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Abstract 

PM2.5 has been used as an important atmospheric environmental parameter primarily due to its impact 

on human health. PM2.5 is affected by both natural and anthropogenic factors that usually have strong 

diurnal variations. Monitoring it does not only help understand the causes of air pollution but also our 

adaptation to it. Most existing PM2.5 products have been derived from polar-orbiting satellites. This 20 

study exploits the usage of the next-generation geostationary meteorological satellite Himawari-8/AHI 

in revealing its diurnal variations. Given the huge volume of the satellite data, a highly efficient tree-

based Light Gradient Boosting Machine (LightGBM) learning approach, which is based on the idea of 

gradient boosting, is applied by involving the spatiotemporal characteristics of air pollution, named the 

space-time LightGBM (STLG) model. Hourly PM2.5 data set in China (i.e., ChinaHighPM2.5) at a 5 km 25 

spatial resolution is derived based on the Himawari-8/AHI aerosol products together with other 

variables. The hourly PM2.5 estimates (N = 1,415,188) are well correlated with ground measurements 

(R2 = 0.85) with a RMSE and MAE of 13.62 and 8.49 μg/m3 respectively in China. Our model can 

capture well the PM2.5 diurnal variations, where the pollution increases gradually in the morning, and 
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reaches a peak at about 10:00 a.m. local time, then decreases steadily until sunset. The proposed 30 

approach outperforms most traditional statistical regression and tree-based machine learning models 

with a much lower computation burden in terms of speed and memory, making it most suitable for 

routine pollution monitoring. 

 

1. Introduction 35 

China has faced severe environmental problems during the last two decades, especially air pollution (An 

et al., 2019; Chan & Yao, 2008; Li et al., 2017; Zhang et al., 2017). The sources of air pollution are 

complicated and come from both natural changes (e.g., forest fires, biomass burning) and human 

activity (e.g., industrial production, transportation) (Huang et al., 2014; Sun et al., 2014; Wei et al., 

2019a). PM2.5 has a greater impact than other air pollutants (e.g., PM10, NO2, SO2, etc.) on the 40 

atmospheric environment and climate change (Li et al., 2017, 2019; Jacob & Winner, 2009; 

Ramanathan & Feng, 2009). Moreover, they can cause great harm to human health due to the smaller 

particle size (Delfino et al., 2005; Kim et al., 2015; Lelieveld et al., 2015). China has established and 

operates multiple ground-based observation networks to monitor air pollution in real-time across 

mainland China including information on PM2.5 pollution. 45 

For near-surface concentrations, the networks provide high-quality PM2.5 measurements every hour 

(even every few minutes), but with rather non-uniform coverage. In recent years, an increased effort has 

been made in PM2.5 estimates with products generated from multiple sun-synchronous satellites, e.g., 

MISR (Liu et al., 2005; van Donkelaar et al., 2006), MODIS (Liu et al., 2007; Ma et al., 2014; Wei et 

al., 2019a, 2020, 2021), and VIIRS (Wu et al., 2016; Yao et al., 2019). However, due to their low revisit 50 

cycles (one or two overpasses per day), they are unable to monitor the diurnal variation of pollution. 

Therefore, most currently available PM2.5 dataset are at low temporal resolutions which cannot meet the 

acquirements of air pollution real-time monitoring, in particular, the people's daily life, e.g., if people 

know the time of heavy pollution during a day, they may change the times being outside, say for sports 

or others. However, following the launch of the Himawari-8/Advanced Himawari Imager (AHI) on 7 55 

October 2014 (Bessho et al., 2016; Letu et al., 2020), the near-surface PM2.5 concentrations in the 

eastern hemisphere can be estimated to address the diurnal cycle.  
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Over the years, Wang et al. (2017) used the linear mixed-effect (LME) model, and Sun et al. (2019) 

applied the geographically weighted regression (GWR) and support vector regression (SVR) models to 

estimate hourly PM2.5 data from the Himawari-8 aerosol optical depth (AOD) products in the Beijing–60 

Tianjin–Hebei (BTH) region. Zhang et al. (2019) developed an improved LME model, and Xue et al. 

