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Abstract. Although air quality in the United States improved remarkably in the past decades, ground-level ozone (O3) 

rises often in exceedance of the national ambient air quality standard in nonattainment areas, including the Long Island 20 
Sound (LIS) and its surrounding areas. Accurate prediction of high ozone episodes is needed to assist government 

agencies and the public in mitigating harmful effects of air pollution. In this study, we have developed a suite of potential 

forecast improvements, including dynamic boundary conditions, rapid emission refresh and chemical data assimilation, 

in a 3 km resolution Community Multi-scale Air Quality (CMAQ) modeling system. The purpose is to evaluate and assess 

the effectiveness of these forecasting techniques, individually or in combination, in improving forecast guidance for two 25 
major air pollutants: surface O3 and nitrogen dioxide (NO2). Experiments were conducted for a high O3 episode (August 

28–29, 2018) during the Long Island Sound Tropospheric Ozone Study (LISTOS) field campaign, which provides 

abundant observations for evaluating model performance. The results show that these forecast system updates are useful 

in enhancing the capability of this 3 km forecasting model with varying effectiveness for different pollutants. For O3 

prediction, the most significant improvement comes from the dynamic boundary conditions derived from the NOAA 30 
operational forecast system, National Air Quality Forecast Capability (NAQFC), which increases the correlation 

coefficient (R) from 0.81 to 0.93 and reduces the Root Mean Square Error (RMSE) from 14.97 ppbv to 8.22 ppbv, 

compared to that with the static boundary conditions (BCs). The NO2 from all high-resolution simulations outperforms 

that from the operational 12 km NAQFC simulation, regardless of the BCs used, highlighting the importance of spatially 

resolved emission and meteorology inputs for the prediction of short-lived pollutants. The effectiveness of improved 35 
initial concentrations through optimal interpolation (OI) is shown to be high in urban areas with high emission density. 

The influence of OI adjustment, however, is maintained for a longer period in rural areas where emissions and chemical 

transformation make a smaller contribution to the O3 budget than that in high emission areas. Following the assessment 

of individual forecast system updates, the forecasting system is configured with dynamic boundary conditions, optimal 
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interpolation of initial concentrations, and emission adjustment, to simulate a high ozone episode during the 2018 LISTOS 40 
field campaign. The newly developed forecasting system significantly reduces the bias of surface NO2 concentration. 

When compared with the NASA Langley GeoCAPE Airborne Simulator (GCAS) vertical column density (VCD), this 

system is able to reproduce the NO2 VCD with a higher correlation (0.74), lower normalized mean bias (40%) and 

normalized mean error (61%) than NAQFC (0.57, 45% and 76%, respectively). The 3 km system captures magnitude and 

timing of surface O3 peaks and valleys better. In comparison with LIDAR O3 profile variability of the vertical O3 is 45 
captured better by the new system (correlation coefficient of 0.71) than by NAQFC (correlation coefficient of 0.54). 

Although the experiments are limited to one pollution episode over the Long Island Sound, this study demonstrates 

feasible approaches to improve the predictability of high O3 episodes in contemporary urban environments. 

1. Introduction 

Exposure to ambient air pollutants has been associated with detrimental health effects, including cardiovascular 50 
diseases and premature deaths (Brunekreef and Holgate, 2002; Kim, 2007; Héroux et al., 2015). Recent decades saw 

remarkable improvement in the air quality across the United States. From 1990 to 2015, the United States Environmental 

Protection Agency (US EPA) estimated that the emissions of nitrogen oxides (NOx), a major pollutant that controls 

regional ozone formation, were reduced from 25.2 to 11.5 million t yr -1 (Feng et al., 2020). The downward trends in NOx 

emissions have been verified by ground and satellite observations in large cities (Tong et al., 2015) and in the eastern 55 
United States (Zhou et al., 2013; Krotkov et al., 2016). Because of the substantial emission reductions, ground-level ozone 

concentrations decreased ubiquitously across the US (Hogrefe et al., 2011; Simon et al., 2015; He et al., 2020).  

Regardless of the tremendous improvement in air quality, more than one third of the US population still lives in areas 

exceeding the National Ambient Air Quality Standards (NAAQS) for ozone (O3) and/or fine particulate matter (PM2.5) 

(US EPA, 2020). Many of these ozone nonattainment areas are located along the northeastern Interstate 95 (I-95, Interstate 60 
Highway on the East Coast of the United States) corridor where high density of emissions is produced by transportation 

and other industrial sources. Surface ozone is formed from photochemical reactions between NOx and volatile organic 

compounds (VOCs) (NRC, 1992), and the high emission density of NOx is a major controlling factor for high ozone 

events in this region.  

As part of the efforts to understand regional O3 pollution, a multi-agency collaborative study of precursor emissions, 65 
ground-level O3 formation and transport in the New York City (NYC) metropolitan region and downwind locations, the 

Long Island Sound Tropospheric Ozone Study (LISTOS), was launched. Extensive measurements were collected between 

June and September 2018 within the NYC metropolitan area and over Long Island Sound (LIS). Multiple analyses of the 

ozone activities during this field campaign have been conducted using numerical models (Baker et al., 2019; Shu et al., 

2019; Berkoff et al., 2019).  70 
Air quality forecasts are a critical tool used by environmental and public health agencies to mitigate the detrimental 

effects of air pollution (Eder et al., 2010; Oliveri Conti et al., 2017; Tong and Tang, 2018). Accurate prediction of ambient 

ozone and its precursors remains challenging due to inherent uncertainties in the model processes (transport, chemistry 

and removal), as well as in model inputs such as emissions, initial concentrations (ICs) and boundary conditions (BCs). 

Prior studies have also revealed that air quality models face additional challenges in predicting surface O3 concentrations 75 
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at coastal locations or over complex urban areas, including uncertainties in vertical mixing, deposition processes, spatial-

temporal allocation of emissions to the air quality models (Hogrefe et al., 2007; Tong et al., 2006). Therefore, several 

modeling techniques have been developed to improve the forecasting skills of these air quality models (Liu et al., 2001; 

Tang et al., 2007). Previous studies (Wu et al., 2008; Sandu et al., 2010) suggested employing data assimilation methods 

to adjust the initial conditions of a model to reduce model bias. Optimal interpolation (OI) is a simple data assimilation 80 
method used to enhance model prediction (Candiani et al., 2013; Tang et al., 2015; Tang et al., 2017). Considering the 

modeling sensitivity to BCs, Tang et al. (2009) examined the impact of six different sources of lateral BCs on the CMAQ 

(Community Multiscale Air Quality) forecast ability and the results showed that using global model predictions for BCs 

was able to improve the correlation coefficients of surface O3 prediction compared to observations. Evaluations of 

different databases and configurations for BCs in short-term and long-term simulations also showed that dynamic BCs 85 
could have a positive impact on numerical predictions (Tang et al., 2007; Makar et al., 2010; Henderson et al., 2014; 

Khan and Kumar, 2019). However, many of these studies used BCs based on global forecasts that had a relatively low 

resolution (e.g., 1.4° × 1.4° and 2° × 2.5°). Therefore, databases with higher resolution, such as satellite observations or 

regional forecasting products, were introduced to construct boundary conditions that were shown to result in a measurable 

improvement in model performance (Borge et al., 2010; Pour‐Biazar et al., 2011). Finally, updating emissions from the 90 
base year to the specific forecast year was shown to be an effective approach to reduce the uncertainties of outdated 

emission inventories to increase forecasting accuracy (Pan et al., 2014; Tong et al., 2015, 2016). 

