

1 **Unexpected enhancement of ozone exposure and health risks during National Day in China**

2 Peng Wang^{1,2}, Juanyong Shen³, Men Xia¹, Shida Sun⁴, Yanli Zhang², Hongliang Zhang^{5,6}, Xinming Wang²

3 ¹Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong

4 SAR, China

5 ²State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental

6 Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences,

7 Guangzhou, China

8 ³School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China

9 ⁴Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and

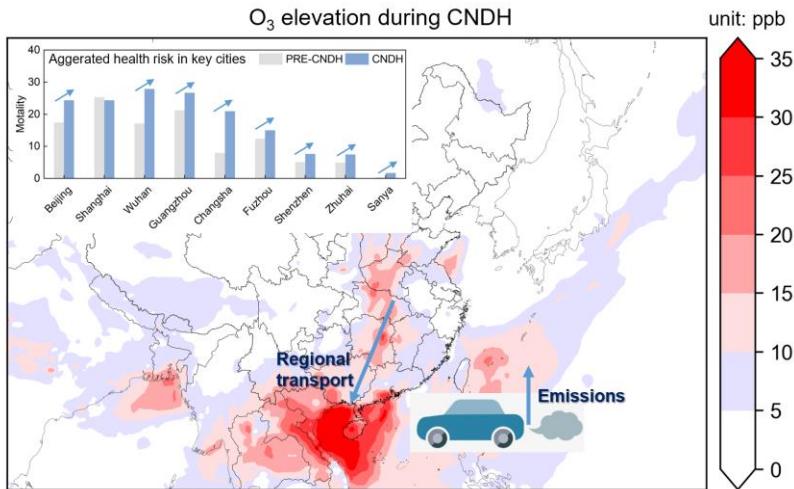
10 Engineering, Nankai University, Tianjin, China

11 ⁵Department of Environmental Science and Engineering, Fudan University, Shanghai, China

12 ⁶Institute of Eco-Chongming (IEC), Shanghai, China

13 *Correspondence to:* Yanli Zhang (zhang_yl86@gig.ac.cn)

14


15 **Abstract**

16 China is confronting increasing ozone (O_3) pollution that worsens air quality and public health. Extremely
17 O_3 pollution occurs more frequently under special events and unfavorable meteorological conditions. Here
18 we observed significantly elevated maximum daily 8-h average (MDA8) O_3 (up to 98 ppb) during the
19 Chinese National Day Holidays (CNDH) in 2018 throughout China, with a prominent rise by up to 120%
20 compared to the previous week. The air quality model shows that increased precursor emissions and
21 regional transport are major contributors to the elevation. In the Pearl River Delta region, the regional
22 transport contributed up to 30 ppb O_3 during the CNDH. Simultaneously, aggravated health risk occurs due
23 to high O_3 , inducing 33% additional deaths throughout China. Moreover, in tourist cities such as Sanya,
24 daily mortality even increases **significantly from 0.4 to 1.6**. This is the first comprehensive study to
25 investigate O_3 pollution during CNDH at the national level, aiming to arouse more focuses on the O_3 holiday
26 impact from the public.

27

28

29

30 **Graphical abstract**

31

32 **1. Introduction**

33 Tropospheric ozone (O₃) has become a major air pollutant in China especially in urban areas such as
 34 the North China Plain (NCP), Yangtze River Delta (YRD) and Pearl River Delta (PRD) in recent years,
 35 with continuously increasing maximum daily 8-h average (MDA8) O₃ levels (Fang et al., 2019;Li et al.,
 36 2019;Lu et al., 2018;Liu et al., 2018a). Exacerbated O₃ pollution aggravates health risks from a series of
 37 illnesses such as cardiovascular diseases (CVD), respiratory diseases (RD), hypertension, stroke and
 38 chronic obstructive pulmonary disease (COPD) (Liu et al., 2018a;Li et al., 2015;Brauer et al.,
 39 2016;Lelieveld et al., 2013;Wang et al., 2020b). In China, the annual COPD mortality due to O₃ reaches up
 40 to 8.03×10^4 in 2015 (Liu et al., 2018a).

41 O₃ is generated by non-linear photochemical reactions of its precursors involving volatile organic
 42 compounds (VOCs) and nitrogen oxides (NO_x) (Sillman, 1995;Wang et al., 2017b). The VOCs/NO_x ratio
 43 determines O₃ sensitivity that is classified as VOC-limited, transition and NO_x-limited, which controls O₃
 44 formation (Sillman, 1995;Sillman and He, 2002;Cohan et al., 2005). Also, regional transport was reported
 45 as an important source of high O₃ in China (Gao et al., 2016;Wang et al., 2020a;Li et al., 2012a). For
 46 instance, Li et al. (2012b) showed that over 50% of surface O₃ was contributed from regional transport in
 47 the PRD during high O₃ episodes.

48 O₃ concentration shows different patterns between holidays and workdays (Pudasainee et al., 2010;Xu
 49 et al., 2017). Elevated O₃ has been observed during holidays in different regions resulted from changes in
 50 precursor emissions related to intensive anthropogenic activities (Tan et al., 2009;Chen et al., 2019;Tan et
 51 al., 2013;Levy, 2013). In China, most studies focused on the Chinese New Year (CNY) to investigate long-
 52 term holiday effect on O₃ in southern areas (Chen et al., 2019). However, the Chinese National Day

53 Holidays (CNDH), a nationwide 7-day festival, is less concerned. Xu et al. (2017) reported that the O₃
54 production was influenced by enhanced VOCs during CNDH in the YRD based on in-situ observations.
55 Previous studies mainly paid attention to developed regions/cities without nationwide consideration. In
56 addition, the national O₃-attributable health impact during CNDH is also unclear. Consequently, a
57 comprehensive study on O₃ during the CNDH is urgently needed in China.

58 In this study, we used observation data and a source-oriented version of the Community Multiscale
59 Air Quality (CMAQ) model (Wang et al., 2019b) to investigate O₃ characteristics during the CNDH in 2018
60 in China. Daily premature death mortality was evaluated to determine health impacts attributed to O₃ as
61 well. We find a rapid increase by up to 120% of the observational MDA8 O₃ from previous periods to
62 CNDH throughout China, which is attributed to increased precursors and regional transport. This study
63 provides an in-depth investigation of elevated O₃ and its adverse health impacts during CNDH, which has
64 important implications for developing effective control policies in China.

65 2. Methods

66 2.1 The CMAQ model setup and validation

67 The CMAQ model with three-regime (3R) attributed O₃ to NO_x and VOCs based on the NO_x-VOC-
68 O₃ sensitivity regime was applied to study the O₃ during CNDH in China in 2018. The regime indicator R
69 was calculated using Eq. (1):

$$R = \frac{P_{H_2O_2} + P_{ROOH}}{P_{HNO_3}} \quad (1)$$

70 where $P_{H_2O_2}$ is the formation rate of hydrogen peroxide (H₂O₂); P_{ROOH} is the formation rate of organic
71 peroxide (ROOH), and P_{HNO_3} is the formation rate of nitric acid (HNO₃) in each chemistry time step. The
72 threshold values for the transition regime are 0.047 (R_{ts}, change from VOC-limited to transition regime)
73 and 5.142 (R_{te}, change from transition regime to NO_x-limited regime) in this study (Wang et al., 2019a).
74 The formed O₃ is entirely attributed to NO_x or VOC sources, when R values are located in NO_x-limited
75 (R>R_{te}) or VOC-limited (R<R_{ts}) regime. In contrast, when R values are in the transition regime (R_{ts}≤R≤R_{te}),
76 the formed O₃ is attributed to both NO_x and VOC sources. Two non-reactive O₃ species: O₃_NO_x and
77 O₃_VOC are added in the CMAQ model to quantify the O₃ attributable to NO_x and VOCs, respectively. In
78 particular, O₃_NO_x stands for the O₃ formation is under NO_x -limited control, and O₃_VOC stands for the
79 O₃ formation is under VOC-limited control. The details of the 3R scheme and the calculation of O₃_NO_x
80 and O₃_VOC are described in Wang et al. (2019a). A domain with a horizontal resolution of 36×36 km²
81 was applied in this study, covering China and its surrounding areas (Fig. S1). Weather Research and
82 Forecasting (WRF) model version 3.9.1 was used to generate the meteorological inputs, and the initial and