(2020) proposed an improved geographically and temporally weighted regression (IGTWR) model to 

derive the hourly PM2.5 maps based on Himawari‐8 AOD products over central and eastern China. In 

addition to the traditional statistical regression models, several artificial intelligence models, including 

the random forest (RF), eXtreme Gradient Boosting (XGBoost), and deep neural network (DNN), have 65 

been recently successfully adopted to Himawari‐8 data to obtain hourly PM2.5 concentrations from local 

regions to the whole of China (Chen et al., 2019; Liu et al., 2019; Sun et al., 2019). Nevertheless, due to 

its poor data mining ability, the traditional statistical regression methods usually suffer from large 

uncertainties. While artificial intelligence methods can achieve higher accuracy, they are often highly 

demanding on computational power and are thus often slow. In addition, the spatiotemporal variations 70 

of PM2.5 were often neglected in previous studies (Chen et al., 2019; Liu et al., 2019; Sun et al., 2019; 

Wang et al., 2017; Zhang et al., 2019), resulting in relatively low accuracy.  

Therefore, here, we develop a new high-efficiency and high-precision method for near-surface PM2.5 

estimation relying on the tree-based light gradient boosting machine (LightGBM) learning approach by 

including spatial and temporal information, namely, space-time LightGBM (STLG) model. This results 75 

in a high-temporal-resolution (hourly) PM2.5 dataset over eastern China (5 km) of high quality from 

Himawari-8/AHI hourly AOD products. Section 2 provides the detailed information of the natural and 

human data used, and introduces the development of the STLG model. Section 3 validates the hourly 

PM2.5 estimates, and shows the diurnal PM2.5 variations across China, and further compares it with 

traditional models and previous studies. Section 4 summarizes the study.  80 

 

2. Material and methods 

2.1  Data source 
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2.1.1 PM2.5 and AOD data 

Individual-site PM2.5 hourly measurements are collected at a total of 1583 monitoring stations across 85 

China during 2018 (Figure S1). Corresponding Himawari-8 hourly 5 km AOD products (500 nm) across 

mainland China are also collected. They are synthesized from the Level 2 instantaneous AOD products 

of 10 minutes, which are generated through a newly defined Lambert-assumed aerosol retrieval 

algorithm (Yoshida et al., 2018; Letu et al., 2018). The Himawari-8 AOD retrievals have been 

preliminarily evaluated against the AOD in-situ observations provided by the Aerosol Robotic (Giles et 90 

al., 2019) and Sun–Sky Radiometer (Li et al., 2018) Observation Networks, and they are well consistent 

(R = 0.75), and the average RMSE and MAE are 0.39 and 0.21 (Wei et al., 2019b). Here, only the high-

quality AOD retrievals (500 nm) are selected for PM2.5 estimation. 

 

2.1.2 Meteorological condition 95 

PM2.5 can be significantly affected by meteorological conditions (Su et al., 2018), but most of the 

current available reanalysis meteorological products have low temporal resolutions (~3–6 hours). 

Recently (14 June 2018), the 5th generation ECMWF global atmospheric reanalysis (ERA5) at a 

horizontal resolution of 0.25°×0.25° has been released as well as the land version (12 July 2019) at a 

horizontal resolution of 0.1°×0.1° both at hourly time scale (1979 to present). Here we use seven ERA5 100 

hourly meteorological parameters, including the 2-m temperature, total evaporation, relative humidity, 

10-m u- and v-components of winds, surface pressure, and boundary layer height, 

 

2.1.3 Human influence 

Human activity is a key factor affecting PM2.5 pollution. The global annual LandScanTM product at 1 km 105 

spatial resolution in 2018 is selected to illustrate population distribution (Dobson et al., 2000). In 

addition, MEIC monthly anthropogenic source emission data is also employed (Li et al., 2017; Zhang et 

al., 2007). It is generated from agriculture, industry, power, residential, and transportation at more than 

700 anthropogenic sources, including a total of 10 atmospheric pollutants and greenhouse gases. Here, 

four main precursors including the NH3, NOx, SO2, and VOCs, and the direct emission to PM are 110 

selected. 
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2.1.4 Ancillary data 

Two additional ancillary data, including the MODIS monthly NDVI at a horizontal resolution of 0.05° 

× 0.05°, and the SRTM 90 m DEM product are selected to reflect the land cover and change and 115 

topographical conditions in China, respectively. All the selected variables (Table S1) with potential 

impact on PM2.5 concentrations were resampled to 0.05°×0.05° as the Himawari-8 aerosol product. 

