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Abstract  15 

China is confronting increasing ozone (O3) pollution that worsens air quality and public health. Extremely 16 

O3 pollution occurs more frequently under special events and unfavorable meteorological conditions. Here 17 

we observed significantly elevated maximum daily 8-h average (MDA8) O3 (up to 98 ppb) during the 18 

Chinese National Day Holidays (CNDH) in 2018 throughout China, with a prominent rise by up to 120% 19 

compared to the previous week. The air quality model shows that increased precursor emissions and 20 

regional transport are major contributors to the elevation. In the Pearl River Delta region, the regional 21 

transport contributed up to 30 ppb O3 during the CNDH. Simultaneously, aggravated health risk occurs due 22 

to high O3, inducing 33% additional deaths throughout China. Moreover, in tourist cities such as Sanya, 23 

daily mortality even increases significantly from 0.4 to 1.6. This is the first comprehensive study to 24 

investigate O3 pollution during CNDH at the national level, aiming to arouse more focuses on the O3 holiday 25 

impact from the public. 26 
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Graphical abstract 30 

 31 

1. Introduction  32 

Tropospheric ozone (O3) has become a major air pollutant in China especially in urban areas such as 33 

the North China Plain (NCP), Yangtze River Delta (YRD) and Pearl River Delta (PRD) in recent years, 34 

with continuously increasing maximum daily 8-h average (MDA8) O3 levels (Fang et al., 2019;Li et al., 35 

2019;Lu et al., 2018;Liu et al., 2018a). Exacerbated O3 pollution aggravates health risks from a series of 36 

illnesses such as cardiovascular diseases (CVD), respiratory diseases (RD), hypertension, stroke and 37 

chronic obstructive pulmonary disease (COPD) (Liu et al., 2018a;Li et al., 2015;Brauer et al., 38 

2016;Lelieveld et al., 2013;Wang et al., 2020b). In China, the annual COPD mortality due to O3 reaches up 39 

to 8.03×104 in 2015 (Liu et al., 2018a).  40 

O3 is generated by non-linear photochemical reactions of its precursors involving volatile organic 41 

compounds (VOCs) and nitrogen oxides (NOx) (Sillman, 1995;Wang et al., 2017b). The VOCs/NOx ratio 42 

determines O3 sensitivity that is classified as VOC-limited, transition and NOx-limited, which controls O3 43 

formation (Sillman, 1995;Sillman and He, 2002;Cohan et al., 2005). Also, regional transport was reported 44 

as an important source of high O3 in China (Gao et al., 2016;Wang et al., 2020a;Li et al., 2012a). For 45 

instance, Li et al. (2012b) showed that over 50% of surface O3 was contributed from regional transport in 46 

the PRD during high O3 episodes. 47 

O3 concentration shows different patterns between holidays and workdays (Pudasainee et al., 2010;Xu 48 

et al., 2017). Elevated O3 has been observed during holidays in different regions resulted from changes in 49 

precursor emissions related to intensive anthropogenic activities (Tan et al., 2009;Chen et al., 2019;Tan et 50 

al., 2013;Levy, 2013). In China, most studies focused on the Chinese New Year (CNY) to investigate long-51 

term holiday effect on O3 in southern areas (Chen et al., 2019). However, the Chinese National Day 52 
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Holidays (CNDH), a nationwide 7-day festival, is less concerned. Xu et al. (2017)  reported that the O3 53 

production was influenced by enhanced VOCs during CNDH in the YRD based on in-situ observations. 54 

Previous studies mainly paid attention to developed regions/cities without nationwide consideration. In 55 

addition, the national O3-attributable health impact during CNDH is also unclear. Consequently, a 56 

comprehensive study on O3 during the CNDH is urgently needed in China.  57 

In this study, we used observation data and a source-oriented version of the Community Multiscale 58 

Air Quality (CMAQ) model (Wang et al., 2019b) to investigate O3 characteristics during the CNDH in 2018 59 

in China. Daily premature death mortality was evaluated to determine health impacts attributed to O3 as 60 

well. We find a rapid increase by up to 120% of the observational MDA8 O3 from previous periods to 61 

CNDH throughout China, which is attributed to increased precursors and regional transport. This study 62 

provides an in-depth investigation of elevated O3 and its adverse health impacts during CNDH, which has 63 

important implications for developing effective control policies in China.  64 

2. Methods  65 

2.1 The CMAQ model setup and validation 66 

The CMAQ model with three-regime (3R) attributed O3 to NOx and VOCs based on the NOx-VOC-67 