boundary conditions were based on the FNL reanalysis data from the National Centers for Environmental Prediction (NCEP). The anthropogenic emissions in China are from the Multiresolution Emission Inventory for China (MEIC, <http://www.meicmodel.org/>) version 1.3 that lumped into 5 sectors: agriculture, industries, residential, power plants, and transportation. The annual MEIC emission inventory was applied in this study and the monthly profile of the anthropogenic emissions was based on Zhang et al. (2007) and Streets et al. (2003) as shown in Table S1 to represent the emissions changes between September and October. The higher emissions rates were found during October from the residential and industrial sectors, while they kept the identical levels from transportation and power sectors. Emissions from other countries were from MIX Asian emission inventory (Li et al., 2017). Open burning emissions were from the Fire INventory from NCAR (FINN) (Wiedinmyer et al., 2011), and biogenic emissions are generated using the Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1) (Guenther et al., 2012). The Integrated Process Rate (IPR) in the Process Analysis (PA) tool in the CMAQ model was applied to quantify the contributions of atmospheric processes to O₃ (Gipson, 1999) (details see Table S2). In the CMAQ model, the IPR and integrated reaction rate analysis (IRR) were all defined as the PA. PA aims to provide quantitative information on the process of the chemical reactions and other atmospheric processes that are being simulated, illustrating how the CMAQ model calculated its predictions. The IPR was used to determine the relative contributions of individual atmospheric physical and chemical processes in the CMAQ model.

The simulation period was from 24 September to 31 October in 2018 and divided into three intervals: PRE-CNDH (24-30, September), CNDH (1-7, October) and AFT-CNDH (8-31, October). In this study, a total of 43 cities includes both megacities (such as Beijing and Shanghai) and popular tourist cities (such as Sanya), were selected to investigate the O₃ issue during CNDH in 2018 in China (Table S3). Locations of these cities cover developed (such as the YRD region) and also suburban/rural regions (such as Urumqi and Lhasa in western China), which provides comprehensive perspectives for this study (Fig. S1).

All the statistics results of the WRF model are satisfied with the benchmarks (Emery et al., 2001) except for the GE of temperature (T2) and wind speed (WD) went beyond the benchmark by 25% and 46%, respectively (Table S4). The WRF model performance is similar to previous studies (Zhang et al., 2012; Hu et al., 2016) that could provide robust meteorological inputs to the CMAQ model. The observation data of key pollutants obtained from the national air quality monitoring network (<https://quotsoft.net/air/>, more than 1500 sites) were used to validate the CMAQ model performance. The model performance of O₃ was within the criteria (EPA, 2005) with a slight underestimation compared to observations, demonstrating our simulation is capable of the O₃ study in China (Table S5).

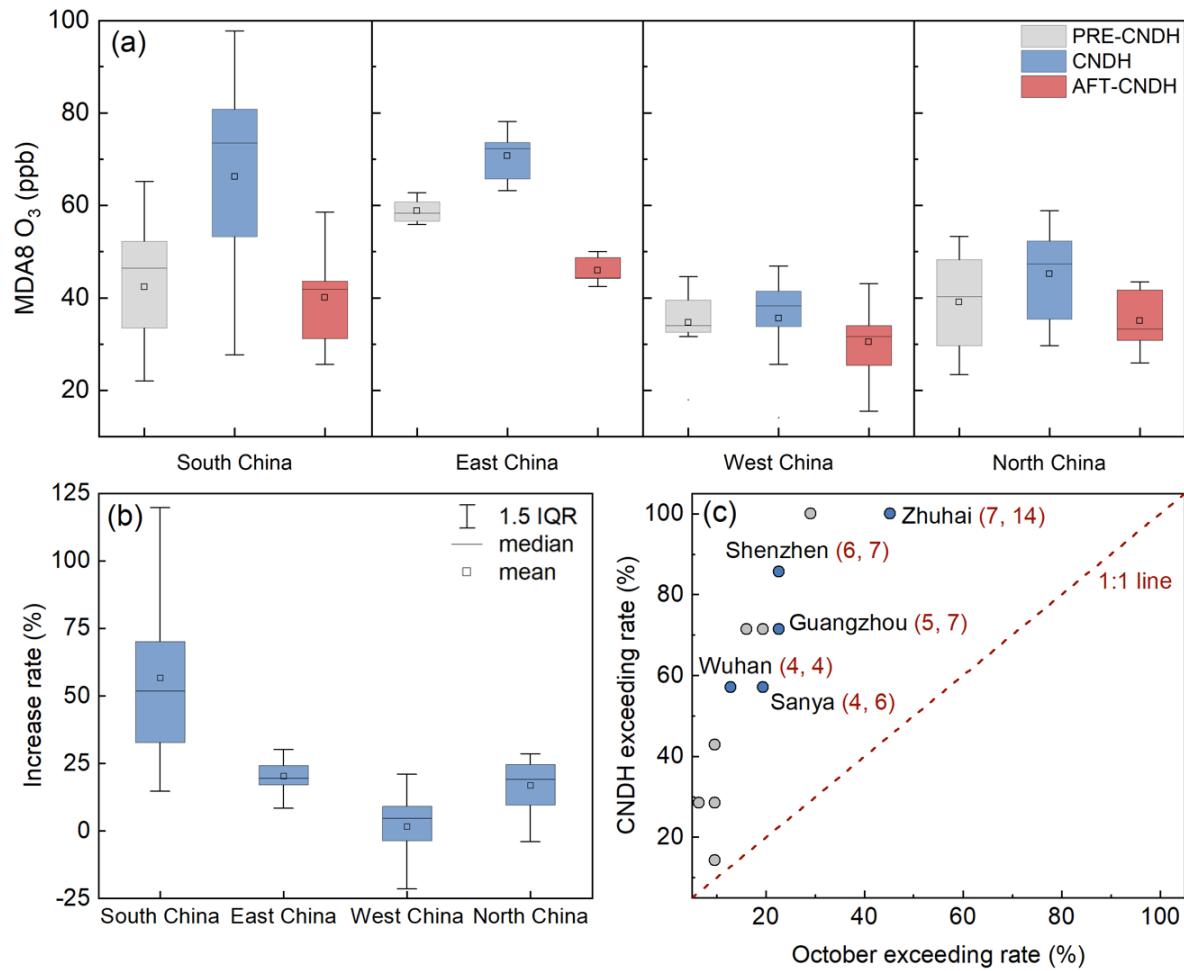
115

116 **2.2 Health impact estimation**

117 The daily premature mortalities due to O₃ from all non-accidental causes, CVD, RD, hypertension,
118 stroke and COPD are estimated in this study. The O₃-related daily mortality is calculated based on Anenberg
119 et al. (2010) and Cohen et al. (2004). In this study, the population data are from all age groups, which may
120 induce higher daily mortality than expected (Liu et al., 2018a). In this study, the daily premature mortality
121 due to O₃ is calculated from the following Eq. (2) (Anenberg et al., 2010; Cohen et al., 2004) :

