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Abstract

Information on the particulate matter with a diameter of less than 2.5 um (PMa2.s) has been used as an
important atmospheric environmental parameter mainly because of its impact on human health. PMa:s is
affected by both natural and anthropogenic factors that usually have strong diurnal variations. Such
information helps toward understanding the causes of air pollution as well as our adaptation to it. Most
existing PMa.s products have been derived from polar-orbiting satellites. This study exploits the use of
the next-generation geostationary meteorological satellite Himawari-8/AHI to document the diurnal
variation of PM2.s. Given the huge volume of satellite data, based on the idea of gradient boosting, a
highly efficient tree-based Light Gradient Boosting Machine (LightGBM) method by involving the
spatiotemporal characteristics of air pollution, namely the space-time LightGBM (STLG) model, is
developed. An hourly PM2 s dataset for China (ChinaHighPMz5) at a 5-km spatial resolution is derived
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based on Himawari-8/AHI aerosol products with additional environmental variables. Hourly PM2 s
estimates (number of data samples = 1,415,188) are well correlated with ground measurements in China
(cross-validation coefficient of determination, CV-R? = 0.85), with a root-mean-square error (RMSE)
and mean absolute error (MAE) of 13.62 and 8.49 pg/m?, respectively. Our model captures well the
PM2:s diurnal variations showing that pollution increases gradually in the morning, reaching a peak at
about 10:00 a.m. local time, then decreases steadily until sunset. The proposed approach outperforms
most traditional statistical regression and tree-based machine-learning models, with a much lower
computation burden in terms of speed and memory, making it most suitable for routine pollution

monitoring.

1. Introduction

China has faced severe environmental problems during the last two decades, especially air pollution (An
et al., 2019; Chan & Yao, 2008; Z. Li et al., 2017; Q. Zhang et al., 2019). The sources of air pollution
are numerous, coming from both natural changes (e.g., forest fires, biomass burning) and human
activities (e.g., industrial production, transportation) (Huang et al., 2014; Sun et al., 2004; Wei et al.,
2019a). Particulate matter with a diameter of less than 2.5 um (PM25) has a greater impact on the
atmospheric environment and climate change than other air pollutants [e.g., PMio, nitrogen dioxide
(NO2), and sulfur dioxide (SO2)] (Jacob & Winner, 2009; Z. Li et al., 2017, 2019; Ramanathan & Feng,
2009). Moreover, they can cause great harm to human health due to their smaller particle size (Delfino
et al., 2005; Kampa & Castanas, 2008; Kim et al., 2015; Lelieveld et al., 2015). China has established
and operates multiple ground-based observation networks to monitor air pollution in real-time across
mainland China, including information about PM2.s pollution.

For near-surface concentrations, the networks provide high-quality PM2.s measurements every hour
(even every few minutes) but with non-uniform coverage. In recent years, an increased effort has been
made in estimating PM2.s with products generated from multiple instruments on sun-synchronous
satellites, e.g., the Multi-angle Imaging SpectroRadiometer (MISR) (Y. Liu et al., 2005; van Donkelaar
et al., 2006), the Moderate-resolution Imaging Spectroradiometer (MODIS) (Y. Liu et al., 2007; Ma et
al., 2014; Wei et al., 2019a, 2020, 2021a), and the Visible infrared Imaging Radiometer (VIIRS) (Wei et
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al., 2021b; Wu et al., 2016; Yao et al., 2019). However, due to their low revisit cycles (one or two
overpasses per day), they are unable to monitor the diurnal variation of pollution. Currently, most
available PM2.s datasets are at low temporal resolutions that cannot meet the requirements of air
pollution real-time monitoring (Lennartson et al., 2018). For example, knowing when heavy pollution
might occur during the day, people may adjust their time outdoors doing activities accordingly.
Following the launch of the Himawari-8/Advanced Himawari Imager (AHI) on 7 October 2014 (Bessho
et al., 2016; Letu et al., 2020), near-surface PM2.s concentrations in the Eastern Hemisphere can now be
estimated and used to examine their diurnal cycle.

W. Wang et al. (2017) used the linear mixed-effect (LME) model, and Sun et al. (2019) applied the
geographically weighted regression (GWR) and support vector regression (SVR) models to estimate
hourly PM2 s concentrations in the Beijing—Tianjin—Hebei (BTH) region from the Himawari-8 aerosol
optical depth (AOD) product. T. Zhang et al. (2019) developed an improved LME model, and Xue et al.
(2020) proposed an improved geographically and temporally weighted regression (IGTWR) model to
derive hourly PM2.s maps based on the Himawari-8 AOD product over central and eastern China. In
addition to traditional statistical regression models, several artificial intelligence models, including the
random forest (RF), the gradient boosting decision tree (GBDT), the eXtreme Gradient Boosting
(XGBoost), and the deep neural network (DNN), have been recently successfully adopted to obtain
ground-level PM2.s concentrations to local regions and to the whole of China (J. Chen et al., 2019; Gui
etal., 2020; J. Liu et al., 2019; Sun et al., 2019; T. Zhang et al., 2020). Nevertheless, due to their poor
data-mining ability, traditional statistical regression methods usually suffer from large uncertainties.
While artificial intelligence methods can achieve high accuracies, they are often highly demanding on
computational power and are thus often slow. Therefore, Spatiotemporal variations of PM2.s have often
been neglected in the models developed in previous studies (J. Chen et al., 2019; J. Liu et al., 2019; Sun
etal., 2019; W. Wang et al., 2017; T. Zhang et al., 2019), resulting in relatively low accuracies.
Focusing on the above issues, we have developed a new, highly efficient, and precise method for
improving ground-level PMz s estimates by incorporating spatial and temporal information into the tree-
based Light Gradient Boosting Machine (LightGBM) model. This new model is called the space-time
LightGBM (STLG) model, used to generate a high-quality, high-temporal-resolution (hourly) PM2s