O3 sensitivity regime was applied to study the O3 during CNDH in China in 2018. The regime indicator R 68 

was calculated using Eq. (1):   69 

R =
𝑃𝐻2𝑂2

+ 𝑃𝑅𝑂𝑂𝐻

𝑃𝐻𝑁𝑂3

 
(1) 

where 𝑃𝐻2𝑂2
 is the formation rate of hydrogen peroxide (H2O2); 𝑃𝑅𝑂𝑂𝐻 is the formation rate of organic 70 

peroxide (ROOH), and 𝑃𝐻𝑁𝑂3
 is the formation rate of nitric acid (HNO3) in each chemistry time step. The 71 

threshold values for the transition regime are 0.047 (Rts, change from VOC-limited to transition regime) 72 

and 5.142 (Rte, change from transition regime to NOx-limited regime) in this study (Wang et al., 2019a). 73 

The formed O3 is entirely attributed to NOx or VOC sources, when R values are located in NOx-limited 74 

(R>Rte) or VOC-limited (R<Rts) regime. In contrast, when R values are in the transition regime (Rts≤R≤Rte), 75 

the formed O3 is attributed to both NOx and VOC sources. Two non-reactive O3 species: O3_NOx and 76 

O3_VOC are added in the CMAQ model to quantify the O3 attributable to NOx and VOCs, respectively. In 77 

particular, O3_NOx stands for the O3 formation is under NOx -limited control, and O3_VOC stands for the 78 

O3 formation is under VOC-limited control. The details of the 3R scheme and the calculation of O3_NOx 79 

and O3_VOC are described in Wang et al. (2019a). A domain with a horizontal resolution of 36×36 km2 80 

was applied in this study, covering China and its surrounding areas (Fig. S1). Weather Research and 81 

Forecasting (WRF) model version 3.9.1 was used to generate the meteorological inputs, and the initial and 82 
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boundary conditions were based on the FNL reanalysis data from the National Centers for Environmental 83 

Prediction (NCEP). The anthropogenic emissions in China are from the Multiresolution Emission Inventory 84 

for China (MEIC, http://www.meicmodel.org/) version 1.3 that lumped into 5 sectors: agriculture, 85 

industries, residential, power plants, and transportation. The annual MEIC emission inventory was applied 86 

in this study and the monthly profile of the anthropogenic emissions was based on Zhang et al. (2007) and 87 

Streets et al. (2003) as shown in Table S1 to represent the emissions changes between September and 88 

October. The higher emissions rates were found during October from the residential and industrial sectors, 89 

while they kept the identical levels from transportation and power sectors. Emissions from other countries 90 

were from MIX Asian emission inventory (Li et al., 2017). Open burning emissions were from the Fire 91 

INventory from NCAR (FINN) (Wiedinmyer et al., 2011), and biogenic emissions are generated using the 92 

Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1) (Guenther et al., 2012). 93 

The Integrated Process Rate (IPR) in the Process Analysis (PA) tool in the CMAQ model was applied to 94 

quantify the contributions of atmospheric processes to O3 (Gipson, 1999) (details see Table S2). In the 95 

CMAQ model, the IPR and integrated reaction rate analysis (IRR) were all defined as the PA. PA aims to 96 

provide quantitative information on the process of the chemical reactions and other atmospheric processes 97 

that are being simulated, illustrating how the CMAQ model calculated its predictions. The IPR was used to 98 

determine the relative contributions of individual atmospheric physical and chemical processes in the 99 

CMAQ model. 100 

      The simulation period was from 24 September to 31 October in 2018 and divided into three intervals: 101 

PRE-CNDH (24-30, September), CNDH (1-7, October) and AFT-CNDH (8-31, October). In this study, a 102 

total of 43 cities includes both megacities (such as Beijing and Shanghai) and popular tourist cities (such 103 

as Sanya), were selected to investigate the O3 issue during CNDH in 2018 in China (Table S3). Locations 104 

of these cities cover developed (such as the YRD region) and also suburban/rural regions (such as Urumqi 105 

and Lhasa in western China), which provides comprehensive perspectives for this study (Fig. S1).  106 