122
$$\Delta M = y_0[1 - \exp(-\beta\Delta X)]Pop \quad (2)$$

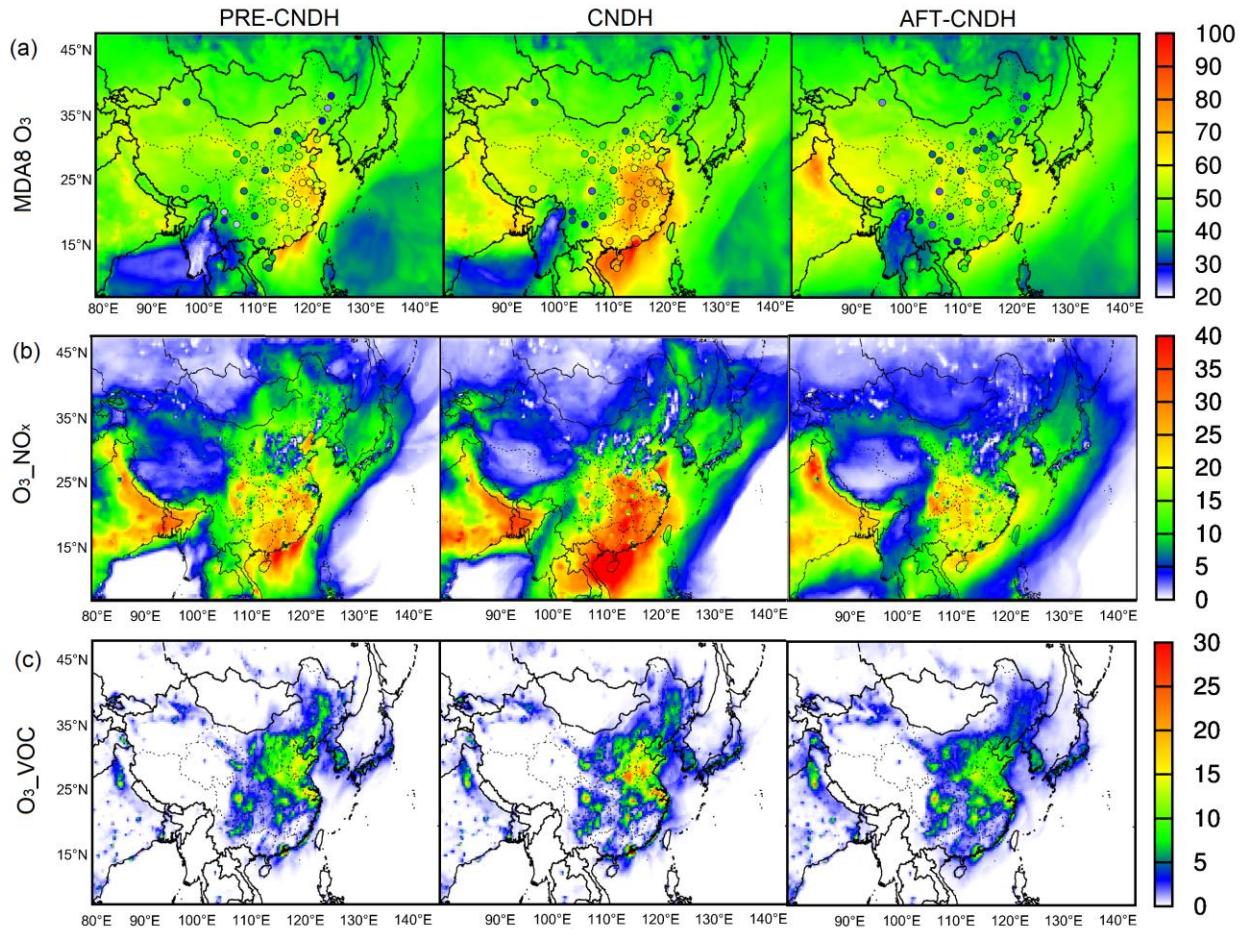
123 where ΔM is the daily premature mortality due to O₃; y_0 is the daily baseline mortality rate, collected from
124 the China Health Statistical Yearbook 2018 (National, 2018); β is the concentration-response function
125 (CRF), which represents the increase in daily mortality with each 10 $\mu\text{g m}^{-3}$ increase of MDA8 O₃
126 concentration, cited from Yin et al. (2017); ΔX is the incremental concentration of O₃ based on the threshold
127 concentration (35.1 ppb) (Lim et al., 2012; Liu et al., 2018a); Pop is the population exposure to O₃, obtained
128 from China's Sixth Census data (Fig. S2) (National Bureau of Statistics of China, 2010). The daily y_0 and
129 β values for all non-accidental causes, CVD, RD, hypertension, stroke and COPD are summarized in Table
130 S6.


131 **3. Results and Discussions**

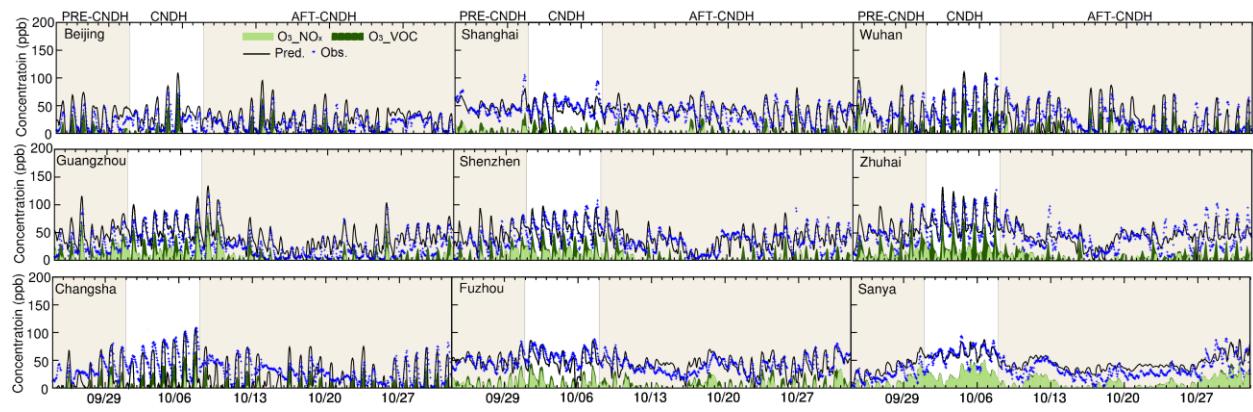
132 **3.1 Observational O₃ in China during CNDH**

133 MDA8 O₃ levels have noticeably risen during the 2018 CNDH based on observations, from 43 ppb
134 (PRE-CNDH) to 55 ppb (CNDH) among selected cities (Fig. 1a and Table S3). The most significant
135 increase of MDA8 O₃ (up to 56%) is observed in South China (Fig. 1b). The PRD region has recorded 49
136 % of MDA8 O₃ increase, and in most PRD cities (such as Shenzhen and Guangzhou), the number of
137 exceeding days is as high as 5~7 days during the 7-day CNDH, which contributed to 50 ~ 86% of days
138 exceeding the Chinese national air quality standards (Grade II, ~75 ppb) in the whole October (Fig. 1c).
139 Other regions exhibit less MDA8 O₃ increases, which are 20%, 16% and 3% for East, North and West
140 China, respectively (Fig. 1b). Negligible MDA8 O₃ increase in West China is consistent with vast rural
141 areas and less anthropogenic impacts (Wang et al., 2017a). This result suggests that changes in
142 anthropogenic emissions have significant impacts on MDA8 O₃ during the CNDH in South, East, and North
143 China, similar to a previous observation study (Xu et al., 2017).

