-situ measurements
performed at ground-level stations are often representative of limited geographical areas and do not allow assessment of
vertical variability, but they do allow a more detailed characterization of the aerosol, at a fine temporal resolution.

The Geophysical Monitoring for Climate Change (GMCC) program, established by NOAA in the early 1970’s, was the first
network dedicated to long-term measurements of climate-relevant aerosol properties. The particle number concentration,
considered to be a primary indicator of human impact on atmospheric composition, was the first aerosol property measured at
the GMCC stations (e.g. Bodhaine, 1983). Since then, the number of measured properties has increased and measurement of
the particle number size distribution (PNSD) is now quite common. In comparison to the total number concentration alone,
the knowledge of the PNSD offers additional information on particle formation processes, transport and type, and, more
broadly, on their potential climatic impact. As summarized by Asmi and coworkers (2013), the effect particles may have on
climate is indeed not necessarily proportional to their total number concentration. This effect is, in fact, highly variable across
the particle size spectrum, as both the potential of aerosol particles to act as CCN and their ability to efficiently scatter or
absorb light depends not only on their chemical composition but on their size as well. Among other examples, the importance
of measuring the PNSD over long enough time periods in contrasting environments is also illustrated in the more recent study
by Schmale et al. (2018) for the understanding of aerosol-cloud interactions and, ultimately, the improvement of their
representation in models. Finally, as a clear sign of its value, the PNSD was recently proposed as an aerosol essential climate

variable (ECV) for climate monitoring in the Global Climate Observing System (GCOS, https://gcos.wmo.int/en/networks).

In addition, while these aspects are beyond the scope of the present study, the knowledge of the particle size is also essential
to assess the effects aerosols may have on human health, as the size constrains the ability of the particles to enter the respiratory
system. The health effect of ultrafine particles (<100 nm) is for instance discussed and compared to that of fine (<2.5um) and
larger (<10um) particles in the recent review by Schraufnagel (2020).

In order to meet the need to document as broad a variety of conditions as possible, the number of stations for systematic
monitoring of aerosols has also increased over the past 50 years. Although some sites remain independent, at present
measurements are mainly organized within networks that ensure the homogeneity of protocols used for data acquisition, quality
control and provision, and also promote the continuity of the measurements. The GAW (Global Atmosphere Watch) aerosol

network, initiated in 1997 under the leadership of the GAW Scientific Advisory Group (SAG) for aerosols, brings together a
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significant number of sites, which at the same time belong to regional networks such as ACTRIS (Aerosols, Clouds and Trace
gases Research Infrastructure, https://www.actris.eu/) or the NOAA Federated Aerosol Network (NOAA-FAN) (Andrews et
al., 2019). Although there is still a bias in the world data coverage, the growing number of sites has made it possible to study
the spatial variability of aerosol properties and/or their long-term evolution at regional and even global scale.

Taking advantage of the existing monitoring networks (and/or research projects), seven companion studies dedicated to aerosol
phenomenology have been conducted in Europe since 2004 (Van Dingenen et al., 2004; Putaud et al., 2004; Putaud et al.,
2010; Cavalli et al., 2016; Zanatta et al., 2016; Pandolfi et al., 2018; Bressi et al., 2021). Up to 60 sites have contributed to this
project involving observations of physical, optical and chemical aerosol properties. Moreover, Asmi et al. (2011) reported on
the variability of the PNSD, also in Europe, based on measurements collected at 24 sites;-and;; shortly after, the first multi-site
long-term trend analyses of aerosol optical properties (Collaud Coen et al., 2013) as well as number concentration and PNSD
(Asmi et al., 2013) were performed {Asmi-et-al;2013;-Collaud-Coen-et-al;2013) using measurements conducted at stations
located in Europe, North America, Antarctica and on Pacific Ocean islands. The characteristics of specific processes such as
new particle formation (NPF), which is thought to be responsible for a major fraction of the particle number at the global scale
(Spracklen et al., 2006, 2008; Merikanto et al., 2009; Gordon et al., 2017), could also be investigated and compared in various
environments (Kerminen et al., 2018; Nieminen et al., 2018). Analyses dedicated to specific environments were also carried
out. As an example, Sellegri et al. (2019), Andrews et al. (2011) and Collaud Coen et al. (2018) all concentrated on
measurements performed at mountain sites, and focussed on NPF, on aerosol optical properties and on the influence of the
ABL, respectively. The monitoring of an increasing number of variables finally made it possible to explore the link between
the different properties of the particles and to carry out closure studies at the above mentioned network sites, such as that
performed by Schmale et al. (2017, 2018) using long-term measurements of CCN number concentrations, particle number size
distributions and chemical composition from 12 ACTRIS sites.

The present work is part of the SARGAN (in-Situ AeRosol GAW observing Network) initiative, which has been introduced
in Laj et al. (2020) and aims at supporting a global aerosol monitoring network to become a GCOS associated network. The
most complete and up-to-date analysis of the trends and variability of aerosol optical properties measured worldwide was
recently reported within the framework of this project (Collaud Coen et al., 2020). Two other studies involving observations
and outputs from the AeroCom models (Aerosol Comparisons between Observations and Models, https://aerocom.met.no/)
were also carried out: Glif et al. (20218) assessed the ability of global models to reproduce present-day aerosol optical
properties and Mortier et al. (2020) performed a multi-parameter analysis of the trends of optical, chemical-composition and
mass aerosol properties over the last two decades.

A preliminary view of the variability of the particle number concentration was reported in Laj et al. (2020), using measurements
performed at 57 sites in 2016 or 2017. This study was however limited to basic statistics, and also did not include any
description of the PNSD. The present work aims to complement the analysis initiated in Laj et al. (2020) in order to 1) provide
the most up-to-date information on the spatial and temporal variability of the particle number concentration worldwide and

discuss what determines this variability, and 2) extend the analysis to the PNSD. This new study, based on observations
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collected at 62 sites around the world in 2016 or 2017, also complements the previous work of Asmi et al. (2011), which
focused on measurements collected in 2008-2009 in Europe only. Although the findings of the two studies are naturally
compared in this paper, there is, however, no detailed analysis of the changes or differences observed for the sites they have
in common, since both studies are based on limited measurement periods (1-2 years) which do not allow the evaluation of
possible trends; these aspects will be addressed in a separate paper. The first part of the present paper is dedicated to a
sensitivity study aimed at assessing the impact of data availability on the total particle number concentration annual and
seasonal statistics, as well as on the analysis of its diel cycle (Sect. 4). The seasonality of the particle number concentration
and PNSD are then investigated (Sect. 5). Finally, two shorter sections are dedicated to the analysis of the diel cycle of the

total particle number concentration (Sect. 6), and to the study of the CCN-sized fraction of the aerosol spectrum (Sect. 7).

2. Measurement sites and data handling

Data collected at 62 sites contributing to SARGAN in 2017 or 2016, i.e. the reference years as chosen in Laj et al. (2020) (see
more details about data availability and coverage criteria in Sect. 4), were included in the present work, among which 57 were
already involved in the short analysis of the total number concentration reported in Laj-et-ak+2620) that study. As indicated in
Table 1 and further illustrated in Fig. 1, the majority of these sites are located in the Northern Hemisphere, with, in particular,
39 stations in Europe and 10 in North America, among which 5 are located above the polar circle. Polar regions are fairly well
represented in the Southern Hemisphere as well, with 3 sites in Antarctica, but other parts of the world tend to be
underrepresented, with only 2 sites in Africa, 4 in Asia, 1 in South America and 3 in the South-West Pacific. In spite of this
inhomogeneous distribution, a multitude of conditions are however represented in the combined dataset. The stations are
classified based on the combination of a geographical (continental, coastal, mountain, or polar) and footprint (rural background,
forest, {sub)-urban, pristine or mixed) criteria as introduced in Laj et al. (2020). Note that the classification of mountain sites
does not solely rely on elevation, but also requires that the station is located higher than the neighbouring environment.
Regarding the “pristine” class, it includes stations that sample background air in comparison to more anthropically influenced
locations, but this classification does not imply, however, that these sites are completely free of anthropogenic interference. In
particular, while the Arctic is a pristine region from an aerosol source perspective, anthropogenic influence through long-range
transport can be substantial (particularly during winter and spring when the polar vortex extends and includes more polluted
area; e.g. Abbatt et al., 2019 and references therein). As shown in Fig. 1, the spatial distribution of the sites in relation to their
classification again reveals certain limitations. For instance, all urban stations are located in Europe, and there is a clear lack
of data from desert areas. A final bias concerns the type of data collected at these sites. Specifically, the stations equipped with
mobility particle size spectrometers (MPSS) for the monitoring of the PNSD are mainly located in Europe (34 out of 39 sites),
while other sites operate condensation particle counters (CPC), which retrieve measurements of the total particle number

concentration only.
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As previously implied, most of the stations listed in Table 1 are regional or global GAW sites (https://gawsis.meteoswiss.ch),
and belong to regional (mainly ACTRIS and NOAA-FAN) and/or national networks, such as the German Ultrafine Aerosol
Network (GUAN; Birmili et al., 2009), or the Spanish Network of Environmental DMAs (REDMAAS; Gémez-Moreno et al.,
2015; Alonso-Blanco et al., 2018). With the exception of WGG and WLG, Hhourly means of the particle number concentration
and/or PNSD are available for all these sites on the database EBAS (http://ebas.nilu.no), which is managed by the Norwegian
Institute for Air Research (NILU) and which hosts the World Data Center for Aerosol (WDCA, http://www.gaw-wdca.org)

data repository. The inversion of MPSS data was performed by the institutes operating the instruments before submission to

the database, and, for both CPC and MPSS, particle number concentrations were reported in particles per cubic centimetre at
STP (T =273.15 K and P = 101 325 Pa), following the recommendations from Wiedensohler et al. (2012). As reported in Laj
et al. (2020), the diameters associated with MPSS data correspond to the geometric mean mobility diameter of the size intervals
used in the inversion. MPSS measurements are usually representative of dry aerosol properties, as the relative humidity of the
sampled air is recommended to be kept below 40% (Wiedensohler et al., 2012). To ensure the quality of the analysis, only the
data marked as valid were used, similar to Asmi et al. (2011). It is important to note, however, that despite the procedures that
are being implemented within the research networks with the aim of achieving consistency in data from different sites, different
data submitters may flag their data differently both because of their scientific use of the data and the tools at their disposal. For
instance, a very strict and automated wind screening criterion is applied at some stations (SPO, BRW, ALT and MLO), with
an impact on data coverage, while for other sites such as NMY, data from a given wind sector are flagged but considered valid
when there is no further indication for contamination (e.g. from concurrent black carbon measurements). Additional checking
of the data was performed in collaboration with each instrument’s principal investigator to ensure the homogeneity of the
dataset, but we cannot exclude the possibility that specific treatment of the data applied at some sites (but not specified in the
metadata available on EBAS) may have not been reported. Speeificalhy; As part of this quality control process, negative
concentrations arising from inversion issues in certain conditions (e.g. presence of large particles above the size range covered
by the MPSS, such as dust or sea salt; Pfeifer et al., 2014; Wiedensohler et al., 2018) were filtered out.
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Fig. 1 Geographical distribution of the stations with their acronyms (see Table 1) a. at the global scale and b. specifically over
Central and Southern Europe. The shapes and colours of the markers indicate geographical and footprint categories,

respectively. The sites operating a mobility particle size spectrometer (MPSS) are additionally marked in italic bold.