dataset over eastern China (at a spatial resolution of 5 km) from the Himawari-8/AHI hourly AOD
product. Section 2 provides details about the data used and introduces the development of the STLG
model. Section 3 validates the hourly PMa.s estimates and shows the diurnal PM2 s variations across
China. Comparisons with results from traditional models and from previous studies are also presented.

90 Section 4 summarizes the study.

2. Materials and methods
2.1 Data sources
2.1.1 PM25 and AOD data
95 PMo2.5 hourly measurements from 1583 monitoring stations across China for the year 2018 were

collected [Figure 1 in Wei et al. (2020)]. The latest Himawari-8 Version 2 hourly 5-km AODs at 500
nm across mainland China for that year were also collected. This AOD product is synthesized from
Level 2 10-minute AODs, generated by a newly developed Lambertian-surface-assumed aerosol
retrieval algorithm (Letu et al., 2018; Yoshida et al., 2018). Himawari-8 AOD retrievals have been

100 preliminarily evaluated against in situ AOD retrievals provided by the Aerosol Robotic Network (Giles
et al., 2019) and the Sun—Sky Radiometer Observation Network (Z. Li et al., 2018), showing that they
are consistent (R = 0.75), with a root-mean-square error (RMSE) and mean absolute error (MAE) of
0.39 and 0.21, respectively (Wei et al., 2019b). Here, only low-uncertainty AOD retrievals (500 nm)
were selected for estimating PM2.s concentrations.

105
2.1.2 Meteorological conditions
PM: 5 can be significantly affected by meteorological conditions (Su et al., 2018). However, most
currently available reanalysis meteorological products have low temporal resolutions (~3—6 hours).
Recently (14 June 2018), the fifth-generation European Centre for Medium-range Weather Forecasts

110 (ECMWF) global atmospheric reanalysis (ERAS) at a horizontal resolution of 0.25°x0.25° has been
released, as well as the land version (12 July 2019) at a horizontal resolution of 0.1°%0.1°, both at an

hourly time scale (1979 to the present). Here, we use seven ERAS hourly meteorological parameters,
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i.e., the 2-m temperature (TEM)), total evaporation (ET), relative humidity (RH), 10-m u- and v-
components of wind, surface pressure (SP), and boundary-layer height (BLH).

2.1.3 Human influences

Human activity is a key factor affecting PMa.s pollution. The global annual LandScan™ product at a 1-
km spatial resolution for the year 2018 was selected to obtain the population distribution (POP)
(Dobson et al., 2000). Monthly anthropogenic source emission data from the Multi-resolution Emission
Inventory for China (MEIC) (M. Li et al., 2017; Zheng et al., 2018) were also employed. This dataset is
generated from agricultural, industrial, power, residential, and transportation information obtained at
more than 700 anthropogenic sources, including a total of 10 atmospheric pollutants and greenhouse
gases. Here, four main precursors were selected, 1.e., ammonia (NH3), nitrogen oxides (NOx), SO2, and

volatile organic compounds (VOC), and direct emissions to PM.

2.1.4 Ancillary data

Two additional ancillary datasets, namely, the MODIS monthly Normalized Difference Vegetation
Index (NDVI) at a horizontal resolution of 0.05° x 0.05° and the Shuttle Radar Topography Mission
(SRTM) 90-m digital elevation model (DEM) products, were selected to characterize land cover, its
change and topographical conditions in China. All selected variables (Table 1) with potential impacts on
PM:.s concentrations were resampled to the same spatial resolution as the Himawari-8 aerosol product,

namely, 0.05° x 0.05°.
[Please insert Table I here]

2.2 Space-Time LightGBM model

2.2.1 LightGBM model

The LightGBM model, a newly developed tree-based machine-learning approach, was introduced in
2017 (Ke et al., 2017). Using the gradient boosting framework to construct the decision tree, this

approach can tackle both regression and classification tasks, and as such can be expanded for PM

5



applications. It can also tackle the main challenge faced in traditional machine-learning approaches
140 namely, computational complexities, which are very time-consuming. LightGBM is a fast, distributed,
and highly efficient method that reduces the number of data samples (M) and features (N). The
LightGBM model includes three main steps when constructing the decision tree:
1) Histogram-based algorithm. Continuous features are first converted to different bins, which are used
to construct feature index histograms without the need to sort during training. It goes through all the
145 data bins to find the best split point from the feature histograms, which can significantly reduce the
computation cost of the split gain. The overall complexity is O (M % N).
2) Gradient-based one-side sampling. Data samples are first sorted in descending order according to
their absolute gradients, and the top a% of them are selected as a subset sample with large gradients.