This study examines to what extent can various modeling techniques improve O3 and NO2 predictions over LIS and 

surrounding areas. As the largest metropolitan area in the United States on the Atlantic Ocean coast, this LIS region 

represents one of the most challenging places for air quality modeling. The resolution of the present operational 95 
forecasting system, National Air Quality Forecast Capability (NAQFC), operated by the National Oceanic and 

Atmospheric Administration (NOAA), is at a 12 km horizontal resolution (Davidson et al., 2008). To better resolve fine-

scale processes such as sea breeze and recirculation of air pollutants at coastal sites, a high-resolution (3km) air quality 

forecasting system over the LIS region (LIS3km) is developed using the latest meteorology and air quality models. Using 

observations from ground air quality monitors and the LISTOS field campaign, we evaluate the forecasting skills of the 100 
high-resolution air quality forecasting system to predict O3 and NO2 over LIS. Specifically, we use three forecast 

improvements - dynamic boundary conditions, rapid emission refresh, and chemical data assimilation - to improve the 

LIS3km system. The effectiveness of each technique to improve forecasting skill is assessed using the observations from 

the LISTOS and the EPA AirNow network (http://airnowapi.org). Descriptions of the modeling system, forecast 

improvements, and observation data are presented in Section 2. Assessments of the CMAQ results with and without 105 
different forecast system updates are described in Section 3. A summary of our findings and concluding remarks are 

provided in Section 4. 
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2. Methodology 

2.1 Study design 110 

To simulate ozone variability over a complex coastal urban environment, a high-resolution air quality forecasting 

system has been developed for LIS and surrounding areas. The forecasting system is comprised of state-of-the-science 

weather, emission, and chemical transport models. The model domain covers eastern Pennsylvania, New Jersey, southern 

New York, Connecticut and Rhode Island. While this model domain is large enough to capture key physical/chemical 

processes within the LIS area, such as sea breeze circulation and photochemistry, the influence of regional transport 115 
outside this domain cannot be adequately represented. Therefore, real-time forecasts from the operational NAQFC (Lee 

et al., 2017), produced by the NOAA National Weather Service, are used to provide dynamic boundary conditions to 

investigate the effect of this model input on forecasting performance. We also explore the effects of emission adjustment 

and chemical data assimilation on forecasting performance.  

  120 

 
Figure 1: Study area over the Long Island Sound and surrounding areas. Red boxes depict four subdomains: New York City 
(NYC), Philadelphia (PH), New Haven-Hartford region (NHH), and Providence-Pawtucket region (PP). Black circles indicate 
the locations of EPA ground air quality monitors, the brown triangle indicates the TOLNet O3 site located in Westport, CT, 
and the blue lines present an example flight path conducted by the NASA B200 aircraft on August 28–29, 2018.  Letters a–j 125 
indicate surface monitoring sites at:  a) Flax Pond, b) Queens College, c) New Haven, d) Westport, e) Colliers Mills, f) Riverhead, 
g) Greenwich, h) Madison-Beach Road, i) Middletown-CVH-Shed and Stratford 
 

Five groups of simulations are designed to evaluate the performance and effectiveness of different adjustments of the 

CMAQ model (Table 1). The first group (Control run) applies no adjustment, using default profile as LBCs. It serves as 130 
the reference case to allow quantifying the effectiveness of each adjustment method. The second experiment, named as 

BCON, is similar to the Control run, except that dynamic boundary conditions from the NOAA NAQFC with a horizontal 

resolution of 12 km were applied to replace the default BCs. In the Optimal Interpolation (OI) run, the initial 

concentrations in CMAQ are adjusted with three observation interpolation methods, including area-average (OI_avg), 

inverse distance weighting (idw), and CMAQ concentration gradients (OI_bias) (details of each OI approach provided in 135 
Section 2.3(b)). The best performer of these approaches will be used in the subsequent analyses. Next, a group of emission 
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adjustment experiments are designed to update NOx emissions using observed changes from satellite and ground sensors 

(Tong et al., 2016). These emission adjustment factors are applied either uniformly across the domain (EmisAdj_whole), 

or separately for each subdomain (EmisAdj_sub). In the latter case, the domain was divided into five regions based on 

city areas: New York City (NYC), City of Philadelphia (PH), city area of New Haven-Hartford (NHH) and Providence-140 
Pawtucket (PP), and the area other than these four regions (OTHR) (Fig. 1). Finally, three simulations with the 

combinations of these three techniques were conducted in search of the best performer. All simulations were conducted 

for a high ozone episode, which lasted 168 hours from 0:00 UTC August 25th to 23:00 UTC August 31st, 2018.  
Table 1. Model adjustment and simulation design for the 3 km forecasting system 

 Name Description 

1 Control Simulation with default profile BCs, no adjustment 

2 BCON Same as Control, but BCs replaced with NAQFC prediction 

3 OI  
(3 Cases) 

Same as Control, but initial concentrations adjusted by three OI methods (OI_avg, 
OI_idw and OI_bias) 

4 EmisAdj 
(2 Cases) 

Same as Control, but NOx emissions adjusted using observed trends from ground 
and satellite sensors (EmisAdj_avg, EmisAdj_sub) 

5 Combined  
(3 Cases) 

Combination of different techniques. BCON+OI, BCON+OI+EmisAdj_avg, and 
BCON+OI+EmisAdj_sub 
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2.2 High-resolution air quality forecasting system (LIS3km) 
The high-resolution air quality forecasting system used here is a new research prediction system deployed during the 

2018 LISTOS field campaign period which is comprised of three major components: meteorology, emission, and 

chemical transport models. The Weather Research and Forecasting (WRF) model version 4.0 (Skamarock et al., 2019) is 

used to generate hourly meteorological fields to drive emission and air quality modeling. The WRF model was configured 150 
with Thompson graupel microphysics scheme, RRTMG long and short-wave radiation scheme, Mellor-Yamada-Janjic 

PBL scheme, unified Noah land-surface model and Tiedtke cumulus parameterization option. No data assimilation was 

applied in the WRF simulation. The model is conducted in a single domain with 132×122 grid cells with one grid more 

on each boundary compared to that of the chemical transport model. There are 41 vertical layers with 20 layers below 1 

km and top layer at 50 hPa. The forecast fields of Global Forecast System (GFS) version 4 products with a horizontal 155 
resolution of 0.25° × 0.25° (available every 6 h) were employed to drive the WRF model. 

The emission input was provided using a hybrid emission modeling system that utilized the Sparse Matrix Operator 

Kernel Emissions (SMOKE) model (Houyoux et al., 2000) version 4.7 to process anthropogenic emissions, and a suite 

of emission models to estimate emissions from intermittent and/or meteorology-dependent sources. Anthropogenic 

emissions from area and mobile sources were taken from US EPA 2011 NEI version 2 (NEI2011v2). The Motor Vehicle 160 
Emissions Simulator (MOVES) was used to generate county-level emission factors for the onroad and offroad sources. 

SMOKE uses a combination of vehicle activity data, MOVES emission factors, meteorology and other ancillary data 

(spatial, temporal and speciation information) to generate hourly speciated model-ready emission data. Point sources were 
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processed in two steps. In the first step, emission inventories of point sources were processed with SMOKE to generate 

intermediate input files. Next, these intermediate files were used to drive inline calculation of plume rise to distribute 165 
point source emissions vertically in the CMAQ model domain. Two natural sources are included in this forecasting system: 

biogenic and sea-salt. Biogenic emissions from terrestrial plants were predicted using the inline version of the Biogenic 

Emission Inventory System (BEIS) (Pierce et al., 1998). The emissions of sea spray aerosols are calculated using an 

updated version of the Gong (2003) sea-spray emission parameterization (Gantt et al., 2015).  

The CMAQ model ingests emissions and meteorology to predict spatial and temporal variations of O3, NO2, and their 170 
precursors. In this study, version 5.3.1 of the CMAQ model was configured to include detailed implementation of inline 

emission processes for biogenic, sea-salt and elevated anthropogenic emissions, horizontal and vertical advection, 

turbulent diffusion, dry/wet deposition and full gas, aqueous and aerosol chemistry using a revised Carbon Bond 6 gas-

phase mechanism and AE6 aerosol mechanism (CB6r3_AE6_AQ) (Byun and Schere, 2006; Luecken et al., 2019). Both 

the meteorological and air quality models have a 3 km horizontal resolution over the LIS region and its surrounding areas 175 
(Fig. 1).  