Table 1 List of SARGAN stations included in the present study. The geographical (with the following abbreviations: Mt for
mountain, P for polar, Con for continental, and Coast for coastal) and footprint (RB for rural background, F for forest, U for
urban, P for pristine, and Mix for mixed) categories are indicated for each site, together with the year considered in the analysis

(2016 or 2017), the type of instrument operated at the site (CPC or MPSS) and the corresponding cut-point or diameter range.
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Lower cut-

oint /
Station name Acronym Country GPS coordinates Site charact. Year  Instr. p.
diam. range
(nm)
WMO I, Africa
La Réunion — 10.0
Maido atmospheric  RUN FR 21°4'S, 55°22'E, 2160 m  Mt, Mix 2017 MPSS 606 0
observatory '
11.8 -
Welgegund WGG ZA 26°34'S, 26°56'E, 1480 m Con, RB 2017 MPSS 843.9
WMO II, Asia
10.6 —
Anmyeon-do AMY KR 36°32'N, 126°19'E, 46 m  Coast, RB 2017 MPSS 982.2
Gosan GSN KR 33°16'N,126°10'E, 72 m Coast, RB 2016 CPC 2.5
23°28'N, 120°52'E, 2862
Lulin LLN TW Mt, Mix 2017 CPC 10
m
] 36°17'N, 100°54'E, 3810 ]
Mt. Waliguan WLG CN Mt, Mix 2016 CPC 10
m
WMO 11, South America
) 10.0 -
Mount Chacaltaya CHC BO 16°21'S, 68°8'W, 5240 m  Mt, Mix 2017 MPSS 500.0
WMO 1V, North America, Central America and the Caribbean
Alert ALT CA 82°29'N, 62°20'W, 210 m P, Coast, P 2017 CPC 10
Appalachian State 36°12'N, 81°42'W, 1100
) ) APP us Con, RB 2017 CPC 10
University m
Bondville BND uUs 40°2'N, 88°22'W, 213 m Con, RB 2017 CPC 11
Barrow BRW uUs 71°19'N, 156°36'W, 11 m P, Coast, P 2017 CPC 10
Cape San Juan CPR PR 18°22'N, 65°37'W, 65 m  Coast, F 2016 CPC
Egbert EGB CA 44°13'N,79°47'W, 255 m  Con, RB 2017 CPC 4

10



54°21'N, 104°59'W, 500

East Trout Lake ETL CA Con, F 2017 CPC 250r4
m
Southern Great
) SGP us 36°36'N, 97°29'W, 318 m Con, RB 2016% CPC 10
Plains
Storm Peak 40°26'N, 106°44'W, 3220
SPL us Mt, F 2016% CPC 10
Laboratory m
Trinidad Head THD us 41°3'N, 124°9'W, 107 m  Coast, RB 2016 CPC 11
WMO V, South-
West Pacific
Cape Grim CGO AU 40°40'S, 144°41'E, 94 m  Coast, RB 2017 CPC 10
19°32'N, 155°34'W, 3397
Mauna Loa MLO us Mt, Mix 2017 CPC 11
m
Samoa SMO us 14°14'S, 170°33'W, 77 m  Coast, P 2016 CPC 10
WMO VI, Europe
10.0 -
Annaberg-Buchholz  ANB DE 50°34'N, 12°59'E, 545m Con, U 2017 MPSS 800.0
El Arenosillo ARN ES 37°6'N, 6°43'W, 41 m Coast, F 2017 CPC 2.5
) 10.0 -
Birkenes 11 BIR NO 58°23'N, 8°15'E, 219 m Con, F 2017 MPSS
800.0
42°10'N, 23°34'E, 2971 10.0 -
BEO Moussala BEO BG Mt, Mix 2016 MPSS
m 800.0*
44°10'N, 10° 41'E, 2165
Mt Cimone CMN IT Mt, Mix 2017 CPC 10
m
10.0 -
DEM_Athens DEM GR 37°59'N,23°48'E, 270 m Coast, U 2017 MPSS 550.0
Dresden-Nord DRN DE 51°3'N, 13°44'E, 116 m Con, U 2016 MPSS 5.1-800.0
Dresden- 10.0 -
DRW DE 51°2'N, 13°43'E, 120 m Con, U 2017 MPSS
Winckelmannstrasse 800.0
10.0 -
Deutschneudorf DTC DE 50°36'N, 13°27'E, 660 m  Con, U 2017 MPSS 800.0
Finokalia FKL GR 35°19'N, 25°40'E, 250 m  Coast, RB 2017 MPSS 8.7-848.1
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MSA

MSY

NGL

OPE

PAL

PDM
PRG

PUY

FR

GR

DE

CH

Ccz
HU
DE

DE

ES

DE
ES

ES

DE

FR

Fl

FR
Ccz

FR

48°42'N, 2°9'E, 162 m

37°59'N, 22°11'E, 2310

m

47°48'N, 11°0'E, 985 m

45°47'N, 8°37'E, 209 m

46°32'N, 7°59'E, 3578 m

49°34'N, 15°4'E, 535 m
46°58'N, 19°34°E, 125 m
51°21'N, 12°26'E, 113 m

51°20'N, 12°24'E, 120 m

51°20'N, 12°22'E, 111 m

40°27'N, 3°43'W, 669 m

51°31'N, 12°56'E, 86 m
42°3°N, 0°43’E, 1571 m

41°46'N, 2°21'E, 700 m

53°10'N, 13°1'E, 62 m

48°33'N, 5°30'E, 392 m

67°58'N, 24°6'E, 565 m

42°56'N, 0°8'E, 2877m
50°7'N, 14°23'E, 270 m

45°46'N,2°57'E, 1465 m

Con,U

Mt, Mix

Mt, RB

Con, U

Mt, Mix

Con, RB
Con, RB
Con, U

Con, U
Con, U
Con, U

Con, RB
MT, Mix

Mt, RB

Con, F

Con, RB

P,P

Mt, Mix
Con,U

Mt, Mix

2017

2017

2017

2017

2017

2017
2017
2017

2017

2016

2016

2017
2017

2017

2017

2017

2017

2017
2017

2016

MPSS

MPSS

MPSS

MPSS

MPSS

MPSS
MPSS
MPSS

MPSS

MPSS

MPSS

MPSS
CPC

MPSS

MPSS

MPSS

MPSS

CPC
MPSS

MPSS

~10 —
1000*

10.0 -
550.0*
10.0 -
800.0

10.0 -
800.0

17.2 -
469.8
9.0-841.7
6.3-794.0
5.1-800.0
10.0-
800.0
5.1-800.0
14.6 -
661.2
5.1-800.0
7

11.6 -
855.8

10.0 -
800.0

9.8-543.7

7.1-499.4

10
9.5-5194
10.3 -
580.0%
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3.2-

Hyytiala SMR Fl 61°51'N, 24°16'E, 181 m Con, F 2017 MPSS

1000.0
Sonnblick SNB AT 47°3'N, 12°57'E, 3106 m  Mt, Mix 2017 CPC 7

10.0 -
Schauinsland SSL DE 47°54'N, 7°54'E, 1205 m  Con, F 2017  MPSS 800.0

109 -
Granada UGR ES 37°9°N, 3°36’W, 680 m Con,U 2017 MPSS 4958
Varrio VAR Fl 67°46'N, 29°34'E, 400m P, RB 2017 MPSS 3.2-708.0
Vavihill VAV SE 56°1°N, 13°9’E, 175 m Con, F 2017 MPSS 3.4-857.7

10.0 -
Waldhof WAL DE 52°48'N, 10°45'E, 74 m Con, F 2017 MPSS 800.0

. ] 10.0 -
Zeppelin mountain ZEP NO 78°54'N, 11°53'E, 474 m P, Mt, P 2017 MPSS 800.0
Zugspitze- 47°24'N, 10°58'E, 2671 ) 10.0 -
ZSF DE Mt, Mix 2017 MPSS
Schneefernerhaus m 510.4
WMO VII, Antarctica
Neumayer NMY DE 70°39'S, 8°15'W, 42 m P, Coast, Mix 2017 CPC 4
89°59'S, 24°47'W, 2841
South Pole SPO us P,P 2017 CPC 11
m

10.0 -

Trollhaugen TRL NO 72°0'S, 2°32'E, 1553 m P,P 2017 MPSS 800.0

*The first size bin was excluded from the analysis for these sites (frequent negative concentrations). The diameter of the first
bin included in the analysis is 11.2 nm for BEO and 11.1 nm for HAC.

#The size range indicated in the data file is larger for these sites (7.9 — 1357.7 nm and 3.0 — 995.0 nm for GIF and PUY,
respectively), but measurements are actually conducted on the ranges reported in the table.

$2017 data were not available at the time of analysis for these stations.
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3. Relevant metrics for the description of the total particle number concentration and size distribution
3.1 The total particle number concentration (Niot)
3.1.1 Definition — sensitivity to instrumental characteristics

While different nomenclatures are commonly used to refer to the particle number concentration (e.g. CN, PNC), the total
particle number concentration will be hereafter referred to as Nt in the present work, for consistency with Laj et al. (2020).
Also following the same approach as in Laj et al. (2020), measurements performed with both CPC and MPSS were first
analysed together in order to have as large spatial coverage as possible for the study of N To allow for the comparison of
observations derived from both instrument types, the particle number concentration in the range between 10 and 500 nm was
inferred from MPSS measurements and-assimilated-te as an estimate of Nyt This size range was selected as it is common to
most of the MPSS included in this study, and its lower end is moreover comparable to the lower cut-off diameter of 15 of the
23 CPC involved in the comparison (10 or 11 nm) (Table 1). One should however keep in mind that some of the remaining
CPC have significantly lower cut points (e.g. 2.5 nm at ARN, ETL and GSN), and that some MPSS in contrast only detect
particles slightly larger than 10 nm (e.g. up to ~ 17 nm at JFJ), as such cut point differences are likely to influence N These
aspects are discussed in more detail in the Supplement.

The relevance of this approach was further assessed by the comparison of N derived from collocated CPC and MPSS
measurements, since, besides the effect of different lower cut points, differences may also arise from the fact that each of these
instruments has its own operational characteristics and data treatment procedures. For example, CPC instruments detect
particles smaller than their lower cut point, because the lower cut point corresponds to the diameter at which 50% of the
particles are detected. This may have a non-negligible effect on Ny in the presence of a significant amount of small particles,
such as during NPF events. On the other hand, there may be an overestimation of the particle concentration in the nucleation
mode (and consequently Nit) by the MPSS if background counts of the CPC in the MPSS are too high, which may become
critical during the inversion process. Data from 6 stations (HPB, MSY, PAL, PUY, SMR and VAR), where both instruments
are operated with lower cut-off diameters adapted to the comparison (i.e., ~ 10 nm for the CPCs and < 10 nm for MPSSs, to
allow proper calculation of Ni), were used to assess such issues. As illustrated in Fig. S2, MPSS tend to retrieve slightly lower
Niwt compared to CPC at 4 sites, while the opposite is seen at the 2 remaining stations. The agreement between the two
instruments is nonetheless fair at all sites, as reflected by the slopes relatively close to 1 (0.50 — 1.30) and the rather low y-
intercept values (-30 — 1034) obtained for the linear fittings at most of the stations, as well as by the fairly large coefficients of
determination (R2>0.74) (Table S1).

3.1.2 Methodology for the study of Niot

The seasonal variations of Ny were explored based on the comparison of the seasonal medians. For simplicity, seasons were
assigned using the common December—February (DJF), March—-May (MAM), June—-August (JJA), and September—November

(SON) division at all sites, even for the stations where other time divisions would be more appropriate. This is the case, for
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instance, at CHC, where the weather is affected by two main seasons (May—August and December—March) with tropical
characteristics (i.e., dry and wet, respectively). Such specificities should be kept in mind when interpreting the results.

The diel cycle of Nyt was in addition investigated based on the analysis of the autocorrelation and partial autocorrelation
functions (ACF and PACF, respectively), using the approach described in the Supplement of the study by Collaud Coen et al.
(2018). Briefly, the autocorrelations at 1 hour (first lag) were first removed from the dataset, and the ACF and PACF were
then calculated on the resulting whitened time series at each time lag up to lag 36. In the case of ideal diel cycles, one could
simply use the PACF at lag 24 as a metric for the strength of the cycle (i.e., to evaluate how regular the cycle amplitude is),
hereafter referred to as Dc,. Similar to Collaud Coen et al. (2018), the sum of the PACF between lags 22 and 26 was used
instead, as the diel cycle may not always be found over a 24-hour period due to the variability of both the natural and
anthropogenic factors which determine it. There is no scale as such, or threshold values, that can be used to explain the
quantitative meaning of Dy, but D¢y generally takes on higher values the more regular the diel cycle is over time. Only the
PACF values statistically significant at 95 % confidence level were considered, and the diel cycles were calculated at the
annual scale only, because the time series were too short (1 year, with limited data availability at some sites) to properly
investigate the seasonal change of the diel cycle; this aspect is only briefly addressed through a few case studies. As further

explained in Sect. 4.2, a stricter coverage criterion was in addition imposed in this specific part of the analysis.