The 6% samples are then randomly chosen from the remaining data as a subset sample with small
150 gradients. The sampled data with small gradients are multiplied by a weight coefficient, (%).

Consequently, a new classifier is learned and established using the above-sampled data until
convergence.
3) Exclusive feature bundling. A graph with weighted edges is first constructed, and each weight
corresponds to the total number of conflicts between two features. The features are then sorted in
155 descending order according to the degree of each feature (the greater the degree, the greater the
conflict with other points). Last, each feature is checked in the sorted sequence and either assigned
to a combination with small conflicts or created a new combination.
In addition to the main technologies mentioned above, there are other features of the optimization, such
as the leaf-wise tree growth strategy with depth restriction (Shi, 2007), histogram difference
160 acceleration, sequential access gradient, and the support of category feature and parallel learning. These

advanced methodologies make it possible to reach a high accuracy and efficiency (Ke et al., 2017).

2.2.2 Model development
It is well known that air pollution has spatiotemporal heterogeneity, leading to large differences in
165 PMa.s concentrations in both time and space. Such characteristics have always been ignored in most

traditional statistical regression and artificial intelligence methods. Studies have shown that including
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spatiotemporal information has led to improved PMz s estimates using remote sensing techniques (Z. Li
et al., 2017; Wei et al., 2019a, 2020). Therefore, we have introduced a new approach to
integratespatiotemporal information into the LightGBM model. The new model developed here is called
the STLG model. The spatial feature is represented by the geographical distances of one pixel to other
points in the circumscribed rectangle of the study region (Baez-Villanueva et al., 2020; Behrens et al.,
2018). The distance is calculated using the haversine method (Equation 1) to reflect the spherical
distance between two points in the sphere space (Wei et al., 2021a). The temporal feature is represented
by the day of the year (DOY), used to distinguish each data record on different days of the year during

the model training.

DIS = 2 *r = asin (\/sin2 (%) + cos(¢@,) cos(p,) sin? (%) ), (1)

where @ and y represent the latitude and longitude of a point on the sphere, respectively, and » denotes

Earth’s mean radius (= 6371 km). Figure 1 illustrates the flowchart of the new STLG model.
[Please insert Figure I here]

In addition to Himawari-8 AODs, other auxiliary variables were considered and employed to improve
PM2.5-AOD relationships. However, to avoid redundant information, we first calculated the normalized
importance (%) of each feature to the PM2.s estimation during the model training (Figure 2). It
represents the total gains of splits that use the feature during the decision-tree construction, but not the
physical contribution. AOD is found to be the most important feature, accounting for about 17%. All
meteorological factors have an important impact on the PM2.s estimation, especially BLH, RH, and
TEM (importance > 8%) followed by two surface-related variables (i.e., NDVI and DEM) and POP.
The influence of aerosol precursors and emissions (i.e., NH3, NOx, SOz, PM, and VOC) on the PM2.s
estimation cannot be ignored (importance > 2%). Therefore, all 16 selected variables are included to

establish the final model in this study.

[Please insert Figure 2 here]
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Here, two independent ten-fold cross-validation methods (10-CV) (Rodriguez et al., 2010), based on all
the data samples (i.e., out-of-sample) and PM2.5s monitoring stations (i.e., out-of-station), were selected

to validate the model performance and the spatial prediction ability, respectively.

3. Results and discussion

3.1 Model fitting and validation

3.1.1 Spatial-scale performance

The STLG model can largely minimize overfitting, showing a strong data-mining ability (Figure 3),
which can more accurately establish the relationships between hourly PM2 s observations and influential
variables (i.e., coefficient of determination, R? = 0.97-0.98, RMSE = 4.18-7.31 pg/m?). Figure 4
illustrates the out-of-sample evaluation results of estimated hourly PMz s values over China from 08:00
to 17:00 local time in 2018. The STLG model is highly accurate in estimating hourly PM2.s
concentrations, with high sample-based CV-R? values ranging from 0.81 to 0.85, strong slopes of
~0.81-0.84, and small y-intercepts of ~5.52—7.84 ug/m>. The uncertainties are overall small, with
RMSEs (MAEs) ranging from 11.24 (6.82) pg/m? to 15.56 (9.79) pg/m?®. However, the STLG performs
slightly differently, with small differences in main evaluation indicators throughout the day. The main
reasons being that the number of training samples is reduced during sunrise (Figure 4a-b) and sunset
(Figure 4i-j) in optical remote sensing, affecting the model training. Air pollution also has clear diurnal
variations at different PMa.s pollution levels due to the different intensities of human activities and
natural conditions. In general, our model is stable and robust, with an equal out-of-sample CV-R? of

0.85 and an equal regression slope of 0.81 at most hours during the day in China (Figure 4c-h).
[Please insert Figures 3 and 4 here]

Furthermore, out-of-station CV-R? values range from 0.76 to 0.81, and RMSE (MAE) values range
from 12.49 (7.85) ug/m> to 17.61 (11.33) pg/m? (Figure 5), indicating that our model has a strong
spatial prediction ability and can well predict PM2 s values in those areas without surface observations..