2.3 Techniques to improve forecasting skills 

    We implement and test three forecasting improvement techniques to assess their effectiveness in enhancing the 

simulation performance of the CMAQ model. Details of each update are described below.  

a) Dynamic lateral boundary conditions  180 
Regional air quality models such as CMAQ rely on lateral boundary conditions to account for inflow of air pollutants 

and precursors from out-of-domain sources. These boundary conditions fall into two categories: static and dynamic. Static 

boundary conditions are time-independent vertical profiles of appropriate species at the boundaries that can be prepared 

from prescribed profiles, long-term vertical observations, or climatological model simulations (Tong and Mauzerall, 2006; 

Tang et al., 2007). Dynamical boundary conditions are provided by a concurrently running global model or another 185 
regional model covering a larger domain. In the previous studies of regional modeling, a nested grid approach was often 

applied to provide dynamic BCs for the study area (e.g., Taghavi et al., 2004; Fu et al., 2009; Yin et al., 2015). However, 

the nested model would need higher computational resources and a longer running time. The increasing pool of real-time 

national and global forecasts provides alternative BCs that be used to drive a regional forecasting system as demonstrated 

in this work. Here, we explore the feasibility of utilizing the products of NOAA NAQFC, which provides real-time 190 
national forecasts to prepare dynamic boundary conditions to drive the LIS3km system. The NAQFC is an operational 

system, operated by the National Weather Services, and the data are provided freely to the public. Hourly forecasts of the 

NAQFC (Lee et al., 2017) are processed using the BCON tool developed by the US EPA. The description of NAQFC 

configuration can be found in Lee et al., (2017) and a summary is provided in Table S1. 

b) Optimal Interpolation 195 
     Optimal Interpolation (OI) is a commonly applied data assimilation method (Wang et al., 2013; Chai et al., 2017) that 

can be used to adjust the initial conditions (ICs) of an air quality model to minimize errors (Adhikary, 2008). This method 

runs fast and portably, making it very suitable for the forecasting system which needs regular execution. The equation of 

the OI method is defined as: 
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 𝑥! = 𝑥" + 𝐵𝐻#(𝐻𝐵𝐻# + 𝑂)$%(𝑦 − 𝐻𝑥")                                                                                                               (1) 200 
where xa and xb are the analyzed and background fields, respectively. B and O are the background and observation error 

covariance matrix, H is the observational operator and HT is its matrix transpose, and y is the observation vector. 

In the CMAQ model, the restart file, called CGRID, is daily generated during the simulation and acts as ICs for the 

next day. To constrain the biases in ICs, the concentrations of ozone, NO2 and NO in the restart file were adjusted via the 

OI method, which is applied every 24 hours at 0:00 Coordinated Universal Time (UTC). The influence area of OI is 205 
controlled by the correlation length scale and the previous study by Chai et al. (2017) chose the range of 84 km for the 

contiguous US domain. Moreover, this influence length scale also varies from region to region. Over remote regions, the 

length scale may be longer while it is shorter over polluted areas as the correlation decreases more rapidly. Considering 

the high emission density and the fine model resolution over the LIS area, we chose a shorter influence length (33km) for 

a higher correlation threshold (r >= 0.5) for the LIS which means this OI adjustment was made on each 11×11 grid cell 210 
block of the surface layer over the whole domain to obtain the analyzed field xa. Next, as there is no information of vertical 

background profile in this method, the ratio between xa and xb at each surface layer grid point was used to scale the 

concentrations for the vertical layers within the PBL. Detailed information for this method is described in Tang et al. 

(2015; 2017).  

The OI assimilation first allocates ground-based observational data from the EPA AIRNow network into model grid 215 
cells. The Tang et al. (2015) method puts in-situ data directly into the corresponding model grid cells. If there was more 

than one active site in the same grid cell, the observations are first averaged before being applied to the grid cell (OI_avg 

hereafter). Grid cells that did not have observations and were not within 5 grids cells from the observations were not 

adjusted. Therefore, the region of influence is limited, and the adjusted fields may be discrete in spatial distribution. 

Besides this method, experiments were also performed with two different interpolation methods for preparing the 220 
observational data. The first one was to interpolate the averaged observational grid points to the whole domain using the 

Inverse Distance Weighting (IDW) interpolation scheme (Shepard, 1968), (the OI_idw method). With this interpolation, 

the effect of OI will be not limited near the observational sites and most of the grid cells in the domain can be adjusted 

comparing to the OI_avg. The second method adjusted the initial concentrations by subtracting the bias between the 

simulation and the averaged observations within the grid point, then smoothing the adjusted concentration field via the 225 
IDW scheme. This method is called OI_bias. Unlike the OI_idw which just applied the spatial interpolation to extend the 

OI effect, in this method the observation cells are distributed to the whole domain grids based on the spatial patterns 

provided by model so that it is able to better reflect the realistic fields.  

c) Emission refresh 

The third forecast system update evaluated here is the rapid emission refresh capability that allows timely updates of 230 
outdated NEIs to the forecasting year (Tong et al., 2016). Here we focus on updating NOx emissions. NOx are important 

precursors to tropospheric ozone formation (Spicer, 1983; Chameides et al., 1992), therefore, their emissions can 

influence atmospheric ozone concentrations. Since NOx emissions decreased substantially over the last decade (Silvern 

et al., 2019; Dix et al., 2020) and the anthropogenic emission used in this study are based on the 2011 NEIs, the NOx 

emissions need to be projected from 2011 to the forecast year (2018). According to the approach proposed by Tong et al. 235 
(2016), the adjustment factor used for the emission projection is derived from the monthly changing rates of surface- and 



 

8 

satellite-observed NOx (NO2). Temporal trends at the surface are determined from the hourly observed NOx concentration 

during the morning rush hours (06, 07, 08, and 09 local time).  These times are optimal for assessing local emission 

conditions since they are related to the highest NOx levels typically produced as a result of both commuter traffic peaks 

and the shallow morning planetary boundary layer (Tong et al. 2015). Satellite-based temporal trends are calculated from 240 
the monthly NO2 product retrieved from the Ozone Monitoring Instrument (OMI) aboard the Aura satellite (Lamsal et al., 

2020). A weighting function is introduced to combine the surface-based and satellite-based temporal trends to acquire the 

merged projection adjustment factor (AF) for a specified region: 

	𝐴𝐹 = ∆'×)!×*"+∆,×)#×*#
)!×*"+)#×*#

                                                                                   (2) 

where ΔS and NS are the temporal trend and the number of satellite data, respectively; and ΔG and NG are the temporal 245 
trend and the number of surface-based data, respectively. Two weighting factors, fS and fG are applied to the satellite and 

surface data, respectively. Here the value of fS is set to 1 and fG to 100 to avoid dominance by either data source (Tong et 

al., 2015). In this study, two groups of AFs are prepared for the emission projection. One is the average AF over the whole 

domain (EmisAdj_avg) and the other group includes the AFs for each sub-region in the research area (EmisAdj_sub). 

The AFs used in both groups are the averages of the monthly AFs from May to September. 250 

2.4 Observational data sets 

In this study, a suite of observational datasets were used either as inputs for emissions and chemical data assimilation 

or to evaluate model performance. These datasets include surface O3 and NO2 measurements from the US EPA Air Quality 

System (AQS) surface network, the NO2 vertical column density (VCD) from the OMI satellite data, NO2 VCD from the 

GeoCAPE Airborne Simulator (GCAS) on the NASA Langley Research Center B200 aircraft, and the O3 vertical profile 255 
from the NASA Langley Mobile Ozone Lidar (LMOL). Detailed information of each data set is provided below.  

Surface concentrations of O3 and NO2 are used for emission adjustment and chemical data assimilation, as well as 

evaluation of model performance. AQS is a routine monitoring network established to collect ambient air pollution data 

in urban, suburban, and rural areas. AQS monitors determine O3 concentrations according to the Federal Reference 

Method promulgated in the 2015 revisions to the National Ambient Air Quality Standards (Long et al., 2014) and NOx 260 
concentrations using the chemiluminescence instruments described by McClenny et al. (2002). AQS measures both O3 

and NO2 at hourly intervals. Note that NO2 measurements are typically biased high due to interference in the 

chemiluminescence measurement (Dunlea et al., 2007). As the goal of this study is to improve forecasting performance, 

a near-real-time version of the AQS data was used, called AirNow. This is a preliminary dataset for the purpose of real-

time air quality reporting and forecasting; it is not fully verified and provides fewer measured species. The data used in 265 
this study are downloaded from the AirNow data portal maintained by the US EPA. 