144 Nine key cities are then selected for analyzing the causes and impacts of the remarkable MDA8 O₃
145 rises. Comprehensive criteria were adopted in selection according to: (1) acute MDA8 O₃ increases (e.g.,
146 Changsha and Shenzhen), and (2) important provincial capitals (e.g., Beijing and Shanghai) and famous
147 tourist cities (e.g., Sanya). The selected key cities are delegates of broad regions in China except for West
148

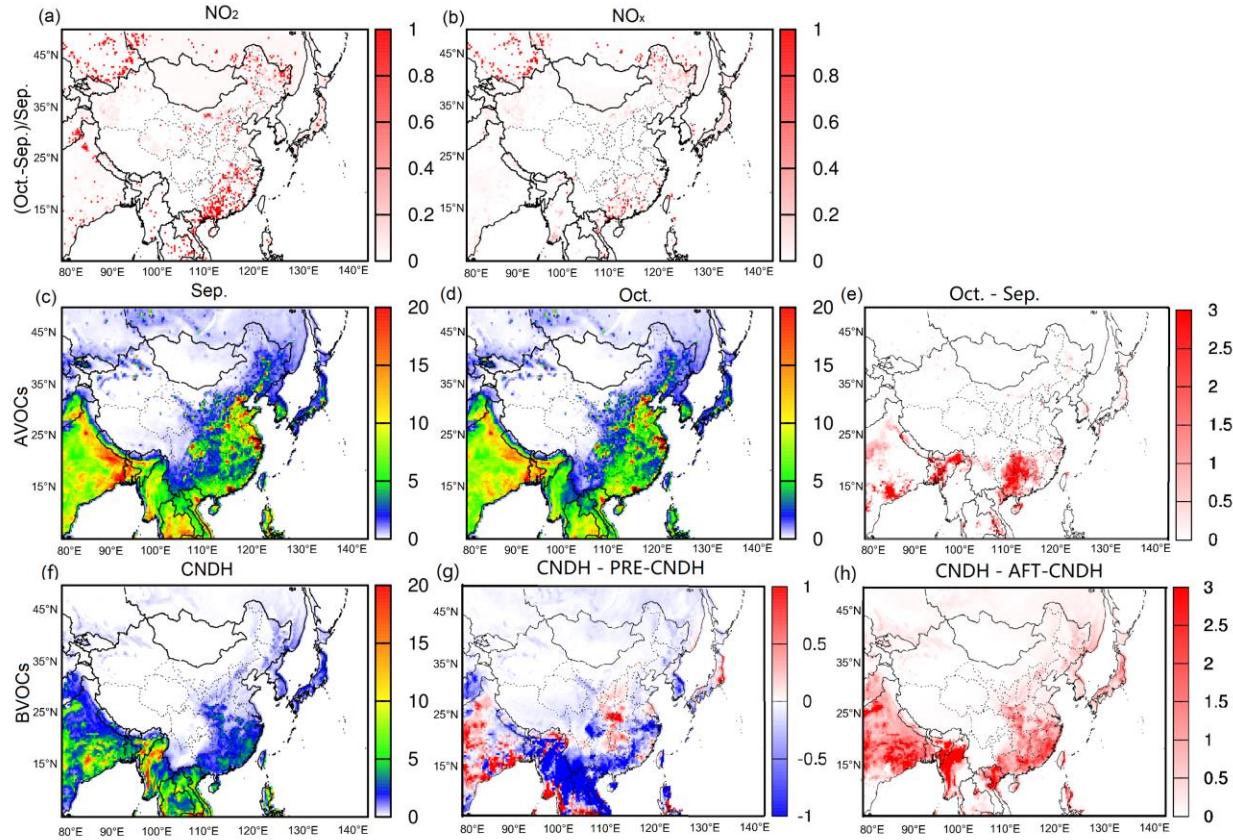

149 China (Fig. S1), which has an insignificant MDA8 O₃ increase (Table S3) and fewer traveling cities. The
 150 MDA8 O₃ increased by 48±37 % during the 2018 CNDH in these key cities. The highest MDA8 O₃ is
 151 observed in Zhuhai, reaching 98 ppb on average with the peak of 107 ppb. The MDA8 O₃ in Sanya increases
 152 twofold compared to PRE-CNDH, which is unexpected because Sanya is less concerned about air pollution
 153 and is known for less anthropogenic emissions (Wang et al., 2015). Other key cities show 8-70 % increases
 154 during the CNDH. The exact causes of substantial O₃ increases in these cities are of high interest and
 155 explored below.

156
 157 **Figure 1.** (a) The observed average MDA8 O₃ in PRE-CNDH, CNDH and AFT-CNDH in South, East,
 158 West and North China in 2018; (b) The increase rate of observed MDA8 O₃ during CNDH; (c) The
 159 exceeding rate of observed MDA8 O₃ in CNDH and October (the exceeding days during the CNDH
 160 divided by that during the October, exceeding_CNDH/exceeding_October). Locations of these regions
 161 are shown in Fig. S3. Blue dots refer to the key cities and grey dots represent other cities. The pairs of
 162 values in the parentheses following city name are the exceeding days in CNDH and October, respectively.
 163 IQR is the interquartile range.


164 **3.2 Increased O₃ precursor emissions during CNDH**

165 The CMAQ is capable to represent the changes in observed MDA8 O₃ (Fig. 2). Generally, increasing
166 trends of MDA8 O₃ are found in vast areas from PRE-CNDH to CNDH, suggesting the elevated O₃ occurs
167 on a regional-scale. In South China, **the predicted** MDA8 O₃ reaches ~90 ppb that is approximately 1.2
168 times of the Class II standard with an average increase rate of 30%. **The highest MDA8 O₃ drops sharply**
169 **to 60 ppb in the same regions in AFT-CNDH.** High O₃_NO_x and O₃_VOC levels are also found during
170 CNDH with different spatial distributions (Fig. 2). The rising O₃_NO_x areas are mainly located in South
171 China, covering Hubei, Hunan, Guangxi, Jiangxi, north Guangdong, and Fujian provinces with an average
172 increase of ~5-10 ppb. In contrast, high O₃_VOC regions are in developed city clusters such as the NCP,
173 YRD and PRD regions. In the PRD, peak O₃_VOC is over 30 ppb during the CNDH, which is 1.5 times of
174 that in PRE-CNDH. Similar to MDA8 O₃, decreases in both O₃_NO_x and O₃_VOC are found in AFT-
175 CNDH. For the nine key cities, O₃_NO_x and O₃_VOC are also increased during CNDH. In Sanya, non-
176 background O₃ during CNDH is two times of that in PRE-AFDH. The peak of non-background O₃ (O₃_NO_x
177 + O₃_VOC) is over 80 ppb in Beijing and Zhuhai, indicating that O₃ formation plays an important role
178 during CNDH (Fig. 3). In megacities such as Beijing, O₃_VOC is the major contributor to elevated O₃,
179 while O₃_NO_x becomes significant in tourist cities such as Sanya.

180


181 **Figure 2.** (a) Comparison of observed (circle) and predicted MDA8 O₃; (b) Spatial distribution of O₃_NO_x;
 182 (c) Spatial distribution of O₃_VOC in China in PRE-CNDH, CNDH and AFT-CNDH, respectively. Units
 183 are ppb. O₃_NO_x and O₃_VOC are the O₃ attributed to NO_x and VOCs, respectively.