The station-based accuracy is also slightly decreased with reference to the sample-based accuracy,
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further illustrating the robustness of our model. However, two cross-validation results (e.g., slopes =
0.78-0.84) indicate that hourly PM2s5 concentrations are overall underestimated (Figures 4-5), a
common issue in fine-particle remote sensing (Wei et al., 2020). This can be explained by the large
aerosol retrieval uncertainty, as well as the small number of data samples under highly polluted

conditions (Wei et al., 2019b, c).
[Please insert Figure 5 here]

Evaluated was also the regional performance of the STLG model for hourly PMz.s estimates (Figure 6).
Hourly PM2 s estimates (number of data samples, N = 1,151,595) are highly consistent with ground
measurements, with a high sample-based CV-R? of 0.87 and a strong regression slope of 0.86, showing
small estimation uncertainties (i.e., RMSE = 12.77 pug/m?, MAE = 8.12 pg/m?) over Eastern China. The
STLG model performs well (e.g., CV-R? = 0.88, slope = 0.87) in two typical urban agglomerations of
public concern in China, i.e., the Beijing-Tianjin-Hebei (BTH) (Figure 6b) and Yangtze River Delta
(YRD) (Figure 6¢) regions. By contrast, our model performs relatively poorly in the Pearl River Delta
(PRD) region (Figure 6d), possibly due to the significant reduction in the number of data samples
caused by frequent, long-term cloud cover in southern China. Note that there are some differences in the
uncertainty of hourly PMa s estimates mainly because of varying levels of air pollution. The pollution

level in the BTH region is about three times higher than that in the PRD region.
[Please insert Figure 6 here]

Figure 7 shows the accuracy of the STLG model at each monitoring station across China. At the
individual-site scale, the number of data samples gradually decreases from northern China to southern
China, mainly due to increasing cloud contamination, with a site average of 997 data samples in China.
Except for several scattered monitoring stations in western China, the STLG model has a high
performance and adaptability and can well estimate hourly PM2.s concentrations at most monitoring
stations (e.g., average CV-R? = 0.78, RMSE = 12.21 pg/m?, and MAE = 8.17 pg/m?). In general,

approximately 76%, 79%, and 82% of monitoring stations show high accuracy, with out-of-sample CV-
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R? values > 0.7, RMSE values < 15 pg/m’, and MAE values < 10 pg/m? in hourly PM2 5 estimates,

especially for those located in central and northern China.
[Please insert Figure 7 here]

3.1.2 Temporal-scale performance

We first quantified the time series of the bias in hourly PM2 s estimates during the day in China (Figure
8). There is a slight temporal dependence, where the PM: s bias increases gradually with increasing
standard deviation, reaching a maximum around 11:00 a.m., and subsequently decreasing. This seems to
be closely related to the diurnal variation of PM2.s concentrations. The PM2.s estimates are less affected
by the time-dependent bias in the Himawari-8 AOD product (Wei et al., 2019b) because machine
learning is not sensitive to the systematic bias of aerosol retrievals (Wei et al., 2021b). Nevertheless, our
model is generally robust, and can accurately estimate PM2.s concentrations with small mean (median)

biases of 0.05-0.08 (0.63—-0.99) pg/m? during different hours throughout the day.
[Please insert Figure 8 here]

We also compared Himawari-8-derived and ground-based PM:2.s diurnal variations from all available
monitoring stations in China and three typical urban clusters (Figure 9). Hourly PM2.s concentrations
observed by satellite are highly consistent with ground-based measurements, with a small difference
within £0.10, 0.11, 0.13, and 0.11 pug/m? in China and in each region, respectively. Moreover, the same
diurnal variations of PM2.s pollution are seen during the day, i.e., they reach their maximum values at
10:00 or 11:00 and are lower at sunrise and sunset. These results illustrate that the diurnal PMa.s

variations derived from Himawari-8 are reasonable compared to ground-based measurements.
[Please insert Figure 9 here]

We investigated the time series of the daily performance of the STLG model in estimating hourly PM2.s
concentrations in China. The number of data samples varies on a daily basis, with an average of 3975
per day and with more than 83% of all days having more than 2000 (Figure 10). The large gap in the
number of data samples is mainly caused by different degrees of cloud contamination in the satellite

10
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aerosol products for different days. The STLG model captures well the hourly PMa.s values on most
days, with an average out-of-sample R? of 0.73 and average RMSE and MAE values of 13.06 pg/m? and
8.53 pg/m’, respectively. In general, hourly PM2 5 estimates are more reliable on approximately 79%
(CV-R?2>10.7), 70% (RMSE < 15 ug/m?), and 74% (MAE < 10 ug/m?) of the days in the year. The
model performance also varies greatly at the seasonal level, with average CV-R? values of 0.82, 0.71,
0.87, and 0.86, and average RMSE values of 14.55, 9.63, 11.83, and 17.57 pg/m? in spring, summer,
autumn, and winter, respectively (Figure 11). In general, the overall uncertainty of PM2.s estimates
increases at the beginning and at the end of the year, likely due to the harsher environmental conditions
(e.g., low humidity and less precipitation) and more intense human activities (e.g., coal heating and

straw burning) in winter and spring.
[Please insert Figures 10 and 11 here]