3.2 Methodology for the analysis of the PNSD

The study of the PNSD was performed based on the seasonal medians of the distribution. In order to help in the evaluation of
the seasonal contrasts and in the comparison between the sites, log-normal modes were additionally fitted to the median
distributions, as described in Eq. 1.

an Nomi (_ (loglo(dp)—logw(Dm,i))z)

m,l
= i ex
dlogiodp i Vamlogio(om,i) P 2x(log10(gm'i))2

1)

where Ny, ;, Dy, ; @and oy, ; are the concentration (cm3), the peak mean diameter (nm) and the geometric standard deviation of
mode i, respectively. The analysis of the PNSD (including the fitting procedure) was restricted to the size range 20-500 nm to
avoid possible bias in the comparison of the sites 1) due to differences in lower cut points or 2) related to increased uncertainty
in the measurement of sub-20 nm particles (Wiedensohler et al., 2012). This also allowed a relevant description of the PNSD
with only two log-normal modes, as previously done by Asmi et al. (2011). With this approach, the first mode is often a
combination of the usual nucleation and Aitken modes, as reflected by the relatively high geometric standard deviation
compared to that of the second mode (see Table Al and Fig. S6). Nevertheless, this first mode will be referred to as Aitken
mode for simplicity. The bimodal description performs well in reproducing the observations, as illustrated by the relatively
large coefficients of determination obtained between measured and fitted PNSD (R2>0.98, Table Al), supporting the relevance

of such approach.
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3.3 Investigation of the CCN-sized fraction of aerosols

The ability of a particle to act as CCN is determined both by its intrinsic properties (size and chemical composition) and by
the surrounding atmospheric conditions (cloud supersaturation). The relative importance of particle size and chemical
composition (which determines, in particular, its hygroscopicity) in the activation process has been the subject of multiple
studies, sometimes leading to contrasting results (Schmale et al., 2018 and references therein). Some conclude that the particle
size is paramount in determining the CCN impact (e.g. Dusek et al., 2006), while the knowledge of its chemical composition,
including the size resolved chemical composition and state of mixing, seems more important in other situations, in particular
when fresh pollution aerosol is considered (e.g. Ervens et al., 2010).

The spatial and temporal variability of CCN concentrations, as well as the properties of the particles involved in cloud
formation, have recently been studied by Schmale et al. (2017, 2018) using long-term measurements of CCN number
concentration, particle number size distribution and chemical composition performed at 12 sites representative of various
environments. While the value of such collocated observations, even when temporary, is wel demonstrated by Schmale and
co-workers, there is no such data for all the sites considered in this study. A simpler approach has therefore been adopted here,
based on the assumption that all particles larger than a given activation diameter are potential CCN, regardless of their chemical
composition. This approach was previously used by Asmi et al. (2011), and also in several studies specifically dedicated to the
evaluation of the contribution of NPF to the formation of CCN (Kerminen et al., 2012 and references therein; Rose et al. 2017,
2019). Very good agreement between measured CCN and predictions from size distribution data only was, for instance,
reported for JFJ by Jurany et al. (2011). The relevance of such a method was further validated by Hoyle et al. (2016): using
activation diameter statistics from multiple campaigns (Hammer et al., 2014), they showed that 79% of the observed variance
in cloud droplet numbers at JFJ could be explained by the concentration of particles larger than 80 nm. This threshold diameter
was close to the overall median activation diameter (87 nm) reported by Hammer et al. (2014) for an approximate cloud
supersaturation of 0.35%, although the activation diameter at this site was occasionally as low as 40 nm with a supersaturation
of 0.86% (Motos et al., 2019). A tight connection between cloud droplet number concentration and the concentration of
particles larger than 100 nm, itself very close to the CCN concentration measured at 0.24% supersaturation, was also observed
at PUY by Asmi et al. (2012). One should, however, keep in mind that such an approach might be less accurate for the
prediction of CCN in the presence of fresh pollution aerosol, whose ability to act as CCN may depend more largely on the
chemical composition than in the case of aged particles, such as those sampled at PUY or JFJ.

Similar to Asmi et al. (2011), two different activation diameters were considered in the present work, 50 and 100 nm, in order
to reflect the above mentioned effects of both the properties of the particle itself and atmospheric conditions in the activation
process. These threshold diameters are consistent with the findings of previous studies based on direct CCN measurements,
which indicate that the smallest particles involved in the formation of real atmospheric cloud droplets are usually in the range
50-150 nm; those include in particular the results of Schmale et al. (2018), who report that at 0.2% supersaturation, activation

diameters have a distribution centered around or slightly larger than 100 nm at most of the sites involved in their analysis. The
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number concentrations of particles in the ranges 50-500 nm and 100-500 nm, hereafter referred to as Nso and Nigg, were thus
inferred from available MPSS measurements and used as proxies for the CCN number concentration. It should be noted that
estimates of CCN number concentrations based on particle characteristics such as size do not necessarily translate to cloud
drop number (CDN) concentrations. Other factors also need to be considered, such as updraft velocity or if there is competition
for water vapor due to high CCN concentrations or, as alluded to above, whether supersaturation values reach a sufficiently
high value to enable the CCN to CDN transformation. Analysis of this last process and evaluation of CDN concentrations are,

however, beyond the scope of the present work.

4. Data availability — Coverage criteria
4.1 Impact on the annual and seasonal statistics of Niot

In the analysis of Nt presented in Laj et al. (2020), annual and seasonal statistics were reported when 75% of the hourly data
was available over the statistics reference period (year or season). In cases when the 2017 coverage was not sufficient (i.e.
<75% for all seasons) or 2017 data were not available at the time of analysis, the 2016 data were considered instead. Three
stations were nevertheless discarded from the analysis (MSA, RUN and VAV) due to not having adequate coverage for either
year, and among the 285 medians (annual and seasonal) which could have been expected for the other 57 sites, only 197 (69%)
were effectively calculated due to insufficient data availability in the remaining cases. As illustrated in Fig. 2, long gaps are
seen in some datasets, indicating that despite the efforts made to ensure continuous measurements, interruptions (e.g. caused
by instrumental failure or malfunctioning, natural disasters) cannot be avoided, and the difficulty of access to some of the sites
can further complicate the situation. However, while these long gaps obviously result in reduced data availability at some sites,
the 75% coverage required in Laj et al. (2020) may have been too high, also limiting the number of statistics able to be included
in the analysis.

The first aim of the present study was thus to investigate the effect of reduced data availability on the statistics of N to
evaluate the possibility of lowering the 75% threshold used in Laj et al. (2020) without compromising the relevance of the
analysis. For that purpose, the 11 sites with an annual data coverage of more than 95% were selected (ETL, IPR, KOS, LEI-
E, NGL, NMY, PAL, SNB, THD, TRL, and VAR) and, for each site, the statistics derived from the original dataset were
compared to those calculated from reduced datasets in which the absence of data was simulated. The selected stations do not
represent all geographic and footprint categories, but they remain representative of a variety of environments. Two different
approaches were used to investigate how, on top of the data availability itself, the length and configuration of the missing
periods were affecting the results. Note that, however, none of these approaches were designed to address the effect of
regular/cyclic gaps in the datasets, or to correspond to very specific conditions prone to affect the instrument or the transmission
of the data. They also are not intended to evaluate the effect of intentional data rejection resulting from automatic filtering
based on systematic criteria (e.g. wind direction). As mentioned previously, Ssuch filtering occurs at SPO, BRW, ALT and

MLO; for these three four stations, the coverage criteria discussed here were not applied.
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Exclusion of weeks was first performed to replicate long gaps in the data, similar to what can happen in the event of an
instrument failure. Note that a week refers here to a block of 7 or 8 days, so that, for the sake of simplicity, each month has 4
weeks and the full year is 48 weeks long in total. The exclusion of 1 to 24 consecutive weeks was tested at the annual scale,
and in each case all possible combinations were considered (e.g. there are 47 possibilities to exclude 2 consecutive weeks out
of 48). The median and percentiles of Ny were computed for all combinations, and for each combination we calculated the
ratio of the newly derived median of N over that derived from the original dataset. In addition, in order to gain more insight
into the variability associated with each simulated gap length, the maximum of the 75" percentile of Ny obtained from the
different combinations was divided by the 75" percentile of Ny calculated from the original dataset. Similarly, the 25%
percentile from the original full Ny dataset was divided by the minimum of the 25™ percentile of all the different combinations.
As illustrated in Fig. 3, there is almost no impact on the annual statistics of Nyt when the measurement interruption is shorter
than 4 — 5 weeks, and the effect remains limited for all types of sites up to ~ 12 weeks missing, with most of the medians
computed from the reduced datasets within a factor of 1.5 of that derived from the original datasets. The variability is however
more pronounced for the polar sites (NMY, PAL, TRL and VAR), especially as the length of the measurement interruption
increases. This observation is consistent with the strong seasonal contrast of N highlighted for these sites in Laj et al. (2020)
and further discussed in Sect. 5.2.1. For data gaps of up to 18-19 continuous weeks missing, the medians of the ratios are
relatively evenly distributed around 1. In contrast, as the simulated gap in the data gets longer, the distribution of the ratios
becomes less symmetric around 1, clearly reflecting the fact that the seasonal cycle of Nt (regardless of its strength) is not
represented in the statistics anymore. In fact, the absence of more than 19 consecutive weeks implies that at least part of the
period JJA, when either the highest or lowest concentrations are often measured (depending on the hemisphere, see Sect. 5),
is missing, which in turn affects the statistics.

The same analysis was repeated at the seasonal scale, and exclusion of individual hourly averages was finally tested at both
scales, annual and seasonal, to reproduce the rejection of sporadic data points as it may occur, for instance, during data quality
control. The corresponding results are detailed in the Supplement. For comparable data availability, long interruptions in the
datasets tend to have a slightly stronger impact on the statistics compared to the absence of individual data points. As illustrated
in Figs. 2 and S5, such long interruptions are moreover mostly responsible for the low data coverage observed at some sites.
Indeed, 9 of the 14 sites which have an annual data availability below 64% have experienced measurement interruptions longer
than 90 days, and, more broadly, 29 of the 39 stations which have an annual data availability lower than 88% have missing
data over periods longer than 30 days (Fig. S5). The definition of the coverage criteria to be used in this work was in turn based
on the results obtained from the simulation of long gaps in the datasets. Based on the observations from Fig. S3, a threshold
of 50% was set at the seasonal scale, and 60% of the data were required at the annual scale to ensure some minimal
representativeness of the datasets with respect to seasonal cycles (Fig. 3). Although they are not based on strict statistical
criteria, these thresholds seem to allow a reasonable compromise between availability and quality of statistics for the dataset
of interest. Following these criteria, the three stations (MSA, RUN and VAV) discarded from the study of N reported in Laj

et al. (2020) were included in the present work. These looser requirements also allowed the analysis of 53 more summary
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statistics for the 57 other sites already included in Laj et al. (2020). Furthermore, unlike in Laj et al. (2020), the data from 2016
were used for THD in order to benefit from greater coverage for this station, which closed in early June 2017. Note that for
consistency, in spite of the modified coverage criteria, the 2016 data was still considered for the sites for which this was already
the case in Laj et al. (2020); this also made it possible to increase the number of statistics for all these sites (10 in total) except
WLG.

4.2 Impact on the estimation of Dy

Using the same approach as in Sect. 4.1, the effect of reduced data availability on the autocorrelation patterns and, more
importantly on the amplitude of the diel cycle of Ny, was investigated. As introduced in Sect. 3.1.2, D¢, was calculated as the
sum of the PACF coefficients obtained for the whitened time series of Ny for lags between 22 and 26 hours. The analysis was
performed at the annual scale with the threshold data availability of 60% defined in Sect. 4.1 as a starting point, and the
sensitivity of D¢y to the data coverage was further investigated by also simulating data availability of 75%. These targets were
reached in two ways: first by excluding 19 and 12 consecutive weeks, respectively, from the original time series, and second
by removing enough randomly selected, non-contiguous individual hourly averages. As with the statistics of N, all possible
combinations of weeks to exclude were considered in the first case, and the second test was repeated 25 times with different
sets of randomly selected hourly averages. An overview of the results obtained at all sites is shown in Fig. 4. More specifically,
Figs. 4.a and 4.c, show, for each of the reduced datasets, the ratio between the newly derived D, and the value found in the
original time series. In addition, Figs. 4.b and 4.d further illustrate the variability of Dy, calculated for each site as the
difference between the maximum and the minimum of D¢, found in the reduced datasets normalized by the D, value of the
complete time series.

As illustrated in Fig. 4.a, long interruptions in the time series overall have more significant effects on D¢y than on the statistics
of Nt (Sect. 4.1). The exclusion of 12 and 19 weeks nonetheless lead to comparable results, as reflected by the variability of
Dy (Fig. 4.b), which is often similar in both cases. On the other hand, this variability is observed to decrease with the magnitude
of D¢y in the original dataset, which suggests that the evaluation of D¢y is all the more uncertain in reduced time series as its
value is already low in the complete dataset. Although they have a more pronounced effect on D¢y than on the statistics of N,
gaps of longer consecutive periods have, for the same resulting data availability, weaker impact compared to the absence of
individual data points. This observation, which contrasts with the findings of the previous section, is expected because the
number of value pairs available for the determination of the ACF (and consequently affecting the PACF and D¢y calculation)
drops significantly when an increasing number of sporadic values are missing, with a likely effect on the significance of the
resulting correlations. In such a situation, a negative D¢y may appear, a priori without physical meaning, but rather in response
to the decreased amount of data in the reduced datasets, while positive values are associated with the complete datasets. This
is the case for all the sites highlighted by a black square at the top of panels a. and, more importantly c., of Fig. 4, and for
which such negative D¢y values are not shown. Note that observations from TRL are not presented since a negative D¢y value

is obtained in the original dataset at this site; again this negative value is most likely an artefact, which is thought to arise in
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this case from the very strong variability of Ny caused by the occurrence of snow storms between April and August at this
site. As evidenced shown in Fig. 4.c, the occurrence of a negative D¢y value is the most frequent when degrading the data
availability to 60%, and the variability of D¢y is also the highest, up to almost 300% (Fig. 4.d). When the simulated data

availability is raised to 75%, the occurrence of negative Dy values is less frequent, but the variability of D¢, remains on

5 average more pronounced than in the case of consecutive missing weeks. As in the case of longer interruptions, the variability
of D¢y resulting from the absence of individual data points seems, however, to decrease with the magnitude of Dy in the
complete timeseries.