NO2 VCD measurements were provided by the Ozone Monitoring Instrument (OMI) standard product (version 4), 

available from the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). OMI is a nadir-

viewing hyperspectral imaging spectrometer that measures solar backscattered radiance and solar irradiance in the 

ultraviolet and visible regions (270–500 nm) (Levelt et al., 2006). The Aura spacecraft has a local equator-crossing time 270 
of 13:45 h in the ascending node. OMI views the Earth along the satellite track with a swath of 3600 km on the surface 

in order to provide daily global coverage. In the normal global operational mode, the OMI ground pixel at nadir is 
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approximately 13 km × 24 km, with increasing pixel sizes toward the edges of the orbital swaths. Multi-year OMI NO2 

data were further aggregated to calculate state-level emission adjustment factors using a mass conservation approach 

(Tong et al., 2015).  275 
The high-resolution NO2 observations from the GCAS (Kowalewski and Janz, 2014) are used for a direct comparison 

against model simulations of the NO2 VCD. GCAS is an ultraviolet-visible spectrometer used in air quality field studies 

to map the spatiotemporal distribution of NO2 and HCHO VCDs at high spatial resolution (Nowlan et al., 2018; Judd et 

al., 2020).  For LISTOS, this instrument flew on 11 flight days collecting between 2-4 gapless raster datasets at spatial 

resolutions for NO2 as fine as 250 × 250 m. More information about the retrieval can be found in Judd et al. (2020). 280 
During LISTOS, NO2 from GCAS was validated using coincident Pandora measurements and had a median percent 

difference of -1.2% with 95% of the most temporally homogeneous points within ± 25% or 0.1DU.   

Finally, O3 vertical profiles from the NASA LMOL are used to evaluate the CMAQ prediction of O3 profiles during 

the LISTOS field campaign. LMOL is part of a NASA-sponsored ozone lidar network called the tropospheric ozone lidar 

network (TOLNet; Sullivan et al., 2019), which is a mobile ground-based ozone lidar platform equipped with a pulsed 285 
UV laser and all associated power and lidar control support units (De Young et al., 2017, Gronoff et al., 2019). In this 

study, we use LMOL lidar observations from Westport (41.118° N, 73.337° W). All available field measurement 

parameters during this campaign were obtained from the LISTOS Data Archive (https://www-

air.larc.nasa.gov/missions/listos/index.html). 

3. Evaluation on the effectiveness of simulation improvements 290 

3.1 Effects of boundary conditions 

In this section, we examine the effects of using the dynamic boundary conditions on O3 and NO2 predictions. As a 

reference, we also compare these simulations to the NAQFC results, extracted for the same region, during the August 29 

high ozone event. Figure 2 shows the O3 and NO2 24-hour average concentrations simulated by Control (static BCs), 

BCON (dynamic BCs) and the NOAA NAQFC over the LIS region. Comparing to the underestimated O3 concentrations 295 
simulated by Control run, the concentration level using dynamic boundary conditions increases considerably and is closer 

to the observations. High O3 concentrations appear over near-coast areas, but are lower in the northwest of the domain. 

This spatial pattern illustrates the ozone river in a northeastward direction along the I-95 corridor, extending from 

Philadelphia to NYC, and then to Connecticut where the worst air quality is often observed. Although it overestimates 

surface O3 in Philadelphia and central New Jersey, the BCON simulation can reproduce O3 hourly variations during this 300 
episode well in comparison with the observed data (see the time series in Fig. 2d). Note the peak O3 simulated in the 

control run is nearly the same on all days during the simulation period. The comparisons between the peak O3 with the 

default profile and dynamic LBC case indicates relatively large regional contributions on these days. Compared to the 

Control run, the BCON run performed better not only in bias, but also with higher correlations between prediction and 

observations (Table S2), especially during the August 26–27 high O3 days. As the profile BCs are static and lack spatial-305 
temporal variations, the Control run mainly reflects the local contributions of emissions, transport and chemical processes 

within the domain (Tang et al., 2007). The underprediction suggests that these processes are insufficient to produce the 
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observed O3 levels, and that the transport of air pollutants from upwind is important to predict the high O3 episodes. It 

highlights the significant influence of dynamic BCs on the simulations over this region during high pollution time. In 

comparison, the influence of BCs is less important during the cold season, when the simulation with the profile BCs can 310 
also result in prediction in reasonable agreement with observations (Fig. S2a, d). This indicates the influence of dynamic 

BCs varies with time and it is more significant during the high pollution time. 

 

 
Figure 2: Predicted O3 concentrations from (a) Control, (b) BCON and (c) NOAA NAQFC simulations on August 29, 2018, 315 
and (d) comparison of domain-averaged hourly O3 concentrations with EPA AirNow measurements during the episode. 
Colored circles at the top panels depict the observed concentrations from ground measurements. 
 

The performance of the high-resolution simulation was next compared to that by the NAQFC. The NAQFC simulation, 

which is being used to provide national numerical guidance for O3 and PM2.5 (Lee et al., 2017), is run at a coarser 320 
resolution (12 km), using a different CMAQ version (a revised CMAQ5.0), driven by different emission and meteorology 

datasets. Regardless of these differences, the NAQFC and BCON runs predict similar surface O3 distribution patterns. 

Compared to that in the NAQFC prediction, the O3 from the 3 km BCON run demonstrated more detailed spatial 

distributions in the predicted O3 fields. For instance, the O3 concentration over the Long Island Sound is lower than its 

surroundings and the 3 km simulation could reproduce this pattern while the O3 from the 12 km NAQFC showed a 325 
relatively coarser pattern of the concentration gradient. The O3 distribution along the coastal area also agrees better with 

the observations than the 12 km NAQFC prediction. This proves the high-resolution simulation can better reproduce the 

pollutant variability over this coastal urban area. In addition, the BCON run performs better over southern New Jersey, 

and northeast of the LIS domain, in particular exhibiting much-reduced biases in the LIS downwind areas as well. As to 

the diurnal variations, the BCON run overestimates the peak O3 concentrations on August 28 and 29, while the NAQFC 330 
run performs well and is closer to the measurements (Fig. 2d). Use of coarser resolution NAQFC predictions as BCs 
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substantially improves the capability of the 3 km forecasting system to reproduce the O3 variability. Compared to the 

Control run, the correlation coefficient between BCON and observed O3 concentrations increases from 0.81 to 0.93 and 

the relative mean square error (RMSE) decreases from 14.97 ppbv to 8.22 ppbv with a reduction of 45%, resulting in a 

comparable performance with the NOAA NAQFC predictions with correlation of 0.91(Table S2). 335 
The spatial patterns of predicted NO2 concentrations from the Control, BCON, and NAQFC runs are quite similar with 
high value areas all appearing over the NYC area (Fig. 3). The simulated NO2 concentrations by the 3 km forecasting 
system, either with static or with dynamic BCs, agree better with the observations than those from the 12 km NAQFC 
simulation, highlighting the importance of using high resolution inputs to better represent the emission sources in the 
model. The correlation coefficient and RMSEs for the Control and BCON runs are 0.69 (4.12 ppb) and 0.71 (3.82 ppb), 340 
respectively, while those of NOAA are 0.67 (4.98 ppb) (Table S2). In addition, the improvement of simulated NO2 using 
dynamic BC was much smaller compared to that of O3. This is because the lifetime of NO2 is relatively short (1–7 h in 
summertime, Lu et al., 2015), and its budget in urban areas is mainly influenced by local emissions and chemistry, and 
less by regional transport, indicating the effectiveness of dynamic BCs depends not only on the downwind/upwind 
gradients, but also on lifetimes of the concerned species.  345 

 

 
Figure 3: Predicted NO2 concentrations from (a) Control, (b) BCON and (c) NOAA NAQFC simulations on August 29, 2018, 
and (d) comparison of domain-averaged hourly NO2 concentrations to EPA AirNow measurements during the episode. Colored 
circles at the top panels depict the observed concentrations from ground measurements. 350 
 

3.2 Effects of initial condition adjustment 

Initial concentrations are an important input to air quality forecasting. Adjusting initial concentrations through 

chemical data assimilation has been shown to significantly improve air quality forecasting (Tang et al., 2015; Chai et al., 

2017) although the impacts wane with increasing forecast length. Here we compare the results using various OI methods 355 
with the simulations without any BC adjustment (same as the Control run) and study the effects of adjusting initial 
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conditions on O3 and NO2 prediction.  Figure 4 illustrates the initial concentrations of surface O3 adjusted by OI_avg, 

OI_idw and OI_bias, respectively. In the initial concentrations, the areas influenced by OI_avg are primarily limited to 

the ground-based sites and the regions within five model grid cells in each direction of the observations compared to the 

Control run (Fig. 4a, b). The rest of the domain is not affected by the adjustment, resulting in significant differences 360 
between adjusted and unadjusted areas. The O3 fields adjusted by OI_idw (Fig. 4c) and OI_bias (Fig. 4d) show similar 

horizontal distributions, but the concentration level of OI_bias is relatively higher over NYC and northern New Jersey. 

Furthermore, in contrast to the localized changes by OI_avg, those of OI_idw and OI_bias show more consistent changes 

over larger parts of the domain.  