 

2.2  Space-Time LightGBM model 

The Light Gradient Boosting Machine (LightGBM) model, which is a newly developed tree-based 120 

machine learning approach, was introduced in 2017 (Ke et al., 2017). It is based on the gradient 

boosting framework to construct the decision tree and can address both regression and classification 

tasks. LightGBM is a fast, distributed, and highly efficient method to tackle the main challenges faced 

in traditional tree-based machine learning approaches, i.e., computational complexities, by reducing the 

number of data samples (M) and features (N). The LightGBM model includes three main steps when 125 

constructing the decision tree as follows: 

1) Histogram-based algorithm. The continuous features are first converted to different bins, which are 

used to construct the feature index histograms without the need to sort during training. It follows by 

going through all the data bins to find the best split point from the feature histograms, which can 

significantly reduce the computation cost of the split gain. The overall complexity is O (M × N). 130 

2) Gradient-based One-Side Sampling. The data samples are first sorted in descending order according 

to their absolute gradients, and the top a% of them are selected as a subset sample with large 

gradients. Then the b% samples are chosen from the remaining data as a subset sample with small 

gradients randomly. The sampled data with small gradients are multiplied by a weight coefficient 

(
1−𝑎

𝑏
). Last, a new classifier is learned and established using above-sampled data until convergence. 135 

3) Exclusive Feature Bundling. A graph with weighted edges is first constructed, and each weight 

corresponds to the total number of conflicts between two features. Then the features are sorted in 

descending order according to the degree of each feature (the greater the degree, the greater the 
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conflict with other points)). Last, each feature is checked in the sorted sequence and either assigned 

to a combination with small conflicts or created a new combination. 140 

Besides the main technologies mentioned above, there are also other details of the optimization, such as 

the leaf-wise tree growth strategy with depth restriction (Shi, 2007), histogram difference acceleration, 

sequential access gradient, and the support of category feature and parallel learning. All of the above-

advanced methodologies make it reach high accuracy and efficiency (Ke et al., 2017).  

It is well known that air pollution has spatiotemporal heterogeneities, leading to large differences in 145 

PM2.5 concentrations from space to space on different days. However, such characteristics have always 

been ignored in most of the traditional statistical regression or artificial intelligence methods used in 

previous studies. To tackle this issue, we integrated the spatiotemporal information into the LightGBM 

model, and then a newly space-time LightGBM (i.e., STLG) model is developed in this study. The 

spatial feature is represented by the geographical distances of one pixel to other points in the 150 

circumscribed rectangle of the study region (Behrens et al., 2018; Baez-Villanueva et al., 2020). The 

distance is calculated using the Haversine method (Equation 1) to reflect the spherical distance between 

two points in the sphere space (Wei et al., 2021). The temporal feature is represented by the day of the 

year (DOY), which is used to distinguish each data record of different days throughout the year during 

the model training. 155 

𝐷𝐼𝑆 = 2 ∗ 𝑟 ∗ asin(√𝑠𝑖𝑛2 (
𝜑2−𝜑1

2
) + cos(𝜑1) cos(𝜑2) 𝑠𝑖𝑛

2 (
𝛾2−𝛾1

2
))  (1) 

where 𝜑 and 𝛾 represent the latitude and longitude of a point in the sphere; r denotes the mean earth 

radius (≈ 6371 km). Figure 1 illustrates the flowchart of the new STLG model. Two independent ten-

fold cross-validation methods (10-CV, Rodriguez et al., 2010) based on all the data samples (i.e., out-

of-sample) and the PM2.5 monitoring stations (i.e., out-of-station) are selected to validate the model 160 

performance and the spatial prediction ability, respectively. 

[Please insert Figure 1 here] 

 

3. Results and discussion 

https://doi.org/10.5194/acp-2020-1277
Preprint. Discussion started: 6 January 2021
c© Author(s) 2021. CC BY 4.0 License.



7 

 

3.1  Model fitting and validation 165 

3.1.1 Spatial-scale performance 

The STLG model can also largely minimize the overfitting issue and show a strong data mining ability 

(Figure S2), which can more accurately establish the relationships between hourly PM2.5 observations 

and its influence variables (i.e., R2 = 0.97–0.98, RMSE = 4.18–7.31 μg/m3). Figure 2 illustrates the out-

of-sample evaluation results of estimated hourly PM2.5 values over China from 08:00 to 17:00 local time 170 

in 2018. Results show that the STLG model yields a high accuracy in estimating hourly PM2.5 

concentrations with high sample-based CV-R2 values ranging from 0.81 to 0.85, strong slopes of ~0.81–

0.84, and small intercepts of ~5.52–7.84 μg/m3. The uncertainties are overall small, with RMSEs 

(MAEs) ranging from 11.24 (6.82) μg/m3 to 15.56 (9.79) μg/m3. However, our model performs slightly 

different with small differences in main evaluation indicators throughout the day. The main reasons are 175 

that, on the one hand, the number of training samples is reduced due to sunrise (Figure 2a-b) and sunset 

(Figure 2i-j) in optical remote sensing, which affects the model training; on the other hand, air pollution 

shows obvious diurnal variations with different PM2.5 pollution levels due to different intensity of 

human activities and natural conditions. 