Based on these last observations, and even if long interruptions (e.g., due to instrument failure) were the main reason for
decreased data availability in the datasets (Fig. S5), the coverage criteria was raised to 75% for the study of Dy, and the main

10 analysis was limited to the annual scale. The seasonal change of the diel cycle was only briefly investigated at a few sites with
particularly high coverage to give further insight into the findings obtained at the annual scale. All the results presented in
Sect. 6 should nonetheless be considered with caution, as the length of the selected datasets remains in any case limited for
such application.
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Fig. 2 Data coverage of the sites. For clarity, a. European and b. remaining stations are shown separately. Black dots on the
left panel indicate the presence of valid hourly data, and markers on the right panel indicate the periods (year and seasons) for

25 which the corresponding data availability was sufficient to compute statistics (i.e. 50% for seasons and 60% for the full year).
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Fig. 3 Variability of Nyt annual statistics in reduced datasets. For each investigated gap length (between 1 and 24 consecutive
weeks), all possible combinations were tested, and in each case the ratio between the newly derived median of Ny and that
derived from the original dataset was calculated (circles). The upward and downward triangles provide insight into the range
of variability. The upfacing triangles represent the ratio between the maximum value of the 75" percentile of N obtained
from the reduced datasets and the 75" percentile calculated from the original time series. The downfacing triangles represent
the 25" percentile from the original dataset divided by the minimum of the 25 percentile.

22



@ NMY
® VAR
® PAL
® sNB
ETL
THD
NGL
KOS
IPR
® LEI-E

15¢

Ratios

057

TS

|

hnmeame e

-
e
-
=

|
"""" f

12 weeks 19 weeks
Number of excluded weeks

cmcemeddese ma o

* commennh we

wsompmens o

o eswempues

-
=+ s m o

75% 60%
Simulated data availability

Normalised variability of the

D

Normalised variability of the

in reduced datasets (%)

cy

in reduced datasets (%)

200 b T i
. O 12 weeks
150 8 O 19 weeks| |
g o
100 1
0 o '}
»)
507 ° o° 8
8
0 ‘ ‘ | ‘ ‘ ‘
0.1 0.2 0.3 04 0.5 0.6 0.7 0.8
DCy from original datasets
300 T .
o °d. o 75%
° O 60%
]
200
8o 8
° o
100} 2 2
@ [+]
[+]
o
0 ‘ ‘ | ‘ ‘ ‘
0.1 0.2 0.3 04 05 0.6 0.7 0.8

DCy from original datasets

15 Fig. 4 Variability of the diel cycle (D¢y) of Nyt in datasets with data availabilities degraded to ~ 60% and ~ 75% as a result of

the exclusion of 12 and 19 consecutive weeks (all possible combinations tested) (two top panes) and individual hourly averages

(test repeated 25 times) (bottom two panes). In a. and c., the ratio between the newly derived D¢y, value and that calculated

from the original dataset was calculated for each reduced dataset. Black squares indicate the occurrence of negative D¢y values

(not considered in the calculation of the ratios) at the corresponding sites. Panels b. and d. show the variability of Dy, calculated

20

for each site and each target data availability as the difference between the maximum and the minimum of D¢y derived from

the reduced datasets normalized by Dy, calculated from the complete time series, as a function of the original D¢y value.
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5. Seasonality of the total particle number concentration and size distribution
5.1 Structure of the section

The seasonality of Nit was investigated first, together with the PNSD when measurements were available. The results are
discussed below, separately for the following station types defined as combinations of geographical and/or footprint criteria
among which comparable trends or features could be identified: mountain sites, polar stations, continental and coastal urban
stations and remaining lowland sites (i.e., non-urban continental and coastal stations). Note that all polar sites characterized
by an additional geographical category (i.e., ALT, BRW and NMY, Table 1) were considered only as polar sites in this analysis.
Figure 5 provides an overview of the spatial distribution of Ny based on the medians (annual and/or seasonal) computed for
all sites, which are also reported in Table S2 in the Supplement. This overall picture is complemented by the results shown in
Fig. 6, which offers an additional viewpoint based on the ranking of the sites according to 1) the annual median of N (Fig.
6.a), in a similar way as in Fig. 8 in Laj et al. (2020), and to 2) the ratio of the maximum and minimum seasonal medians of
Nt (Fig. 6.c). This ratio, hereafter referred to as SeasC and used as a metric to evaluate the seasonal variability of N, was
calculated when all seasonal medians were available; the seasons corresponding to the medians used in the calculation of
SeasC are also shown for each site on the right hand side of Fig. 6.c. In addition to Fig. 6.a, which, together with the annual
median of N, also indicates the corresponding 1%t and 3 quartiles, Fig. 6.b provides the normalized interquartile range of
Niot, hereafter referred to as NIQR. The NIQR, calculated as the ratio of the interquartile range over the corresponding median
aims to allow a comparison of the variability of Ni: independent of the concentration level observed at each site. The NIQR
corresponds in other words to the relative variability of Ni: expressed as a percentage of the median, which is used as a
reference in this approach. Similar information is also provided at the seasonal scale in Fig. 7 for further investigation of the
intra-seasonal variability of the particle concentration. Note that the analyses presented in Fig. 6 are restricted to the stations
where data availability was sufficient over the periods of interest.

The study was further limited to the sites where MPSS data was available for the investigation of the PNSD. Median
distributions and corresponding modes (defined through the separation by the bimodal fit procedure, see Sect. 3.2) are shown
for each site and season (depending on data availability) in Figs. A1-A6 in Appendix A, and corresponding characteristics of
the modes (i.e. modal concentrations N,, , and N,,, ,, mode peak locations D,, ; and D,, , and geometric standard deviations
om1 and o, ) are reported in Table Al. In addition, the modal parameters are shown for all sites as a function of their type in
Figs. 8, 9 and S6, which also indicate, for each station, the site-specific variability of each parameter. For a given site, this
variability was calculated when at least two seasons were available as the ratio between the standard deviation of the parameter
over the corresponding mean (calculated from all available seasonal values, i.e., between 2 and 4 seasons). Similar to the
NIQR, such normalization was adopted to allow for the quantification of the variability regardless of the absolute value of the
parameters, and in turn make the comparison between the sites more relevant. One should however keep in mind that the
variations of the modal parameters are often connected when interpreting the site-specific variability of each single parameter.

As an example, changes in the concentration and width of a mode can be seen concurrently, and the resulting increase or
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decrease of the modal concentration can contrast with the initial guess one could make from the visualisation of the median
distributions only. This is for instance the case at ZEP, where the MAM to JJA increase of N, ; reported in Table Al is not as
pronounced as expected from the clear enhancement of the sub-50 nm particle concentration visible in Fig. Al due to the
concurrent strong decrease of o,,, ; (Table Al and Fig. S6). As evidenced shown in Fig. S6, site-specific variability of the
geometric standard deviation is overall limited for both modes (9% on average), but can nonetheless reach 27-28%, with the
highest variability observed at urban sites.

In addition to Tables Al and S2 (as well as Figs 12-13 and S7-S8 and Tables 2 and S3 discussed in Sect. 7), which provide
ready-to-use information for the modelling community on both particle number concentrations in the size ranges of interest
for this work and the parameters used to describe the PNSD, qualified time series of Nt (as well as Nso and N1go) and seasonal
medians of the PNSD are available in Rose et al. (2021).

5.2 Results from different station types
5.2.1 Polar sites

As shown in Figs. 5 and 6.a, the lowest particle concentrations are on average observed at polar stations, where annual medians
of Nyt are of the order of 102 cm™. Consistent with earlier observations by Asmi et al. (2011), the variability of the particle
number concentration is the most pronounced at these sites, as shown in Fig. 6.a and further reflected by the corresponding
NIQR presented in Fig. 6.b (~ 160% on average, up to ~ 240% at PAL and VAR). This variability is primarily related to a
remarkably strong seasonal contrast of Ny at most of these stations (SeasC > 7 at 5 of the 7 documented sites, Fig. 6.c), with,
in particular, enhanced concentrations observed during local summer which often contrast with winter minima. The exception
is BRW, where all seasonal medians are quite similar. The variability of N is also influenced by a pronounced intra-seasonal
variability at some stations (Fig. 7), including for instance BRW during JJA (NIQR ~ 250%), and to a slightly lesser extent at
TRL and NMY during MAM (~ 210%).

The corresponding PNSD are generally characterized by an Aitken mode located areund at 42+14 nm and an accumulation
mode found, on average, at 149+37 nm (Table Al and Fig. 9). Similar to N, the shape of the PNSD is nonetheless highly
variable at polar stations (Fig. Al), with the largest site-specific variability observed for N,, ; (on the order of 89% on average
versus 59% for N, ,, Fig. 8). The variability of N,, , is significantly more pronounced at polar stations compared to other
station types, and also contrasts with the trend observed at other sites, where N,,, , is instead more variable throughout the year.
Enhanced concentrations of Aitken mode particles coinciding with the maximum of Nt during local summer more specifically
appear as a common feature of the four polar sites equipped with a MPSS (Table Al and Fig. 8). This is consistent with
findings by Freud et al. (2017) for size distributions measured at five Arctic sites.

Despite their distinctive behaviour, slight differences are noticed among the stations located at high latitudes. This first includes

the tendency of N to further decrease towards the poles, under conditions of minimal anthropogenic influence, down to 38
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cm 3 at SPO during local winter. The PNSD measured at these sites also experience contrasting evolution throughout the year.
In fact, the summer PNSD is almost unimodal at PAL and VAR, and differs significantly from the bimodal distributions
observed during other seasons. At the Arctic station ZEP, in spite of the strong changes exhibited in Fig. Al (in particular
between MAM and JJA), two distinct modes are clearly seen during all investigated seasons (DJF missing), while, in contrast,
this bimodal feature is in-eentrast much less pronounced at TRL regardless of the season. While being less obvious, changes
in the modes’ peak location also accompany the evolution of the modal concentrations at the sites located in the Northern
Hemisphere (Fig. 9), with the most pronounced site-specific variability again observed for the Aitken mode, in the order of
28% on average (versus 11% for the accumulation mode). Larger diameters are more specifically seen for both modes during
MAM at ZEP, and later during JJA at PAL and VAR, eeineiding-with-the-maximum-of-Ny,-—ebserved-during-JJA; while the
modes’ diameters are, in contrast, almost constant at TRL.

While similar processes are certainly contributing to Ny at all these sites, contrasting properties of the PNSD likely result from
varying sources and local specificities across the relevant latitude ranges. Transport was for instance reported as an important
source of Aitken and accumulation mode particles during summer at Arctic sites such as ZEP and ALT, while the
accompanying wet deposition reduced the number concentration of accumulation mode particles (Croft et al., 2016). Secondary
aerosol formation, including NPF, was furthermore observed at polar stations (Kerminen et al., 2018 and references therein;
Nieminen et al., 2018), with slightly different seasonal patterns which presumably result from the diversity of condensing
vapours (and their associated concentration) involved in the process at the different sites. For instance, compounds of marine
origin that are related to ocean ice cover and biological activity are likely more contributing to aerosol formation in the pristine
conditions found at the sites located at extreme latitudes (Abbatt et al., 2019; Jang et al., 2019; Baccarini et al., 2020) than at
sub-Arctic sites such as PAL and VAR. Finally, some specific phenomena have also been previously reported to affect the
PNSD. This is for instance the case during the pervasive annual episodes of Arctic haze observed across much of the region,
which cause elevated number concentrations of accumulation mode particles during springtime in the Arctic region (Abbatt et
al., 2019 and references therein), as reflected in the measurements collected at ZEP during this time of the year (Fig. Al). As
reported in earlier studies (e.g. Croft et al., 2016; Freud et al., 2017), this likely affects NPF over this region, where the
maximum frequency of occurrence of the process is observed during JJA, when the existing aerosol surface area is reduced,

while this maximum is, in contrast, seen earlier during spring at sub-Arctic sites (Nieminen et al., 2018).