We have evaluated temporally synthesized PMas data from the hourly data samples at each monitoring
station for the year 2018 (Figure 12). Daily mean PM2 s estimates are highly correlated to those
calculated from surface observations (R> = 0.91), and the average RMSE (MAE) value is 10.11 (6.39)
pg/m>. This suggests that the STLG model can capture daily PMa.s variations more accurately. Note that
daily synthetic PM2.s data derived from geostationary satellites have a higher temporal frequency than
data derived from sun-synchronous satellites. In general, PM2 s synthetic values also have high
accuracies and low estimation uncertainties (e.g., R* = 0.98, RMSE = 1.6-3.3 pg/m?>, MAE = 1.1-2.3
pg/m?) from monthly to annual scales, allowing for a better description of spatiotemporal distributions

and variations of PMz.s pollution across China.
[Please insert Figure 12 here]

3.2 Spatiotemporal characteristics

3.2.1 Diurnal variations

Figure 13 shows Himawari-8-derived hourly mean near-surface PM2.s concentrations from 08:00 to
17:00 local time in 2018 across mainland China. They do not cover western Xinjiang and Tibet due to

the limitation of satellite scanning. PM2.s pollution varies diurnally across China, being at an overall low
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level at sunrise (~29.94+10.91 pug/m?). With the increase in human activities, air pollution becomes
more severe over time, reaching a peak at around 10:00—-11:00 local time in China (~36+13 pug/m?).
These high levels of pollution can last several hours. As the day progresses, human activities subside,
and atmospheric fine particles settle on surfaces. PM2.s concentrations thus decrease towards sunset in
most areas in China (~23.21£9.73 ug/m®). In general, air pollution in the morning (i.e., 08:00-12:00) is
much more severe than in the afternoon (i.e., 13:00—17:00) in China, with morning PMz s concentrations
about 1.3 times higher than afternoon levels. This is related to the influence of varying BLHs (Z. Li et
al., 2017; Su et al., 2018).

[Please insert Figure 13 here]

Table 2 summarizes the diurnal PMa.s variations in eastern China and three typical urban
agglomerations. PM2.s pollution levels in eastern China are generally higher than the national level at
each hour of the day due to the dense human population and intensive human activities. In the BTH
region, PMz s pollution varies greatly, with hourly PM2.s concentrations ranging from 28.88+10.16
pg/m? (10:00) to 49.31+15.03 pg/m? (16:00) and with differences exceeding 20 pg/m®. PMas pollution
remained at a high level (> 42 pug/m?) before 12:00 and dropped to a lower level (< 29 pug/m?) after
16:00. This is closely related to people's daily activities and the production and life cycle of PM2.s
during the day, as well as the change of boundary mixing as a function of the day (Lennartson et al.,
2018; Wang and Christopher, 2003). Similar patterns and PM2 s pollution levels are seen in the YRD
region. In general, the PRD region is less polluted in the morning but more severely polluted in the
afternoon than the BTH region. Compared with the BTH and PRD regions, PM2 s pollution in the PRD
region is much lower and shows a smaller diurnal difference, with hourly PMz s values ranging from
29.49+5.97 pg/m? (11:00) to 36.36+5.76 pg/m? (08:00). Better natural conditions and fewer pollutant
emissions mainly explain this (Su et al., 2018).

In general, our satellite-derived diurnal variations of PM2.s pollution agree well with ground-based
observations at both national and regional levels but with generally lower PMa.s concentrations (Figure
9). The reason is that the PM2 s monitoring stations are unevenly distributed and vary greatly in the

number of stations at the regional scale. Also, most sites are distributed in urban areas, leading to
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inevitable overestimations due to urban-rural differences. However, satellite remote sensing can cope
with this deficiency by generating spatially continuous PM2 s maps, providing more accurate

information about the distribution and variations of PM2.s pollution.
[Please insert Table 2 here]

3.2.2 Seasonal and annual variations

Seasonal PM2.5s maps are synthesized from daily PM2.s maps from 2018 across China according to our
previous approach (Wei et al., 2019a). Our results illustrate that PM2.s pollution varies greatly on a
seasonal scale (Figure 14). Pollution levels are generally low and show similar spatial patterns in
summer (~22.86+7.05 pug/m?) and autumn (~23.76+10.97 pg/m?) across China (Table 3). By contrast, it
is much more severe in spring (~32.84=+11.49 pg/m®) and winter (~39.04+16.32 ng/m?) across China,
especially in the BTH and YRD regions in winter. The main reasons are the frequent sandstorms and
the long-distance transmission of sand and dust in spring, and the burning of coal and fossil fuels for

heating in winter, leading to more pollutant emissions in northern China.
[Please insert Figure 14 and Table 3 here]