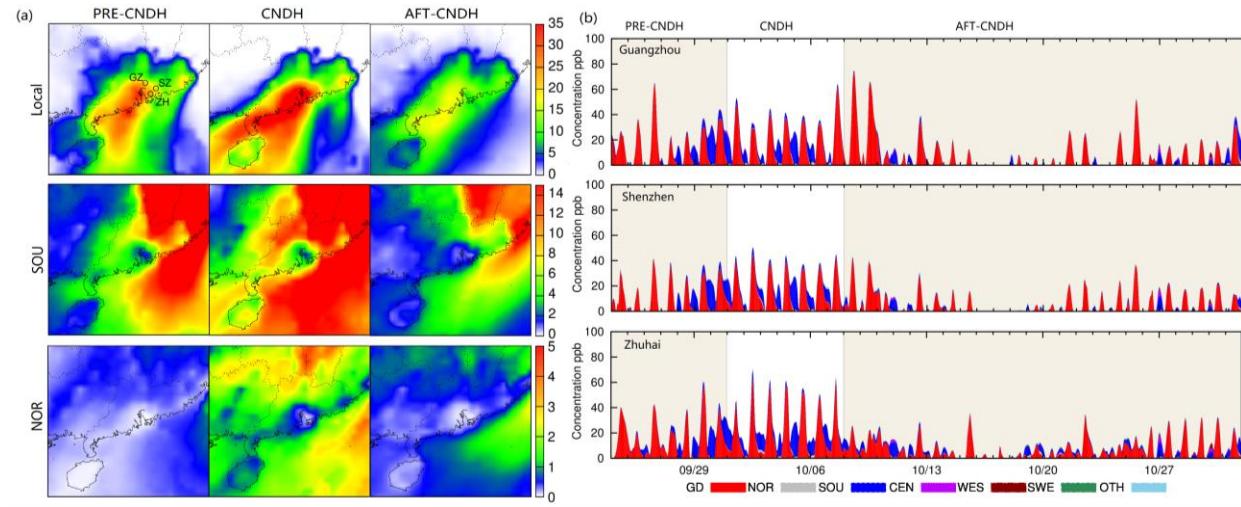
185 **Figure 3.** Hourly O₃ and its source apportionment results in nine key cities.

186 From Figure 4, the anthropogenic O₃ precursor emissions (NO_x and VOCs) increase throughout China.
187 Increasing NO_x emissions are observed in South China, especially in Guangxi and Guangdong, with a
188 relative increase of up to 100% during CNDH. Considering O₃ sensitivity regimes (determined by Eq. (1)),
189 no noticeable differences are observed between PRE-CNDH and CNDH (Fig. S4). During CNDH, the
190 VOC-limited regions are mainly in the NCP and YRD accompanied by high O₃_VOC. In South China, O₃
191 formation is under a transition regime in most regions, and NO_x-limited areas are in Fujian and part of
192 Guangdong and Guangxi where have rising NO_x emissions. This is corresponding to an increasing in O₃ in
193 these regions (Fig. 2 and Fig. 4). Simultaneously, higher anthropogenic VOC emissions are also observed
194 during CNDH in South China, leading to elevated O₃ in the transition regime when VOCs and NO_x jointly
195 controlled O₃ formation. These increasing O₃ precursors emissions are mainly from the residential and
196 transportation sectors (Table S1), indicating their important roles in the elevated O₃ during the CNDH. In
197 contrast, during AFT-CNDH, more areas turn into a transition regime in South China. The decreases in
198 biogenic VOCs (BVOCs, compared to CNDH) (Fig. 4) due to temperature (Fig. S5) decrease MDA8 O₃
199 for regions in transition regime during AFT-CNDH. Accordingly, changes in O₃ highly depend on its
200 precursor (NO_x and VOCs) emissions and the sensitivity regime.

201 Transportation increase due to tourism is also a potential source of elevated O₃ during holidays (Xu et
202 al., 2017). However, changes in transportation emissions are not considered in this study due to a lack of
203 related statistical data. Residents prefer to travel during CNDH, and thus more significant impacts may be
204 from mobile sources (Zhao et al., 2019). Traveling by private cars is the most common approach, leading
205 to a significant increase in vehicle activities (Wang et al., 2019c). Time-varying coefficients are estimated
206 to describe traffic flow according to AMAP (2018) report during 2018 CNDH (Fig. S6). On average, CNDH
207 is 2.2 times the traffic flow of ordinary weeks. The heavy traffic flow occurs on October 1st (coefficient of
208 16.3%) and October 5th (6.1%) due to intensive departure and return. Hourly variations of traffic flow in
209 CNDH are similar to weekends, having a flatter trend compared to workdays (Liu et al., 2018b). A real-
210 time vehicle emission inventory should be developed in future to better predict O₃ changes during CNDH.

211
212 **Figure 4.** Changes of emissions in relative differences ((Oct.-Sep.)/Sep.) of (a) NO₂ and (b) NO_x.

213 Averaged emissions rates of AVOCs from MEIC emission inventory in (c) September and (d) October
214 and their difference (e). Averaged BVOCs emission rates from the MEGAN model in (f) CNDH and their
215 differences (g) CNDH subtracts PRD-CNDH and (h) CNDH subtracts AFT-CNDH. Units are moles/s for
216 (c)-(h).

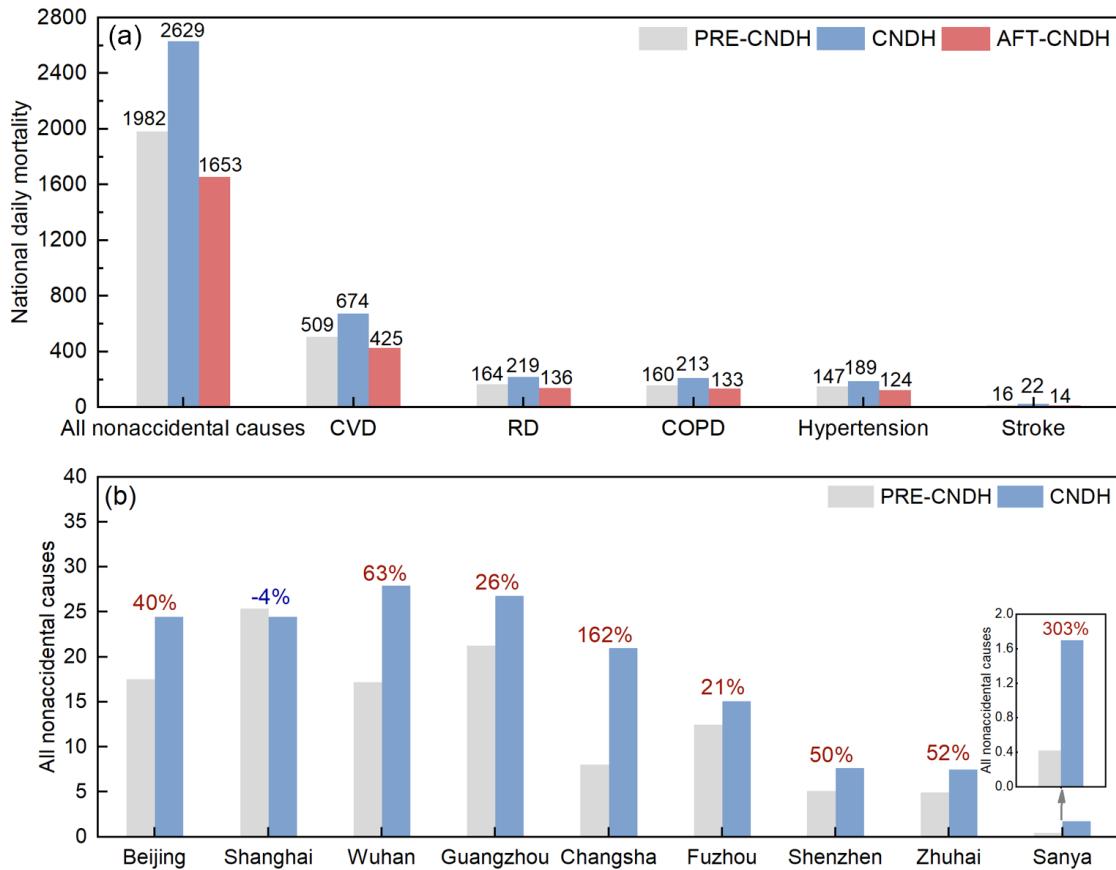

217 **3.3 Impacts of regional Transport during CNDH**

218 Regional transport is also a significant contributor to enhanced MDA8 O₃ during CNDH. As shown
219 in Fig. S5, the lower temperature is predicted during the CNDH compared to the PRE-CNDH. In PRD, the
220 average temperature drops from 25 °C to 23 °C, leading to a lower O₃ level in previous studies (Fu et al.,
221 2015; Bloomer et al., 2009; Pusede et al., 2015). Meanwhile, the increasing wind speed is predicted in the
222 PRD, which is able to facilitate regional transport. The higher O₃ production rates that are calculated by the
223 PA process directly in the CMAQ model (increase rate up to ~150%) are predicted mainly in the urban
224 regions (the NCP, YRD, and PRD) in China (Fig. S7). With north winds (Fig. S5), O₃ is transported from
225 the northern regions to downwind southern China to cause aggravated O₃. In the nine key cites, enhanced
226 regional transport (HADV: horizontal advection) of O₃ in Beijing, Changsha, Fuzhou, Shenzhen, Sanya,
227 and Shanghai is as high as 90 ppb (Fig. S8). The enhanced regional transport and the increasing

228 anthropogenic emissions synergistically lead to the rising O_3 during the CNDH, offsetting the impacts from
229 the lower BVOCs emissions (Fig. 4).