5.2.2 Urban stations

In contrast to polar sites, stations located in urban areas, both continental and coastal, exhibit the highest N, with yearly
medians in the range 103-10* cm (Figs. 5 and 6.a). As shown in Figs. 6.a and 6.b, the variability of N is also less pronounced
in urban conditions, with an average NIQR of ~ 90%. Specifically, these sites, which are all located in Europe, display only
limited seasonal variation (SeasC < 2 for the 9 documented sites, Fig. 6.c). Despite the lack of a clear trend in the seasonal

cycle, slightly greater medians are nonetheless observed during summer at 5 stations, while winter concentrations are on
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average higher at IPR and UGR, where the most pronounced contrast is seen. Intra-seasonal variability is also minimal at urban
stations, with NIQR mainly below 100% (Fig. 7).

The weak seasonality of Ny is associated with limited changes of the PNSD, which are almost unimodal throughout the year
and shifted towards the lower end of the investigated size range at a majority of urban sites compared to other station types,
with elevated concentrations of sub-100 nm particles (Figs. A2-A3). The distributions are specifically dominated by a wider
Aitken mode compared to other station types (o, ; > 2) (Table Al and Fig. S6), which is on average located at 32+11 nm and
only experiences a limited seasonal variation of its properties at most of the sites (on average 20% and 22% for the mode
diameter and modal concentration, respectively, Table Al and Figs. 8-9). In contrast, the characteristics of the accumulation
mode show more variability for a given site (on the order of 26% and 77% for the mode peak location and concentration,
respectively), but with no clear pattern among the sites. On average, this second mode is positioned at 122+37 nm but is often
found below 100 nm, and sometimes even overlaps strongly with the Aitken mode (Table Al and Fig. 9). Furthermore, the
accumulation mode can be relatively wide, as observed for instance at LEI-M and DRN during DJF (Fig. S6). The shape of
the PNSD at IPR, while also almost unimodal, is slightly different from those of the other urban sites, with features comparable
to those observed for rural background continental sites. As noticed earlier by Asmi et al. (2011), a distinctive behaviour at
IPR is in particular observed in DJF, with elevated particle concentrations around 100 nm resulting from the accumulation of
aerosols in the lowermost levels of the troposphere (<1000 m) during this time of the year (Barnaba et al., 2010). As mentioned
before, increased concentrations of ground-level particles are also measured during winter at UGR, in particular in the range
50-100 nm (Fig. A2), and were earlier attributed to the combined effect of several factors including ABL dynamics and
enhanced anthropogenic activities (domestic heating) by Lyamani et al. (2010).

More broadly, sub-100 nm particles, which often dominate the urban PNSDs, are emitted directly into the atmosphere from
combustion processes related to traffic, industry or residential heating, or from other sources, such as vehicle brakes, and they
can be formed as well from gaseous precursors (R6nkko et al., 2019). As indicated in this recent review, a number of studies
have been conducted to investigate the characteristics of urban aerosol, and to assess the relative importance of the above
mentioned sources. Different approaches have been used, including simultaneous measurements of the PNSD at different
locations in the same urban area (e.g. Harrison et al., 1999; Salma et al., 2014), possibly coupled with laboratory experiments
(RoOnkk®d et al., 2017), or the application of statistical methods for the analysis of data collected at a single site (Pey et al., 2009;
Dall’Osto et al., 2012; Al-Dabbous and Kumar, 2015; Brines et al., 2015). All of these studies agree on a very strong
contribution of traffic related emissions to the total particle number concentration. More specifically, Pey et al. (2009) indicate
that road traffic could explain, on average, 54%, 69%, 74% and 86% of the particle concentration measured at Barcelona
(Spain) in the ranges 13 — 20, 20 — 30, 30 — 50 and 50 — 100 nm, respectively, while R6nkkd et al. (2017) and Olin et al. (2020)
report the importance of traffic emissions in the sub-3 nm range as well. While traffic related emissions are often subject to
daily variation (e.g. increase during morning and evening rush hours), probably affecting the diel cycle of Ny at urban sites
(see Sect. 6), they however experience more limited seasonal variation, which likely explains the weak seasonality of N in

urban areas. The fact that slightly higher particle number concentrations are observed during summer at a number of urban
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stations, when the atmospheric boundary layer (ABL) height is also increased compared to colder months, suggests, however,
that there are certainly additional sources of aerosols in summer which compensate for the ABL dilution effect. Increased
concentrations of sub-40 nm particles are observed during MAM and more importantly JJA at some stations (PRG, LEI, DRN
and GIF, Fig. A2), supporting a probable role of secondary aerosol processes in the build-up of increased summer Ny at these
sites. This assumption is supported by the results of Salma et al. (2014) and Brines et al. (2015), who report that NPF can
represent a significant source of particles in the urban atmosphere, in particular during spring and summer, and more broadly
under high insolation conditions. In addition to supplementary sources, we also cannot exclude the existence of a seasonally
reduced particle sink on N at some sites. Such an effect was for instance reported for Botsalano (semi-clean location) and
Marikana (industries and residential area nearby) in South-Africa, where the lack of wet removal during the dry season (from
May to September) contributes to higher particle number concentrations during this time of the year, in particular above 100
nm (Vakkari et al., 2013). The studies of Harrison et al. (1999) and Salma et al. (2014) also underline the strong spatial
heterogeneity of observations within a given urban area, also visible in our dataset when comparing measurements from LEI
and LEI-E, which are separated by only ~3 km. Fresh traffic emissions have a strong impact on the shape of the PNSD, with
an increased amount of small particles (<10 nm) compared to urban background sites (Harrison et al., 1999; Salma et al., 2014;
Ronkkd et al., 2017), and also contribute to observed high-frequency variations, which can be attributed (at least partly) to the
wide variety of vehicular sources emission characteristics (Harrison et al., 1999). This is in particular the case for roadside
samples, such as those collected at DRN, LEI-E and LEI-M in the present study.

5.2.3 Non-urban sites and mountain stations

The remaining sites, including mountain and non-urban continental and coastal stations, do not have exhibit as clear a common
behaviour as polar and urban sites and display, on average, intermediate N, with yearly medians of the order of 10%-10% cm3
(Figs. 5 and 6.a). As shown in Fig. 6.a, the signature of their dominant footprint is noticeable, with lower concentrations
measured in forested areas, or at stations influenced by air masses of various origins (“mixed”), compared to rural background
sites. However, the distinction between the different geographical categories (i.e. mountain, continental and coastal) is less
pronounced. Nonetheless, as noted in Laj et al. (2020) and in agreement with previous observations from Asmi et al. (2011),
particle concentrations measured at mountain sites tend to be lower compared to nearby lowland sites, as observed for instance
for SNB (3106 m a.s.l., annual median of Nyt ~1027 cm) and KOS (535 m a.s.l., 2690 cm3). Also, as discussed below,
mountain sites, and specifically those characterized by mixed footprints, tend to exhibit somewhat more pronounced seasonal
variations relative to lowland stations. This is likely a result of the strong impact of the ABL height variability (e.g. Herrmann
et al., 2015; Rose et al., 2017) in connection with the topography of the sites (Collaud Coen et al., 2018), which largely

determines the contribution of long-range transport relative to more local sources of particles.
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i Non-urban continental and coastal sites

Particle number concentrations measured at non-urban continental and coastal sites are overall lower compared to those
observed at urban stations, but similar features are observed among all these lowland sites. Specifically, the variability of N
is comparable (NIQR ~100%, Fig. 6.b), as a result of both limited intra- (Fig. 7) and inter-seasonal variability (Fig. 6.c). A
slight enhancement of Ny is visible during local spring (6 sites) or summer (9 sites) at all 17 non-urban lowland sites
documented in Fig. 6.c except ETL and THD, where higher concentrations are instead found in autumn. Similar to urban sites,
this likely results from the concurrent variability of particle sources and ABL dynamics, as for instance hypothesized for OPE
by Farah et al. (2020), who suggested a biogenic secondary source for the extra particles observed in the warmest seasons.
Hoewever, as mentioned already, an effect of a seasonally reduced sink (mainly from precipitation) on the variations of N
can also not be excluded at some sites (e.g. Vakkari et al., 2013). As shown in Fig. 6.c, the stations located in forested areas
tend to exhibit stronger seasonal variations. This is likely explained by the biogenic nature of at least some of the aerosol
sources at these sites, which are affected by a strong seasonality that is related to the biosphere activity. The distinct nature of
these forested sites is also visible in the PNSD, which tend to have a more pronounced bimodal shape compared to rural
background stations, where the distributions are, in contrast, more monomodal and similar to those observed at urban sites
(Figs. A3-Ab). Specifically, the northernmost stations located in forested areas, SMR and BIR, feature similar PNSD variations
as the sub-Arctic polar stations PAL and VAR, including a growth of the Aitken mode in summer with greater concentrations
and larger mode diameters (Table Al and Figs. 8-9). On average, the Aitken and accumulation modes are found at 51+13 and
174+29 nm, respectively, at non-urban sites. These are actually the largest mode diameters among all station types, with the
most noticeable shift (compared to other station types) observed for the first mode at the two coastal sites AMY and FKL
(Table Al and Fig. 9). Despite being less pronounced compared to urban stations, the site-specific variability for N,,, , is also
significant at non-urban sites, on the the order of 48% on average (versus 31% for N,, ;, Fig. 8). In spite of the clear seasonal
variations in the PNSD at some of these sites (Fig. A4), the variability of D, ; and D,, , is, on average, also less pronounced
than at urban sites (16% and 12% for D, ; and D,,, ,, respectively, Fig. 9).

Despite the differences observed in terms of level of N and characteristics of the PNSD, this last analysis highlights
similarities between observations conducted from urban and non-urban areas, and particularly between measurements from
urban and rural background sites. This result suggests that diluted urban aerosol is likely contributing to the aerosol sampled

at a number of non-urban stations, in particular those located in the vicinity ofr urban areas.

ii. Mountain stations

As mentioned earlier, the seasonality of the observations collected at mountain sites is somewhat stronger than at lowland
stations (other than polar). This is the case in particular at stations characterized by mixed footprints, where there can be up to

a factor of almost 5 difference between the maximum and minimum seasonal medians of Nyt (Fig. 6.¢). Similar to polar sites
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(although for different reasons, as discussed later in this section), higher Nt are mostly found during local summer (6 sites),
and often contrast with winter minima (5 sites). The main exception is CHC, which sees its highest Nt during JJA, which, as
noted in Sect. 3.1.2, coincides with the dry season at this site located in the tropics. This seasonal contrast contributes to an
average NIQR of ~117% for mountain sites (Fig. 6.b), which is also explained by the relatively marked intra-seasonal
variability of Nyt compared to lowland sites (other than polar) (Fig. 7). Note that the particularly low NIQR values observed
at MLO (Figs. 6.b and 7, between 38 and 46% in the different seasons) are likely related to the automatic filtering of the data
based on wind direction.

The PNSD collected at mountain sites exhibit a stronger bimodal behaviour compared to lowland stations (other than polar),
with mean diameters for the two modes close to those obtained for polar sites. These modes are, on average, found at 399 nm
and 142425 nm, but, similar to N, significant variability of the PNSD is observed, both among the sites and seasons. The
most significant site-specific variability is observed for Ny, , (in the order of 76% versus 36% for N, 1, Fig. 8), while, like all
other station types except urban, the peak location of the Aitken mode is slightly more variable (20%) than that of the
accumulation mode (13%) (Fig. 9). The contrast between the sites is sometimes striking, as observed for instance for JFJ and
CHC, where the medians of N differ by one order of magnitude (Fig. 6.a) as a likely result of the contrasting surroundings
of these sites. The impact of the emissions from the neighboring urban area of La Paz (~20 km) on the measurements performed
at CHC was demonstrated by Chauvigné et al. (2019), while there is no such major source of pollution in the vicinity of JFJ.
Similarities among sites can also be seen. For instance, the two mountain stations located below 1000 m a.s.l., MSY and HPB,
feature N levels and variability comparable to those of rural background continental sites (Fig. 6), and less obvious bimodal
behaviour of the PNSD, particularly for MSY (Figs. A5 and A6).

Following this last observation, the connection between the medians of Nyt and the elevation of the sites was further
investigated, separately for each season (Fig. 10.a). The linear fit between these two variables is shown in the plot to further
guide the eye, but the strength of the correlation was more specifically evaluated by the mean of the Spearman’s rank
correlation coefficient, which does not require the variables to be normally distributed and assesses monotonic relationships,
whether linear or not. Note that in order to include measurements from CHC and RUN (the two mountain sites located in the
Southern Hemisphere), local seasons are considered in this part of the study (i.e., for example, DJF data from CHC and RUN
contribute to summer data). In addition, in order to include as many sites as possible, we did not limit this analysis to the sites
with sufficient data availability over all four seasons, which means that the number of points considered in the search for
correlations varies from season to season, from 11 in fall to 16 in spring.