 365 
 

 
Figure 4: The concentration of surface O3 in initial conditions file at 00 UTC August 26, 2018 adjusted by OI_avg, OI_idw and 
OI_bias. 
 370 

Next, the initial concentrations files after adjustment are used to feed CMAQ simulations. The O3 prediction by the 

Control run and three OI runs at 00:00 UTC on August 26, 2018 (the first hour after OI adjusting) are depicted in Fig. 5. 

The adjusted O3 fields show different patterns compared to that in the Control run with no IC adjustment. The predicted 

O3 field with the OI_avg method shows a distribution with localized high value areas near the observational sites. As for 

the other two OI methods, the distribution using OI_bias has similar patterns with that of OI_idw while the concentrations 375 
over the high O3 area are further elevated. Biases between observed and predicted concentrations are reduced in most of 

the areas. The statistical metrics calculated from hourly simulated and observed data from August 26 to 31, 2018 were 

reported in Table 2. The RMSEs for O3 are reduced from 14.97 ppbv to 13.72 ppbv in the OI_bias run, to 13.79 ppbv in 

the OI_idw run and to 14.30 in the OI_avg run. The correlation also slightly increases from the Control to the OI runs 

(Table 2) for O3. In comparison, NO2 prediction is less influenced by this adjustment, with insignificant changes in the 380 
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model performance (Table 3). In addition, the effects of this adjustment on the modeling results decrease with the 

simulation time and display no discernible difference from the Control run after 12 hours (Fig. S1). Generally, the 

improvement of the simulated results due to OI data assimilation over the study domain is smaller than that from the 

dynamic BCs. Among the three OI methods, the simulation with OI_bias shows the best performance, so this method is 

chosen for subsequent analyses in which multiple techniques are combined to improve forecasting skills.   385 

    

 
Figure 5: Spatial distributions of predicted surface O3 concentrations using three Optimal Interpolation (OI) approaches 
(OI_avg, OI_idw, and OI_bias) at 00 UTC August 26, 2018. 

 390 
Table 2: Regional mean statistical metrics between hourly observed and simulated O3 from August 26 to 31, 2018 over the Long 
Island Sound region 

Stats\Runs Control OI_avg OI_idw OI_bias 

CORR 0.81  0.84 0.85 0.85 

RMSE 14.97  14.30 13.79 13.72 

NMB -30%  -29% -27% -27% 

NME 34%  33% 31% 31% 

CORR: correlation coefficient, RMSE: relative mean square error, NMB: normalized mean bias, NME: normalized mean error. 
 
Table 3: Same with Table 2 but for NO2 395 

Stats\Runs Control OI_avg OI_idw OI_bias 

CORR 0.69  0.69 0.69 0.70 
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RMSE 4.12  4.11 4.08 4.08 

NMB -17%  -17% -15% -17% 

NME 35%  35% 35% 34% 

 
The ICs for each day were adjusted by OI using real time observations, it is interesting to note that the duration of OI 

influence on O3 simulation varies from place to place. Figure 6 shows the time series of the averaged differences in 

predicted hourly O3 concentrations between the Control run and each of the three OI runs from August 26 to 31, 2018 in 

three urban areas (NYC, Philadelphia, New Haven – Hartford) and other (OTHR) areas. The differences illustrate the 400 
effect of adjusting initial concentrations on O3 prediction. In large metropolitan areas, OI adjustments result in spikes in 

large metropolitan areas indicate the model errors at the time of OI adjustment at the monitor sites, with the mean errors 

being up to 14 ppbv in surface hourly O3 concentrations over NYC and 16 ppbv over Philadelphia, respectively. In 

comparison, the spikes in non-urban areas are much smaller, reflecting the fact that there are smaller biases between 

observations and predictions (Fig. 6). The New Haven–Hartford region sees a smaller change of O3 concentration 405 
compared to between that in large cities. The OI effects in large cities remain for a shorter time than in non-urban area or 

smaller cities. For example, the differences between OI runs and the Control run decrease to ~0 ppb in four to eight hours 

in two metropolitan areas, NYC and Philadelphia (Fig. 6a, b). Meanwhile, in the New Haven – Hartford region (Fig. 6c), 

Providence-Pawtucket region (not shown) and the non-urban areas (Fig. 6d), the differences could last 12 to 16 hours. 

The different durations indicate the influence time of OI adjusted ICs, not necessarily the improvement in model skill, 410 
which is determined by both initial concentrations and other processes (chemical production and transport, etc.). The 

improvement using OI adjustment is similar in different subdomains (Table S3). This difference reflects the dependence 

of O3 level on the initial concentrations in the air quality model. In general, the influence of OI adjustment lingers for a 

longer period in an area with low emission density where emissions and chemical reactions make a smaller contribution 

to the O3 budget than that in the area with high emission density. 415 
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Figure 6: Effects of OI adjusted initial concentrations on hourly surface O3 in three metropolitan areas (New York, Philadelphia, 
and New Haven-Hartford) and the rest of domain using three Optimal Interpolation (OI) approaches (OI_avg, OI_idw, and 420 
OI_bias). 
 

3.3 Effects of NOx emission adjustment 

One of the major challenges in air quality forecasting is the time lag in updating the emission inputs generated for a 

specified base year which is typically different than the year for which the simulation is desired (Tong et al., 2012). Here 425 
we test the effects of implementing a new emission update technique, the rapid emission refresh, on forecasting 

performance. In this study, the NEI2011v2 data are used to represent anthropogenic emissions, while the target forecasting 

year is 2018. Both the AQS ground monitors and the OMI sensor observed considerable decreases in NOx during 

summertime (May-September) from 2011 to 2018 (Fig. 7). The largest reduction in ground concentrations appears in the 

west of NYC. The OMI NO2 observations show an increase primarily over Connecticut and Rhode Island, the region 430 
downwind of the Long Island Sound (Fig. 7b). The average AF for the whole domain is -18.6%. The AFs for each 

subdomain are -31.9% for NYC, -12.7% for Philadelphia, -9.4% for the New Haven – Hartford region, -28.2% for the 

Providence-Pawtucket region, and -16.5% for other regions, respectively. In general, the NOx variations in this study are 

similar to that between 2005 and 2012 (Tong et al., 2015), indicating that the NOx emissions continued decreasing during 

the past 14 years. This trend highlights the importance of updating the emissions to the model year, in order to reduce the 435 
bias in the emission inputs for model simulations, especially for time-sensitive applications such as air quality forecasting. 
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Figure 7: NOx differences observed by (a) AQS and (b) OMI from summer 2011 to summer 2018 over the model domain.  
 

The results in Table 4 and 5 show that the performance for O3 and NO2 prediction is very similar between two 440 
simulations using two emission adjustment methods (a uniform average adjustment factor over the entire domain, and 

spatially varied factors for each subdomain defined in Figure 1). The correlations in each sub-domains are the same and 

the average for both simulations is 0.81 for O3 and 0.69 for NO2, respectively. The biases and errors are also at the same 

level from the two simulations. Compared to the O3 in the Control run, RMSE changes slightly from 14.97 ppbv to 14.71 

ppbv (EmisAdj_avg) and 14.55 ppbv (EmisAdj_sub), while the correlation remains the same. The largest differences 445 
appeared in NYC with RMSE of 15.54 (EmisAdj_avg) and 14.93 ppb (EmisAdj_sub). This demonstrates that emission 

adjustment alone results in limited improvement of O3 prediction, due in part to the fact that the O3 production in this 

region is NOx saturated (VOC limited) in urban areas where most AQS monitors are deployed, so the O3 level is less 

sensitive to the change in NOx emissions. Similarly, satellite observations are weighted more toward urban plumes. In 

addition, regional transport of air pollution results in dispersion of emitted NOx and its byproducts/reservoirs. The 450 
observations from satellite or ground monitors, based on which the emissions were adjusted, may not accurately capture 

the temporal evolution of the emission sources. A large geographical range may better reflect the overall changes of NOx 

emissions in the LIS region. Previous studies either use a coarse model resolution (e.g., 1 degree in Lamsal et al., 2011, 

or state-level adjustment in Tong et al., 2016). As a result, the simulated concentrations using different methods were 

very close and the limited difference can also get averaged out when calculating the averaged statistical metrics. The 455 
effect of the emission adjustment method in this study is not as large as BCON or OI adjustments, which directly influence 

O3 concentrations. A recent study by Jin et al. (2020) showed that the decrease in NOx emissions has shifted the NOx-

saturated to NOx-sensitive regime transition zone closer to urban centers, approximately 40 to 60 km from the center (the 

highest emission point) of New York City. Therefore, it is expected that the effectiveness of emission adjustment will 

increase over time in this region. For surface NO2, the emission adjustment showed more significant impact on the 460 
simulated concentration. Note that the emission adjustment was only implemented in the LIS system, not in NAQFC, 

which still uses the 2014 NEIs for anthropogenic emissions. Without the emission adjustment, the changes in NOx 

emissions between the inventory and forecast years are not accounted for. On the high O3 days, NAQFC over-predicted 

surface O3 during the study period (Fig. 2c). The NAQFC LBCs are likely associated with a possible over-prediction of 

the regional transport, which can be partially responsible for the BCON LIS simulation overpredicted O3 during high O3 465 
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days (Fig 2d). Considering the similarities of these two emission adjustment methods, they will be both tested in the 

subsequent multi-adjustment simulations. 