In general, our model is stable and robust, with an equal out-of-sample CV-R2 of 0.85 and an equal 180 

regression slope of 0.81 in most hours during the daytime in China (Figure 2c-h). Furthermore, the out-

of-station CV-R2 values range from 0.76 to 0.81, and the RMSE (MAE) values range from 12.49 (7.85) 

μg/m3 to 17.61 (11.33) μg/m3 (Figure S3), indicating that our model has a strong spatial prediction 

ability and can well predict PM2.5 values in those areas without surface observing stations. In addition, 

the station-based accuracy is slightly decreased with reference to the sample-based accuracy, which 185 

further illustrates the robustness of our model. However, two cross-validation results (e.g., slopes = 

0.78–0.84) indicate that the hourly PM2.5 concentrations are underestimated overall (Figures 2 and S3), 

which is a common issue in fine particle remote sensing (Wei et al., 2020). This can be explained by the 

large aerosol retrieval uncertainty as well as the small number of data samples under highly polluted 

conditions (Wei et al., 2019b, c). 190 

[Please insert Figure 2 here] 
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In addition, the regional performance of the STLG model for hourly PM2.5 estimates has also been 

evaluated (Figure 3). The hourly PM2.5 estimates (N = 1,151,595) are highly consistent with the ground 

measurements with a high sample-based CV-R2 of 0.87 and a strong regressed slope of 0.86, showing 

small estimation uncertainties (i.e., RMSE = 12.77 μg/m3, MAE = 8.12 μg/m3) over Eastern China. The 195 

STLG model shows good performance (e.g., CV-R2 = 0.88, Slope = 0.87) in two typical urban 

agglomerations of public concern in China (Figure 3b, c). By contrast, our model performs relatively 

poorly in the Pearl River Delta (PRD, Figure 3d) region possibly due to the significant reduction in the 

number of data samples caused by high-frequency and long-term cloud cover in southern China. It 

should be noted that there are some differences in the uncertainty of hourly PM2.5 estimates particularly 200 

because of varying levels of air pollution; the pollution level in the BTH region is about three times 

higher than that in the PRD region. 

[Please insert Figure 3 here] 

Figure 4 shows the accuracy of our STLG model at each monitoring station across China. At the 

individual-site scale, the number of data samples gradually decreases from Northern China to Southern 205 

China, mainly due to increasing cloud contaminations with an average of 997 in China. Except for 

several scattered monitoring stations in western China, the STLG model exhibits high performance and 

adaptability and can well estimate the hourly PM2.5 concentrations at most monitoring stations (e.g., 

average CV-R2 0 0.78, RMSE = 12.21, and MAE = 8.17 μg/m3). In general, approximately 76%, 79%, 

and 82% of monitoring stations show high accuracy with out-of-sample CV-R2 values > 0.7, RMSE 210 

values < 15 μg/m3, and MAE values < 10 μg/m3 in hourly PM2.5 estimates, especially for those located 

in the Central and North China 

[Please insert Figure 4 here] 

 

3.1.2 Temporal-scale performance 215 

Time series of daily performance of the STLG model in hourly PM2.5 estimates in China have also been 

investigated. The data samples vary on a daily basis with an average of 3975 per day, yet more than 

83% of days have a large number of data samples (> 2000) (Figure 5). The STLG model capture well 
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the hourly PM2.5 values at most days with an average out-of-sample R2 of 0.73, and the average RMSE 

and MAE are 13.06 and 8.53 μg/m3, respectively. In general, the hourly PM2.5 estimates are more 220 

reliable at approximately 79%, 70%, and 74% of the days with CV-R2 values > 0.7, and RMSE and 

MAE values < 15 and 10 μg/m3 in a year, respectively. The model performance also varies greatly at the 

seasonal level with average CV-R2 values of 0.82, 0.71, 0.87, and 0.86, and the average RMSE values 

are 14.55, 9.63, 11.83, and 17.57 μg/m3 for four seasons, respectively (Figure S4). In general, the 

overall uncertainty of PM2.5 estimates increases at the beginning and end of the year, which may be 225 

caused by a harsher environment and more intense human activities in spring and winter. 