As shown in Fig. 10.a, there is a tendency for Ny to decrease with altitude in all seasons but winter, where the opposite is seen.
However, the correlations between Ny, and the station elevation are not statistically significant for any season except summer,
where the correlation is found to be statistically significant at the 95% confidence level. This last observation is consistent with
the fact that measurements collected at mountain sites during this time of the year are likely more connected to the lower
tropospheric layers due to increased ABL dynamics (including thermally driven wind systems) and height; in contrast, Niot

values they are instead more representative of free tropospheric air masses and long-range transport during winter, where a
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weaker connection between altitude and Ny is thus expected. The results of this correlation study seem, however, to be strongly
influenced by the observations from CHC, which is the highest station and where, nonetheless, winter concentrations are much
higher compared to other sites. This might be related to the close proximity of the urban area of La Paz but Wwe also cannot
exclude the idea that the use of the common division DJF-MAM-JJA-SON is not adapted to this station located in the tropics.
More broadly, this result challenges the relevance of using altitude alone to describe the influence of lower tropospheric levels
on measurements performed at mountain sites. Based on Collaud Coen et al. (2018), the meso-scale topographical features
around the station should be considered as well; the connection between N and the ABL-Topolndex (Collaud Coen et al.,
2018), an index defined to provide a more complete characterization of the ABL influence at high altitude sites, was thus
investigated here as well. This topography based index is defined in such a way that the greater the influence of the ABL, the
higher the value it takes. As shown in Fig. 10.b, all correlations are statistically significant at the 9895% confidence level and
positive. This result is consistent with earlier findings by Collaud Coen et al. (2018), who more specifically highlighted a
positive correlation between particle concentration and the components of the ABL-Topolndex describing the ease of local
transport of both particles and their precursors to the station. The overall stronger connection observed between Ni,: and the
ABL-Topoindex (compared to the station elevation alone) clearly illustrates the need to take the topography around the sites
into account to characterize the ABL influence on observations performed at mountain stations. In summer, however, the
correlation between Ni: and the ABL-topoindex appears to be weaker than in the case of altitude, as reflected by the absolute
value of the corresponding Spearman’s rank correlation coefficients (0.57 versus 0.76). During this time of the year, inputs
from the ABL at mountain sites are certainly not only more frequent, but also associated te with higher particle loading, in line
with increased Niw: observed in the lower layers (Sects. 5.2.1-5.2.3.i). We hypothesize that the absence of aerosol source
inventories in the ABL-Topolndex explains the lower Spearman rank correlation with Ny during maximal ABL influence in
summer whereas the standard decrease of aerosol with altitude and ABL depth has a strong impact on the connection between

Nwt and altitude.

approach with the modal concentrations instead of N would have probably provided more insight into these aspects, but such

analysis was not performed for the present work because of the limited data availability in some seasons.

Overall, the topography and environs of the sites (which determine the ABL influence) combined with the variations of the
ABL height strongly affect the seasonal cycles of the particle number concentration and size distribution observed at mountain
stations. At JFJ, for instance, the greatest variability is observed for N, ,, the median of which is increased by almost one order
of magnitude between local winter and summer (Table Al and Fig. 8). This results from the increased frequency of ABL
injections during summer, which are the main source of accumulation mode particles at this site (Herrmann et al., 2015). Such
significant variability of N, , is also seen at CHC, where it is accompanied by a widening of the accumulation mode and
decrease of its mean diameter, reflecting the overall shift of the whole distribution towards the lower end of the investigated

size range during JJA (Table Al and Figs. 8, 9 and S6). The concentration of sub-40 nm particles is clearly enhanced during
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this time of the year at CHC (Fig. A6), coinciding with elevated NPF frequency observed at the site (Rose et al., 2015).
Additional insight into the occurrence and role of NPF at mountain stations is more broadly considered in the recent review

by Sellegri et al. (2019).
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medians of Ni, used in the calculation of SeasC. Additional explanations regarding the calculation and interpretation of SeasC
and NIQR are available in Sect. 5.1.
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for the footprint is the following: RB for rural background and U for urban. Details regarding the calculation of the site-specific

variability of the modes characteristics are available in Sect. 5.1.
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Fig. 10 Connection between Ny and a. the elevation of the mountain sites and b. corresponding ABL-Topolndex in each
season. The linear fit between the two variables is shown in each case to further guide the eye, but the strength of the correlation
is evaluated based on the Spearman’s rank correlation coefficient. Statistically significant correlations at the 95 % and-96-%
20 confidence level are represented by squares marked-by-large-and-medium-symbel-sizes—respeetively, while non-statistically
significant correlations (at the 90% confidence level) are represented by smaH triangles syymbels. Observations from RUN and

CHC, the two mountains sites located in the Southern Hemisphere, are highlighted by the black circles in the scatter plots.

6. Diel cycle of the total particle number concentration

Figure 11.a presents Dy, calculated at the annual scale for the 34 sites that had sufficient data availability (>75%). To help
25 interpret these results, Fig. 11.b additionally shows the seasonal D¢, values calculated for the 11 sites with the highest coverage
(>95% at the annual scale, and in turn sufficient data availability in all seasons) previously involved in the sensitivity studies
reported in Sect. 4. For DJF, where the three months considered are not consecutive, D¢, was calculated in two different ways:
first, by proceeding as for the other seasons, as if the three months were consecutive, and second, by excluding the calculation
of autocorrelation over non-consecutive periods. The results of these two approaches are presented in Fig. 11.b, DJF V1
30 corresponding to the first method and DJF V2 to the second. As a reminder, only the PACF coefficients (between lags 22 and
26) statistically significant at 95 % confidence level were used in the calculation, which explains why some D, values are

missing in Fig. 11.b. Negative D¢y values were also filtered out, which is why, in particular, the annual D, obtained for TRL
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and JFJ, both negative based on the 2017 data, are not shown in Fig. 11.a. As already indicated in Sect. 4.2, these negative
values likely have no physical meaning; rather, they most probably result from an alternation of contrasting conditions at the
site (e.g. in connection with the dynamics of the ABL at JFJ), or from specific meteorological phenomena (e.g. snow storms
at TRL) that impact the average diel cycle of Ny It should also be noted that the value reported for ZSF may be affected by
the daily absence of data between 11:00 and 22:00 UTC from July 15" onwards at this site.

Contrasting values are observed among polar stations, but the annual D¢y is on average weak at these sites (Fig. 11.a), as a
likely consequence of the absence of a regular day-night cycle in some seasons, and also because there is no strong
anthropogenic activity prone to influence Dey in these pristine environments. As shown in Fig. 11.b, D¢y values are in fact
mainly reported during the transition seasons, when there is a day/night distinction; and although tey are less frequent than in
summer, NPF events are also observed during this time of the year (e.g. Nieminen et al., 2018) which can contribute to the
identified cycles. The average behaviour described by the annual Dy is therefore of limited value for these polar sites which,
in addition to the common characteristics mentioned above, have individual specificities that also affect the diel cycle of Ne.
As mentioned already, this is for example the case of TRL, where the occurrence of snow storms between April and August
have a strong impact on the evolution of Nit.

Overall, higher D¢y, values are found at urban and mountain sites (Fig. 11.a). In urban conditions, the diel cycle is probably
largely influenced by anthropogenic factors that have a strong diurnal variability but, en-the-centrary in contrast, limited
seasonal variations (e.g. morning and evening traffic rush hours), thus allowing a noticeable regularity of these cycles over the
year. Indeed, relatively high D¢y values are observed in all seasons at IPR and LEI-E (Fig. 11.b). The lower summer values,
observed at both sites, are probably related to a decrease in traffic and increase in ABL height, while domestic heating, which
is commonly more intense from October to April, certainly contributes to the identification of more pronounced cycles during
these months. At mountain sites, diel cycles of Ny, like seasonal cycles, are probably largely influenced by ABL dynamics.
The continuous influence of the residual or continuous aerosol layer in summer (see Collaud Coen et al. 2018 and references
therein for the nomenclature), or, en-the-centrary in contrast, the lower ABL heights observed in winter, may lead to lower Dy
values during these seasons. This is observed, at least partially, at SNB, where D¢y, in SON is higher than the summer and
winter D¢y values (Fig. 11.b). However, this behavior is certainly not universal, and the environmental specificities of certain
sites (e.g., island station or coastal zone, complex topography) can certainly also constrain the cycles. For example, given the
altitude of LLN and its proximity to the ocean, it is possible that at this station the residual layer does not remain or is dispersed
by winds during the night in summer, which could lead to higher D¢y values at this time of the year. In addition, we cannot
exclude the possibility that enhanced photochemical processes in summer, while contributing (together with increased
precursor availability) to favour secondary aerosol formation, might also influence Dy at these sites.

For the remaining low altitude sites, D¢y values are observed over a wide range (Fig. 11.a), which can probably be explained
by the diversity of conditions observed at these sites (e.g., altitude range, nature of the sources, including the proximity to
anthropogenic sources). This diversity is reflected by the D¢y values reported in Fig. 11.b, which show contrasting seasonal

cycles from one site to another.
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While the latter analysis highlights some additional contrasts among the different station types, it also indicates that the
interpretation of the annual D¢, values must be conducted with caution, in light of the type of station and the possible
specificities of certain sites. When the diel cycle is relatively homogeneous throughout the year (e.g., at urban sites), the annual
D¢y value describes a real average behavior, whereas when the natural and/or anthropogenic factors that determine Dy are
highly variable from one season to another (e.g., at polar sites), the annual D¢y value has only a limited value. The complete
analysis of Dy therefore requires a detailed seasonal study, taking into account the environmental characteristics of each site,

and could be the subject of a future study using the extended time series available for some stations.
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Fig. 11 a. Ranking of the stations based on regularity of the diel cycle (D¢y) of Nwt. b. Seasonal Dy calculated for the 11 sites
with the highest coverage (>95%). Polar and mountain sites are shown in the upper panel, and other lowland stations are shown

in the lower panel.

7. Focus on CCN-sized particles

As explained in Sect. 3.3, the number concentrations of particles in the ranges 50-500 (Nsp) and 100-500 nm (N1og) Were used
as proxies for the number concentration of potential CCN. Since similar trends are obtained for Nsg and Nigo, only the results
corresponding to Nigo are shown herein (Figs. 12 and 13), while the equivalent observations for Nso are shown in the
Supplement (Figs. S7 and S8).
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Figure 12 shows the seasonal medians (as well as the first and third quartiles) of Nigo, while Fig. S7 shows the same for Nso.
The trends observed for the different station types are similar to what was highlighted for Nt The lowest concentrations are
again obtained for the polar sites, with medians for Nigo in the order of ~10 to a few hundred particles, which is on average
lower than the values obtained at mountain and other non-urban lowland sites (~100 — 1000 cm3) and, more importantly, at
urban sites (~1000 cm®). Similar orders of magnitude are obtained for Nso, but with concentrations that are slightly higher due
to the contribution of particles between 50 and 100 nm in diameter. As in the case of Ny, there is some variability within each
station type, and this seems to be more pronounced for mountain (e.g. JFJ vs CHC) and polar sites. Although based on a
reduced number of sites, such intra-station type variability has also been shown by the direct measurements of the CCN number
concentration reported by Schmale et al. (2018). With respect to the seasonal variations of Nso and Nigo, there are again
similarities with what was obtained for Nt In particular, we observe clear cycles for polar and mountain sites, almost non-
existent cycles for urban sites, and a range of patterns for the remaining sites according to their characteristic footprint (e.g.,
stronger variations at forest compared to rural background lowland sites). There are, however, small differences with the results
obtained for N, particularly in the magnitude of the contrasts, which are probably related to the variability of the contributions
of N1go and Nso to Nyt in the different seasons, as demonstrated for example by Juranyi et al. (2011) at JFJ.

In order to further address this aspect, Fig. 13 (and S8) presents, for the stations which had sufficient data availability in all
seasons (i.e. >50%, see Fig. 2), and separately for the 4 station types discussed so far, the relationship between Nig (0r Nso)
and Nyt Given the high number of points, raster graphs are used instead of standard correlation plots; on these graphs, the
color of each pixel indicates the number of data points (hourly averages) falling into its area (all pixels have equal area on a
log-log scale). The linear fit performed on the logarithm of the variables is also presented for the whole data set and for each
season separately. The logarithm is used here because it allows a more immediate visualization of the contribution of Nigo (or
Nso) to Niot and its variability; the fit equations and corresponding coefficients of determination are reported in Table 2 (and
Table S3). Statistics of the ratio between Nigo (0r Nsg) and Ny are in addition reported for each station type and period (year
and seasons). Note that in order to allow and facilitate comparison of sites located in different hemispheres, local seasons are
considered in this final analysis. Finally, as a complement to the distinction between seasons, Fig. S9 presents the scatter plots
of N1go and Nso as a function of N for polar, mountain and the remaining non-urban sites, this time highlighting the different
footprints present in each class of sites.