All the statistics results of the WRF model are satisfied with the benchmarks (Emery et al., 2001) 107 

except for the GE of temperature (T2) and wind speed (WD) went beyond the benchmark by 25% and 46%, 108 

respectively (Table S4). The WRF model performance is similar to previous studies (Zhang et al., 2012;Hu 109 

et al., 2016) that could provide robust meteorological inputs to the CMAQ model. The observation data of 110 

key pollutants obtained from the national air quality monitoring network (https://quotsoft.net/air/, more 111 

than 1500 sites) were used to validate the CMAQ model performance. The model performance of O3 was 112 

within the criteria (EPA, 2005) with a slight underestimation compared to observations, demonstrating our 113 

simulation is capable of the O3 study in China (Table S5).  114 

 115 

http://www.meicmodel.org/
https://quotsoft.net/air/
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2.2 Health impact estimation 116 

The daily premature mortalities due to O3 from all non-accidental causes, CVD, RD, hypertension, 117 

stroke and COPD are estimated in this study. The O3-related daily mortality is calculated based on Anenberg 118 

et al. (2010) and Cohen et al. (2004).In this study, the population data are from all age groups, which may 119 

induce higher daily mortality than expected (Liu et al., 2018a). In this study, the daily premature mortality 120 

due to O3 is calculated from the following Eq. (2)  (Anenberg et al., 2010;Cohen et al., 2004) : 121 

                                        ∆𝑀 = 𝑦0[1 − 𝑒𝑥𝑝(−𝛽∆𝑋)]𝑃𝑜𝑝                                        (2) 122 

where ∆𝑀 is the daily premature mortality due to O3; y0 is the daily baseline mortality rate, collected from 123 

the China Health Statistical Yearbook 2018 (National, 2018);  is the concentration-response function 124 

(CRF), which represents the increase in daily mortality with each 10 μg m-3 increase of MDA8 O3 125 

concentration, cited from Yin et al. (2017); ∆𝑋 is the incremental concentration of O3 based on the threshold 126 

concentration (35.1 ppb) (Lim et al., 2012;Liu et al., 2018a); Pop is the population exposure to O3, obtained 127 

from China's Sixth Census data (Fig. S2) (National Bureau of Statistics of China, 2010). The daily y0 and 128 

 values for all non-accidental causes, CVD, RD, hypertension, stroke and COPD are summarized in Table 129 

S6. 130 

 131 

3. Results and Discussions 132 

3.1 Observational O3 in China during CNDH 133 

MDA8 O3 levels have noticeably risen during the 2018 CNDH based on observations, from 43 ppb 134 

(PRE-CNDH) to 55 ppb (CNDH) among selected cities (Fig.1a and Table S3). The most significant 135 

increase of MDA8 O3 (up to 56%) is observed in South China (Fig. 1b). The PRD region has recorded 49 136 

% of MDA8 O3 increase, and in most PRD cities (such as Shenzhen and Guangzhou), the number of 137 

exceeding days is as high as 5~7 days during the 7-day CNDH, which contributed to 50 ~ 86% of days 138 

exceeding the Chinese national air quality standards (Grade II, ~75 ppb) in the whole October (Fig. 1c). 139 

Other regions exhibit less MDA8 O3 increases, which are 20%, 16% and 3% for East, North and West 140 

China, respectively (Fig. 1b). Negligible MDA8 O3 increase in West China is consistent with vast rural 141 

areas and less anthropogenic impacts (Wang et al., 2017a). This result suggests that changes in 142 

anthropogenic emissions have significant impacts on MDA8 O3 during the CNDH in South, East, and North 143 

China, similar to a previous observation study (Xu et al., 2017).     144 

Nine key cities are then selected for analyzing the causes and impacts of the remarkable MDA8 O3 145 

rises. Comprehensive criteria were adopted in selection according to: (1) acute MDA8 O3 increases (e.g., 146 

Changsha and Shenzhen), and (2) important provincial capitals (e.g., Beijing and Shanghai) and famous 147 

tourist cities (e.g., Sanya). The selected key cities are delegates of broad regions in China except for West 148 
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China (Fig. S1), which has an insignificant MDA8 O3 increase (Table S3) and fewer traveling cities. The 149 

MDA8 O3 increased by 48±37 % during the 2018 CNDH in these key cities. The highest MDA8 O3 is 150 

observed in Zhuhai, reaching 98 ppb on average with the peak of 107 ppb. The MDA8 O3 in Sanya increases 151 

twofold compared to PRE-CNDH, which is unexpected because Sanya is less concerned about air pollution 152 

and is known for less anthropogenic emissions (Wang et al., 2015). Other key cities show 8-70 % increases 153 

during the CNDH. The exact causes of substantial O3 increases in these cities are of high interest and 154 

explored below. 155 

156 

Figure 1. (a) The observed average MDA8 O3 in PRE-CNDH, CNDH and AFT-CNDH in South, East, 157 