[Please insert Figure 5 here] 

We have also evaluated the temporally synthesized PM2.5 data from the hourly data samples at each 

monitoring station in 2018 (Figure 6). The daily mean PM2.5 estimates are highly correlated to those 

calculated from the surface observations (R2 = 0.91), and the average RMSE (MAE) value is 10.11 230 

(6.39) μg/m3. This suggests that the STLG model can also capture the daily PM2.5 variations accurately. 

Moreover, the daily synthetic PM2.5 data derived from the geostationary satellites are based on higher 

temporal frequency than those derived from the sun-synchronous satellites. In general, the PM2.5 

synthetic values also show high accuracies and low estimation uncertainties (e.g., R2 = 0.98, RMSE = 

1.6–3.3 μg/m3, MAE = 1.1–2.3 μg/m3) from monthly to annual scales, allowing to better describe the 235 

spatiotemporal distributions and variations of PM2.5 pollution across China. 

[Please insert Figure 6 here] 

 

3.2  Spatiotemporal characteristics 

3.2.1 Diurnal variations 240 

Figure 7 shows the Himawari-8-derived hourly mean near-surface PM2.5 concentrations from 8:00 a.m. 

to 5:00 p.m. local time in 2018 across China. Our generated PM2.5 maps can cover most areas of the 

Chinese mainland except for western Xinjiang and Tibet due to the limitation of satellite scanning, 

showing missing PM2.5 predictions. PM2.5 pollution shows significant diurnal variations across China, 

being at an overall low level at sunrise (~29.94±10.91 μg/m3). With the increase in human activities, air 245 
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pollution got severe over time, reaching a peak at around 10:00–11:00 a.m. local time in China (~36±13 

μg/m3). The high levels of pollution can be maintained for several hours. With the decrease in human 

activities and the deposition of atmospheric fine particles, PM2.5 decreases towards sunset in most areas 

across China (~23.21±9.73 μg/m3). In general, air pollution in the morning (i.e., 08:00–12:00) is much 

more severe with approximately 1.3 times higher mean PM2.5 concentrations than those in the afternoon 250 

(i.e., 13:00–17:00) in China, related to the influences of varying BLHs (Li et al., 2017; Su et al., 2018). 

[Please insert Figure 7 here] 

Table 1 shows the diurnal PM2.5 variations are also investigated over Eastern China and three typical 

urban agglomerations. It is clear that PM2.5 pollution is generally higher in eastern China than the 

national level at each hour in a day due to more intensive human distribution and activities. In the BTH 255 

region, PM2.5 pollution varies greatly with hourly PM2.5 concentrations ranging from 28.88±10.16 μg/m3 

(10:00 a.m.) to 49.31±15.03 μg/m3 (16:00 p.m.) at the diurnal level with a large difference exceeding 20 

μg/m3. In addition, PM2.5 pollution always remained at a high level > 42 μg/m3 before 12:00 pm, yet 

dropped to a low level < 29 μg/m3 after 16:00 p.m. This is closely related to people's normal life and 

production and the life cycle of PM2.5 in a day. Similar conclusions can be obtained in the YRD region. 260 

In general, the PRD region is less polluted in the morning but more severe in the afternoon than the 

BTH region in a day. By contrast, PM2.5 pollution is much lower and shows a smaller diurnal difference 

with hourly PM2.5 values ranging from 29.49±5.97 μg/m3 (11:00 a.m.) to 36.36±5.76 μg/m3 (08:00 a.m.) 

in the PRD region than other two key regions. This is mainly contributed to its better natural conditions 

and fewer pollutant emissions (Su et al., 2018). 265 

[Please insert Table 1 here] 

 

3.2.2 Seasonal and annual variations 

Seasonal and annual PM2.5 maps are synthesized from daily PM2.5 maps in 2018 across China according 

to our previous approach (Wei et al., 2019a). Our results show that PM2.5 pollution varies greatly on the 270 

seasonal scale, where the pollution levels are generally low and show similar spatial patterns in summer 

(~22.86±7.05 μg/m3) and autumn (~23.76±10.97 μg/m3) across China (Table S2). By contrast, it is 
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much more severe in spring (~32.84±11.49 μg/m3) and winter (~39.04±16.32 μg/m3) across China, 

especially for the BTH and YRD regions in winter. The main reasons are that the high-frequency 

sandstorm and the long-distance transmission of sand dust in spring, and the burning of coal and fossil 275 

fuels for heating in winter (Fang et al., 2016), leading to a lot of pollutant emissions in Northern China. 