PM: s pollution also shows significant spatial heterogeneities across China (Figure 15), with an annual
mean PM: s concentration of 28.99+£10.31 pg/m? in 2018 (Table 3). High pollution levels are always
observed in the Hebei, Shandong, Jiangsu, Anhui, Henan, Hubei, and Sichuan provinces. Interactions
between intensive human activities, adverse stagnant weather (e.g., low BLHs and low winds), and
special terrain (e.g., basin) can increase anthropogenic aerosols (Z. Chen et al., 2008; X. Wang et al.,
2018). By contrast, PM2 s pollution is relatively light in the northeast (e.g., Heilongjiang and Jilin
provinces), the southwest (e.g., Tibet and Yunan provinces), and the eastern coastal areas of China (e.g.,
Zhejiang and Fujian provinces). These provinces are sparsely populated or experience meteorological

conditions favorable for dispersing pollution (Su et al., 2018).
[Please insert Figure 15 here]

3.3 Discussion
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3.3.1 Comparison with traditional models

We first compared results from the STLG model with results from five widely used statistical regression
models employed for estimating PMz.s in China using the same input dataset (Table 4). The multivariate
linear regression (MLR) model performs the worst due to the complex nonlinear PM2.5-AOD
relationship. The GWR model performs better because it takes into account the spatial characteristics of
PMas pollution. The generalized additive model (GAM) and the LME model show overall improved
performances, with decreasing estimation uncertainties because of their nonlinear characteristics and
stronger data regression abilities. The two-stage model outperforms the GAM and MLE models, with
higher CV-R? values and smaller estimation uncertainties, by combining the advantages of the GWR
and LME models. Our model performs better than all of the traditional statistical regression models

considered, mainly due to its stronger data-mining ability.
[Please insert Table 4 here]

The first six rows of Table 5 show the accuracies and efficiencies of six tree-based machine-learning
models when estimating PM2.s5 in China using the same input dataset. The Decision Tree (DT; Quinlan,
1986) is a traditional, frequently used, supervised learning classification method. Although the training
speed is the fastest, and the memory consumption is the least, it has the worst performance because of
the simple single classifier. The model performances of ensemble-learning approaches, i.e., GBDT
(Friedman, 2001), RF (Breiman, 2001), extremely randomized trees (ERT; Geurts et al., 2006), and
XGBoost (Chen & Guestrin, 2016), can be significantly improved by combining several weak
classifiers into a strong classifier. Among them, the ERT model yields a higher estimation accuracy and
a stronger spatial prediction ability than other ensemble-learning models. The LightGBM model (Ke et
al., 2017) performs the best, with the highest accuracy and smallest uncertainty among all tree-based

machine-learning approaches considered.
[Please insert Table 5 here]

The model efficiency differs among these models due to the large differences in the algorithm design

frameworks. These tree-based, machine-learning models can be divided into two categories. The DT,
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RF, and ERT models fall into the "bagging" category, which synthesizes multiple independent and
unrelated weak classifiers into a strong classifier. It allows for work in parallel, which can save much
time but may need more computer memory. The GBDT, XGBoost, and LightGBM models fall into the
“boosting” category, which synthesizes multiple interdependent and related weak classifiers into a
strong classifier. They can only work in serial, which may take much time but not too much memory. In
general, the STGB model is the most time-consuming, while the STET model is the most memory-
consuming. By contrast, the LightGBM model runs very fast and consumes very little computer
memory, benefiting from a series of algorithm optimizations (Ke et al., 2017).

After considering spatiotemporal variations, all the newly defined space-time tree-based machine-
learning approaches (i.e., STDT, STGB, STXB, STRF, STET, and STLG) show significant
improvements in both overall estimation accuracy and spatial prediction ability in estimating hourly
PM: s concentrations with reference to their original models. This further illustrates the importance of
including spatiotemporal information when constructing PM2.5—AOD relationships. More importantly,
the training speed of these models did not decrease much, and the memory consumption did not
increase much either. In general, the STLG model shows the best performance with a high efficiency
(i.e., training speed = 46 s, memory usage = 0.60 GB) among all the space-time, tree-based machine-
learning models. Therefore, our new STLG model is highly valuable for accurate and fast air pollution

monitoring, in particular for our future study extended to the global scale.

3.3.2 Comparison with related studies

We compared Himawari-8-based hourly PMz s estimates at regional and national scales in China with
previous related studies (Table 6). Local hourly PM2.s concentrations retrieved from our national-scale
model are more accurate than those derived from the models developed separately in local areas, e.g.,
the LME model (W. Wang et al., 2017), the GWR, SVR, RF, and DNN models in the BTH region (Sun
et al., 2019), and the two-stage RF and DNN models in the YRD region (Fan et al., 2020; Tang et al.,
2019). Our model also outperforms most of the statistical regression models and machine-learning
models focused on the entirety of China, e.g., the [-ILME, IGTWR, RF, Adaboost, XGBoost, and their
stacked models in China (J. Chen et al., 2019; Liu et al., 2019; Xue et al., 2020; T. Zhang et al., 2019).
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This is due to the stronger data-mining ability, considering key spatial and temporal information about
air pollution (ignored in previous studies), and introduces more comprehensive factors that affect PMa2.s

pollution (e.g., emission inventories).
[Please insert Table 6 here]