230 A regional-source tracking simulation was conducted in the PRD that occurred significant O_3 elevation
231 to qualify the impacts of regional transport. The emissions were classified into seven regional types (Fig.
232 S9): the local PRD (GD), northern part (NOR), southern part (SOU), central part (CEN), western part
233 (WES), southeast part (SWE), and other countries (OTH). The detailed model description could be found
234 in Wang et al. (2020a). Although the local sector contributes more than 50% non-background O_3 from PRE-
235 CNDH to AFT-CNDH, the more significant O_3 regional transport is predicted during the late PRE-CHDH
236 and CNDH in the PRD, manifesting its important role in the O_3 elevation (Fig. 5 and Fig. S10). The SOU
237 sector is the most crucial contributor among all these regional sectors outside Guangdong due to the
238 prevailing north wind.

239 In these PRD key cities (Guangzhou, Shenzhen, and Zhuhai), the contribution of SOU sector in the
240 non-background O_3 is up to ~30 ppb, mainly occurring in the nighttime and early morning (Fig. 5). In the
241 noontime, ~10-15% non-background O_3 is from the SOU sector during the CNDH compared to less than
242 5% in other periods. The O_3 _NO_x shows more significant regional transport characteristics than the
243 O_3 _VOC (Fig. S11 and Fig. S12). During the late pre-CNDH and the CNDH, the contribution from regional
244 transport in the O_3 _NO_x is up to 35 ppb. Due to the enhanced regional transport during the CNDH, the
245 O_3 _NO_x could be even transported from the long-distance sector as NOR to the PRD. The peak of O_3 _NO_x
246 due to the regional transport is predicted at midnight, which is different from O_3 _VOC (peak at noontime).


248 **Figure 5. (a)** Average regional contributions to non-background O_3 from the PRD local emissions and
249 emissions in SOU, and NOR sectors and **(b)** regional contributions from all sectors to non-background O_3

250 in the PRD key cities (Guangzhou, Shenzhen, and Zhuhai) during the simulation periods. GZ:
251 Guangzhou, SZ: Shenzhen, and ZH: Zhuhai.

252 **3.4 Aggravated Health Risk during CNDH**

253 It is recognized that O₃ pollution induces serious health risks from CVD, RD, COPD, hypertension,
254 and stroke (Lelieveld et al., 2013; Yin et al., 2017; Huang et al., 2018; Krewski et al., 2009). Elevated MDA8
255 O₃ during CNDH leads to significantly higher health risks (Fig. 6). The estimated total national daily
256 mortality (from all non-accidental causes) due to MDA8 O₃ is 2629 during CNDH, 33% higher than that
257 (1982) in PRE-CNDH. All above O₃-related diseases have noticeable increases in national daily mortality
258 during CNDH. The highest health risk among these diseases is from CVD (674 during the CNDH), which
259 is consistent with Yin et al. (2017), followed by RD (219), COPD (213), hypertension (189), and stroke
260 (22). The COPD mortality due to O₃ in this study is comparable with 152-220 in Liu et al. (2018a). In AFT-
261 CNDH, total daily mortality (drops to 1653) and mortality from all diseases decreases due to substantial O₃
262 reduction. Also, a significant increase of the total daily mortality is shown throughout China during the
263 CNDH, especially in those densely-populated regions (e.g., the YRD and PRD) (Fig. S11), which is
264 consistent with previous studies (Chen et al., 2018; Liu et al., 2018a; Wang et al., 2020b).

265

266

267 **Figure 6.** (a) National daily mortality from all non-accidental causes, CVD, RD, COPD, hypertension, and
 268 stroke attributed to O₃ in PRE-CNDH, CNDH, and AFT-CNDH and (b) Daily mortality from all non-accidental
 269 causes due to O₃ in the nine key cities. Red/blue values above the bars are the increase/decrease rates of daily
 270 mortality from PRE-CNDH to CNDH. CVD: cardiovascular diseases; RD: respiratory diseases; COPD: chronic
 271 obstructive pulmonary disease.

272 Except for Shanghai (in which O₃ is slightly underestimated), the other eight key cities increased
 273 their total daily mortality rates from PRE-CNDH to CNDH. Four megacities (Beijing, Shanghai, Wuhan
 274 and Guangzhou) with enormous populations have the highest daily deaths (24-28) during CNDH, 50%
 275 larger than the mean level (16) in the other 272 Chinese cities (Chen et al., 2018; Yin et al., 2017). It is
 276 worth noting that a higher increase rate of daily mortality is found in tourist cities (Sanya and Changsha).
 277 In Sanya, daily deaths even increase by as high as 303% from PRE-CNDH to CNDH. An even higher
 278 increase in health risk may occur in Sanya if considered a sharp increase in tourist flow during CNDH.

279

280 **4. Conclusion and Implications**

281 In this study, we find a significant increase in O_3 during the CNDH throughout China, especially
282 in the south part, which is attributed to the changes in precursor emissions, sensitivity regime, and enhanced
283 regional transport. Moreover, the elevated O_3 also causes severe impacts on human health, with total daily
284 mortality from all non-accidental causes increasing from 151 to 201 in China. More comprehensive studies
285 should be conducted to understand better the long-holiday impacts (such as during the CNDH) of O_3 in the
286 future and here we suggest:

287 1) More strident emission control policies should be implemented in China before and during CNDH
288 to inhibit the elevated O_3 . And more localized control policies with the consideration of the O_3
289 sensitivity regimes should be applied.

290 2) For reducing the health risk from the elevated O_3 , it is suggested to avoid traveling in rush hours,
291 especially at midday during the CNDH.

292 3) Reducing the activities of private gasoline vehicles is effective in mitigating excess emissions
293 during the CNDH. It is encouraged to go out by electric car or public transportation such as bus,
294 subway, and train.

295
296 *Acknowledgments.* This work was supported by the National Natural Science Foundation of China
297 (42022023/41961144029), the National Key Research and Development Program (2017YFC02122802),
298 the Chinese Academy of Sciences (XDA23020301/QYZDJ-SSW-DQC032), the Hong Kong Research
299 Grants Council (T24-504/17-N/A-PolyU502/16), Youth Innovation Promotion Association, CAS (2017406)
300 and Guangdong Foundation for Program of Science and Technology Research (2020B1212060053).

301 *Author contributions.* PW and YZ designed the research. PW, JS, MX, SS and HZ analyzed the data. PW
302 performed air quality model. PW and YZ wrote the manuscript with comments from all co-authors.

303 *Competing interests.* The authors declare that they have no conflict of interest.

304 *Data availability.* The datasets used in the study can be accessed from websites listed in the references or
305 by contacting the corresponding author (zhang_yl86@gig.ac.cn).

311 **References**

312 Forecast report on travel index during Mid-Autumn Festival and National Day in 2018, 2018.

313 Anenberg, S. C., Horowitz, L. W., Tong, D. Q., and West, J. J.: An Estimate of the Global Burden of Anthropogenic

314 Ozone and Fine Particulate Matter on Premature Human Mortality Using Atmospheric Modeling, *Environmental*

315 *Health Perspectives*, 118, 1189-1195, 2010.