In addition, PM2.5 pollution shows significant spatial heterogeneities across China, and the annual mean 

PM2.5 concentration is 28.99±10.31 μg/m3 in 2018. The high pollution levels are always observed in the 

Hebei, Shandong, Jiangsu, Anhui, Henan, Hubei, and Sichuan provinces in China. These areas are 

mainly caused by the interactions of intensive human activities, adverse stagnant weather (e.g., low 280 

BLH and small winds) as well as special terrains (e.g., basin), which can increase the anthropogenic 

aerosols (Chen et al., 2008; Wang et al., 2018). By contrast, PM2.5 pollution is relatively light in the 

northeast (e.g., Heilongjiang and Jilin), southwest (e.g., Tibet and Yunan), and eastern coastal (e.g., 

Zhejiang and Fujian) areas of China benefiting from sparse human distributions and activities or 

superior meteorological conditions for strong pollutant dispersion (Su et al., 2018). 285 

[Please insert Figure 8 here] 

 

3.3  Discussion 

3.3.1 Comparison with traditional models 

First, we compared the STLG model with five widely-used statistical regression models for estimating 290 

PM2.5 in China with the same input data set (Table S3). The multivariate linear regression (MLR) model 

performs worst as demonstrated by the statistical indicators; this, due to the complex nonlinear PM2.5-

AOD relationships; while the GWR model shows a better performance because it takes into account the 

spatial characteristics of PM2.5. The generalized additive model (GAM) and the LME model show 

overall improved performance with decreasing estimation uncertainties because of the nonlinear 295 

characteristics and stronger data regression abilities. By contrast, the two-stage model outperforms with 

higher CV-R2 values and smaller estimation uncertainties by combining the advantages of the GWR and 

LME models. Nevertheless, our model shows the best performance than all of the above traditional 

statistical regression models, mainly due to its stronger data mining ability. 
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Table 2 shows the comparisons of the accuracy and efficiency among six tree-based machine learning 300 

models to hourly PM2.5 estimates in China using the same input data set. Decision Tree (DT, Quinlan, 

1986) is a traditional supervised learning classification method that has been used frequently and shows 

the worst performance because of the simple single classifier, although the training speed is the fastest 

and the memory consumption is the least. The model performance of ensemble learning approaches, 

i.e., Gradient Boosting Decision Tree (GBDT, Friedman, 2001), RF (Breiman, 2001), Extremely 305 

randomized trees (ERT, Geurts, et al., 2006), and eXtreme Gradient Boosting (XGBoost, Chen & 

Guestrin, 2016), can be significantly improved by combining several weak classifiers into a strong 

classifier. Among them, the ERT model yields a higher estimation accuracy and a stronger spatial 

prediction ability than other ensemble learning models. By contrast, the LightGBM model (Ke et al., 

2017) performs best with the highest accuracy and smallest uncertainty among all the tree-based 310 

machine learning approaches. 

However, the model efficiency is different among these models due to the large differences in the 

algorithm design frameworks. These tree-based machine learning models can be divided into two 

categories: one is “Bagging”, including the DT, RF, and ERT models, which synthesizes multiple 

independent and unrelated weak classifiers into a strong classifier. It allows work in parallel, which can 315 

save a lot of time but may need more computer memory. The other is “Boosting”, including the GBDT, 

XGBoost, and LightGBM models, which synthesizes multiple interdependent and related weak 

classifiers into a strong classifier. They can only work in serial, which may take a lot of time but not too 

much memory. In general, the STGB model is the most time-consuming, while the STET model is the 

most memory-consuming approach. By contrast, the LightGBM model runs very fast and consumes 320 

very small computer memory benefiting from a series of algorithm optimizations (Ke et al., 2017).  

Furthermore, after considering the spatiotemporal variation characteristics, all the newly defined space-

time tree-based machine learning approaches (i.e., STET, STGB, STXB, STRF, STET, and STLG) 

show significant improvements in both overall estimation accuracy and spatial prediction ability in 

hourly PM2.5 concentrations with reference to their original models. This further illustrates the 325 

importance of the introduction of spatiotemporal information in constructing the PM2.5–AOD 

relationships. More importantly, the training speed of these models did not decrease much; in addition, 
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the memory consumption did not increase much either. In general, the STLG model shows the best 

performance with much high efficiency (i.e., training speed = 46s, memory usage = 0.60 GB) among all 

the space-time tree-based machine learning models. Therefore, our newly STLG model is highly 330 

valuable for accurate and fast air pollution monitoring, in particular for our future extended study to the 

global scale. 

