Sulfate aerosols play an important climatic role and exert adverse effects on the ecological environment and human health. In this study, we present the triple oxygen isotopic composition of sulfate from the Mt. Everest region, southern Tibetan Plateau, and deciphered the formation mechanisms of atmospheric sulfate in this pristine environment. The results indicate the important role of the S(IV) + O3 pathway in atmospheric sulfate formation promoted by high cloud water pH conditions.
Sulfate aerosols play an important climatic role and exert adverse effects on the ecological...
1State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
2Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
3State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, CAS, Guangzhou 510640, China
4National Institute of Polar Research, Research Organization of Information and Systems, Tokyo 190-8518, Japan
5Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA
6CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
7Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
8University of Chinese Academy of Sciences, Beijing 100049, China
9National Institute of Information and Communications Technology, Koganei, Tokyo 184-8795, Japan
10Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554, Japan
11CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
1State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
2Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
3State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, CAS, Guangzhou 510640, China
4National Institute of Polar Research, Research Organization of Information and Systems, Tokyo 190-8518, Japan
5Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA
6CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
7Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
8University of Chinese Academy of Sciences, Beijing 100049, China
9National Institute of Information and Communications Technology, Koganei, Tokyo 184-8795, Japan
10Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554, Japan
11CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
Received: 31 Dec 2020 – Accepted for review: 07 Jan 2021 – Discussion started: 12 Jan 2021
Abstract. As an important atmosphere constituent, sulfate aerosols exert profound impacts on climate, ecological environment, and human health. The Tibetan Plateau (TP), identified as the Third Pole, contains the largest land ice masses outside the poles and has attracted wide attention on its environment and climatic change. However, the mechanisms of sulfate formation in this specific region remain poorly characterized. Oxygen-17 anomaly (Δ17O) has been used as a probe to constrain the relative importance of different pathways leading to sulfate formation. Here, we report the Δ17O values in atmospheric sulfate collected at a remote site in the Mt. Everest region to decipher the possible formation mechanisms of sulfate in such a pristine environment. Throughout the sampling campaign (April–September 2018), the Δ17O in non-dust sulfate show an average of 1.7 ± 0.5 ‰ which is higher than most existing data in modern atmospheric sulfate. The seasonality of Δ17O in non-dust sulfate exhibits high values in the pre-monsoon and low values in the monsoon, opposite to the seasonality in Δ17O for both sulfate and nitrate (i.e., minima in warm season and maxima in cold season) observed from diverse geographic sites. This high Δ17O in non-dust sulfate found in this region clearly indicates the important role of the S(IV) + O3 pathway in atmospheric sulfate formation promoted by high cloud water pH condition. Overall, our study provides an observational constraint on atmospheric acidity in altering sulfate formation pathways particularly in dust-rich environments, and such identification of key processes provides an important basis for a better understanding of the sulfur cycle in the TP.
Sulfate aerosols play an important climatic role and exert adverse effects on the ecological environment and human health. In this study, we present the triple oxygen isotopic composition of sulfate from the Mt. Everest region, southern Tibetan Plateau, and deciphered the formation mechanisms of atmospheric sulfate in this pristine environment. The results indicate the important role of the S(IV) + O3 pathway in atmospheric sulfate formation promoted by high cloud water pH conditions.
Sulfate aerosols play an important climatic role and exert adverse effects on the ecological...