West and North China in 2018; (b) The increase rate of observed MDA8 O3 during CNDH; (c) The 158 

exceeding rate of observed MDA8 O3 in CNDH and October (the exceeding days during the CNDH 159 

divided by that during the October, exceeding_CNDH/exceeding_October). Locations of these regions 160 

are shown in Fig. S3. Blue dots refer to the key cities and grey dots represent other cities. The pairs of 161 

values in the parentheses following city name are the exceeding days in CNDH and October, respectively. 162 

IQR is the interquartile range.  163 
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 3.2 Increased O3 precursor emissions during CNDH 164 

The CMAQ is capable to represent the changes in observed MDA8 O3 (Fig. 2). Generally, increasing 165 

trends of MDA8 O3 are found in vast areas from PRE-CNDH to CNDH, suggesting the elevated O3 occurs 166 

on a regional-scale. In South China, the predicted MDA8 O3 reaches ~90 ppb that is approximately 1.2 167 

times of the Class II standard with an average increase rate of 30%. The highest MDA8 O3 drops sharply 168 

to 60 ppb in the same regions in AFT-CNDH. High O3_NOx and O3_VOC levels are also found during 169 

CNDH with different spatial distributions (Fig. 2). The rising O3_NOx areas are mainly located in South 170 

China, covering Hubei, Hunan, Guangxi, Jiangxi, north Guangdong, and Fujian provinces with an average 171 

increase of ~5-10 ppb. In contrast, high O3_VOC regions are in developed city clusters such as the NCP, 172 

YRD and PRD regions. In the PRD, peak O3_VOC is over 30 ppb during the CNDH, which is 1.5 times of 173 

that in PRE-CNDH. Similar to MDA8 O3, decreases in both O3_NOx and O3_VOC are found in AFT-174 

CNDH. For the nine key cities, O3_NOx and O3_VOC are also increased during CNDH. In Sanya, non-175 

background O3 during CNDH is two times of that in PRE-AFDH. The peak of non-background O3 (O3_NOx 176 

+ O3_VOC) is over 80 ppb in Beijing and Zhuhai, indicating that O3 formation plays an important role 177 

during CNDH (Fig. 3). In megacities such as Beijing, O3_VOC is the major contributor to elevated O3, 178 

while O3_NOx becomes significant in tourist cities such as Sanya.  179 
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 180 

Figure 2. (a) Comparison of observed (circle) and predicted MDA8 O3; (b) Spatial distribution of O3_NOx; 181 

(c) Spatial distribution of O3_VOC in China in PRE-CNDH, CNDH and AFT-CNDH, respectively. Units 182 

are ppb. O3_NOx and O3_VOC are the O3 attributed to NOx and VOCs, respectively. 183 

 184 

Figure 3. Hourly O3 and its source apportionment results in nine key cities.   185 
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From Figure 4, the anthropogenic O3 precursor emissions (NOx and VOCs) increase throughout China. 186 

Increasing NOx emissions are observed in South China, especially in Guangxi and Guangdong, with a 187 

relative increase of up to 100% during CNDH. Considering O3 sensitivity regimes (determined by Eq. (1)), 188 

no noticeable differences are observed between PRE-CNDH and CNDH (Fig. S4). During CNDH, the 189 

VOC-limited regions are mainly in the NCP and YRD accompanied by high O3_VOC. In South China, O3 190 

formation is under a transition regime in most regions, and NOx-limited areas are in Fujian and part of 191 

Guangdong and Guangxi where have rising NOx emissions. This is corresponding to an increasing in O3 in 192 

these regions (Fig. 2 and Fig. 4). Simultaneously, higher anthropogenic VOC emissions are also observed 193 

during CNDH in South China, leading to elevated O3 in the transition regime when VOCs and NOx jointly 194 

controlled O3 formation. These increasing O3 precursors emissions are mainly from the residential and 195 

transportation sectors (Table S1), indicating their important roles in the elevated O3 during the CNDH. In 196 

contrast, during AFT-CNDH, more areas turn into a transition regime in South China. The decreases in 197 

biogenic VOCs (BVOCs, compared to CNDH) (Fig. 4) due to temperature (Fig. S5) decrease MDA8 O3 198 