As shown in Fig. 13, N1oo represents from a few tenths of a percent to almost all of Ny The median annual contributions of
Naigo to Niot are comparable at polar, urban and mountain sites (~19%), while being slightly higher at other lowland sites (~26%).
The lowest contributions are observed during fall at polar sites, particularly at the two sites PAL and VAR located in the
Northern Hemisphere, and during winter at mountain sites (Fig. 13.a and d). These observations might be, at least partly,
related to increased frequency of cloud occurrence during these seasons. This is for instance the case at PAL, where low clouds
(below 1000 m) are more often seen during fall (Komppula et al., 2005), or at PUY, where the frequency of cloud occurrence
is on the order of 60% in winter, compared to 24% in summer (Baray et al., 2019). In cloudy conditions, the sampling efficiency

of activated particles may be lower than that of smaller interstiteial particles, or even not possible in absence of a whole air
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inlet (e.g. PAL), thus leading to an artificial shift of the PNSD towards lower sizes. In contrast, the highest ratios between Nigo
and N are ir-contrast observed during summer at these sites, when clouds are less prevalent and the transport (in connection
to ABL dynamics at mountain sites) of CCN-sized particles is the most favoured (e.g. Croft et al., 2016; Herrmann et al.,
2015). We cannot exclude, however, the possibility that efficient wet deposition reported to reduce accumulation mode
particles at some Arctic sites (Croft et al., 2016) could lead to observations specific to these sites, possibly contrasting with
the average picture shown in Fig. 13.a. At lowland sites other than polar, higher contributions of Nigo t0 Nyt 0ccur during
winter, when the presence of small particles in connection with NPF is the less frequent and additional sources of larger
particles, such as resential residential heating, are in contrast more intense. At urban stations, the 75" percentile of the ratio
between Nigo and Nyt is on average lower compared to other station types, likely reflecting the significant contribution of traffic
related sub-100 nm particles to Nyt in all seasons (see. Sect. 5.2.2).

The contributions of Nso to Nt are logically higher than those of Nigo, Systematically above a few percent and up to ~100%
for all station types, being on average twice as high at the annual scale (Fig. S8). Similar trends to those obtained for Nigo are
observed, with, in particular, close median annual contributions for polar, urban and mountain stations (43 — 48%), and slightly
higher contributions at other lowland sites (~55%). We also find the same hierarchy of footprints within a station type (Fig.
S9) as well as the same seasonal characteristics for the different station types. The winter maximum of the ratio between Nsg
and Nyt is however less marked than in the case of Nig at lowland sites other than polar, supporting the existence of an
additional source of particles larger than 100 nm in winter compared to other seasons at these stations. The signature of traffic,
which is a permanent source of sub-100 nm, and in particular, sub-50 nm particles (e.g. Pey et al., 2009), is again visible at
urban sites, with the 75" percentile of the ratio between Nso and Nyt being lower than for the other sites. The stronger connection
between Nso and Ny is also reflected in the higher coefficients of determination associated with the linear fits (Tables 2 and
S3).

A feature common to all types of sites is the almost constant contribution of N1go and Nso over the whole range of Ny in winter
and fall, reflected by the slopes close to 1 obtained for all the corresponding fits (slopes between 0.86 and 1.05 for Nigo, and
between 0.92 and 1.03 for Nso, see Tables 2 and S3, respectively). For all the lowland sites, the contribution of Nigg t0 Nt iS
generally lower for the highest N values in spring (slopes between 0.64 and 0.78), with the strongest contrast observed for
the polar sites. This is also the case in summer for lowland stations other than polar, and is probably related to the more
important contribution to Ny of small particles originating from NPF, particularly favoured during these seasons (Nieminen
et al., 2018). Logically, the same trend is observed for Nso, but in a less pronounced way (slopes between 0.70 and 0.90 at
lowland sites during spring), since the probability that NPF particles contribute to Nso is higher than Nigo. The fits obtained for
polar stations in summer indicate-a-behaviourclose-to-that-described-for-the-coldermonths-with have slopes approaching 1
(0.91 for N1go and 0.99 for Nso), indicating rather constant contributions of Nigo and Nso to Nt Over the whole range of Niot in
this season as well. ard-tThis is also the case as-weH for mountain sites, where, both during spring and summer, the slopes of
the corresponding fits are even closer to 1 than during winter and fall (0.94 and 0.97 for Nig, for spring and summer,

respectively, and 0.95 and 0.94 for Nso).
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This last analysis, focused on the largest particles of the spectrum, makes it possible to obtain an estimate of the concentration
of potential CCN based solely on the knowledge of the PNSD. According to the previous results, an estimate of the CCN-sized
particle concentration may even be deduced from the knowledge of Nt only in some seasons, when the contributions of Nigo
and Nso are observed to be constant over the whole range of Nit. However, while such a simple approach assuming that all
5 particles larger than a given activation diameter are potential CCN was reported to lead to reasonable results at JFJ (Juranyi et
al., 2011), a more precise analysis would require information on other parameters that impact the activation diameter, such as
the hygroscopicity of the sampled particles for each site, which probably varies seasonally according to the nature of the

particles, since—it—witlimpact—their—activation—diameter the total number of activated particles, which reduces the

supersaturation, as well as the updraft velocity (Schmale et al., 2018).
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Fig. 12 Seasonal statistics of Nigo, the particle number concentration in the range 100-500 nm, used as a proxy for potential

CCN population. The bars represent the median of Nigo, and the lower and upper end of the error bars represent the 1%t and 3™

quartiles of the data, respectively. Stations are sorted based on the classification reported in Table 1. The meaning of the
25 abbreviations used for the footprint is the following: RB for rural background and U for urban.
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Fig. 13 Scatter plots of N1go as a function of N (hourly averages) for the different station types: a. polar sites, b. urban sites,
30 c. other lowland sites and d. mountain sites. The color of each pixel indicates the number of data points (hourly averages)
falling into its area (all pixels have equal area on a log-log scale). The linear fit performed on the logarithm of the data,
separately for each period (year and seasons), is also presented. The statistics of the ratio between Nigo and N calculated for
each of these periods are in addition shown for each station type in the insert of the corresponding panel; the markers represent

the median of the ratios, and the lower and upper limits of the error bars indicate the 1% and 3™ quartiles, respectively.
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Table 2 Connection between Nigo, the particle number concentration in the range 100-500 nm, used as a proxy for the CCN
population, and Niwt. For each station type and season, the equation of the linear fit performed on the logarithm of the data is
reported in the second column, and the corresponding coefficient of determination in the third column. Note that based on the

corresponding p-values, all correlations were found to be significant at the 95% confidence level (p < 0.05).

Station type / season Fit equation R?
Polar sites

Year log10(N100) = 0.89 x logi0(Nior) — 0.48 0.59
Winter 10g10(N100) = 0.97 x logio(Niet) —0.57  0.66
Spring 10g10(N100) = 0.64 x l0g10(Niwt) + 0.11 0.30
Summer 10g10(N10o) = 0.91 X logio(Ntot) - 0.42 0.46
Fall 10g10(N100) = 0.96 X logio(Nior) - 0.71 0.53
Urban sites

Year 10g10(N10g) = 0.79 x log10(Niet) + 0.05 0.50
Winter 10g10(N100) = 0.96 x log10(Niot) - 0.54 0.64
Spring 10g10(N100) = 0.66 X logio(Nwt) + 0.54 0.42
Summer log10(N100) = 0.59 x logio(Niot) + 0.80 0.38
Fall 10g10(N100) = 0.86 x l0og10(Nior) - 0.23 0.53
Other lowland sites

Year 10g10(N100) = 0.88 X log1o(Ntot) - 0.23 0.53
Winter 10g10(N100) = 1.05 x log10(Niot) - 0.73 0.67
Spring 10g10(N100) = 0.78 x log10(Niet) + 0.05 0.44
Summer 10g10(N10g) = 0.62 x l0g10(Niot) + 0.66 0.31
Fall 10g10(N100) = 0.95 x l0g10(Niot) - 0.51 0.55
Mountain sites

Year 10g10(N100) = 0.96 X log10(Niot) - 0.64 0.72
Winter 10g10(N10g) = 0.93 X logio(Ntot) - 0.70 0.77
Spring 10g10(N10o) = 0.94 X logio(Ntot) - 0.53 0.74
Summer 10g10(N10g) = 0.97 X logio(Nrwot) - 0.51 0.69
Fall 10g10(N100) = 0.92 X l0g10(Ntot) - 0.62 0.72
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8. Summary and conclusion

This study, based on data collected at 62 sites around the world, provides the most up-to-date picture of the spatial distribution
of aerosol concentration and particle number size distribution. Specifically, 38 more stations than previously considered in
Asmi et al. (2011) were included, and all WMO regions were covered. However, as noted earlier in Laj et al. (2020), there is
a strong bias in the world data coverage, with a majority of stations located in Europe (39 sites) and North America (10), and
a lack of observations in other regions, in particular in Africa (2), Asia (4) and South America (1). Analysis of the spatial
distribution of the sites in relation to their classification also reveals certain limitations. For instance, all urban stations are
located in Europe, and there is a clear lack of data on deserts; considering oceans cover >70% of Earth, it can certainly be
considered that there is a lack of marine observations as well. A final bias concerns the type of data collected at these sites,
with most of the MPSS allowing PNSD monitoring located in Europe (34 sites out of 39) while elsewhere a CPC is the
dominant instrument.

The first objective of this study was to assess the impact of data availability on Nw:'s annual and seasonal statistics (median,
25" and 75" percentiles), in order to determine a threshold for a reasonable compromise between the number of statistics
included and their quality. To do this, the absence of data was simulated in the Ny time series of the stations with data
availability greater than 95% over the year (11 sites). It appears that the lack of individual hourly averages has, for comparable
coverage, less impact on the statistics than long periods of missing data. However, although there are differences from one
station to another, in particular with a more pronounced effect at polar sites, and also from one season to another, it appears
overall that seasonal statistics are only slightly impacted when the corresponding data availability remains above 50% in the
reduced data sets. At the annual level, a slightly higher coverage, 60%, is necessary to maintain the representativeness of the
statistics. An availability of 75% year-round was required for the study of the diel cycle of Ny, which appears to be more
sensitive to the data coverage, and also to missing individual data points (as opposed to long consecutive data gaps).

The analysis of N reveals few common behaviours amongst all sites. In particular, it appears that higher concentrations are
often observed in spring and summer, as a likely result of enhanced emission sources and/or favoured formation processes (in
connection with ABL dynamics at mountain stations), and possibly, reduced particle sinks at some sites. Also, the first log-
normal mode fitted to the PNSD, which is a combination of the usual nucleation and Aitken modes, is wider than the second
(accumulation) mode at all sites, and most of the time dominates the distribution. With the exception of polar sites, where the
characteristics of the Aitken mode show a particularly pronounced variability, the concentration of this first mode is also less
variable from one season to another than that of the second mode; its location is in contrast more variable for all station types
except urban. Beyond these common features, however, there are notable differences among sites. Among other factors
(including the nature and the proximity of the aerosol sources), the level of anthropogenic influence seems to strongly impact

the observations, and contributes significantly to the contrasting patterns observed for the different station types:
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The lowest concentrations, on the order of 102 cm, are observed at polar sites, but with significant annual variability
resulting from both marked seasonal contrasts and significant intra-seasonal variability at some sites. The PNSD is
mostly bimodal, especially in the Northern Hemisphere, but also shows a strong seasonal contrast and reflects the
specificities of each site (e.g. impact of Arctic haze on summer measurements at ZEP). The diel cycle is, on average,
weak at polar sites, probably as a consequence of the absence of a regular day-night cycle in some seasons, and also

because there is no strong anthropogenic activity likely to influence it in these pristine environments.

In contrast to the polar sites, stations located in urban areas, both continental and coastal, exhibit the highest N, with
yearly medians in the range of 103-10* cm™. Due to limited intra-seasonal variability and low seasonal contrast, the
variability of N is overall less pronounced at these sites. The weak seasonality of Ni is associated with minimal
changes of the PNSD, which are almost unimodal throughout the year and shifted towards the lower end of the
investigated size range at a majority of stations, with elevated concentrations of sub-100 nm particles. In contrast, the
diel cycle of Ny is pronounced for these sites, reflecting the significant impact of anthropogenic activities on the

measurements.

The remaining sites, including mountain and non-urban continental and coastal stations, do not exhibit as clear a
common behaviour as polar and urban sites and display, on average, intermediate N, With yearly medians of the
order of 102-10% cm, Particle concentrations measured at mountain sites tend to be lower compared to nearby lowland
sites, with more pronounced seasonal variations, but there is overall little difference between the geographical
categories. The signature of the dominant footprints is in contrast more pronounced, with lower concentrations
measured in forested areas or at stations influenced by air masses of various origins (“mixed”) compared to rural

background sites.