4. Summary and conclusion

PM2:s has a great impact on the atmospheric environment and is also used as a key indicator in
environmental health studies. It varies diurnally, affected by both natural and human factors. Previous
studies have been based on data from sun-synchronous satellites, which can monitor air pollution at
coarse temporal scales (i.e., daily) while high-temporal-resolution and accurate information on PMz s
are needed. In this study, the Himawari-8/AHI hourly AOD product is employed to address this issue.
Moreover, considering the large volume of input data and the large errors in PM2.s estimation using
traditional methods, an efficient and accurate space-time Light Gradient Boosting Machine (i.e., STLG)
model has been developed. It utilizes meteorological, human, land use, and topographical parameters
and is implemented at 5-km resolution and hourly time scale to generate PM2.s information over China.
The hourly PM2 s estimates are evaluated against surface observations, and PMz.s spatiotemporal
variations are also investigated.

The STLG model predicts hourly PM2.s values accurately, with high out-of-sample (out-of-station) CV-
R? values of ~0.81-0.85 (~0.76-0.81) and low RMSE values of ~11.24-15.56 (~12.49-17.61) ug/m?
throughout the day. The model can also produce daily (e.g., R>=0.91, RMSE = 10.11 pug/m?), monthly,
seasonal, and annual mean PM2 s values (e.g., R2 = 0.98, RMSE = 1.6-3.3 pg/m?®). PM2 s varies
diurnally in most areas of mainland China, where PM2 s concentrations reach a maximum at 10 a.m. and
are generally low at sunrise and sunset on a given day. PM2.s also varies greatly on a seasonal basis,
where winter and summer experience the highest and lowest air pollution levels, respectively.
Comparison results suggest that the proposed model is more accurate than traditional statistical
regression models, other tree-based machine learning models, and various models developed in

previous studies. Overall, the STLG model is more efficient, with faster training speed and less memory
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consumption. These results illustrate that this algorithm can be useful for real-time monitoring of PMa.s

pollution in China.

Data availability

PM2.s measurements are available at http://www.cnemc.cn, the Himawari-8 AOD product is available at
ftp.ptree.jaxa.jp, ERAS reanalysis products are available at https://cds.climate.copernicus.eu/, the
MODIS product is available at https://search.earthdata.nasa.gov/, and the LandScan™ product is

available at https://landscan.ornl.gov/.
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Tables

Table 1. Summary of datasets and sources used in this study.

Dataset Variable Content Unit zlz Zgﬁi tion ;:Isr(l)lig:;ln Data Source
PMys PMas PM; 5 ug/m? in situ Hourly CNEMC
AOD AQOD Himawari-8§ AOD - Skm x 5 km Hourly Himawari-8

ET Total evaporation mm 0.1°x0.1°

SP Surface pressure hPa 0.1°x0.1°

TEM 2-m temperature K 0.1°x0.1°
Meteorology WU 10-m u-component of wind ~ m/s 0.1°x0.1° Hourly ERAS

wV 10-m v-component of wind ~ m/s 0.1°x0.1°

BLH Boundary-layer height m 0.25°x0.25°

RH Relative humidity % 0.25°x0.25°

NH3 Ammonia Mg/grid

NO. Nitrogen oxides Mg/grid
Emissions SO, Sulfur dioxide Mg/grid  0.25°x0.25° Monthly MEIC

VOC Volatile organic compounds Mg/grid

PM PM, coarse Mg/grid
Land cover NDVI NDVI - 0.05°x0.05° Monthly MOD13C2
Topography DEM Surface elevation m 90 m x 90 m - SRTM
Population POP Ambient population - 1 km x 1 km Yearly LandScan™
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Table 2. Hourly mean PM25 concentrations (ug/m?) in 2018 in China, eastern China (ECHN), the
Beijing-Tianjin-Hebei (BTH) region, the Yangtze River Delta (YRD), and the Pearl River Delta (PRD).

Time China ECHN BTH YRD PRD

08:00 29.94+10.91 31.97+11.55 42.46+12.97 38.60+10.57 29.34+5.01
09:00 33.37£12.59 36.29+13.52 47.32+15.04 43.55+11.27 34.81+£5.46
10:00 35.67+£13.53 38.56+14.05 49.31£15.03 44.72+11.17 35.48+5.47
11:00 35.63+13.05 38.72+13.53 49.10£13.77 44.27£10.55 36.36+5.76
12:00 31.23+11.74 35.10+£12.47 42.38+12.86 41.37£9.77 34.56+5.72
13:00 28.45+11.40 32.23+11.73 37.70£11.55 39.36+9.22 33.33+5.48
14:00 26.36£11.18 30.14+11.09 34.32+11.81 37.31+£8.59 32.05+5.50
15:00 24.25+10.06 28.67+10.21 31.95+£11.26 36.77+8.13 30.3445.43
16:00 23.63+9.26 27.38+9.15 29.82+10.13 32.84+6.30 29.49+5.97
17:00 23.214£9.73 26.63+8.93 28.88+10.16 27.59+4.39 31.56+6.17
Morning 33.29+11.59 36.15+12.41 46.12+13.29 42.50£10.22 34.52+4.63
Afternoon 25.114£9.78 29.01+£9.70 32.53+£10.53 34.76+6.66 31.42+4.85
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Table 3. Annual and seasonal mean PM2.s concentrations (ug/m?®) in 2018 in China, eastern China
(ECHN), the Beijing-Tianjin-Hebei (BTH) region, the Yangtze River Delta (YRD), and the Pearl River