for regions in transition regime during AFT-CNDH. Accordingly, changes in O3 highly depend on its 199 

precursor (NOx and VOCs) emissions and the sensitivity regime. 200 

Transportation increase due to tourism is also a potential source of elevated O3 during holidays (Xu et 201 

al., 2017). However, changes in transportation emissions are not considered in this study due to a lack of 202 

related statistical data. Residents prefer to travel during CNDH, and thus more significant impacts may be 203 

from mobile sources (Zhao et al., 2019). Traveling by private cars is the most common approach, leading 204 

to a significant increase in vehicle activities (Wang et al., 2019c). Time-varying coefficients are estimated 205 

to describe traffic flow according to AMAP (2018) report during 2018 CNDH (Fig. S6). On average, CNDH 206 

is 2.2 times the traffic flow of ordinary weeks. The heavy traffic flow occurs on October 1st (coefficient of 207 

16.3%) and October 5th (6.1%) due to intensive departure and return. Hourly variations of traffic flow in 208 

CNDH are similar to weekends, having a flatter trend compared to workdays (Liu et al., 2018b). A real-209 

time vehicle emission inventory should be developed in future to better predict O3 changes during CNDH.  210 
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 211 

Figure 4. Changes of emissions in relative differences ((Oct.-Sep.)/Sep.) of (a) NO2 and (b) NOx. 212 

Averaged emissions rates of AVOCs from MEIC emission inventory in (c) September and (d) October 213 

and their difference (e). Averaged BVOCs emission rates from the MEGAN model in (f) CNDH and their 214 

differences (g) CNDH subtracts PRD-CNDH and (h) CNDH subtracts AFT-CNDH. Units are moles/s for 215 

(c)-(h).    216 

 3.3 Impacts of regional Transport during CNDH 217 

Regional transport is also a significant contributor to enhanced MDA8 O3 during CNDH. As shown 218 

in Fig. S5, the lower temperature is predicted during the CNDH compared to the PRE-CNDH. In PRD, the 219 

average temperature drops from 25 °C to 23 °C, leading to a lower O3 level in previous studies (Fu et al., 220 

2015;Bloomer et al., 2009;Pusede et al., 2015). Meanwhile, the increasing wind speed is predicted in the 221 

PRD, which is able to facilitate regional transport. The higher O3 production rates that are calculated by the 222 

PA process directly in the CMAQ model (increase rate up to ~150%) are predicted mainly in the urban 223 

regions (the NCP, YRD, and PRD) in China (Fig. S7). With north winds (Fig. S5), O3 is transported from 224 

the northern regions to downwind southern China to cause aggravated O3. In the nine key cites, enhanced 225 

regional transport (HADV: horizontal advection) of O3 in Beijing, Changsha, Fuzhou, Shenzhen, Sanya, 226 

and Shanghai is as high as 90 ppb (Fig. S8). The enhanced regional transport and the increasing 227 
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anthropogenic emissions synergistically lead to the rising O3 during the CNDH, offsetting the impacts from 228 

the lower BVOCs emissions (Fig. 4).  229 

A regional-source tracking simulation was conducted in the PRD that occurred significant O3 elevation 230 

to qualify the impacts of regional transport. The emissions were classified into seven regional types (Fig. 231 

S9): the local PRD (GD), northern part (NOR), southern part (SOU), central part (CEN), western part 232 

(WES), southeast part (SWE), and other countries (OTH). The detailed model description could be found 233 

in Wang et al. (2020a). Although the local sector contributes more than 50% non-background O3 from PRE-234 

CNDH to AFT-CNDH, the more significant O3 regional transport is predicted during the late PRE-CHDH 235 

and CNDH in the PRD, manifesting its important role in the O3 elevation (Fig. 5 and Fig. S10). The SOU 236 

sector is the most crucial contributor among all these regional sectors outside Guangdong due to the 237 

prevailing north wind.   238 

In these PRD key cities (Guangzhou, Shenzhen, and Zhuhai), the contribution of SOU sector in the 239 

non-background O3 is up to ~30 ppb, mainly occurring in the nighttime and early morning (Fig.5).  In the 240 

noontime, ~10-15% non-background O3 is from the SOU sector during the CNDH compared to less than 241 

5% in other periods. The O3_NOx shows more significant regional transport characteristics than the 242 

O3_VOC (Fig. S11 and Fig. S12). During the late pre-CNDH and the CNDH, the contribution from regional 243 

transport in the O3_NOx is up to 35 ppb. Due to the enhanced regional transport during the CNDH, the 244 