[Please insert Table 2 here] 

 

3.3.2 Comparison with related studies 335 

Last, we also compared with previous related studies in Himawari-8-based hourly PM2.5 estimates at 

regional and national scales in China (Table 3). The comparison results show that the local hourly PM2.5 

concentrations retrieved from our national-scale model are more accurate than those derived from the 

models developed separately in local areas, e.g., the LME model (Wang et al., 2017), and the GWR, 

SVR, RF, and DNN models in the BTH region (Sun et al., 2019); the two-stage RF and DNN models in 340 

the YRD region (Fan et al., 2020; Tang et al., 2019). In addition, our model outperforms most of the 

statistical regression models, machine learning models focusing on entire China, e.g., the I-LME, and 

IGTWR, RF, Adaboost, XGBoost, and their stacked models in China (Chen et al., 2019; Liu et al., 

2019; Xue et al., 2020; Zhang et al., 2019). The main reasons include the stronger data mining ability of 

our model, and the consideration of the key spatial and temporal information of air pollution that 345 

ignored in previous studies, and the introduction of more comprehensive factors (e.g., emission 

inventory) that affect PM2.5 pollution. 

[Please insert Table 3 here] 

 

4. Summary and conclusion 350 

PM2.5 has great impacts on the atmospheric environment, and is also used as a key indicator in 

environmental health studies. It shows strong diurnal variations affected by both natural and human 

factors; however, previous studies are based on sun-synchronous satellites, which can only monitor air 
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pollution at coarser temporal (daily) scales. Thus, high-temporal-resolution PM2.5 dataset with high 

precision are urgently needed. In this study, the Himawari-8/AHI hourly AOD products are employed to 355 

tackle this issue. In addition, considering the large volume of the input data and the large estimation 

errors of PM2.5 for traditional methods, a new efficient and accurate space-time Light gradient boosting 

machine (i.e., STLG) model is developed, and a 5 km resolution hourly PM2.5 dataset in China is 

generated together with the meteorological, human, land use, and topographical factors. The hourly 

PM2.5 estimates are evaluated against surface observations, and the PM2.5 spatiotemporal variations are 360 

also investigated. 

The STLG model derives and predicts the hourly PM2.5 values accurately with high out-of-sample (out-

of-station) CV-R2 values of ~0.81–0.85 (~0.76–0.81), and low RMSE values of ~11.24–15.56 (~12.49–

17.61) μg/m3 throughout the daytime. In addition, it can well capture the daily (e.g., R2 = 0.91, RMSE = 

10.11 μg/m3), as well as monthly, seasonal and annual PM2.5 values (e.g., R2 = 0.98, RMSE = 1.6–3.3 365 

μg/m3). PM2.5
 shows significant diurnal variabilities in most areas across mainland China, where the 

PM2.5 concentrations reach the maximum at 10 a.m. but are generally low at sunrise or sunset in a day. 

Moreover, PM2.5 also varies greatly on a seasonal basis, where winter and summer experience the 

highest and lowest air pollution, respectively. Comparison results suggest that our model is more 

accurate than the traditional statistical regression, other tree-based machine learning, as well as those 370 

models developed by previous studies. In addition, it is more efficient with faster training speed and less 

memory consumption. These results illustrate that our algorithm has a strong applicability value to the 

real-time monitoring of PM2.5 pollution in China.   

 

Data availability 375 

The PM2.5 measurements are available at http://www.cnemc.cn, and the Himawari-8 AOD product is 

available at ftp.ptree.jaxa.jp, and the ERA5 reanalysis products are available at 

https://cds.climate.copernicus.eu/, and the MODIS product is available at 

https://search.earthdata.nasa.gov/, and the LandScanTM product is available at https://landscan.ornl.gov/.  
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Table 1. Hourly mean PM2.5 concentrations (μg/m3) in 2018 in China, and each region. 