 
Table 4: Statistical metrics of O3 simulations after NOx emission adjustment in different sub-regions from August 26 to 31, 
2018 470 
 

 EmisAdj_avg EmisAdj_sub 

Domains/Stats CORR RMSE NMB NME CORR RMSE NMB NME 

NYC 0.78 15.54 -34% 36% 0.78 14.93 -32% 35% 

PH 0.78 15.29 -30% 35% 0.78 15.38 -31% 35% 
NHH 0.85 13.24 -25% 31% 0.85 13.24 -25% 31% 

PP 0.81 17.26 -31% 35% 0.81 17.06 -30% 34% 
OTHR 0.84 12.24 -24% 29% 0.84 12.17 -24% 29% 

Average 0.81 14.71 -29% 33% 0.81 14.55 -28% 33% 

 
Table 5: Same with Table 4 but for NO2 

 EmisAdj_avg EmisAdj_sub 

Domains/Stats CORR RMSE NMB NME CORR RMSE NMB NME 

NYC 0.82 4.23 -22% 27% 0.82 4.77 -29% 31% 
PH 0.79 5.69 -36% 41% 0.79 5.53 -33% 40% 

NHH 0.49 7.69 -44% 49% 0.49 7.53 -41% 48% 
PP 0.67 2.92 -18% 35% 0.67 2.95 -21% 36% 

OTHR 0.69 2.56 -33% 39% 0.69 2.54 -32% 39% 
Average 0.69 4.62 -31% 38% 0.69 4.67 -31% 39% 

 

3.4 Effectiveness of combined adjustment methods 475 

After assessing the effects of individual updates, we test how these updates can be combined to optimize forecasting 

performance. In the preceding sections, three groups of adjustment approaches have been included and evaluated. For 

each group, the best performing method has been identified, including the dynamic BCs, ICs with OI-bias, and rapid 

emission refresh (EmisAdj_avg/EmisAdj_sub). With these selected updates, we design and conduct two multi-adjustment 

simulations, the first one used both the dynamic BCs and the OI-bias adjusted initial concentration files (BO for short) 480 
and the other one employed the NOx emission with projection from 2011 to 2018 together with the combination of BCON 

and OI-bias (BOE hereafter). Results of these combined adjustments are compared against the Control, BCON run and 

the NAQFC prediction.  

First, we compare two BOE simulations, one with the EmisAdj_avg emission adjustment and the other with 

EmisAdj_sub. The statistical metrics of BOE with EmisAdj_avg and BOE with EmisAdj_sub (Table S4, S5) are quite 485 
similar in each sub region and also have the same correlations. On average, the RMSEs of BOE (EmisAdj_avg) is slightly 

smaller. Therefore, in the subsequent evaluation we take BOE (EmisAdj_avg) to compare against surface and other 

observations. Figure 8 compares the predicted hourly O3 and NO2 concentrations against in-situ observations from August 
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26 to 31, 2018 in five subdomains and the overall domain with Taylor diagrams (Taylor, 2001). In the Taylor diagram, 

the relative skill of each forecasting system to reproduce the O3 and NO2 variability is represented using three statistical 490 
metrics: correlation (R) with values on arc of the right angled sector, normalized standard deviation (SD) with values on 

y-axis, and centered root-mean-square difference (RMSD) with values on x-axis. The normalized SD is shown as the 

dashed line concentric circles while RMSD is shown as line concentric circles with the observation point acting as center 

(OBS on the x-axis). Their values higher (lower) than 1 indicate biased high (low) of the simulations. In general, the 

forecasting skill is measured by the distance to the OBS point on these diagrams, the shorter the better. The default 495 
(Control) run yielded a correlation coefficient of approximately 0.8 (0.77–0.84) in each subdomain while those with 

adjustments show stronger correlations with R all above 0.9. Furthermore, the performance in the OTHER areas is better 

than that in the five subdomains with the R value up to 0.97 and SD close to 1 (Fig. 8e). Taylor diagrams also reveal that 

these adjustments are even more effective over the low emission areas. The three adjusted runs, namely BCON (#2), BO 

(#3) and BOE (#4) run in diagrams, have well reproduced surface O3 concentrations over the NYC region. The simulations 500 
with BOE usually demonstrate a relatively lower O3 concentration level than that with the BCON run or the combined 

BCON and OI run. This means in the overestimated areas (such as NYC, Fig. 8a), the simulations with emission 

adjustment show better performance than that without emission adjustment. In addition, these three simulations have 

similar biases and errors with NMB ranging from 4% to 22% and NME from 15 to 22% (Fig. 9a, 9c). These results 

illustrate the importance of combining complementary modeling system updates to reduce model uncertainties in a 505 
comprehensive way. A single update, such as emission adjustment, may result in a better emission input closer to the 

“true” level, but its effect can be offset by systematic biases caused by other inputs. Concurrent improvements of boundary 

conditions and initial concentrations allow a more realistic initial state and boundary conditions to demonstrate the 

effectiveness of the emission adjustment in improving O3 forecasting (Fig. 9).  

The Taylor diagrams show that the performance of variability of NO2 predictions is generally worse than that of 510 
variability of O3 predictions. Overlaid on the same diagrams, the points that represent NO2 performance are all further 

away from the OBS point compared to that representing O3 from the same simulations (Fig. 8). This is not surprising as 

O3 has been one of the focal points in air quality modeling in the past decades, while NO2 has not been scrutinized with 

the same intensity. All of the high-resolution simulations, including the Control run, perform better for NO2 prediction 

than the NAQFC run (Fig. 9), highlighting the benefit of using a high-resolution modeling system for predicting short-515 
lived chemical species such as NO2. The NAQFC generally underestimates NO2 concentrations in all subdomains. Its 

bias is the smallest in the NYC subdomain and largest in its downwind New Haven-Hartford region. The correlation 

coefficient is between 0.8 and 0.9 in NYC, but lower than 0.6 in the New Haven-Hartford region (Fig. 8). Similarly, the 

NMB are within 10% in NYC but can be as large as -65% in the New Haven-Hartford region. Such a contrast suggests 

either an underestimate of emission sources in Connecticut, or an unrealistically short lifetime of NOx due to flawed 520 
model chemistry, or a combination of both.  
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 525 
Figure 8: Model performance in Taylor diagrams of hourly O3 and NO2 simulated by five runs, including the Control run, 
dynamic boundary conditions (BCON), boundary conditions with optimal interpolation (BCON+OI), and an all adjustment 
run including emission adjustment (BOE), and the operational NOAA national air quality forecast capability (NAQFC) run 
during the episode over five subdomains and the overall domain (Average). The comparison time is from August 26 to 31, 2018.  
 530 
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Figure 9: Comparisons of model performance for surface O3 and NO2 concentrations from five CMAQ simulations against 

measurements from the Air Quality System monitors. These simulations include the Control run, dynamic boundary conditions 535 
(BCON), boundary conditions with optimal interpolation (BCON+OI), and an all adjustment run including emission 

adjustment (BCOI+OI+EmisAdj), and the operational NOAA national air quality forecast capability (NAQFC) run during the 

episode over five subdomains. Two performance metrics are used here: normalized mean bias (NMB) and normalized mean 

error (NME). The comparison time is from August 26 to 31, 2018. 