O3_NOx could be even transported from the long-distance sector as NOR to the PRD. The peak of O3_NOx 245 

due to the regional transport is predicted at midnight, which is different from O3_VOC (peak at noontime).  246 

 247 

Figure 5. (a) Average regional contributions to non-background O3 from the PRD local emissions and 248 

emissions in SOU, and NOR sectors and (b) regional contributions from all sectors to non-background O3 249 
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in the PRD key cities (Guangzhou, Shenzhen, and Zhuhai) during the simulation periods. GZ: 250 

Guangzhou, SZ: Shenzhen, and ZH: Zhuhai.  251 

3.4 Aggravated Health Risk during CNDH 252 

It is recognized that O3 pollution induces serious health risks from CVD, RD, COPD, hypertension, 253 

and stroke (Lelieveld et al., 2013;Yin et al., 2017;Huang et al., 2018;Krewski et al., 2009). Elevated MDA8 254 

O3 during CNDH leads to significantly higher health risks (Fig. 6). The estimated total national daily 255 

mortality (from all non-accidental causes) due to MDA8 O3 is 2629 during CNDH, 33% higher than that 256 

(1982) in PRE-CNDH. All above O3-related diseases have noticeable increases in national daily mortality 257 

during CNDH. The highest health risk among these diseases is from CVD (674 during the CNDH), which 258 

is consistent with Yin et al. (2017), followed by RD (219), COPD (213), hypertension (189), and stroke 259 

(22). The COPD mortality due to O3 in this study is comparable with 152-220 in Liu et al. (2018a). In AFT-260 

CNDH, total daily mortality (drops to 1653) and mortality from all diseases decreases due to substantial O3 261 

reduction. Also, a significant increase of the total daily mortality is shown throughout China during the 262 

CNDH, especially in those densely-populated regions (e.g., the YRD and PRD) (Fig. S11), which is 263 

consistent with previous studies (Chen et al., 2018;Liu et al., 2018a;Wang et al., 2020b). 264 

 265 
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 266 

Figure 6. (a) National daily mortality from all non-accidental causes, CVD, RD, COPD, hypertension, and 267 

stroke attributed to O3 in PRE-CDNH, CNDH, and AFT-CNDH and (b) Daily mortality from all non-accidental 268 

causes due to O3 in the nine key cities. Red/blue values above the bars are the increase/decrease rates of daily 269 

mortality from PRE-CNDH to CNDH. CVD: cardiovascular diseases; RD: respiratory diseases; COPD: chronic 270 

obstructive pulmonary disease. 271 

Except for Shanghai (in which O3 is slightly underestimated), the other eight key cities increased 272 

their total daily mortality rates from PRE-CNDH to CNDH. Four megacities (Beijing, Shanghai, Wuhan 273 

and Guangzhou) with enormous populations have the highest daily deaths (24-28) during CNDH, 50% 274 

larger than the mean level (16) in the other 272 Chinese cities (Chen et al., 2018;Yin et al., 2017). It is 275 

worth noting that a higher increase rate of daily mortality is found in tourist cities (Sanya and Changsha). 276 

In Sanya, daily deaths even increase by as high as 303% from PRE-CNDH to CNDH. An even higher 277 

increase in health risk may occur in Sanya if considered a sharp increase in tourist flow during CNDH. 278 

 279 
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4. Conclusion and Implications 280 

In this study, we find a significant increase in O3 during the CNDH throughout China, especially 281 

in the south part, which is attributed to the changes in precursor emissions, sensitivity regime, and enhanced 282 

regional transport. Moreover, the elevated O3 also causes severe impacts on human health, with total daily 283 

mortality from all non-accidental causes increasing from 151 to 201 in China. More comprehensive studies 284 

should be conducted to understand better the long-holiday impacts (such as during the CNDH) of O3 in the 285 

future and here we suggest: 286 

1) More strident emission control policies should be implemented in China before and during CNDH 287 

to inhibit the elevated O3. And more localized control policies with the consideration of the O3 288 

sensitivity regimes should be applied.    289 

2) For reducing the health risk from the elevated O3, it is suggested to avoid traveling in rush hours, 290 

especially at midday during the CNDH. 291 

3) Reducing the activities of private gasoline vehicles is effective in mitigating excess emissions 292 

during the CNDH. It is encouraged to go out by electric car or public transportation such as bus, 293 

subway, and train.  294 
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