316 Bloomer, B. J., Stehr, J. W., Piety, C. A., Salawitch, R. J., and Dickerson, R. R.: Observed relationships of ozone air

317 pollution with temperature and emissions, *Geophysical Research Letters*, 36, 2009.

318 Brauer, M., Freedman, G., Frostad, J., Van Donkelaar, A., Martin, R. V., Dentener, F., Van Dingenen, R., Estep, K.,

319 Amini, H., and Apte, J. S.: Ambient Air Pollution Exposure Estimation for the Global Burden of Disease 2013,

320 *Environmental Science & Technology*, 50, 79-88, 2016.

321 Chen, K., Fiore, A. M., Chen, R., Jiang, L., Jones, B., Schneider, A., Peters, A., Bi, J., Kan, H., and Kinney, P. L.:

322 Future ozone-related acute excess mortality under climate and population change scenarios in China: A modeling

323 study, *PLOS Medicine*, 15, 2018.

324 Chen, P., Tan, P., Chou, C. C. K., Lin, Y., Chen, W., and Shiu, C.: Impacts of holiday characteristics and number of

325 vacation days on “holiday effect” in Taipei: Implications on ozone control strategies, *Atmospheric Environment*,

326 202, 357-369, 2019.

327 Cohan, D. S., Hakami, A., Hu, Y., and Russell, A. G.: Nonlinear response of ozone to emissions: source

328 apportionment and sensitivity analysis, *Environmental Science & Technology*, 39, 6739-6748, 2005.

329 Cohen, A. J., Anderson, H. R., Ostro, B., Pandey, K. D., Krzyzanowski, M., Künzli, N., Gutschmidt, K., Pope, A.,

330 Romieu, I., Samet, J. M., and Smith, K.: Urban air pollution, in: Comparative quantification of health risks, Global

331 and regional burden of disease attributable to selected major risk factors, Volume 1, World Health Organization,

332 Geneva, 2004.

333 Emery, C., Tai, E., and Yarwood, G.: Enhanced meteorological modeling and performance evaluation for two Texas

334 ozone episodes, Prepared for the Texas natural resource conservation commission, by ENVIRON International

335 Corporation, 2001.

336 EPA, U.: Guidance on the Use of Models and Other Analyses in Attainment Demonstrations for the 8-hour Ozone

337 NAAQS, EPA-454/R-05-002, 2005.

338 Fang, X., Park, S., Saito, T., Tunnicliffe, R., Ganesan, A. L., Rigby, M., Li, S., Yokouchi, Y., Fraser, P. J., and

339 Harth, C. M.: Rapid increase in ozone-depleting chloroform emissions from China, *Nature Geoscience*, 12, 89-93,

340 2019.

341 Fu, T.-M., Zheng, Y., Paulot, F., Mao, J., and Yantosca, R. M.: Positive but variable sensitivity of August surface

342 ozone to large-scale warming in the southeast United States, *Nature Climate Change*, 5, 454-458, 2015.

343 Gao, J., Zhu, B., Xiao, H., Kang, H., Hou, X., and Shao, P.: A case study of surface ozone source apportionment

344 during a high concentration episode, under frequent shifting wind conditions over the Yangtze River Delta, China,

345 *Science of The Total Environment*, 544, 853-863, <https://doi.org/10.1016/j.scitotenv.2015.12.039>, 2016.

346 Gipson, G. L.: Chapter 16: Process analysis. In science algorithms of the EPA models-3 Community Multiscale Air

347 Quality (CMAQ) Modeling System. EPA/600/R-99/030, 1999.

348 Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The

349 Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated

350 framework for modeling biogenic emissions, *Geoscientific Model Development (GMD)*, 5, 1471-1492, 2012.

351 Hu, J., Chen, J., Ying, Q., and Zhang, H.: One-year simulation of ozone and particulate matter in China using

352 WRF/CMAQ modeling system, *Atmos. Chem. Phys.*, 16, 10333-10350, 10.5194/acp-16-10333-2016, 2016.

353 Huang, J., Pan, X., Guo, X., and Li, G.: Health impact of China's Air Pollution Prevention and Control Action Plan:

354 an analysis of national air quality monitoring and mortality data, *The Lancet Planetary Health*, 2, 2018.

355 Krewski, D., Jerrett, M., Burnett, R. T., Ma, R., Hughes, E., Shi, Y., Turner, M. C., Pope, C. A., 3rd, Thurston, G.,

356 Calle, E. E., Thun, M. J., Beckerman, B., DeLuca, P., Finkelstein, N., Ito, K., Moore, D. K., Newbold, K. B.,

357 Ramsay, T., Ross, Z., Shin, H., and Tempalski, B.: Extended follow-up and spatial analysis of the American Cancer

358 Society study linking particulate air pollution and mortality, *Res Rep Health Eff Inst*, 5-114; discussion 115-136,

359 2009.

360 Lelieveld, J., Barlas, C., Giannadaki, D., and Pozzer, A.: Model calculated global, regional and megacity premature

361 mortality due to air pollution, *Atmospheric Chemistry and Physics*, 13, 7023-7037, 2013.

362 Levy, I.: A national day with near zero emissions and its effect on primary and secondary pollutants, *Atmospheric*

363 *Environment*, 77, 202-212, <https://doi.org/10.1016/j.atmosenv.2013.05.005>, 2013.

364 Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q., and Bates, K. H.: Anthropogenic drivers of 2013–2017 trends in
365 summer surface ozone in China, *Proceedings of the National Academy of Sciences*, 116, 422-427,
366 10.1073/pnas.1812168116, 2019.

367 Li, M., Zhang, Q., Kurokawa, J. I., Woo, J. H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., Carmichael, G.
368 R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian
369 anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP,
370 *Atmos. Chem. Phys.*, 17, 935-963, 10.5194/acp-17-935-2017, 2017.

371 Li, T., Yan, M., Ma, W., Ban, J., Liu, T., Lin, H., and Liu, Z.: Short-term effects of multiple ozone metrics on daily
372 mortality in a megacity of China, *Environmental Science and Pollution Research*, 22, 8738-8746, 2015.

373 Li, Y., Lau, A. K. H., Fung, J. C. H., Zheng, J., Zhong, L., and Louie, P. K. K.: Ozone source apportionment
374 (OSAT) to differentiate local regional and super-regional source contributions in the Pearl River Delta region,
375 China, *Journal of Geophysical Research*, 117, 2012a.

376 Li, Y., Lau, A. K. H., Fung, J. C. H., Zheng, J. Y., Zhong, L. J., and Louie, P. K. K.: Ozone source apportionment
377 (OSAT) to differentiate local regional and super-regional source contributions in the Pearl River Delta region,
378 China, *Journal of Geophysical Research: Atmospheres*, 117, D15305, 10.1029/2011JD017340, 2012b.

379 Lim, S. S., Vos, T., Flaxman, A. D., Danaei, G., Shibuya, K., Adairrohani, H., Almazroa, M. A., Amann, M.,
380 Anderson, H. R., and Andrews, K. G.: A comparative risk assessment of burden of disease and injury attributable to
381 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of
382 Disease Study 2010, *The Lancet*, 380, 2224-2260, 2012.

383 Liu, H., Liu, S., Xue, B., Lv, Z., Meng, Z., Yang, X., Xue, T., Yu, Q., and He, K.: Ground-level ozone pollution and
384 its health impacts in China, *Atmospheric Environment*, 173, 223-230,
385 <https://doi.org/10.1016/j.atmosenv.2017.11.014>, 2018a.

386 Liu, Y. H., Ma, J. L., Li, L., Lin, X. F., Xu, W. J., and Ding, H.: A high temporal-spatial vehicle emission inventory
387 based on detailed hourly traffic data in a medium-sized city of China, *Environ Pollut*, 236, 324-333,
388 10.1016/j.envpol.2018.01.068, 2018b.