Time China ECHN BTH YRD PRD 

08:00 29.94±10.91  31.97±11.55 42.46±12.97 38.60±10.57  29.34±5.01 

09:00 33.37±12.59 36.29±13.52 47.32±49.31 43.55±11.27  34.81±5.46 

10:00 35.67±13.53 38.56±14.05 49.31±15.03 44.72±11.17  35.48±5.47  

11:00 35.63±13.05 38.72±13.53 49.10±13.77 44.27±10.55 36.36±5.76 

12:00 31.23±11.74 35.10±12.47 42.38±12.86 41.37±9.77  34.56±5.72 

13:00 28.45±11.40 32.23±11.73 37.70±11.55 39.36±9.22  33.33±5.48  

14:00 26.36±11.18 30.14±11.09 34.32±11.81 37.31±8.59 32.05±5.50  

15:00 24.25±10.06 28.67±10.21 31.95±11.26 36.77±8.13 30.34±5.43 

16:00 23.63±9.26 27.38±9.15 29.82±10.13 32.84±6.30 29.49±5.97  

17:00 23.21±9.73 26.63±8.93 28.88±10.16 27.59±4.39 31.56±6.17 

Morning 33.29±11.59 36.15±12.41 46.12±13.29 42.50±10.22 34.52±4.63 

Afternoon 25.11±9.78 29.01±9.70 32.53±10.53 34.76±6.66 31.42±4.85 

  540 
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Table 2. Comparison in model performance between different tree-based machine learning models 

using the same input data. Data are from 14:00 local time in 2018 in China (N = 162,840). 

Model 
Sample-based validation Station-based validation 

Speed (s) Memory (GB) 
R2 RMSE MAE R2 RMSE MAE 

DT 0.52 25.53 14.80 0.48 27.03 15.57 6 0.58 

GBDT 0.65 20.03 13.17 0.61 21.20 14.10 94 0.59 

XGBoost 0.73 17.94 10.78 0.68 19.59 11.93 456 0.69 

RF 0.72 17.86 11.33 0.69 18.80 11.95 165 2.59 

ERT 0.74 17.12 10.87 0.72 18.01 11.49 54 3.69 

LightGBM 0.78 15.79 9.84 0.73 17.59 11.21 34 0.60 

STDT 0.65 21.09 12.33 0.63 22.00 12.85 8 0.60 

STGB 0.75 16.82 10.93 0.73 17.61 11.54 503 0.61 

STXB 0.82 14.73 8.76 0.78 15.92 9.62 456 0.68 

STRF 0.81 14.62 9.17 0.79 15.44 9.69 219 2.75 

STET 0.82 14.42 8.95 0.80 15.30 9.55 77 4.25 

STLG 0.85 13.09 8.11 0.81 14.63 9.29 46 0.60 
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Table 3. Comparison in model performance with previous studies in hourly PM2.5 estimates in China. 545 

Model 
Model validation 

Region Reference 
R2 RMSE MAE 

LME 0.86 24.5 14.2 BTH Wang et al., 2017 

LME 0.63 29.0 18.1 BTH Sun et al., 2019 

GWR 0.76 23.3 16.7   

SVR 0.77 21.5 12.3   

RF 0.82 20.3 12.1   

DNN 0.84 19.9 11.9   

two-stage RF 0.86 12.4 - YRD Tang et al., 2019 

DNN 0.86 14.3 - YRD Fan et al., 2020 

RF 0.82 19.6 12.2 China Chen et al., 2019 

Adaboost 0.84 18.3 10.7   

XGBoost 0.84 18.1 11.4   

Stacked model 0.85 17.3 10.5   

RF 0.86 17.3 10.3 China Liu et al., 2019 

I-LME 0.84 - - BTH Zhang et al., 2019 

 0.80 - - YRD  

 0.74 - - PRD  

 0.82 - - China  

IGTWR 0.78 21.1 - China Xue et al., 2020 
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Figure 1. Schematics of the space-time LightGBM (STLG) model developed in this study. 
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 550 

Figure 2. Out-of-sample cross-validation results of hourly PM2.5 estimates (μg/m3) from 08:00 to 17:00 

local time in 2018 across China. 
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Figure 3. Out-of-sample cross-validation results of regional hourly PM2.5 estimates (μg/m3) in 2018 in 555 

China. 
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Figure 4. Individual-site-scale validation of hourly PM2.5 estimates (μg/m3) in 2018 in China. 
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Figure 5. Time series of validation of hourly PM2.5 estimates (μg/m3) in 2018 across China. 
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Figure 6. Density scatter plots of validation results of (a) daily, (b) monthly, (c) seasonal, and (d) 565 

annual mean PM2.5 estimates in 2018 across China. 

 

https://doi.org/10.5194/acp-2020-1277
Preprint. Discussion started: 6 January 2021
c© Author(s) 2021. CC BY 4.0 License.



30 

 

 

Figure 7. Himawari-8-derived hourly mean PM2.5 maps (5 km) from (a-j) 08:00 to 17:00 local time, and 

in (k) morning (08:00–12:00), and (l) afternoon (13:00–17:00) in 2018 in China. 570 
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Figure 8. Himawari-8-derived seasonal mean PM2.5 maps (5 km) in 2018 across China. 
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