Delta (PRD).
Time China ECHN BTH YRD PRD
Spring 32.84+11.49 34.934+10.95 45.75+£12.96 40.35+9.55 33.97+4.50
Summer 22.86x£7.05 24.16+6.29 29.99+7.46 26.16+4.58 23.56+3.18
Autumn 23.76+10.97 28.64+11.60 35.98+11.20 35.97+7.80 29.54+4.43
Winter 39.04+16.32 48.34+17.47 48.36+£18.92 57.41+16.88 43.924+8.56
Annual 28.99+10.31 32.56+10.78 39.32+11.74 38.64+8.27 32.9844.53
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Table 4. Comparison of the model performances of widely used models and the STLG model in
estimating PM2 s from Himawari-8 data at 14:00 local time in 2018 in China (N = 162,840).

del Out-of-sample validation Out-of-station validation
Mode CV-R? RMSE MAE CV-R? RMSE MAE
MLR 0.19 24.17 22.89 0.19 24.19 2291
GWR 0.39 21.96 20.74 0.37 22.42 21.02
GAM 0.39 19.09 18.64 0.36 19.77 18.89
LME 0.50 18.91 17.34 0.48 19.06 17.95
Two-stage 0.58 17.60 15.71 0.54 17.99 16.01
STLG 0.85 13.09 8.11 0.81 14.63 9.29
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Table 5. Comparison of the model performances of different tree-based machine-learning models and
the STLG model using the same input data. Data are from 14:00 local time in 2018 in China (N =

162,840).
Sample-based validation Station-based validation Speed Memory

Model

R’ RMSE MAE R’ RMSE MAE (s) (GB)
DT 0.52 25.53 14.80 0.48 27.03 15.57 6 0.58
GBDT 0.65 20.03 13.17 0.61 21.20 14.10 94 0.59
XGBoost 0.73 17.94 10.78 0.68 19.59 11.93 456 0.69
RF 0.72 17.86 11.33 0.69 18.80 11.95 165 2.59
ERT 0.74 17.12 10.87 0.72 18.01 11.49 54 3.69
LightGBM 0.78 15.79 9.84 0.73 17.59 11.21 34 0.60
STDT 0.65 21.09 12.33 0.63 22.00 12.85 8 0.60
STGB 0.75 16.82 10.93 0.73 17.61 11.54 503 0.61
STXB 0.82 14.73 8.76 0.78 15.92 9.62 456 0.68
STRF 0.81 14.62 9.17 0.79 15.44 9.69 219 2.75
STET 0.82 14.42 8.95 0.80 15.30 9.55 77 4.25
STLG 0.85 13.09 8.11 0.81 14.63 9.29 46 0.60
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Table 6. Comparison of model performances from previous studies in estimating hourly PMz s
concentrations in China.

Model validation .
Model Region Reference
R’ RMSE MAE

LME 0.86 24.5 14.2 BTH W. Wang et al. (2017)
LME 0.63 29.0 18.1 BTH Sun et al. (2019)
GWR 0.76 23.3 16.7 Sun et al. (2019)
SVR 0.77 21.5 12.3 Sun et al. (2019)
RF 0.82 20.3 12.1 Sun et al. (2019)
DNN 0.84 19.9 11.9 Sun et al. (2019)
two-stage RF 0.86 12.4 - YRD Tang et al. (2019)
DNN 0.86 14.3 - YRD Fan et al. (2020)
RF 0.82 19.6 12.2 China J. Chen et al. (2019)
Adaboost 0.84 18.3 10.7 J. Chen et al. (2019)
XGBoost 0.84 18.1 11.4 J. Chen et al. (2019)
Stacked model 0.85 17.3 10.5 J. Chen et al. (2019)
RF 0.86 17.3 10.3 China Liu et al. (2019)
I-LME 0.84 - - BTH T. Zhang et al. (2019)

0.80 - - YRD

0.74 - - PRD

0.82 - - China
IGTWR 0.78 21.1 - China Xue et al. (2020)
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Figure 1. Schematics of the space-time LightGBM (STLG) model developed in this study (upper panel)
and the framework of the original LightGBM model (bottom panel).
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Figure 7. Individual-site-scale validation of hourly PM2 s estimates (ug/m?®) in 2018 in China in terms of

(a) the sample size (N), (b) CV-R?, (¢c) RMSE, and (d) MAE.
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Figure 13. Himawari-8-derived hourly mean PM2.s maps (5 km) for different times of the day: (a)
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695 morning (08:00-12:00), and (1) afternoon (13:00—17:00) local time in 2018 across China.
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Figure 14. Himawari-8-derived seasonal mean PMz.s maps (5 km) for (a) spring, (b) summer, (c)
autumn, and (d) winter of 2018 across China.
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