3.1 Particle number concentrations measured at non-urban continental and coastal sites are overall lower compared
to those observed at urban stations, but exhibit comparable variability, as a result of both limited intra- and inter-
seasonal variability. The stations located in forested areas, however, show more noticeable variations, and are
also distinguished by the shape of their PNSD, which tend to have a more pronounced bimodal behaviour
compared to rural background stations. The modes representative of the distributions measured at non-urban sites
peak at the largest diameters among all station types, with the most important shift to larger diameters being
observed at coastal sites (AMY and FKL). The diel cycle of Ny is overall less marked at these sites compared to

urban stations.

3.2 Observations from mountain stations are influenced by the site topography and environs, which, coupled with

the variations of the ABL height, largely explain the significant intra- and inter seasonal contrasts observed at
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these sites, as well as the pronounced diel cycle of Nit. The PNSD measured at mountain sites exhibit a stronger
bimodal behaviour compared to lowland stations (other than polar), but with noticeable differences from site to
site. Features comparable to those of lowland rural background continental sites are observed for the two
mountain stations located below 1000 m a.s.l. (MSY and HPB).

Furthermore, the specific analysis of the CCN-sized particle number concentration (i.e. > 50 — 100 nm, referred to as Nso and
Nigo) indicates that these particles of climatic importance can represent between a few percent up to almost all of N, with
seasonal medians of the order of ~10 to 1000 cm= depending on the site and season. The trends observed for Nso and Nio,
including the classification of the station types according to concentration levels and the existence of seasonal contrasts, are
overall similar to those observed for Nyt Shight-dDifferences are however observed, particularly in the magnitude of the
contrasts, due to the variability of the contributions of Nigo and Nso to Nio, itself tightly connected to the variability of the
particle sources in the different seasons.

By comparing and contrasting observations that characterize the different station types, this study shows the importance of
collecting data in various environments, and therefore highlights the need to increase the monitoring spatial coverage in certain
regions and / or environments in the future. The need for harmonized protocols for data acquisition and quality control, as well
as ease of access and availability, clearly indicates the interest in developing these observations within networks and/or
distributed research infrastructures. Operating in the context of a network may also promote the sustainability of the
observations, necessary to capture the seasonal contrasts characteristic of certain station types, or, more importantly, for the
evaluation of long-term trends. Such a trend study of Nt Will be carried out for the sites with sufficiently long time series (>
10 years) and reported in a separate paper.

The results of this study, which cover a variety of environments across all WMO regions, also provide a valuable, freely
available and easy to use support to the modeling community to perform model comparison and validation with respect to
particle number concentration and size distribution. A sufficiently accurate description of these aerosol properties is, in
particular, a crucial step towards an improved representation of aerosol-cloud interactions in models, and therefore, better

evaluation of their effect on climate.

Appendix A

Table Al. Parameters of the modes identified for the description of the median particle number size distributions measured at
the stations equipped with a MPSS. N,,, a,,, and D,,, are the number concentration, the geometric standard deviation and the
geometric mean dry diameter of the mode, respectively. R? is the coefficient of determination between observed and fitted size

distributions. The results are reported separately for each season.

48



a) DJF

Mode 1 Mode 2
Station R2
Nm,l Um,l Dm,l Nm,z Um,z Dm,z
RUN - - - - - - -
WGG 2130 1.92 53 306 1.44 194 1.00
AMY - - - - - - -
CHC 893 1.77 40 278 1.45 145 1.00
ANB 4498 3.00 20 1370 1.94 105 1.00
BIR 356 1.90 40 76 1.45 142 1.00
BEO - - - - - - -
DEM 5227 2.28 45 159 1.28 190 1.00
DRN 2018 1.52 20 4673 2.36 63 1.00
DRW 3130 2.81 20 1729 211 98 1.00
DTC 2670 2.61 59 114 1.30 218 1.00
FKL - - - - - - -
GIF 1333 2.05 40 1128 1.79 89 1.00
HAC 280 1.55 35 39 1.45 138 0.99
HPB 1465 2.46 36 500 1.67 136 1.00
IPR 4170 2.34 49 5301 1.68 109 1.00
JFJ 101 2.08 27 15 1.45 124 1.00
KOS 1351 2.16 60 667 1.65 173 1.00
KPS 1712 1.97 48 2450 1.71 134 1.00
LEI 3951 3.00 20 1307 2.14 114 0.99
LEI-E 5904 2.82 21 2168 2.17 99 1.00
LEI-M 2103 1.46 20 6179 2.80 47 1.00
MAD 9378 2.01 20 2659 1.84 87 1.00
MEL 2837 2.84 30 1043 2.16 123 1.00
MSY 1537 2.33 47 175 141 168 1.00
NGL 1057 2.03 54 404 1.65 202 1.00
OPE 1692 2.19 62 113 1.40 175 1.00
PAL 74 1.71 35 32 1.59 142 1.00
PRG 3436 2.58 26 2000 1.86 118 1.00
PUY 630 2.24 26 38 1.47 146 1.00
SMR 478 1.80 43 173 141 180 0.99
SSL 645 2.27 40 104 1.42 165 1.00
UGR 10443 2.75 30 1986 1.55 99 1.00
VAR 76 1.69 44 66 151 175 0.99
VAV - - - - - - -
WAL 2150 2.70 50 238 1.50 236 1.00
ZEP - - - - - - -
ZSF 326 1.84 27 92 1.60 111 1.00
TRL 374 1.81 40 100 1.52 98 1.00
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b) MAM

Mode 1 Mode 2
Station R2
le Om,1 Dm,l Nm2 Om,2 sz
RUN - - - - - - -
WGG 2214 1.93 58 434 1.48 180 1.00
AMY - - - - - - -
CHC 1557 1.73 39 229 1.40 146 1.00
ANB 4500 2.77 30 328 1.47 170 1.00
BIR 656 1.78 34 118 1.45 144 1.00
BEO 401 1.72 52 174 1.49 203 1.00
DEM 6629 2.71 20 2952 2.01 81 1.00
DRN 7463 2.77 24 711 1.80 127 1.00
DRW 4238 2.84 32 181 1.35 182 1.00
DTC 2927 2.32 47 386 1.46 189 1.00
FKL 2207 2.00 76 187 1.32 204 1.00
GIF 2931 2.15 42 496 1.58 144 1.00
HAC 691 181 46 347 1.48 156 1.00
HPB 1938 2.03 38 653 1.58 150 1.00
IPR 3799 2.27 38 1750 1.83 107 1.00
JFJ 156 2.08 36 34 1.49 134 1.00
KOS 1870 1.98 49 653 1.52 182 1.00
KPS 3557 2.13 55 699 1.47 161 1.00
LEI 4680 2.92 34 168 1.32 187 1.00
LEI-E 8433 2.69 32 855 1.93 123 1.00
LEI-M 11227 3.00 20 803 1.89 133 1.00
MAD 7690 1.90 20 1819 181 87 1.00
MEL 3619 2.32 45 290 1.39 192 1.00
MSY 2439 1.96 40 630 1.60 133 1.00
NGL 1330 1.80 45 475 1.62 152 1.00
OPE 2620 2.11 51 286 1.42 154 1.00
PAL 209 1.61 33 102 1.50 159 0.99
PRG 4275 2.67 31 682 1.63 143 1.00
PUY 1091 1.87 36 540 1.59 136 0.99
SMR 928 1.80 38 200 1.43 170 0.99
SSL 2085 2.12 45 547 1.54 166 1.00
UGR 7615 2.46 33 414 1.40 128 1.00
VAR 248 1.77 34 129 1.46 168 0.98
VAV - - - - - - -
WAL 2778 2.14 42 331 1.47 187 1.00
ZEP 68 2.13 50 116 1.45 185 0.99
ZSF 759 1.93 44 332 1.50 152 1.00
TRL 93 1.65 29 48 1.47 95 0.99
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c) JA

Mode 1 Mode 2
Station R2
Nm,l Um,l Dm,l Nm,z Um,z Dm,z
RUN 424 1.65 32 121 1.54 125 1.00
WGG 1703 2.21 48 1070 1.78 130 1.00
AMY 2600 1.70 85 110 1.25 250 1.00
CHC 3042 1.72 23 1879 1.88 73 1.00
ANB - - - - - - -
BIR 1399 1.77 50 147 1.34 188 1.00
BEO - - - - - - -
DEM 3519 2.46 46 1244 1.67 130 1.00
DRN 7512 2.44 30 1168 1.82 107 1.00
DRW - - - - - - -
DTC 2881 1.89 48 829 151 151 1.00
FKL 2773 1.89 89 236 1.31 207 1.00
GIF 2737 2.07 32 752 1.65 117 1.00
HAC 1045 2.12 68 568 152 169 0.99
HPB 2118 2.11 45 599 1.50 146 1.00
IPR 4151 2.25 50 736 151 142 1.00
JFJ 215 1.78 48 137 1.53 136 1.00
KOS 2114 1.84 50 886 1.53 154 1.00
KPS 3736 2.06 62 581 1.43 155 1.00
LEI 4687 2.49 42 145 1.28 171 1.00
LEI-E 6065 2.98 20 4550 2.32 56 1.00
LEI-M 7363 2.73 20 2436 2.07 80 1.00
MAD - - - - - - -
MEL 4109 2.21 50 223 1.32 181 1.00
MSY 2314 1.80 43 1370 1.66 128 1.00
NGL 2691 1.80 59 421 141 170 1.00
OPE 1507 181 37 794 1.61 108 1.00
PAL 528 1.74 69 93 1.34 200 0.99
PRG 5671 2.46 29 1200 1.69 110 1.00
PUY 1617 2.13 38 715 1.63 134 0.99
SMR 1400 1.82 73 90 1.38 185 0.99
SSL 1872 2.18 45 547 1.55 149 1.00
UGR 3325 1.80 32 1813 1.63 108 1.00
VAR 737 1.73 72 144 1.36 199 1.00
VAV 1416 1.88 52 139 1.36 192 0.98
WAL 3129 1.95 52 280 1.37 187 1.00
ZEP 128 1.52 34 77 152 134 1.00
ZSF - - - - - - -
TRL 32 1.70 26 19 1.53 95 1.00
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d) SON

Mode 1 Mode 2
Station R2
Nm,l Um,l Dm,l Nm,z Um,z Dm,z
RUN 330 1.90 43 195 1.46 159 1.00
WGG 2322 2.21 42 509 1.53 162 1.00
AMY 3385 1.97 73 74 1.25 209 1.00
CHC 1587 1.89 39 546 1.67 148 1.00
ANB 3479 2.65 31 693 181 132 1.00
BIR 629 1.79 42 62 1.34 166 0.99
BEO - - - - - - -
DEM 5310 3.00 32 617 1.83 81 1.00
DRN 7781 2.68 20 1888 1.95 90 1.00
DRW 4005 2.71 35 118 1.35 167 1.00
DTC - - - - - - -
FKL 1677 1.86 68 306 1.35 204 1.00
GIF 2550 2.21 42 526 1.55 130 1.00
HAC 414 1.82 44 114 1.44 164 1.00
HPB - - - - - - -
IPR 4177 2.09 52 2329 1.74 113 1.00
JFJ 141 2.08 31 20 1.40 121 1.00
KOS 1384 1.94 48 615 1.60 168 1.00
KPS 1612 1.74 40 2800 1.70 117 1.00
LEI 4750 2.88 21 795 2.03 109 1.00
LEI-E 7312 2.80 31 162 1.45 176 1.00
LEI-M 9903 2.58 20 1969 1.96 108 1.00
MAD 7847 211 32 1494 1.68 116 1.00
MEL 3956 2.74 34 97 1.30 198 1.00
MSY 2721 2.25 49 108 1.32 187 1.00
NGL 2171 1.90 49 316 1.43 190 1.00
OPE 1570 2.28 50 155 1.47 157 1.00
PAL 106 1.60 45 22 1.37 170 0.98
PRG 4907 2.69 24 1465 1.88 107 1.00
PUY - - - - - - -
SMR 609 1.77 52 129 1.36 192 0.98
SSL 1178 2.31 40 175 1.48 151 1.00
UGR 6856 2.31 40 527 151 130 1.00
VAR 102 1.62 46 59 1.43 175 0.99
VAV - - - - - - -
WAL 2666 2.31 40 213 1.39 209 1.00
ZEP 18 151 35 30 1.62 134 0.99
ZSF 362 1.66 32 136 1.55 117 1.00
TRL 270 1.63 30 37 1.47 104 1.00
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10 Fig. A5 Median particle size distributions (diamonds) and corresponding modes (dotted lines) at rural background continental

sites. See Fig. Al for an explanation of the symbols.
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