389 Lu, X., Hong, J., Zhang, L., Cooper, O. R., Schultz, M. G., Xu, X., Wang, T., Gao, M., Zhao, Y., and Zhang, Y.:
390 Severe Surface Ozone Pollution in China: A Global Perspective, *Environmental Science & Technology Letters*, 5,
391 487-494, 10.1021/acs.estlett.8b00366, 2018.

392 National: National Health and Family Planning Commission of China,
393 <https://www.yearbookchina.com/navibooklist-n3018112802-1.html>, in, 2018.

394 National Bureau of Statistics of China: <http://www.stats.gov.cn/tjsj/pcsj/kpc/6rp/indexch.htm>, 2010.

395 Pudasainee, D., Sapkota, B., Bhatnagar, A., Kim, S., and Seo, Y.: Influence of weekdays, weekends and bandhas on
396 surface ozone in Kathmandu valley, *Atmospheric Research*, 95, 150-156, 2010.

397 Pusede, S. E., Steiner, A. L., and Cohen, R. C.: Temperature and recent trends in the chemistry of continental
398 surface ozone, *Chemical reviews*, 115, 3898-3918, 2015.

399 Sillman, S.: The use of NO_Y, H₂O₂, and HNO₃ as indicators for ozone-NO_x-hydrocarbon sensitivity in urban
400 locations, *Journal of Geophysical Research: Atmospheres*, 100, 14175-14188, 10.1029/94jd02953, 1995.

401 Sillman, S., and He, D.: Some theoretical results concerning O₃-NO_x-VOC chemistry and NO_x-VOC indicators,
402 *Journal of Geophysical Research*, 107, 2002.

403 Streets, D. G., Bond, T. C., Carmichael, G. R., Fernandes, S. D., Fu, Q., He, D., Klimont, Z., Nelson, S. M., Tsai, N.
404 Y., Wang, M. Q., Woo, J. H., and Yarber, K. F.: An inventory of gaseous and primary aerosol emissions in Asia in
405 the year 2000, *Journal of Geophysical Research: Atmospheres*, 108, 10.1029/2002JD003093, 2003.

406 Tan, P.-H., Chou, C., and Chou, C. C. K.: Impact of urbanization on the air pollution “holiday effect” in Taiwan,
407 *Atmospheric Environment*, 70, 361-375, <https://doi.org/10.1016/j.atmosenv.2013.01.008>, 2013.

408 Tan, P., Chou, C., Liang, J., Chou, C. C. K., and Shiu, C.: Air pollution “holiday effect” resulting from the Chinese
409 New Year, *Atmospheric Environment*, 43, 2114-2124, 2009.

410 Wang, J., Ho, S. S. H., Cao, J., Huang, R., Zhou, J., Zhao, Y., Xu, H., Liu, S., Wang, G., Shen, Z., and Han, Y.:
411 Characteristics and major sources of carbonaceous aerosols in PM_{2.5} from Sanya, China, *Science of The Total
412 Environment*, 530-531, 110-119, <https://doi.org/10.1016/j.scitotenv.2015.05.005>, 2015.

413 Wang, J., Zhao, B., Wang, S., Yang, F., Xing, J., Morawska, L., Ding, A., Kulmala, M., Kerminen, V.-M.,
414 Kujansuu, J., Wang, Z., Ding, D., Zhang, X., Wang, H., Tian, M., Petäjä, T., Jiang, J., and Hao, J.: Particulate matter
415 pollution over China and the effects of control policies, *Science of The Total Environment*, 584-585, 426-447,
416 <https://doi.org/10.1016/j.scitotenv.2017.01.027>, 2017a.

417 Wang, P., Chen, Y., Hu, J., Zhang, H., and Ying, Q.: Attribution of Tropospheric Ozone to NO_x and VOC
418 Emissions: Considering Ozone Formation in the Transition Regime, *Environmental Science & Technology*, 53,
419 1404-1412, 10.1021/acs.est.8b05981, 2019a.

420 Wang, P., Chen, Y., Hu, J., Zhang, H., and Ying, Q.: Source apportionment of summertime ozone in China using a
421 source-oriented chemical transport model, *Atmospheric Environment*, 211, 79-90,
422 <https://doi.org/10.1016/j.atmosenv.2019.05.006>, 2019b.

423 Wang, P., Wang, T., and Ying, Q.: Regional source apportionment of summertime ozone and its precursors in the
424 megacities of Beijing and Shanghai using a source-oriented chemical transport model, *Atmospheric Environment*,
425 224, 117337, <https://doi.org/10.1016/j.atmosenv.2020.117337>, 2020a.

426 Wang, T., Xue, L., Brimblecombe, P., Lam, Y. F., Li, L., and Zhang, L.: Ozone pollution in China: A review of
427 concentrations, meteorological influences, chemical precursors, and effects, *Science of The Total Environment*, 575,
428 1582-1596, <https://doi.org/10.1016/j.scitotenv.2016.10.081>, 2017b.

429 Wang, Y., Wild, O., Chen, X., Wu, Q., Gao, M., Chen, H., Qi, Y., and Wang, Z.: Health impacts of long-term ozone
430 exposure in China over 2013–2017, *Environment International*, 144, 106030,
431 <https://doi.org/10.1016/j.envint.2020.106030>, 2020b.

432 Wang, Z., Chen, Y., Su, J., Guo, Y., Zhao, Y., Tang, W., Zeng, C., and Chen, J.: Measurement and Prediction of
433 Regional Traffic Volume in Holidays, 2019 IEEE Intelligent Transportation Systems Conference, ITSC 2019,
434 2019c, 486-491.

435 Wiedinmyer, C., Akagi, S., Yokelson, R. J., Emmons, L., Al-Saadi, J., Orlando, J., and Soja, A.: The Fire INventory
436 from NCAR (FINN): a high resolution global model to estimate the emissions from open burning, *Geoscientific
437 Model Development*, 4, 625, 2011.

438 Xu, Z., Huang, X., Nie, W., Chi, X., Xu, Z., Zheng, L., Sun, P., and Ding, A.: Influence of synoptic condition and
439 holiday effects on VOCs and ozone production in the Yangtze River Delta region, China, *Atmospheric
440 Environment*, 168, 112-124, <https://doi.org/10.1016/j.atmosenv.2017.08.035>, 2017.

441 Yin, P., Chen, R., Wang, L., Meng, X., Liu, C., Niu, Y., Lin, Z., Liu, Y., Liu, J., and Qi, J.: Ambient Ozone
442 Pollution and Daily Mortality: A Nationwide Study in 272 Chinese Cities, *Environmental Health Perspectives*, 125,
443 117006, 2017.

444 Zhang, H., Li, J., Ying, Q., Yu, J. Z., Wu, D., Cheng, Y., He, K., and Jiang, J.: Source apportionment of PM2.5
445 nitrate and sulfate in China using a source-oriented chemical transport model, *Atmospheric Environment*, 62, 228-
446 242, <https://doi.org/10.1016/j.atmosenv.2012.08.014>, 2012.

447 Zhang, Q., Streets, D. G., He, K., Wang, Y., Richter, A., Burrows, J. P., Uno, I., Jang, C. J., Chen, D., Yao, Z., and
448 Lei, Y.: NO_x emission trends for China, 1995–2004: The view from the ground and the view from space, *Journal of
449 Geophysical Research: Atmospheres*, 112, 10.1029/2007JD008684, 2007.

450 Zhao, J., Cui, J., Zhang, Y., and Luo, T.: Impact of holiday-free policy on traffic volume of freeway: An
451 investigation in Xi'an, in: 8th International Conference on Green Intelligent Transportation Systems and Safety,
452 2017, edited by: Wang, W., Jiang, X., and Bengler, K., Springer Verlag, 117-124, 2019.

453