4. High O3 episode simulations during the LISTOS field campaign 540 

In this section, the newly developed high-resolution system, equipped with all forecast improvements (dynamic 

boundary conditions, optimal interpolation, and emission adjustment, or BOE), is used to simulate a high O3 episode over 

the Long Island Sound region. During the high O3 pollution days (August 28-29, 2018) in this episode, surface O3 

concentrations exceeded the National Ambient Air Quality Standard (NAAQS) (daily maximum 8-hour average of 70 

ppbv) at several monitoring locations, including one site (Colliers Mills) in New Jersey, one site (Riverhead) in New 545 
York, and five sites (Greenwich, Madison-Beach Road, Middletown-CVH-Shed, Stratford, and Westport) in Connecticut. 

While merely exceeding the threshold values by a few ppbv at most sites, the O3 concentrations reached 84 ppbv at the 

Westport site, and 87 ppbv at the Stratford site. Considering the significant emission reduction and air quality 

improvements in the eastern United States (He et al., 2020; Qu et al., 2019), this episode, which occurred during a well-

designed field campaign, offers a rare opportunity to assess how well a state-of-the-science air quality model can predict 550 
a high O3 pollution event that is now less frequent than in the past decades.  

4.1 NO2 prediction 

CMAQ predictions of NO2 surface concentrations and vertical column density are compared against ground and 

aircraft observations. NO2 is not only a key precursor to tropospheric ozone, but also a proxy for traffic-related air 

pollution in many epidemiological studies (e.g., Jerrett et al., 2007). Within the LISTOS CMAQ domain, there are four 555 
active ground monitors with valid NO2 readings during the study period. Hourly variations from AQS monitors, the BOE 

3 km prediction, and the operational NAQFC prediction are illustrated in Fig. 10. Among these sites, the lowest NO2 

concentrations were observed at the Flax Pond site in the middle of Long Island, away from the major emission sources. 

Both BOE and NAQFC are able to reproduce the magnitude and diurnal variations of surface NO2 concentrations at this 

site. The NO2 concentration at the Queens College site, also located on Long Island though within NYC, is significantly 560 
higher than at the Flax Pond site, due to its close proximity to major sources such as the tunnels, harbors and highways. 

For this site, the BOE 3 km prediction is considerably better than that from the NAQFC prediction. Similarly, the BOE 

prediction outperforms the NAQFC at the New Haven site in Connecticut, where the surface NO2 concentration reaches 

40 ppbv on August 28 and 55 ppbv on August 29, 2018. The NAQFC predicted concentration is constantly below 10 

ppbv, severely underestimating the observations. In comparison, the BOE predicted concentration is much closer to the 565 
observations, although still underpredicting the latter. Finally, both models missed the first, primary peak on both days at 

the Westport, CT site, which is strongly influenced by the NY City plume and sea breeze circulation.  
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 570 
Figure 10: Variations of observed and simulated surface NO2 concentrations at (a) Flax Pond, NY; (b) Queens College, NY; (c) 

New Haven, CT; and (d) Westport, CT sites during August 28–29, 2018. 

 

Next, the two model simulations are compared against the NO2 VCD measured by NASA GCAS during the LISTOS 

field campaign. In order to allow a comparison between simulations and measurements from GCAS, the CMAQ 575 
prediction of NO2 mixing ratio is vertically integrated from the surface to the layer which is the closest to the plane altitude 

to generate vertical column density (unit: molecules cm-2), GCAS data are averaged over the 3 km grid to provide a 

spatially representative observation. We also sample the model data to match the actual measurement time. The GCAS 

observations show higher NO2 VCD in the morning and lower values in the afternoon. This temporal pattern is well 

captured by both simulations. The GCAS observations depict an NO2 hotspot over lower Manhattan and Brooklyn, which 580 
is reproduced by both BOE and NAQFC simulations (Fig. 11). The observed and simulated VCDs are generally at the 

same magnitude (4–40´1015 molecules cm-2), with BOE better capturing the peak values. Moreover, the VCD prediction 

from the BOE run presents a northeastward pattern and it was lower over water area of LIS than that over surrounding 

lands.  In comparison, the VCD from NAQFC shows a high NO2 plume over the land and the water around LIS. This 

spatial distribution from BOE is more consistent with that of GCAS compared to that from NAQFC. Similarly, this 585 
situation is also similar for the prediction of surface NO2 distributions (Fig. 3), indicating the high-resolution system can 

outperform NAQFC through resolving the fine-scale processes. It should be noted that the VCD levels from both 

simulations are biased high outside the high emission density areas, especially in the morning. The BOE prediction shows 

a larger area of high NO2 VCD than that from GCAS, suggesting either a positive bias in NOx emissions or inefficient 

transformation and removal of emitted NOx in the CMAQ model. The high NO2 VCD from the NAQFC simulation is 590 
lower than the measurements over lower Manhattan and Brooklyn, and the high NO2 VCD extends to an area larger than 

that from both GCAS and BOE. The performance is relatively unsatisfactory during the high polluting period on August 

28 morning (Fig. 11e, 11i) with a correlation of only 0.56 for BOE and 0.44 for NAQFC. These low correlations could 

be partly caused by the high spatial variability of fine resolution measured VCD, so that the averaged VCD is still more 

variable than either model. In contrast, the spatial patterns of NO2 VCD in the afternoon are better reproduced than in the 595 
morning (Table S6). In addition, the NO2 VCD from simulation with combined adjustments using EmisAdj_sub method 

for emission refresh shows a similar spatial pattern with that of BOE (Fig. S3) while its VCD level over the NYC area is 

lower, making it underestimates the hotspot but much closer to the VCD over the rest of the areas. And besides the 
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uncertainties in the model, an evaluation conducted by Judd et al. (2020) showed that the absolute difference in GCAS 

from Pandora measurement has an average and standard deviation of -0.2×1015±2×1015 molecules cm-2 and a percent 600 
difference on average of -1.5%±20%, which indicates biases exist in GCAS retrievals. Overall, the BOE simulation at 3 

km resolution is able to reproduce the observed NO2 VCD, and unlike the results of surface NO2, the NO2 VCD using 

EmisAdj_sub has lower NMB (33%) and NME (57%) compared to that using EmisAdj_avg (40% and 61%) while their 

correlation is still the same (0.74). They both perform better than the NAQFC at 12 km resolution (0.57, 45% and 76%, 

respectively). The statistical metrics for these simulations are provided in Table S6. 605 
 

 
 

Figure 11: Spatial distribution of NO2 vertical column density (VCD) observed by NASA GeoCAPE Airborne Simulator 

(GCAS), and simulated by the 3 km BOE and 12 km NOAA NAQFC over the LIS domain during August 28–29, 2018. There 610 
were two flight missions each day: the morning flight (AM) from ~11:00 to 15:00 UTC and afternoon flight (PM) from ~16:00 

to 20:00 UTC. 

 

4.2 O3 prediction 

One key result expected from the improved prediction system is to better reproduce high O3 episodes, especially those 615 
events that cause the exceedance of NAAQS. Here we compare the model performance between BOE and NAQFC at the 

seven sites where the O3 concentrations exceeded the NAAQS. Compared to NAQFC, BOE demonstrates enhanced 

prediction skills at all sites (Fig. 12). Note the comparisons may be attributed to the differences in meteorology, emission 

and other factors. Although it is difficult to attribute the improvement quantitatively to each factor, the magnitude of O3 
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improvement from the base run to the BOE run is compared to that of the overall reduced O3 bias, suggesting a significant 620 
contribution from these improvement techniques. The results show that BOE can better capture peak O3 values than 

NAQFC in the afternoon, a highly desired feature in predicting O3 exceedances. Hourly surface O3 concentrations reached 

more than 100 ppbv at four Connecticut sites, including Greenwich, Westport, Middletown-CVH-Shed, and Stratford. 

While neither BOE nor NAQFC is able to predict such high values, BOE reduces the bias by 10-20 ppbv during peak 

hours at these sites. The improvement of peak O3 prediction is less significant on the other sites with lower observed O3 625 
concentration, but BOE still displays better performance than NAQFC. There are only three sites at which one or both 

simulations overpredict peak O3 on the August 29, 2018. Compared to NAQFC, BOE shows larger over-prediction of the 

peak O3 at the Greenwich site, but smaller overprediction at two other sites (Middletown and Westport).  

Besides better peak prediction, BOE has also improved the prediction of the timing of peak O3.  The peaks predicted 

by BOE are two to three hours earlier than that by NAQFC, which agree better with the timing of the observed peaks (Fig. 630 
12). The BOE peaks are narrower than the NAQFC ones, so that the former follows the observed O3 downslope and 

avoids the positive biases during late afternoon and early evening. Finally, BOE has improved the prediction of low O3 

concentrations and nighttime O3 valleys that are lower than those from NAQFC. Both simulations, however, are unable 

to reproduce the extreme low nighttime values at several sites. Overall, the BOE simulation performs better in capturing 

the daytime O3 peaks and nighttime valleys, as well as the timing of both, with a mean correlation coefficient of 0.93 635 
compared to 0.88 for the NAQFC simulation. This may be in part attributed to the high resolution of the LIS3km system, 

which can better resolve meteorology and emission variations. As the emissions and meteorological inputs play important 

role in determining the magnitude and timing of high peaks (Pan et al., 2017), emissions and meteorological data with 3 

km resolution could improve the simulation of peak value and timing, especially over urban areas. 

 640 
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Figure 12: Time series of observed and simulated surface O3 concentrations at the seven sites where the National Ambient Air 

Quality Standard (NAAQS) for O3 were exceeded during August 28–29, 2018: a. Colliers Mills; b. Riverhead; c. Greenwich; d. 

Madison-Beach Road; e. Middletown-CVH-Shed; f. Stratford; and g. Westport. 645 
 

Vertical profiles of O3 are compared between Langley Mobile O3 Lidar (LMOL) observations and CMAQ simulations 

at the Westport site. As shown in Fig. 13, LMOL observations reveal that the O3 concentration in the planetary boundary 

layer start to build around 16:00–17:00 UTC and high concentrations (>~70 ppbv), which extend to a height of about 1.5 

km, last until 23:00 UTC on August 28 and 29. This pattern is reproduced by both the BOE and NAQFC simulations. 650 
Above the PBL, the variations of O3 concentrations are also captured by both simulations. O3 concentrations in the free 

troposphere are more controlled by regional O3 production and transport than in the PBL. Consequently, the structure and 

magnitude of O3 profiles are very similar between the BOE and NAQFC simulations, since the BOE simulation is driven 

by the dynamic boundary conditions derived from the same NAQFC simulation. Compared to that from the LMOL 

observations, the predicted O3 concentrations from both runs are biased low above 800 hPa but biased high below 800 655 
hPa. Between the two model simulations, the BOE run not only produces more O3 in the PBL, but also shows a better 

temporal evolution of the PBL structure, with a short-lived high O3 peak and a PBL height peak between 20:00–22:00 

UTC on August 28, and persistent O3 and PBL height plateaus between 16:00–23:00 UTC on August 29 (Fig. 13). The 

PBL in the BOE simulation extends well above 850 mbar, while the observed high O3 from LMOL generally stays beneath 

this height, suggesting possible overprediction of the PBL height.  660 
In general, the 3 km BOE simulation performs better to capture the temporal variability of the PBL and O3 production 

but tends to overestimate both during the episode. In contrast, the NAQFC simulation has produced less pronounced 

temporal variations in both O3 concentrations and PBL height in the lower troposphere, in particular on August 28 when 

this region experienced the worst air quality in several states. The NAQFC simulation, however, performed better during 
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the time with lower O3 concentrations, which resulted in an overall lower NMB (9%) and NME (21%) comparing to that 665 
in BOE (22% and 26% respectively). The BOE simulation, however, presented a much better reproduction of the O3 

variability in term of correlation (0.71) than the NAQFC run (0.54). This suggests that the new 3 km BOE system is more 

responsive to the controlling factors that shape O3 pollution, although the system needs to be further refined to reduce 

bias.  The model performance of O3 surface concentrations and vertical distribution using AFs from EmisAdj_sub is very 

close to those of using the AFs from EmisAdj_avg in the BOE case (Fig. S4, Table S7). 670 
 

 
Figure 13: Vertical O3 profiles (a) and (d) observed by NASA Langley Mobile O3 Lidar (LMOL) and simulated by (b) and (e) 

the 3 km BOE and (c) and (f) 12 km NOAA NAQFC over the Westport site during (a)-(c) August 28 and (d)-(f)August 29, 2018. 

Note white represents missing data from LMOL. 675 

5. Summary 

Improvement of air quality in the past decade renders the prediction of high ozone events more challenging. This 

study investigates the feasibility of designing a high-resolution air quality prediction system to capture these less frequent 

events with more accuracy. Relying on the observations collected during the Long Island Sound Tropospheric Ozone 

Study field campaign, we have assessed the effectiveness of various improvements to the predictions system to enhance 680 
the predictability of high O3 episodes. These updates were then combined to explore how to further improve the 

predictability of both ozone and nitrogen dioxide. Finally, the modeling system with combined updates has been utilized 

to simulate a severe high O3 pollution event in the Long Island Sound and surrounding areas.  

Different prediction system updates demonstrate varying potentials to improve O3 and NO2 prediction performance. 

For O3 prediction, the most significant improvement comes from the dynamic boundary conditions derived from NOAA 685 
National Air Quality Forecast Capability (NAQFC), compared to that with the static boundary conditions. This is due in 
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part to the fact that O3 is a regional air pollutant and the relatively small model domain used in this study, making the O3 

prediction more susceptible to the influence of regional transport. Dynamic boundary conditions (BCs) are less influential 

for NO2 prediction, for which all high-resolution simulations outperform the 12 km NAQFC simulation, highlighting the 

importance of spatially resolved emission and meteorology for the prediction of short-lived pollutants. The impact of 690 
improved initial concentrations through optimal interpolation (OI) is shown to be large in urban areas initially but fades 

away rapidly. The influence of OI adjustment, however, lingers for a longer period in an area with low emission density 

where emissions and chemical reactions make a smaller contribution to the O3 budget than that in the area with high 

emission density. Such method may be more useful if applied to vertical layers above the ground. Future air quality 

forecasting and modeling can benefit from concerted efforts to provide near real time data of O3 aloft on a continuous 695 
basis (Mathur et al., 2018), so that improved initialization of the aloft conditions can better represent regional transport 

and modulate the inferred impact of LBCs on O3 forecasting. Finally, emission adjustment, which changes baseline 

emissions using the temporal trends derived from ground and satellite observations, only yields moderate improvement 

in O3 prediction compared to that without emission adjustment. One possible direction to explore is to apply other methods 

to constrain emissions that use both variational (e.g., Elbern et al., 2007; Vira and Sofiev, 2012) and ensemble-based (e.g., 700 
Miyazaki et al., 2012, 2017) solutions to analyze the 3D chemical tracers as well as their respective precursor emissions 

simultaneously. While the effectiveness of each update varies, a combination of these updates proves to outperform each 

single update. The new prediction system at 3 km resolution, equipped with dynamic BCs, OI and Emission adjustment 

(BOE), was used to simulate a high O3 episode over the Long Island Sound region. Compared to 12 km resolution 

operational NAQFC, BOE is able to significantly reduce the biases in surface O3 and NO2 prediction. The BOE is also 705 
able to reproduce NO2 VCD by NASA Langley GCAS with higher accuracy than the NAQFC. More importantly, the 

BOE simulation shows considerable improvement in capturing the O3 peaks and valleys, as well as the timing of both, 

with a correlation coefficient of 0.93 compared to that of NAQFC (0.88). Based on the episode analyses over the Long 

Island Sound, this study demonstrates feasible measures to improve the capability of air quality prediction systems to 

capture high O3 episodes in a cleaner urban environment.  710 
 

 
Data Availability. CMAQ and SMOKE model documentation and released versions of the source code are available on 

the US EPA modeling site https://www.cmascenter.org/ (last access:  December 2020). WRF is an open-source 

community model. The source code is available at http://www2.mmm.ucar.edu/wrf/users/download/get_source.html (last 715 
access: Nov 2020). CMAQ and SMOKE source code is available on the Community Modeling and Analysis System 

(CMAS) Center of University of North Carolina, Chapel Hill: https://www.cmascenter.org/ (last access:  July 31, 2021). 

WRF is an open-source community model. The source code is available at 

http://www2.mmm.ucar.edu/wrf/users/download/get_source.html (last access: July 31, 2021). The AirNOW hourly data 

of O3 and NOx is available at https://files.airnowtech.org/?prefix=airnow/ (last access: May 2021) and the hourly NOx 720 
data from US EPA Air Quality System (AQS) surface network is available at 

https://aqs.epa.gov/aqsweb/airdata/download_files.html (last access: May 2021). The GCAS NO2 vertical column density 

and the LMOL O3 vertical profile data are available at https://www-air.larc.nasa.gov/missions/listos/index.html (last 
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